Linux 5.8-rc4
[linux/fpc-iii.git] / kernel / kprobes.c
blob4a904cc56d68f922dbf807fb54f9593905a6f7f0
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
6 * Copyright (C) IBM Corporation, 2002, 2004
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 static int kprobes_initialized;
49 /* kprobe_table can be accessed by
50 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
51 * Or
52 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
55 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63 static struct {
64 raw_spinlock_t lock ____cacheline_aligned_in_smp;
65 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
67 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
68 unsigned int __unused)
70 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
73 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
75 return &(kretprobe_table_locks[hash].lock);
78 /* Blacklist -- list of struct kprobe_blacklist_entry */
79 static LIST_HEAD(kprobe_blacklist);
81 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 * kprobe->ainsn.insn points to the copy of the instruction to be
84 * single-stepped. x86_64, POWER4 and above have no-exec support and
85 * stepping on the instruction on a vmalloced/kmalloced/data page
86 * is a recipe for disaster
88 struct kprobe_insn_page {
89 struct list_head list;
90 kprobe_opcode_t *insns; /* Page of instruction slots */
91 struct kprobe_insn_cache *cache;
92 int nused;
93 int ngarbage;
94 char slot_used[];
97 #define KPROBE_INSN_PAGE_SIZE(slots) \
98 (offsetof(struct kprobe_insn_page, slot_used) + \
99 (sizeof(char) * (slots)))
101 static int slots_per_page(struct kprobe_insn_cache *c)
103 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
106 enum kprobe_slot_state {
107 SLOT_CLEAN = 0,
108 SLOT_DIRTY = 1,
109 SLOT_USED = 2,
112 void __weak *alloc_insn_page(void)
114 return module_alloc(PAGE_SIZE);
117 void __weak free_insn_page(void *page)
119 module_memfree(page);
122 struct kprobe_insn_cache kprobe_insn_slots = {
123 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
124 .alloc = alloc_insn_page,
125 .free = free_insn_page,
126 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
127 .insn_size = MAX_INSN_SIZE,
128 .nr_garbage = 0,
130 static int collect_garbage_slots(struct kprobe_insn_cache *c);
133 * __get_insn_slot() - Find a slot on an executable page for an instruction.
134 * We allocate an executable page if there's no room on existing ones.
136 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
138 struct kprobe_insn_page *kip;
139 kprobe_opcode_t *slot = NULL;
141 /* Since the slot array is not protected by rcu, we need a mutex */
142 mutex_lock(&c->mutex);
143 retry:
144 rcu_read_lock();
145 list_for_each_entry_rcu(kip, &c->pages, list) {
146 if (kip->nused < slots_per_page(c)) {
147 int i;
148 for (i = 0; i < slots_per_page(c); i++) {
149 if (kip->slot_used[i] == SLOT_CLEAN) {
150 kip->slot_used[i] = SLOT_USED;
151 kip->nused++;
152 slot = kip->insns + (i * c->insn_size);
153 rcu_read_unlock();
154 goto out;
157 /* kip->nused is broken. Fix it. */
158 kip->nused = slots_per_page(c);
159 WARN_ON(1);
162 rcu_read_unlock();
164 /* If there are any garbage slots, collect it and try again. */
165 if (c->nr_garbage && collect_garbage_slots(c) == 0)
166 goto retry;
168 /* All out of space. Need to allocate a new page. */
169 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
170 if (!kip)
171 goto out;
174 * Use module_alloc so this page is within +/- 2GB of where the
175 * kernel image and loaded module images reside. This is required
176 * so x86_64 can correctly handle the %rip-relative fixups.
178 kip->insns = c->alloc();
179 if (!kip->insns) {
180 kfree(kip);
181 goto out;
183 INIT_LIST_HEAD(&kip->list);
184 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
185 kip->slot_used[0] = SLOT_USED;
186 kip->nused = 1;
187 kip->ngarbage = 0;
188 kip->cache = c;
189 list_add_rcu(&kip->list, &c->pages);
190 slot = kip->insns;
191 out:
192 mutex_unlock(&c->mutex);
193 return slot;
196 /* Return 1 if all garbages are collected, otherwise 0. */
197 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
199 kip->slot_used[idx] = SLOT_CLEAN;
200 kip->nused--;
201 if (kip->nused == 0) {
203 * Page is no longer in use. Free it unless
204 * it's the last one. We keep the last one
205 * so as not to have to set it up again the
206 * next time somebody inserts a probe.
208 if (!list_is_singular(&kip->list)) {
209 list_del_rcu(&kip->list);
210 synchronize_rcu();
211 kip->cache->free(kip->insns);
212 kfree(kip);
214 return 1;
216 return 0;
219 static int collect_garbage_slots(struct kprobe_insn_cache *c)
221 struct kprobe_insn_page *kip, *next;
223 /* Ensure no-one is interrupted on the garbages */
224 synchronize_rcu();
226 list_for_each_entry_safe(kip, next, &c->pages, list) {
227 int i;
228 if (kip->ngarbage == 0)
229 continue;
230 kip->ngarbage = 0; /* we will collect all garbages */
231 for (i = 0; i < slots_per_page(c); i++) {
232 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
233 break;
236 c->nr_garbage = 0;
237 return 0;
240 void __free_insn_slot(struct kprobe_insn_cache *c,
241 kprobe_opcode_t *slot, int dirty)
243 struct kprobe_insn_page *kip;
244 long idx;
246 mutex_lock(&c->mutex);
247 rcu_read_lock();
248 list_for_each_entry_rcu(kip, &c->pages, list) {
249 idx = ((long)slot - (long)kip->insns) /
250 (c->insn_size * sizeof(kprobe_opcode_t));
251 if (idx >= 0 && idx < slots_per_page(c))
252 goto out;
254 /* Could not find this slot. */
255 WARN_ON(1);
256 kip = NULL;
257 out:
258 rcu_read_unlock();
259 /* Mark and sweep: this may sleep */
260 if (kip) {
261 /* Check double free */
262 WARN_ON(kip->slot_used[idx] != SLOT_USED);
263 if (dirty) {
264 kip->slot_used[idx] = SLOT_DIRTY;
265 kip->ngarbage++;
266 if (++c->nr_garbage > slots_per_page(c))
267 collect_garbage_slots(c);
268 } else {
269 collect_one_slot(kip, idx);
272 mutex_unlock(&c->mutex);
276 * Check given address is on the page of kprobe instruction slots.
