1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
71 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
74 detach_pid(p
, PIDTYPE_PID
);
76 detach_pid(p
, PIDTYPE_TGID
);
77 detach_pid(p
, PIDTYPE_PGID
);
78 detach_pid(p
, PIDTYPE_SID
);
80 list_del_rcu(&p
->tasks
);
81 list_del_init(&p
->sibling
);
82 __this_cpu_dec(process_counts
);
84 list_del_rcu(&p
->thread_group
);
85 list_del_rcu(&p
->thread_node
);
89 * This function expects the tasklist_lock write-locked.
91 static void __exit_signal(struct task_struct
*tsk
)
93 struct signal_struct
*sig
= tsk
->signal
;
94 bool group_dead
= thread_group_leader(tsk
);
95 struct sighand_struct
*sighand
;
96 struct tty_struct
*uninitialized_var(tty
);
99 sighand
= rcu_dereference_check(tsk
->sighand
,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand
->siglock
);
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk
);
106 posix_cpu_timers_exit_group(tsk
);
114 * If there is any task waiting for the group exit
117 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
118 wake_up_process(sig
->group_exit_task
);
120 if (tsk
== sig
->curr_target
)
121 sig
->curr_target
= next_thread(tsk
);
124 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
125 sizeof(unsigned long long));
128 * Accumulate here the counters for all threads as they die. We could
129 * skip the group leader because it is the last user of signal_struct,
130 * but we want to avoid the race with thread_group_cputime() which can
131 * see the empty ->thread_head list.
133 task_cputime(tsk
, &utime
, &stime
);
134 write_seqlock(&sig
->stats_lock
);
137 sig
->gtime
+= task_gtime(tsk
);
138 sig
->min_flt
+= tsk
->min_flt
;
139 sig
->maj_flt
+= tsk
->maj_flt
;
140 sig
->nvcsw
+= tsk
->nvcsw
;
141 sig
->nivcsw
+= tsk
->nivcsw
;
142 sig
->inblock
+= task_io_get_inblock(tsk
);
143 sig
->oublock
+= task_io_get_oublock(tsk
);
144 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
145 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
147 __unhash_process(tsk
, group_dead
);
148 write_sequnlock(&sig
->stats_lock
);
151 * Do this under ->siglock, we can race with another thread
152 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 flush_sigqueue(&tsk
->pending
);
156 spin_unlock(&sighand
->siglock
);
158 __cleanup_sighand(sighand
);
159 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
161 flush_sigqueue(&sig
->shared_pending
);
166 static void delayed_put_task_struct(struct rcu_head
*rhp
)
168 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
170 perf_event_delayed_put(tsk
);
171 trace_sched_process_free(tsk
);
172 put_task_struct(tsk
);
175 void put_task_struct_rcu_user(struct task_struct
*task
)
177 if (refcount_dec_and_test(&task
->rcu_users
))
178 call_rcu(&task
->rcu
, delayed_put_task_struct
);
181 void release_task(struct task_struct
*p
)
183 struct task_struct
*leader
;
184 struct pid
*thread_pid
;
187 /* don't need to get the RCU readlock here - the process is dead and
188 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 atomic_dec(&__task_cred(p
)->user
->processes
);
195 write_lock_irq(&tasklist_lock
);
196 ptrace_release_task(p
);
197 thread_pid
= get_pid(p
->thread_pid
);
201 * If we are the last non-leader member of the thread
202 * group, and the leader is zombie, then notify the
203 * group leader's parent process. (if it wants notification.)
206 leader
= p
->group_leader
;
207 if (leader
!= p
&& thread_group_empty(leader
)
208 && leader
->exit_state
== EXIT_ZOMBIE
) {
210 * If we were the last child thread and the leader has
211 * exited already, and the leader's parent ignores SIGCHLD,
212 * then we are the one who should release the leader.
214 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
216 leader
->exit_state
= EXIT_DEAD
;
219 write_unlock_irq(&tasklist_lock
);
220 proc_flush_pid(thread_pid
);
223 put_task_struct_rcu_user(p
);
226 if (unlikely(zap_leader
))
230 int rcuwait_wake_up(struct rcuwait
*w
)
233 struct task_struct
*task
;
238 * Order condition vs @task, such that everything prior to the load
239 * of @task is visible. This is the condition as to why the user called
240 * rcuwait_wake() in the first place. Pairs with set_current_state()
241 * barrier (A) in rcuwait_wait_event().
244 * [S] tsk = current [S] cond = true
250 task
= rcu_dereference(w
->task
);
252 ret
= wake_up_process(task
);
257 EXPORT_SYMBOL_GPL(rcuwait_wake_up
);
260 * Determine if a process group is "orphaned", according to the POSIX
261 * definition in 2.2.2.52. Orphaned process groups are not to be affected
262 * by terminal-generated stop signals. Newly orphaned process groups are
263 * to receive a SIGHUP and a SIGCONT.
265 * "I ask you, have you ever known what it is to be an orphan?"
267 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
268 struct task_struct
*ignored_task
)
270 struct task_struct
*p
;
272 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
273 if ((p
== ignored_task
) ||
274 (p
->exit_state
&& thread_group_empty(p
)) ||
275 is_global_init(p
->real_parent
))
278 if (task_pgrp(p
->real_parent
) != pgrp
&&
279 task_session(p
->real_parent
) == task_session(p
))
281 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
286 int is_current_pgrp_orphaned(void)
290 read_lock(&tasklist_lock
);
291 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
292 read_unlock(&tasklist_lock
);
297 static bool has_stopped_jobs(struct pid
*pgrp
)
299 struct task_struct
*p
;
301 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
302 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
304 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
310 * Check to see if any process groups have become orphaned as
311 * a result of our exiting, and if they have any stopped jobs,
312 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
317 struct pid
*pgrp
= task_pgrp(tsk
);
318 struct task_struct
*ignored_task
= tsk
;
321 /* exit: our father is in a different pgrp than
322 * we are and we were the only connection outside.
324 parent
= tsk
->real_parent
;
326 /* reparent: our child is in a different pgrp than
327 * we are, and it was the only connection outside.
331 if (task_pgrp(parent
) != pgrp
&&
332 task_session(parent
) == task_session(tsk
) &&
333 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
334 has_stopped_jobs(pgrp
)) {
335 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
336 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
342 * A task is exiting. If it owned this mm, find a new owner for the mm.
344 void mm_update_next_owner(struct mm_struct
*mm
)
346 struct task_struct
*c
, *g
, *p
= current
;
350 * If the exiting or execing task is not the owner, it's
351 * someone else's problem.
356 * The current owner is exiting/execing and there are no other
357 * candidates. Do not leave the mm pointing to a possibly
358 * freed task structure.
360 if (atomic_read(&mm
->mm_users
) <= 1) {
361 WRITE_ONCE(mm
->owner
, NULL
);
365 read_lock(&tasklist_lock
);
367 * Search in the children
369 list_for_each_entry(c
, &p
->children
, sibling
) {
371 goto assign_new_owner
;
375 * Search in the siblings
377 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
379 goto assign_new_owner
;
383 * Search through everything else, we should not get here often.
385 for_each_process(g
) {
386 if (g
->flags
& PF_KTHREAD
)
388 for_each_thread(g
, c
) {
390 goto assign_new_owner
;
395 read_unlock(&tasklist_lock
);
397 * We found no owner yet mm_users > 1: this implies that we are
398 * most likely racing with swapoff (try_to_unuse()) or /proc or
399 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
401 WRITE_ONCE(mm
->owner
, NULL
);
408 * The task_lock protects c->mm from changing.
409 * We always want mm->owner->mm == mm
413 * Delay read_unlock() till we have the task_lock()
414 * to ensure that c does not slip away underneath us
416 read_unlock(&tasklist_lock
);
422 WRITE_ONCE(mm
->owner
, c
);
426 #endif /* CONFIG_MEMCG */
429 * Turn us into a lazy TLB process if we
432 static void exit_mm(void)
434 struct mm_struct
*mm
= current
->mm
;
435 struct core_state
*core_state
;
437 exit_mm_release(current
, mm
);
442 * Serialize with any possible pending coredump.
443 * We must hold mmap_lock around checking core_state
444 * and clearing tsk->mm. The core-inducing thread
445 * will increment ->nr_threads for each thread in the
446 * group with ->mm != NULL.
449 core_state
= mm
->core_state
;
451 struct core_thread self
;
453 mmap_read_unlock(mm
);
456 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
458 * Implies mb(), the result of xchg() must be visible
459 * to core_state->dumper.