277 * This will be used for checking whether the address on a stack
278 * is on a text area or not.
280 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
282 struct kprobe_insn_page *kip;
283 bool ret = false;
285 rcu_read_lock();
286 list_for_each_entry_rcu(kip, &c->pages, list) {
287 if (addr >= (unsigned long)kip->insns &&
288 addr < (unsigned long)kip->insns + PAGE_SIZE) {
289 ret = true;
290 break;
293 rcu_read_unlock();
295 return ret;
298 #ifdef CONFIG_OPTPROBES
299 /* For optimized_kprobe buffer */
300 struct kprobe_insn_cache kprobe_optinsn_slots = {
301 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
302 .alloc = alloc_insn_page,
303 .free = free_insn_page,
304 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
305 /* .insn_size is initialized later */
306 .nr_garbage = 0,
308 #endif
309 #endif
311 /* We have preemption disabled.. so it is safe to use __ versions */
312 static inline void set_kprobe_instance(struct kprobe *kp)
314 __this_cpu_write(kprobe_instance, kp);
317 static inline void reset_kprobe_instance(void)
319 __this_cpu_write(kprobe_instance, NULL);
323 * This routine is called either:
324 * - under the kprobe_mutex - during kprobe_[un]register()
325 * OR
326 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
328 struct kprobe *get_kprobe(void *addr)
330 struct hlist_head *head;
331 struct kprobe *p;
333 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
334 hlist_for_each_entry_rcu(p, head, hlist,
335 lockdep_is_held(&kprobe_mutex)) {
336 if (p->addr == addr)
337 return p;
340 return NULL;
342 NOKPROBE_SYMBOL(get_kprobe);
344 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
346 /* Return true if the kprobe is an aggregator */
347 static inline int kprobe_aggrprobe(struct kprobe *p)
349 return p->pre_handler == aggr_pre_handler;
352 /* Return true(!0) if the kprobe is unused */
353 static inline int kprobe_unused(struct kprobe *p)
355 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
356 list_empty(&p->list);
360 * Keep all fields in the kprobe consistent
362 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
364 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
365 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
368 #ifdef CONFIG_OPTPROBES
369 /* NOTE: change this value only with kprobe_mutex held */
370 static bool kprobes_allow_optimization;
373 * Call all pre_handler on the list, but ignores its return value.
374 * This must be called from arch-dep optimized caller.
376 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
378 struct kprobe *kp;
380 list_for_each_entry_rcu(kp, &p->list, list) {
381 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
382 set_kprobe_instance(kp);
383 kp->pre_handler(kp, regs);
385 reset_kprobe_instance();
388 NOKPROBE_SYMBOL(opt_pre_handler);
390 /* Free optimized instructions and optimized_kprobe */
391 static void free_aggr_kprobe(struct kprobe *p)
393 struct optimized_kprobe *op;
395 op = container_of(p, struct optimized_kprobe, kp);
396 arch_remove_optimized_kprobe(op);
397 arch_remove_kprobe(p);
398 kfree(op);
401 /* Return true(!0) if the kprobe is ready for optimization. */
402 static inline int kprobe_optready(struct kprobe *p)
404 struct optimized_kprobe *op;
406 if (kprobe_aggrprobe(p)) {
407 op = container_of(p, struct optimized_kprobe, kp);
408 return arch_prepared_optinsn(&op->optinsn);
411 return 0;
414 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
415 static inline int kprobe_disarmed(struct kprobe *p)
417 struct optimized_kprobe *op;
419 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
420 if (!kprobe_aggrprobe(p))
421 return kprobe_disabled(p);
423 op = container_of(p, struct optimized_kprobe, kp);
425 return kprobe_disabled(p) && list_empty(&op->list);
428 /* Return true(!0) if the probe is queued on (un)optimizing lists */
429 static int kprobe_queued(struct kprobe *p)
431 struct optimized_kprobe *op;
433 if (kprobe_aggrprobe(p)) {
434 op = container_of(p, struct optimized_kprobe, kp);
435 if (!list_empty(&op->list))
436 return 1;
438 return 0;
442 * Return an optimized kprobe whose optimizing code replaces
443 * instructions including addr (exclude breakpoint).
445 static struct kprobe *get_optimized_kprobe(unsigned long addr)
447 int i;
448 struct kprobe *p = NULL;
449 struct optimized_kprobe *op;
451 /* Don't check i == 0, since that is a breakpoint case. */
452 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
453 p = get_kprobe((void *)(addr - i));
455 if (p && kprobe_optready(p)) {
456 op = container_of(p, struct optimized_kprobe, kp);
457 if (arch_within_optimized_kprobe(op, addr))
458 return p;
461 return NULL;
464 /* Optimization staging list, protected by kprobe_mutex */
465 static LIST_HEAD(optimizing_list);
466 static LIST_HEAD(unoptimizing_list);
467 static LIST_HEAD(freeing_list);
469 static void kprobe_optimizer(struct work_struct *work);
470 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
471 #define OPTIMIZE_DELAY 5
474 * Optimize (replace a breakpoint with a jump) kprobes listed on
475 * optimizing_list.