461 if (atomic_dec_and_test(&core_state
->nr_threads
))
462 complete(&core_state
->startup
);
465 set_current_state(TASK_UNINTERRUPTIBLE
);
466 if (!self
.task
) /* see coredump_finish() */
468 freezable_schedule();
470 __set_current_state(TASK_RUNNING
);
474 BUG_ON(mm
!= current
->active_mm
);
475 /* more a memory barrier than a real lock */
478 mmap_read_unlock(mm
);
479 enter_lazy_tlb(mm
, current
);
480 task_unlock(current
);
481 mm_update_next_owner(mm
);
483 if (test_thread_flag(TIF_MEMDIE
))
487 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
489 struct task_struct
*t
;
491 for_each_thread(p
, t
) {
492 if (!(t
->flags
& PF_EXITING
))
498 static struct task_struct
*find_child_reaper(struct task_struct
*father
,
499 struct list_head
*dead
)
500 __releases(&tasklist_lock
)
501 __acquires(&tasklist_lock
)
503 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
504 struct task_struct
*reaper
= pid_ns
->child_reaper
;
505 struct task_struct
*p
, *n
;
507 if (likely(reaper
!= father
))
510 reaper
= find_alive_thread(father
);
512 pid_ns
->child_reaper
= reaper
;
516 write_unlock_irq(&tasklist_lock
);
518 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
519 list_del_init(&p
->ptrace_entry
);
523 zap_pid_ns_processes(pid_ns
);
524 write_lock_irq(&tasklist_lock
);
530 * When we die, we re-parent all our children, and try to:
531 * 1. give them to another thread in our thread group, if such a member exists
532 * 2. give it to the first ancestor process which prctl'd itself as a
533 * child_subreaper for its children (like a service manager)
534 * 3. give it to the init process (PID 1) in our pid namespace
536 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
537 struct task_struct
*child_reaper
)
539 struct task_struct
*thread
, *reaper
;
541 thread
= find_alive_thread(father
);
545 if (father
->signal
->has_child_subreaper
) {
546 unsigned int ns_level
= task_pid(father
)->level
;
548 * Find the first ->is_child_subreaper ancestor in our pid_ns.
549 * We can't check reaper != child_reaper to ensure we do not
550 * cross the namespaces, the exiting parent could be injected
551 * by setns() + fork().
552 * We check pid->level, this is slightly more efficient than
553 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
555 for (reaper
= father
->real_parent
;
556 task_pid(reaper
)->level
== ns_level
;
557 reaper
= reaper
->real_parent
) {
558 if (reaper
== &init_task
)
560 if (!reaper
->signal
->is_child_subreaper
)
562 thread
= find_alive_thread(reaper
);
572 * Any that need to be release_task'd are put on the @dead list.
574 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
575 struct list_head
*dead
)
577 if (unlikely(p
->exit_state
== EXIT_DEAD
))
580 /* We don't want people slaying init. */
581 p
->exit_signal
= SIGCHLD
;
583 /* If it has exited notify the new parent about this child's death. */
585 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
586 if (do_notify_parent(p
, p
->exit_signal
)) {
587 p
->exit_state
= EXIT_DEAD
;
588 list_add(&p
->ptrace_entry
, dead
);
592 kill_orphaned_pgrp(p
, father
);
596 * This does two things:
598 * A. Make init inherit all the child processes
599 * B. Check to see if any process groups have become orphaned
600 * as a result of our exiting, and if they have any stopped
601 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
603 static void forget_original_parent(struct task_struct
*father
,
604 struct list_head
*dead
)
606 struct task_struct
*p
, *t
, *reaper
;
608 if (unlikely(!list_empty(&father
->ptraced
)))
609 exit_ptrace(father
, dead
);
611 /* Can drop and reacquire tasklist_lock */
612 reaper
= find_child_reaper(father
, dead
);
613 if (list_empty(&father
->children
))
616 reaper
= find_new_reaper(father
, reaper
);
617 list_for_each_entry(p
, &father
->children
, sibling
) {
618 for_each_thread(p
, t
) {
619 RCU_INIT_POINTER(t
->real_parent
, reaper
);
620 BUG_ON((!t
->ptrace
) != (rcu_access_pointer(t
->parent
) == father
));
621 if (likely(!t
->ptrace
))
622 t
->parent
= t
->real_parent
;
623 if (t
->pdeath_signal
)
624 group_send_sig_info(t
->pdeath_signal
,
629 * If this is a threaded reparent there is no need to
630 * notify anyone anything has happened.
632 if (!same_thread_group(reaper
, father
))
633 reparent_leader(father
, p
, dead
);
635 list_splice_tail_init(&father
->children
, &reaper
->children
);
639 * Send signals to all our closest relatives so that they know
640 * to properly mourn us..
642 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
645 struct task_struct
*p
, *n
;
648 write_lock_irq(&tasklist_lock
);
649 forget_original_parent(tsk
, &dead
);
652 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
654 tsk
->exit_state
= EXIT_ZOMBIE
;
655 if (unlikely(tsk
->ptrace
)) {
656 int sig
= thread_group_leader(tsk
) &&
657 thread_group_empty(tsk
) &&
658 !ptrace_reparented(tsk
) ?