477 static void do_optimize_kprobes(void)
479 lockdep_assert_held(&text_mutex);
481 * The optimization/unoptimization refers online_cpus via
482 * stop_machine() and cpu-hotplug modifies online_cpus.
483 * And same time, text_mutex will be held in cpu-hotplug and here.
484 * This combination can cause a deadlock (cpu-hotplug try to lock
485 * text_mutex but stop_machine can not be done because online_cpus
486 * has been changed)
487 * To avoid this deadlock, caller must have locked cpu hotplug
488 * for preventing cpu-hotplug outside of text_mutex locking.
490 lockdep_assert_cpus_held();
492 /* Optimization never be done when disarmed */
493 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
494 list_empty(&optimizing_list))
495 return;
497 arch_optimize_kprobes(&optimizing_list);
501 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
502 * if need) kprobes listed on unoptimizing_list.
504 static void do_unoptimize_kprobes(void)
506 struct optimized_kprobe *op, *tmp;
508 lockdep_assert_held(&text_mutex);
509 /* See comment in do_optimize_kprobes() */
510 lockdep_assert_cpus_held();
512 /* Unoptimization must be done anytime */
513 if (list_empty(&unoptimizing_list))
514 return;
516 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
517 /* Loop free_list for disarming */
518 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
519 /* Switching from detour code to origin */
520 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
521 /* Disarm probes if marked disabled */
522 if (kprobe_disabled(&op->kp))
523 arch_disarm_kprobe(&op->kp);
524 if (kprobe_unused(&op->kp)) {
526 * Remove unused probes from hash list. After waiting
527 * for synchronization, these probes are reclaimed.
528 * (reclaiming is done by do_free_cleaned_kprobes.)
530 hlist_del_rcu(&op->kp.hlist);
531 } else
532 list_del_init(&op->list);
536 /* Reclaim all kprobes on the free_list */
537 static void do_free_cleaned_kprobes(void)
539 struct optimized_kprobe *op, *tmp;
541 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
542 list_del_init(&op->list);
543 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
545 * This must not happen, but if there is a kprobe
546 * still in use, keep it on kprobes hash list.
548 continue;
550 free_aggr_kprobe(&op->kp);
554 /* Start optimizer after OPTIMIZE_DELAY passed */
555 static void kick_kprobe_optimizer(void)
557 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
560 /* Kprobe jump optimizer */
561 static void kprobe_optimizer(struct work_struct *work)
563 mutex_lock(&kprobe_mutex);
564 cpus_read_lock();
565 mutex_lock(&text_mutex);
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
573 do_unoptimize_kprobes();
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
584 synchronize_rcu_tasks();
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
592 mutex_unlock(&module_mutex);
593 mutex_unlock(&text_mutex);
594 cpus_read_unlock();
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
600 mutex_unlock(&kprobe_mutex);
603 /* Wait for completing optimization and unoptimization */
604 void wait_for_kprobe_optimizer(void)
606 mutex_lock(&kprobe_mutex);
608 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
609 mutex_unlock(&kprobe_mutex);
611 /* this will also make optimizing_work execute immmediately */
612 flush_delayed_work(&optimizing_work);
613 /* @optimizing_work might not have been queued yet, relax */
614 cpu_relax();
616 mutex_lock(&kprobe_mutex);
619 mutex_unlock(&kprobe_mutex);
622 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
624 struct optimized_kprobe *_op;
626 list_for_each_entry(_op, &unoptimizing_list, list) {
627 if (op == _op)
628 return true;
631 return false;
634 /* Optimize kprobe if p is ready to be optimized */
635 static void optimize_kprobe(struct kprobe *p)
637 struct optimized_kprobe *op;
639 /* Check if the kprobe is disabled or not ready for optimization. */
640 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
641 (kprobe_disabled(p) || kprobes_all_disarmed))
642 return;
644 /* kprobes with post_handler can not be optimized */
645 if (p->post_handler)
646 return;
648 op = container_of(p, struct optimized_kprobe, kp);
650 /* Check there is no other kprobes at the optimized instructions */
651 if (arch_check_optimized_kprobe(op) < 0)
652 return;
654 /* Check if it is already optimized. */
655 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
656 if (optprobe_queued_unopt(op)) {
657 /* This is under unoptimizing. Just dequeue the probe */
658 list_del_init(&op->list);
660 return;
662 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
664 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
665 if (WARN_ON_ONCE(!list_empty(&op->list)))
666 return;
668 list_add(&op->list, &optimizing_list);
669 kick_kprobe_optimizer();
672 /* Short cut to direct unoptimizing */
673 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
675 lockdep_assert_cpus_held();
676 arch_unoptimize_kprobe(op);
677 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 /* Unoptimize a kprobe if p is optimized */
681 static void unoptimize_kprobe(struct kprobe *p, bool force)
683 struct optimized_kprobe *op;
685 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
686 return; /* This is not an optprobe nor optimized */
688 op = container_of(p, struct optimized_kprobe, kp);
689 if (!kprobe_optimized(p))
690 return;
692 if (!list_empty(&op->list)) {
693 if (optprobe_queued_unopt(op)) {
694 /* Queued in unoptimizing queue */
695 if (force) {
697 * Forcibly unoptimize the kprobe here, and queue it
698 * in the freeing list for release afterwards.
700 force_unoptimize_kprobe(op);
701 list_move(&op->list, &freeing_list);
703 } else {
704 /* Dequeue from the optimizing queue */
705 list_del_init(&op->list);
706 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
708 return;
711 /* Optimized kprobe case */
712 if (force) {
713 /* Forcibly update the code: this is a special case */
714 force_unoptimize_kprobe(op);
715 } else {
716 list_add(&op->list, &unoptimizing_list);
717 kick_kprobe_optimizer();
721 /* Cancel unoptimizing for reusing */
722 static int reuse_unused_kprobe(struct kprobe *ap)
724 struct optimized_kprobe *op;
727 * Unused kprobe MUST be on the way of delayed unoptimizing (means
728 * there is still a relative jump) and disabled.
730 op = container_of(ap, struct optimized_kprobe, kp);
731 WARN_ON_ONCE(list_empty(&op->list));
732 /* Enable the probe again */
733 ap->flags &= ~KPROBE_FLAG_DISABLED;
734 /* Optimize it again (remove from op->list) */
735 if (!kprobe_optready(ap))
736 return -EINVAL;
738 optimize_kprobe(ap);
739 return 0;
742 /* Remove optimized instructions */
743 static void kill_optimized_kprobe(struct kprobe *p)
745 struct optimized_kprobe *op;
747 op = container_of(p, struct optimized_kprobe, kp);
748 if (!list_empty(&op->list))
749 /* Dequeue from the (un)optimization queue */
750 list_del_init(&op->list);
751 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753 if (kprobe_unused(p)) {
754 /* Enqueue if it is unused */
755 list_add(&op->list, &freeing_list);
757 * Remove unused probes from the hash list. After waiting
758 * for synchronization, this probe is reclaimed.
759 * (reclaiming is done by do_free_cleaned_kprobes().)
761 hlist_del_rcu(&op->kp.hlist);
764 /* Don't touch the code, because it is already freed. */
765 arch_remove_optimized_kprobe(op);
768 static inline
769 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
771 if (!kprobe_ftrace(p))
772 arch_prepare_optimized_kprobe(op, p);
775 /* Try to prepare optimized instructions */
776 static void prepare_optimized_kprobe(struct kprobe *p)
778 struct optimized_kprobe *op;
780 op = container_of(p, struct optimized_kprobe, kp);
781 __prepare_optimized_kprobe(op, p);
784 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
785 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
787 struct optimized_kprobe *op;
789 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
790 if (!op)
791 return NULL;
793 INIT_LIST_HEAD(&op->list);
794 op->kp.addr = p->addr;
795 __prepare_optimized_kprobe(op, p);
797 return &op->kp;
800 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
803 * Prepare an optimized_kprobe and optimize it
804 * NOTE: p must be a normal registered kprobe
806 static void try_to_optimize_kprobe(struct kprobe *p)
808 struct kprobe *ap;
809 struct optimized_kprobe *op;
811 /* Impossible to optimize ftrace-based kprobe */
812 if (kprobe_ftrace(p))
813 return;
815 /* For preparing optimization, jump_label_text_reserved() is called */
816 cpus_read_lock();
817 jump_label_lock();
818 mutex_lock(&text_mutex);
820 ap = alloc_aggr_kprobe(p);
821 if (!ap)
822 goto out;
824 op = container_of(ap, struct optimized_kprobe, kp);
825 if (!arch_prepared_optinsn(&op->optinsn)) {
826 /* If failed to setup optimizing, fallback to kprobe */
827 arch_remove_optimized_kprobe(op);
828 kfree(op);
829 goto out;
832 init_aggr_kprobe(ap, p);
833 optimize_kprobe(ap); /* This just kicks optimizer thread */
835 out:
836 mutex_unlock(&text_mutex);
837 jump_label_unlock();
838 cpus_read_unlock();
841 #ifdef CONFIG_SYSCTL
842 static void optimize_all_kprobes(void)
844 struct hlist_head *head;
845 struct kprobe *p;
846 unsigned int i;
848 mutex_lock(&kprobe_mutex);
849 /* If optimization is already allowed, just return */
850 if (kprobes_allow_optimization)
851 goto out;
853 cpus_read_lock();
854 kprobes_allow_optimization = true;
855 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
856 head = &kprobe_table[i];
857 hlist_for_each_entry(p, head, hlist)
858 if (!kprobe_disabled(p))
859 optimize_kprobe(p);
861 cpus_read_unlock();
862 printk(KERN_INFO "Kprobes globally optimized\n");
863 out:
864 mutex_unlock(&kprobe_mutex);
867 static void unoptimize_all_kprobes(void)
869 struct hlist_head *head;
870 struct kprobe *p;
871 unsigned int i;
873 mutex_lock(&kprobe_mutex);
874 /* If optimization is already prohibited, just return */
875 if (!kprobes_allow_optimization) {
876 mutex_unlock(&kprobe_mutex);
877 return;
880 cpus_read_lock();
881 kprobes_allow_optimization = false;
882 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
883 head = &kprobe_table[i];
884 hlist_for_each_entry(p, head, hlist) {
885 if (!kprobe_disabled(p))
886 unoptimize_kprobe(p, false);
889 cpus_read_unlock();
890 mutex_unlock(&kprobe_mutex);
892 /* Wait for unoptimizing completion */
893 wait_for_kprobe_optimizer();
894 printk(KERN_INFO "Kprobes globally unoptimized\n");
897 static DEFINE_MUTEX(kprobe_sysctl_mutex);
898 int sysctl_kprobes_optimization;
899 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
900 void *buffer, size_t *length,
901 loff_t *ppos)
903 int ret;
905 mutex_lock(&kprobe_sysctl_mutex);
906 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
907 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
909 if (sysctl_kprobes_optimization)
910 optimize_all_kprobes();
911 else
912 unoptimize_all_kprobes();
913 mutex_unlock(&kprobe_sysctl_mutex);
915 return ret;
917 #endif /* CONFIG_SYSCTL */
919 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
920 static void __arm_kprobe(struct kprobe *p)
922 struct kprobe *_p;
924 /* Check collision with other optimized kprobes */
925 _p = get_optimized_kprobe((unsigned long)p->addr);
926 if (unlikely(_p))
927 /* Fallback to unoptimized kprobe */
928 unoptimize_kprobe(_p, true);
930 arch_arm_kprobe(p);
931 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
934 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
935 static void __disarm_kprobe(struct kprobe *p, bool reopt)
937 struct kprobe *_p;
939 /* Try to unoptimize */
940 unoptimize_kprobe(p, kprobes_all_disarmed);
942 if (!kprobe_queued(p)) {
943 arch_disarm_kprobe(p);
944 /* If another kprobe was blocked, optimize it. */
945 _p = get_optimized_kprobe((unsigned long)p->addr);
946 if (unlikely(_p) && reopt)
947 optimize_kprobe(_p);
949 /* TODO: reoptimize others after unoptimized this probe */
952 #else /* !CONFIG_OPTPROBES */
954 #define optimize_kprobe(p) do {} while (0)
955 #define unoptimize_kprobe(p, f) do {} while (0)
956 #define kill_optimized_kprobe(p) do {} while (0)
957 #define prepare_optimized_kprobe(p) do {} while (0)
958 #define try_to_optimize_kprobe(p) do {} while (0)
959 #define __arm_kprobe(p) arch_arm_kprobe(p)
960 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
961 #define kprobe_disarmed(p) kprobe_disabled(p)
962 #define wait_for_kprobe_optimizer() do {} while (0)
964 static int reuse_unused_kprobe(struct kprobe *ap)
967 * If the optimized kprobe is NOT supported, the aggr kprobe is
968 * released at the same time that the last aggregated kprobe is
969 * unregistered.