659 tsk
->exit_signal
: SIGCHLD
;
660 autoreap
= do_notify_parent(tsk
, sig
);
661 } else if (thread_group_leader(tsk
)) {
662 autoreap
= thread_group_empty(tsk
) &&
663 do_notify_parent(tsk
, tsk
->exit_signal
);
669 tsk
->exit_state
= EXIT_DEAD
;
670 list_add(&tsk
->ptrace_entry
, &dead
);
673 /* mt-exec, de_thread() is waiting for group leader */
674 if (unlikely(tsk
->signal
->notify_count
< 0))
675 wake_up_process(tsk
->signal
->group_exit_task
);
676 write_unlock_irq(&tasklist_lock
);
678 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
679 list_del_init(&p
->ptrace_entry
);
684 #ifdef CONFIG_DEBUG_STACK_USAGE
685 static void check_stack_usage(void)
687 static DEFINE_SPINLOCK(low_water_lock
);
688 static int lowest_to_date
= THREAD_SIZE
;
691 free
= stack_not_used(current
);
693 if (free
>= lowest_to_date
)
696 spin_lock(&low_water_lock
);
697 if (free
< lowest_to_date
) {
698 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
699 current
->comm
, task_pid_nr(current
), free
);
700 lowest_to_date
= free
;
702 spin_unlock(&low_water_lock
);
705 static inline void check_stack_usage(void) {}
708 void __noreturn
do_exit(long code
)
710 struct task_struct
*tsk
= current
;
714 * We can get here from a kernel oops, sometimes with preemption off.
715 * Start by checking for critical errors.
716 * Then fix up important state like USER_DS and preemption.
717 * Then do everything else.
720 WARN_ON(blk_needs_flush_plug(tsk
));
722 if (unlikely(in_interrupt()))
723 panic("Aiee, killing interrupt handler!");
724 if (unlikely(!tsk
->pid
))
725 panic("Attempted to kill the idle task!");
728 * If do_exit is called because this processes oopsed, it's possible
729 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
730 * continuing. Amongst other possible reasons, this is to prevent
731 * mm_release()->clear_child_tid() from writing to a user-controlled
736 if (unlikely(in_atomic())) {
737 pr_info("note: %s[%d] exited with preempt_count %d\n",
738 current
->comm
, task_pid_nr(current
),
740 preempt_count_set(PREEMPT_ENABLED
);
743 profile_task_exit(tsk
);
746 ptrace_event(PTRACE_EVENT_EXIT
, code
);
748 validate_creds_for_do_exit(tsk
);
751 * We're taking recursive faults here in do_exit. Safest is to just
752 * leave this task alone and wait for reboot.
754 if (unlikely(tsk
->flags
& PF_EXITING
)) {
755 pr_alert("Fixing recursive fault but reboot is needed!\n");
756 futex_exit_recursive(tsk
);
757 set_current_state(TASK_UNINTERRUPTIBLE
);
761 exit_signals(tsk
); /* sets PF_EXITING */
763 /* sync mm's RSS info before statistics gathering */
765 sync_mm_rss(tsk
->mm
);
766 acct_update_integrals(tsk
);
767 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
770 * If the last thread of global init has exited, panic
771 * immediately to get a useable coredump.
773 if (unlikely(is_global_init(tsk
)))
774 panic("Attempted to kill init! exitcode=0x%08x\n",
775 tsk
->signal
->group_exit_code
?: (int)code
);
777 #ifdef CONFIG_POSIX_TIMERS
778 hrtimer_cancel(&tsk
->signal
->real_timer
);
779 exit_itimers(tsk
->signal
);
782 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
784 acct_collect(code
, group_dead
);
789 tsk
->exit_code
= code
;
790 taskstats_exit(tsk
, group_dead
);
796 trace_sched_process_exit(tsk
);
803 disassociate_ctty(1);
804 exit_task_namespaces(tsk
);
810 * Flush inherited counters to the parent - before the parent
811 * gets woken up by child-exit notifications.
813 * because of cgroup mode, must be called before cgroup_exit()
815 perf_event_exit_task(tsk
);
817 sched_autogroup_exit_task(tsk
);
821 * FIXME: do that only when needed, using sched_exit tracepoint
823 flush_ptrace_hw_breakpoint(tsk
);
825 exit_tasks_rcu_start();
826 exit_notify(tsk
, group_dead
);
827 proc_exit_connector(tsk
);
828 mpol_put_task_policy(tsk
);
830 if (unlikely(current
->pi_state_cache
))
831 kfree(current
->pi_state_cache
);
834 * Make sure we are holding no locks:
836 debug_check_no_locks_held();
839 exit_io_context(tsk
);
841 if (tsk
->splice_pipe
)
842 free_pipe_info(tsk
->splice_pipe
);
844 if (tsk
->task_frag
.page
)
845 put_page(tsk
->task_frag
.page
);
847 validate_creds_for_do_exit(tsk
);
852 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
854 exit_tasks_rcu_finish();
856 lockdep_free_task(tsk
);
859 EXPORT_SYMBOL_GPL(do_exit
);
861 void complete_and_exit(struct completion
*comp
, long code
)
868 EXPORT_SYMBOL(complete_and_exit
);
870 SYSCALL_DEFINE1(exit
, int, error_code
)
872 do_exit((error_code
&0xff)<<8);
876 * Take down every thread in the group. This is called by fatal signals
877 * as well as by sys_exit_group (below).
880 do_group_exit(int exit_code
)
882 struct signal_struct
*sig
= current
->signal
;
884 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
886 if (signal_group_exit(sig
))
887 exit_code
= sig
->group_exit_code
;
888 else if (!thread_group_empty(current
)) {
889 struct sighand_struct
*const sighand
= current
->sighand
;
891 spin_lock_irq(&sighand
->siglock
);
892 if (signal_group_exit(sig
))
893 /* Another thread got here before we took the lock. */
894 exit_code
= sig
->group_exit_code
;
896 sig
->group_exit_code
= exit_code
;
897 sig
->flags
= SIGNAL_GROUP_EXIT
;
898 zap_other_threads(current
);
900 spin_unlock_irq(&sighand
->siglock
);
908 * this kills every thread in the thread group. Note that any externally
909 * wait4()-ing process will get the correct exit code - even if this
910 * thread is not the thread group leader.
912 SYSCALL_DEFINE1(exit_group
, int, error_code
)
914 do_group_exit((error_code
& 0xff) << 8);
927 enum pid_type wo_type
;
931 struct waitid_info
*wo_info
;
933 struct rusage
*wo_rusage
;
935 wait_queue_entry_t child_wait
;
939 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
941 return wo
->wo_type
== PIDTYPE_MAX
||
942 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
946 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
948 if (!eligible_pid(wo
, p
))
952 * Wait for all children (clone and not) if __WALL is set or
953 * if it is traced by us.
955 if (ptrace
|| (wo
->wo_flags
& __WALL
))
959 * Otherwise, wait for clone children *only* if __WCLONE is set;
960 * otherwise, wait for non-clone children *only*.
962 * Note: a "clone" child here is one that reports to its parent
963 * using a signal other than SIGCHLD, or a non-leader thread which
964 * we can only see if it is traced by us.
966 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
974 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
975 * the lock and this task is uninteresting. If we return nonzero, we have
976 * released the lock and the system call should return.
978 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
981 pid_t pid
= task_pid_vnr(p
);
982 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
983 struct waitid_info
*infop
;
985 if (!likely(wo
->wo_flags
& WEXITED
))
988 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
989 status
= p
->exit_code
;
991 read_unlock(&tasklist_lock
);
992 sched_annotate_sleep();
994 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
999 * Move the task's state to DEAD/TRACE, only one thread can do this.
1001 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1002 EXIT_TRACE
: EXIT_DEAD
;
1003 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1006 * We own this thread, nobody else can reap it.
1008 read_unlock(&tasklist_lock
);
1009 sched_annotate_sleep();
1012 * Check thread_group_leader() to exclude the traced sub-threads.
1014 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1015 struct signal_struct
*sig
= p
->signal
;
1016 struct signal_struct
*psig
= current
->signal
;
1017 unsigned long maxrss
;
1018 u64 tgutime
, tgstime
;
1021 * The resource counters for the group leader are in its
1022 * own task_struct. Those for dead threads in the group
1023 * are in its signal_struct, as are those for the child
1024 * processes it has previously reaped. All these
1025 * accumulate in the parent's signal_struct c* fields.
1027 * We don't bother to take a lock here to protect these
1028 * p->signal fields because the whole thread group is dead
1029 * and nobody can change them.
1031 * psig->stats_lock also protects us from our sub-theads
1032 * which can reap other children at the same time. Until
1033 * we change k_getrusage()-like users to rely on this lock
1034 * we have to take ->siglock as well.
1036 * We use thread_group_cputime_adjusted() to get times for
1037 * the thread group, which consolidates times for all threads
1038 * in the group including the group leader.