970 * Thus there should be no chance to reuse unused kprobe.
972 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
973 return -EINVAL;
976 static void free_aggr_kprobe(struct kprobe *p)
978 arch_remove_kprobe(p);
979 kfree(p);
982 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
984 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
986 #endif /* CONFIG_OPTPROBES */
988 #ifdef CONFIG_KPROBES_ON_FTRACE
989 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
990 .func = kprobe_ftrace_handler,
991 .flags = FTRACE_OPS_FL_SAVE_REGS,
994 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
995 .func = kprobe_ftrace_handler,
996 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
999 static int kprobe_ipmodify_enabled;
1000 static int kprobe_ftrace_enabled;
1002 /* Must ensure p->addr is really on ftrace */
1003 static int prepare_kprobe(struct kprobe *p)
1005 if (!kprobe_ftrace(p))
1006 return arch_prepare_kprobe(p);
1008 return arch_prepare_kprobe_ftrace(p);
1011 /* Caller must lock kprobe_mutex */
1012 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1013 int *cnt)
1015 int ret = 0;
1017 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1018 if (ret) {
1019 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1020 p->addr, ret);
1021 return ret;
1024 if (*cnt == 0) {
1025 ret = register_ftrace_function(ops);
1026 if (ret) {
1027 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1028 goto err_ftrace;
1032 (*cnt)++;
1033 return ret;
1035 err_ftrace:
1037 * At this point, sinec ops is not registered, we should be sefe from
1038 * registering empty filter.
1040 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1041 return ret;
1044 static int arm_kprobe_ftrace(struct kprobe *p)
1046 bool ipmodify = (p->post_handler != NULL);
1048 return __arm_kprobe_ftrace(p,
1049 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1050 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1053 /* Caller must lock kprobe_mutex */
1054 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1055 int *cnt)
1057 int ret = 0;
1059 if (*cnt == 1) {
1060 ret = unregister_ftrace_function(ops);
1061 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1062 return ret;
1065 (*cnt)--;
1067 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1068 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1069 p->addr, ret);
1070 return ret;
1073 static int disarm_kprobe_ftrace(struct kprobe *p)
1075 bool ipmodify = (p->post_handler != NULL);
1077 return __disarm_kprobe_ftrace(p,
1078 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1079 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1081 #else /* !CONFIG_KPROBES_ON_FTRACE */
1082 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1083 #define arm_kprobe_ftrace(p) (-ENODEV)
1084 #define disarm_kprobe_ftrace(p) (-ENODEV)
1085 #endif
1087 /* Arm a kprobe with text_mutex */
1088 static int arm_kprobe(struct kprobe *kp)
1090 if (unlikely(kprobe_ftrace(kp)))
1091 return arm_kprobe_ftrace(kp);
1093 cpus_read_lock();
1094 mutex_lock(&text_mutex);
1095 __arm_kprobe(kp);
1096 mutex_unlock(&text_mutex);
1097 cpus_read_unlock();
1099 return 0;
1102 /* Disarm a kprobe with text_mutex */
1103 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1105 if (unlikely(kprobe_ftrace(kp)))
1106 return disarm_kprobe_ftrace(kp);
1108 cpus_read_lock();
1109 mutex_lock(&text_mutex);
1110 __disarm_kprobe(kp, reopt);
1111 mutex_unlock(&text_mutex);
1112 cpus_read_unlock();
1114 return 0;
1118 * Aggregate handlers for multiple kprobes support - these handlers
1119 * take care of invoking the individual kprobe handlers on p->list
1121 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1123 struct kprobe *kp;
1125 list_for_each_entry_rcu(kp, &p->list, list) {
1126 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1127 set_kprobe_instance(kp);
1128 if (kp->pre_handler(kp, regs))
1129 return 1;
1131 reset_kprobe_instance();
1133 return 0;
1135 NOKPROBE_SYMBOL(aggr_pre_handler);
1137 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1138 unsigned long flags)
1140 struct kprobe *kp;
1142 list_for_each_entry_rcu(kp, &p->list, list) {
1143 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1144 set_kprobe_instance(kp);
1145 kp->post_handler(kp, regs, flags);
1146 reset_kprobe_instance();
1150 NOKPROBE_SYMBOL(aggr_post_handler);
1152 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1153 int trapnr)
1155 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1158 * if we faulted "during" the execution of a user specified
1159 * probe handler, invoke just that probe's fault handler