1040 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1041 spin_lock_irq(¤t
->sighand
->siglock
);
1042 write_seqlock(&psig
->stats_lock
);
1043 psig
->cutime
+= tgutime
+ sig
->cutime
;
1044 psig
->cstime
+= tgstime
+ sig
->cstime
;
1045 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1047 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1049 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1051 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1053 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1055 task_io_get_inblock(p
) +
1056 sig
->inblock
+ sig
->cinblock
;
1058 task_io_get_oublock(p
) +
1059 sig
->oublock
+ sig
->coublock
;
1060 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1061 if (psig
->cmaxrss
< maxrss
)
1062 psig
->cmaxrss
= maxrss
;
1063 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1064 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1065 write_sequnlock(&psig
->stats_lock
);
1066 spin_unlock_irq(¤t
->sighand
->siglock
);
1070 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1071 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1072 ? p
->signal
->group_exit_code
: p
->exit_code
;
1073 wo
->wo_stat
= status
;
1075 if (state
== EXIT_TRACE
) {
1076 write_lock_irq(&tasklist_lock
);
1077 /* We dropped tasklist, ptracer could die and untrace */
1080 /* If parent wants a zombie, don't release it now */
1081 state
= EXIT_ZOMBIE
;
1082 if (do_notify_parent(p
, p
->exit_signal
))
1084 p
->exit_state
= state
;
1085 write_unlock_irq(&tasklist_lock
);
1087 if (state
== EXIT_DEAD
)
1091 infop
= wo
->wo_info
;
1093 if ((status
& 0x7f) == 0) {
1094 infop
->cause
= CLD_EXITED
;
1095 infop
->status
= status
>> 8;
1097 infop
->cause
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1098 infop
->status
= status
& 0x7f;
1107 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1110 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1111 return &p
->exit_code
;
1113 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1114 return &p
->signal
->group_exit_code
;
1120 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1122 * @ptrace: is the wait for ptrace
1123 * @p: task to wait for
1125 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1128 * read_lock(&tasklist_lock), which is released if return value is
1129 * non-zero. Also, grabs and releases @p->sighand->siglock.
1132 * 0 if wait condition didn't exist and search for other wait conditions
1133 * should continue. Non-zero return, -errno on failure and @p's pid on
1134 * success, implies that tasklist_lock is released and wait condition
1135 * search should terminate.
1137 static int wait_task_stopped(struct wait_opts
*wo
,
1138 int ptrace
, struct task_struct
*p
)
1140 struct waitid_info
*infop
;
1141 int exit_code
, *p_code
, why
;
1142 uid_t uid
= 0; /* unneeded, required by compiler */
1146 * Traditionally we see ptrace'd stopped tasks regardless of options.
1148 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1151 if (!task_stopped_code(p
, ptrace
))
1155 spin_lock_irq(&p
->sighand
->siglock
);
1157 p_code
= task_stopped_code(p
, ptrace
);
1158 if (unlikely(!p_code
))
1161 exit_code
= *p_code
;
1165 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1168 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1170 spin_unlock_irq(&p
->sighand
->siglock
);
1175 * Now we are pretty sure this task is interesting.
1176 * Make sure it doesn't get reaped out from under us while we
1177 * give up the lock and then examine it below. We don't want to
1178 * keep holding onto the tasklist_lock while we call getrusage and
1179 * possibly take page faults for user memory.
1182 pid
= task_pid_vnr(p
);
1183 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1184 read_unlock(&tasklist_lock
);
1185 sched_annotate_sleep();
1187 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1190 if (likely(!(wo
->wo_flags
& WNOWAIT
)))
1191 wo
->wo_stat
= (exit_code
<< 8) | 0x7f;
1193 infop
= wo
->wo_info
;
1196 infop
->status
= exit_code
;
1204 * Handle do_wait work for one task in a live, non-stopped state.
1205 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1206 * the lock and this task is uninteresting. If we return nonzero, we have
1207 * released the lock and the system call should return.
1209 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1211 struct waitid_info
*infop
;
1215 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1218 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1221 spin_lock_irq(&p
->sighand
->siglock
);
1222 /* Re-check with the lock held. */
1223 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1224 spin_unlock_irq(&p
->sighand
->siglock
);
1227 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1228 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1229 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1230 spin_unlock_irq(&p
->sighand
->siglock
);
1232 pid
= task_pid_vnr(p
);
1234 read_unlock(&tasklist_lock
);
1235 sched_annotate_sleep();
1237 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1240 infop
= wo
->wo_info
;
1242 wo
->wo_stat
= 0xffff;
1244 infop
->cause
= CLD_CONTINUED
;
1247 infop
->status
= SIGCONT
;
1253 * Consider @p for a wait by @parent.
1255 * -ECHILD should be in ->notask_error before the first call.
1256 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1257 * Returns zero if the search for a child should continue;
1258 * then ->notask_error is 0 if @p is an eligible child,
1261 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1262 struct task_struct
*p
)
1265 * We can race with wait_task_zombie() from another thread.
1266 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1267 * can't confuse the checks below.
1269 int exit_state
= READ_ONCE(p
->exit_state
);
1272 if (unlikely(exit_state
== EXIT_DEAD
))
1275 ret
= eligible_child(wo
, ptrace
, p
);
1279 if (unlikely(exit_state
== EXIT_TRACE
)) {
1281 * ptrace == 0 means we are the natural parent. In this case
1282 * we should clear notask_error, debugger will notify us.
1284 if (likely(!ptrace
))
1285 wo
->notask_error
= 0;
1289 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1291 * If it is traced by its real parent's group, just pretend
1292 * the caller is ptrace_do_wait() and reap this child if it
1295 * This also hides group stop state from real parent; otherwise
1296 * a single stop can be reported twice as group and ptrace stop.
1297 * If a ptracer wants to distinguish these two events for its
1298 * own children it should create a separate process which takes
1299 * the role of real parent.
1301 if (!ptrace_reparented(p
))
1306 if (exit_state
== EXIT_ZOMBIE
) {
1307 /* we don't reap group leaders with subthreads */
1308 if (!delay_group_leader(p
)) {
1310 * A zombie ptracee is only visible to its ptracer.
1311 * Notification and reaping will be cascaded to the
1312 * real parent when the ptracer detaches.
1314 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1315 return wait_task_zombie(wo
, p
);
1319 * Allow access to stopped/continued state via zombie by
1320 * falling through. Clearing of notask_error is complex.
1324 * If WEXITED is set, notask_error should naturally be
1325 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1326 * so, if there are live subthreads, there are events to
1327 * wait for. If all subthreads are dead, it's still safe
1328 * to clear - this function will be called again in finite
1329 * amount time once all the subthreads are released and
1330 * will then return without clearing.
1334 * Stopped state is per-task and thus can't change once the
1335 * target task dies. Only continued and exited can happen.
1336 * Clear notask_error if WCONTINUED | WEXITED.
1338 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1339 wo
->notask_error
= 0;
1342 * @p is alive and it's gonna stop, continue or exit, so
1343 * there always is something to wait for.
1345 wo
->notask_error
= 0;
1349 * Wait for stopped. Depending on @ptrace, different stopped state
1350 * is used and the two don't interact with each other.
1352 ret
= wait_task_stopped(wo
, ptrace
, p
);
1357 * Wait for continued. There's only one continued state and the
1358 * ptracer can consume it which can confuse the real parent. Don't
1359 * use WCONTINUED from ptracer. You don't need or want it.
1361 return wait_task_continued(wo
, p
);
1365 * Do the work of do_wait() for one thread in the group, @tsk.
1367 * -ECHILD should be in ->notask_error before the first call.
1368 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1369 * Returns zero if the search for a child should continue; then
1370 * ->notask_error is 0 if there were any eligible children,
1373 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1375 struct task_struct
*p
;
1377 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1378 int ret
= wait_consider_task(wo
, 0, p
);
1387 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1389 struct task_struct
*p
;
1391 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1392 int ret
= wait_consider_task(wo
, 1, p
);
1401 static int child_wait_callback(wait_queue_entry_t
*wait
, unsigned mode
,
1402 int sync
, void *key
)
1404 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1406 struct task_struct
*p
= key
;
1408 if (!eligible_pid(wo
, p
))
1411 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1414 return default_wake_function(wait
, mode
, sync
, key
);
1417 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1419 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1420 TASK_INTERRUPTIBLE
, p
);
1423 static long do_wait(struct wait_opts
*wo
)
1425 struct task_struct
*tsk
;
1428 trace_sched_process_wait(wo
->wo_pid
);
1430 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1431 wo
->child_wait
.private = current
;
1432 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1435 * If there is nothing that can match our criteria, just get out.