1161 if (cur && cur->fault_handler) {
1162 if (cur->fault_handler(cur, regs, trapnr))
1163 return 1;
1165 return 0;
1167 NOKPROBE_SYMBOL(aggr_fault_handler);
1169 /* Walks the list and increments nmissed count for multiprobe case */
1170 void kprobes_inc_nmissed_count(struct kprobe *p)
1172 struct kprobe *kp;
1173 if (!kprobe_aggrprobe(p)) {
1174 p->nmissed++;
1175 } else {
1176 list_for_each_entry_rcu(kp, &p->list, list)
1177 kp->nmissed++;
1179 return;
1181 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1183 void recycle_rp_inst(struct kretprobe_instance *ri,
1184 struct hlist_head *head)
1186 struct kretprobe *rp = ri->rp;
1188 /* remove rp inst off the rprobe_inst_table */
1189 hlist_del(&ri->hlist);
1190 INIT_HLIST_NODE(&ri->hlist);
1191 if (likely(rp)) {
1192 raw_spin_lock(&rp->lock);
1193 hlist_add_head(&ri->hlist, &rp->free_instances);
1194 raw_spin_unlock(&rp->lock);
1195 } else
1196 /* Unregistering */
1197 hlist_add_head(&ri->hlist, head);
1199 NOKPROBE_SYMBOL(recycle_rp_inst);
1201 void kretprobe_hash_lock(struct task_struct *tsk,
1202 struct hlist_head **head, unsigned long *flags)
1203 __acquires(hlist_lock)
1205 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1206 raw_spinlock_t *hlist_lock;
1208 *head = &kretprobe_inst_table[hash];
1209 hlist_lock = kretprobe_table_lock_ptr(hash);
1210 raw_spin_lock_irqsave(hlist_lock, *flags);
1212 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1214 static void kretprobe_table_lock(unsigned long hash,
1215 unsigned long *flags)
1216 __acquires(hlist_lock)
1218 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1219 raw_spin_lock_irqsave(hlist_lock, *flags);
1221 NOKPROBE_SYMBOL(kretprobe_table_lock);
1223 void kretprobe_hash_unlock(struct task_struct *tsk,
1224 unsigned long *flags)
1225 __releases(hlist_lock)
1227 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1228 raw_spinlock_t *hlist_lock;
1230 hlist_lock = kretprobe_table_lock_ptr(hash);
1231 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1233 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1235 static void kretprobe_table_unlock(unsigned long hash,
1236 unsigned long *flags)
1237 __releases(hlist_lock)
1239 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1240 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1242 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1244 struct kprobe kprobe_busy = {
1245 .addr = (void *) get_kprobe,
1248 void kprobe_busy_begin(void)
1250 struct kprobe_ctlblk *kcb;
1252 preempt_disable();
1253 __this_cpu_write(current_kprobe, &kprobe_busy);
1254 kcb = get_kprobe_ctlblk();
1255 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1258 void kprobe_busy_end(void)
1260 __this_cpu_write(current_kprobe, NULL);
1261 preempt_enable();
1265 * This function is called from finish_task_switch when task tk becomes dead,
1266 * so that we can recycle any function-return probe instances associated
1267 * with this task. These left over instances represent probed functions
1268 * that have been called but will never return.
1270 void kprobe_flush_task(struct task_struct *tk)
1272 struct kretprobe_instance *ri;
1273 struct hlist_head *head, empty_rp;
1274 struct hlist_node *tmp;
1275 unsigned long hash, flags = 0;
1277 if (unlikely(!kprobes_initialized))
1278 /* Early boot. kretprobe_table_locks not yet initialized. */
1279 return;
1281 kprobe_busy_begin();
1283 INIT_HLIST_HEAD(&empty_rp);
1284 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1285 head = &kretprobe_inst_table[hash];
1286 kretprobe_table_lock(hash, &flags);
1287 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1288 if (ri->task == tk)
1289 recycle_rp_inst(ri, &empty_rp);
1291 kretprobe_table_unlock(hash, &flags);
1292 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1293 hlist_del(&ri->hlist);
1294 kfree(ri);
1297 kprobe_busy_end();
1299 NOKPROBE_SYMBOL(kprobe_flush_task);
1301 static inline void free_rp_inst(struct kretprobe *rp)
1303 struct kretprobe_instance *ri;
1304 struct hlist_node *next;
1306 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1307 hlist_del(&ri->hlist);
1308 kfree(ri);
1312 static void cleanup_rp_inst(struct kretprobe *rp)
1314 unsigned long flags, hash;
1315 struct kretprobe_instance *ri;
1316 struct hlist_node *next;
1317 struct hlist_head *head;
1319 /* No race here */
1320 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1321 kretprobe_table_lock(hash, &flags);
1322 head = &kretprobe_inst_table[hash];
1323 hlist_for_each_entry_safe(ri, next, head, hlist) {
1324 if (ri->rp == rp)
1325 ri->rp = NULL;