1436 * We will clear ->notask_error to zero if we see any child that
1437 * might later match our criteria, even if we are not able to reap
1440 wo
->notask_error
= -ECHILD
;
1441 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1442 (!wo
->wo_pid
|| !pid_has_task(wo
->wo_pid
, wo
->wo_type
)))
1445 set_current_state(TASK_INTERRUPTIBLE
);
1446 read_lock(&tasklist_lock
);
1449 retval
= do_wait_thread(wo
, tsk
);
1453 retval
= ptrace_do_wait(wo
, tsk
);
1457 if (wo
->wo_flags
& __WNOTHREAD
)
1459 } while_each_thread(current
, tsk
);
1460 read_unlock(&tasklist_lock
);
1463 retval
= wo
->notask_error
;
1464 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1465 retval
= -ERESTARTSYS
;
1466 if (!signal_pending(current
)) {
1472 __set_current_state(TASK_RUNNING
);
1473 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1477 static struct pid
*pidfd_get_pid(unsigned int fd
)
1484 return ERR_PTR(-EBADF
);
1486 pid
= pidfd_pid(f
.file
);
1494 static long kernel_waitid(int which
, pid_t upid
, struct waitid_info
*infop
,
1495 int options
, struct rusage
*ru
)
1497 struct wait_opts wo
;
1498 struct pid
*pid
= NULL
;
1502 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1503 __WNOTHREAD
|__WCLONE
|__WALL
))
1505 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1517 pid
= find_get_pid(upid
);
1520 type
= PIDTYPE_PGID
;
1525 pid
= find_get_pid(upid
);
1527 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1534 pid
= pidfd_get_pid(upid
);
1536 return PTR_ERR(pid
);
1544 wo
.wo_flags
= options
;
1553 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1554 infop
, int, options
, struct rusage __user
*, ru
)
1557 struct waitid_info info
= {.status
= 0};
1558 long err
= kernel_waitid(which
, upid
, &info
, options
, ru
? &r
: NULL
);
1564 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1570 if (!user_write_access_begin(infop
, sizeof(*infop
)))
1573 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1574 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1575 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1576 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1577 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1578 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1579 user_write_access_end();
1582 user_write_access_end();
1586 long kernel_wait4(pid_t upid
, int __user
*stat_addr
, int options
,
1589 struct wait_opts wo
;
1590 struct pid
*pid
= NULL
;
1594 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1595 __WNOTHREAD
|__WCLONE
|__WALL
))
1598 /* -INT_MIN is not defined */
1599 if (upid
== INT_MIN
)
1604 else if (upid
< 0) {
1605 type
= PIDTYPE_PGID
;
1606 pid
= find_get_pid(-upid
);
1607 } else if (upid
== 0) {
1608 type
= PIDTYPE_PGID
;
1609 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1610 } else /* upid > 0 */ {
1612 pid
= find_get_pid(upid
);
1617 wo
.wo_flags
= options
| WEXITED
;
1623 if (ret
> 0 && stat_addr
&& put_user(wo
.wo_stat
, stat_addr
))
1629 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1630 int, options
, struct rusage __user
*, ru
)
1633 long err
= kernel_wait4(upid
, stat_addr
, options
, ru
? &r
: NULL
);
1636 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1642 #ifdef __ARCH_WANT_SYS_WAITPID
1645 * sys_waitpid() remains for compatibility. waitpid() should be
1646 * implemented by calling sys_wait4() from libc.a.
1648 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1650 return kernel_wait4(pid
, stat_addr
, options
, NULL
);
1655 #ifdef CONFIG_COMPAT
1656 COMPAT_SYSCALL_DEFINE4(wait4
,
1658 compat_uint_t __user
*, stat_addr
,
1660 struct compat_rusage __user
*, ru
)
1663 long err
= kernel_wait4(pid
, stat_addr
, options
, ru
? &r
: NULL
);
1665 if (ru
&& put_compat_rusage(&r
, ru
))
1671 COMPAT_SYSCALL_DEFINE5(waitid
,
1672 int, which
, compat_pid_t
, pid
,
1673 struct compat_siginfo __user
*, infop
, int, options
,
1674 struct compat_rusage __user
*, uru
)
1677 struct waitid_info info
= {.status
= 0};
1678 long err
= kernel_waitid(which
, pid
, &info
, options
, uru
? &ru
: NULL
);
1684 /* kernel_waitid() overwrites everything in ru */
1685 if (COMPAT_USE_64BIT_TIME
)
1686 err
= copy_to_user(uru
, &ru
, sizeof(ru
));
1688 err
= put_compat_rusage(&ru
, uru
);
1697 if (!user_write_access_begin(infop
, sizeof(*infop
)))
1700 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1701 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1702 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1703 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1704 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1705 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1706 user_write_access_end();
1709 user_write_access_end();
1714 __weak
void abort(void)
1718 /* if that doesn't kill us, halt */
1719 panic("Oops failed to kill thread");
1721 EXPORT_SYMBOL(abort
);