1327 kretprobe_table_unlock(hash, &flags);
1329 free_rp_inst(rp);
1331 NOKPROBE_SYMBOL(cleanup_rp_inst);
1333 /* Add the new probe to ap->list */
1334 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1336 if (p->post_handler)
1337 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1339 list_add_rcu(&p->list, &ap->list);
1340 if (p->post_handler && !ap->post_handler)
1341 ap->post_handler = aggr_post_handler;
1343 return 0;
1347 * Fill in the required fields of the "manager kprobe". Replace the
1348 * earlier kprobe in the hlist with the manager kprobe
1350 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1352 /* Copy p's insn slot to ap */
1353 copy_kprobe(p, ap);
1354 flush_insn_slot(ap);
1355 ap->addr = p->addr;
1356 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1357 ap->pre_handler = aggr_pre_handler;
1358 ap->fault_handler = aggr_fault_handler;
1359 /* We don't care the kprobe which has gone. */
1360 if (p->post_handler && !kprobe_gone(p))
1361 ap->post_handler = aggr_post_handler;
1363 INIT_LIST_HEAD(&ap->list);
1364 INIT_HLIST_NODE(&ap->hlist);
1366 list_add_rcu(&p->list, &ap->list);
1367 hlist_replace_rcu(&p->hlist, &ap->hlist);
1371 * This is the second or subsequent kprobe at the address - handle
1372 * the intricacies
1374 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1376 int ret = 0;
1377 struct kprobe *ap = orig_p;
1379 cpus_read_lock();
1381 /* For preparing optimization, jump_label_text_reserved() is called */
1382 jump_label_lock();
1383 mutex_lock(&text_mutex);
1385 if (!kprobe_aggrprobe(orig_p)) {
1386 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1387 ap = alloc_aggr_kprobe(orig_p);
1388 if (!ap) {
1389 ret = -ENOMEM;
1390 goto out;
1392 init_aggr_kprobe(ap, orig_p);
1393 } else if (kprobe_unused(ap)) {
1394 /* This probe is going to die. Rescue it */
1395 ret = reuse_unused_kprobe(ap);
1396 if (ret)
1397 goto out;
1400 if (kprobe_gone(ap)) {
1402 * Attempting to insert new probe at the same location that
1403 * had a probe in the module vaddr area which already
1404 * freed. So, the instruction slot has already been
1405 * released. We need a new slot for the new probe.
1407 ret = arch_prepare_kprobe(ap);
1408 if (ret)
1410 * Even if fail to allocate new slot, don't need to
1411 * free aggr_probe. It will be used next time, or
1412 * freed by unregister_kprobe.
1414 goto out;
1416 /* Prepare optimized instructions if possible. */
1417 prepare_optimized_kprobe(ap);
1420 * Clear gone flag to prevent allocating new slot again, and
1421 * set disabled flag because it is not armed yet.
1423 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1424 | KPROBE_FLAG_DISABLED;
1427 /* Copy ap's insn slot to p */
1428 copy_kprobe(ap, p);
1429 ret = add_new_kprobe(ap, p);
1431 out:
1432 mutex_unlock(&text_mutex);
1433 jump_label_unlock();
1434 cpus_read_unlock();
1436 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1437 ap->flags &= ~KPROBE_FLAG_DISABLED;
1438 if (!kprobes_all_disarmed) {
1439 /* Arm the breakpoint again. */
1440 ret = arm_kprobe(ap);
1441 if (ret) {
1442 ap->flags |= KPROBE_FLAG_DISABLED;
1443 list_del_rcu(&p->list);
1444 synchronize_rcu();
1448 return ret;
1451 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1453 /* The __kprobes marked functions and entry code must not be probed */
1454 return addr >= (unsigned long)__kprobes_text_start &&
1455 addr < (unsigned long)__kprobes_text_end;
1458 static bool __within_kprobe_blacklist(unsigned long addr)
1460 struct kprobe_blacklist_entry *ent;
1462 if (arch_within_kprobe_blacklist(addr))
1463 return true;
1465 * If there exists a kprobe_blacklist, verify and
1466 * fail any probe registration in the prohibited area
1468 list_for_each_entry(ent, &kprobe_blacklist, list) {
1469 if (addr >= ent->start_addr && addr < ent->end_addr)
1470 return true;
1472 return false;
1475 bool within_kprobe_blacklist(unsigned long addr)
1477 char symname[KSYM_NAME_LEN], *p;
1479 if (__within_kprobe_blacklist(addr))
1480 return true;
1482 /* Check if the address is on a suffixed-symbol */
1483 if (!lookup_symbol_name(addr, symname)) {
1484 p = strchr(symname, '.');
1485 if (!p)
1486 return false;
1487 *p = '\0';
1488 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1489 if (addr)
1490 return __within_kprobe_blacklist(addr);
1492 return false;
1496 * If we have a symbol_name argument, look it up and add the offset field
1497 * to it. This way, we can specify a relative address to a symbol.
1498 * This returns encoded errors if it fails to look up symbol or invalid
1499 * combination of parameters.
1501 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1502 const char *symbol_name, unsigned int offset)
1504 if ((symbol_name && addr) || (!symbol_name && !addr))
1505 goto invalid;
1507 if (symbol_name) {
1508 addr = kprobe_lookup_name(symbol_name, offset);
1509 if (!addr)
1510 return ERR_PTR(-ENOENT);
1513 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1514 if (addr)
1515 return addr;
1517 invalid:
1518 return ERR_PTR(-EINVAL);
1521 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1523 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1526 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1527 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1529 struct kprobe *ap, *list_p;
1531 lockdep_assert_held(&kprobe_mutex);
1533 ap = get_kprobe(p->addr);
1534 if (unlikely(!ap))
1535 return NULL;
1537 if (p != ap) {
1538 list_for_each_entry(list_p, &ap->list, list)
1539 if (list_p == p)
1540 /* kprobe p is a valid probe */
1541 goto valid;
1542 return NULL;
1544 valid:
1545 return ap;
1548 /* Return error if the kprobe is being re-registered */
1549 static inline int check_kprobe_rereg(struct kprobe *p)
1551 int ret = 0;
1553 mutex_lock(&kprobe_mutex);
1554 if (__get_valid_kprobe(p))
1555 ret = -EINVAL;
1556 mutex_unlock(&kprobe_mutex);
1558 return ret;
1561 int __weak arch_check_ftrace_location(struct kprobe *p)
1563 unsigned long ftrace_addr;
1565 ftrace_addr = ftrace_location((unsigned long)p->addr);
1566 if (ftrace_addr) {
1567 #ifdef CONFIG_KPROBES_ON_FTRACE
1568 /* Given address is not on the instruction boundary */
1569 if ((unsigned long)p->addr != ftrace_addr)
1570 return -EILSEQ;
1571 p->flags |= KPROBE_FLAG_FTRACE;
1572 #else /* !CONFIG_KPROBES_ON_FTRACE */
1573 return -EINVAL;
1574 #endif
1576 return 0;
1579 static int check_kprobe_address_safe(struct kprobe *p,
1580 struct module **probed_mod)
1582 int ret;
1584 ret = arch_check_ftrace_location(p);
1585 if (ret)
1586 return ret;
1587 jump_label_lock();
1588 preempt_disable();
1590 /* Ensure it is not in reserved area nor out of text */
1591 if (!kernel_text_address((unsigned long) p->addr) ||
1592 within_kprobe_blacklist((unsigned long) p->addr) ||
1593 jump_label_text_reserved(p->addr, p->addr) ||
1594 find_bug((unsigned long)p->addr)) {
1595 ret = -EINVAL;
1596 goto out;
1599 /* Check if are we probing a module */
1600 *probed_mod = __module_text_address((unsigned long) p->addr);
1601 if (*probed_mod) {
1603 * We must hold a refcount of the probed module while updating
1604 * its code to prohibit unexpected unloading.
1606 if (unlikely(!try_module_get(*probed_mod))) {
1607 ret = -ENOENT;
1608 goto out;
1612 * If the module freed .init.text, we couldn't insert
1613 * kprobes in there.
1615 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1616 (*probed_mod)->state != MODULE_STATE_COMING) {
1617 module_put(*probed_mod);
1618 *probed_mod = NULL;
1619 ret = -ENOENT;
1622 out:
1623 preempt_enable();
1624 jump_label_unlock();
1626 return ret;
1629 int register_kprobe(struct kprobe *p)
1631 int ret;
1632 struct kprobe *old_p;
1633 struct module *probed_mod;
1634 kprobe_opcode_t *addr;
1636 /* Adjust probe address from symbol */
1637 addr = kprobe_addr(p);
1638 if (IS_ERR(addr))
1639 return PTR_ERR(addr);
1640 p->addr = addr;
1642 ret = check_kprobe_rereg(p);
1643 if (ret)
1644 return ret;
1646 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1647 p->flags &= KPROBE_FLAG_DISABLED;
1648 p->nmissed = 0;
1649 INIT_LIST_HEAD(&p->list);
1651 ret = check_kprobe_address_safe(p, &probed_mod);
1652 if (ret)
1653 return ret;
1655 mutex_lock(&kprobe_mutex);
1657 old_p = get_kprobe(p->addr);
1658 if (old_p) {
1659 /* Since this may unoptimize old_p, locking text_mutex. */
1660 ret = register_aggr_kprobe(old_p, p);
1661 goto out;
1664 cpus_read_lock();
1665 /* Prevent text modification */
1666 mutex_lock(&text_mutex);
1667 ret = prepare_kprobe(p);
1668 mutex_unlock(&text_mutex);
1669 cpus_read_unlock();
1670 if (ret)
1671 goto out;
1673 INIT_HLIST_NODE(&p->hlist);
1674 hlist_add_head_rcu(&p->hlist,
1675 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1677 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1678 ret = arm_kprobe(p);
1679 if (ret) {
1680 hlist_del_rcu(&p->hlist);
1681 synchronize_rcu();
1682 goto out;
1686 /* Try to optimize kprobe */
1687 try_to_optimize_kprobe(p);
1688 out:
1689 mutex_unlock(&kprobe_mutex);
1691 if (probed_mod)
1692 module_put(probed_mod);
1694 return ret;
1696 EXPORT_SYMBOL_GPL(register_kprobe);
1698 /* Check if all probes on the aggrprobe are disabled */
1699 static int aggr_kprobe_disabled(struct kprobe *ap)
1701 struct kprobe *kp;
1703 lockdep_assert_held(&kprobe_mutex);
1705 list_for_each_entry(kp, &ap->list, list)
1706 if (!kprobe_disabled(kp))
1708 * There is an active probe on the list.
1709 * We can't disable this ap.
1711 return 0;
1713 return 1;
1716 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1717 static struct kprobe *__disable_kprobe(struct kprobe *p)
1719 struct kprobe *orig_p;
1720 int ret;
1722 /* Get an original kprobe for return */
1723 orig_p = __get_valid_kprobe(p);
1724 if (unlikely(orig_p == NULL))
1725 return ERR_PTR(-EINVAL);
1727 if (!kprobe_disabled(p)) {
1728 /* Disable probe if it is a child probe */
1729 if (p != orig_p)
1730 p->flags |= KPROBE_FLAG_DISABLED;
1732 /* Try to disarm and disable this/parent probe */
1733 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1735 * If kprobes_all_disarmed is set, orig_p
1736 * should have already been disarmed, so
1737 * skip unneed disarming process.
1739 if (!kprobes_all_disarmed) {
1740 ret = disarm_kprobe(orig_p, true);
1741 if (ret) {
1742 p->flags &= ~KPROBE_FLAG_DISABLED;
1743 return ERR_PTR(ret);
1746 orig_p->flags |= KPROBE_FLAG_DISABLED;
1750 return orig_p;
1754 * Unregister a kprobe without a scheduler synchronization.
1756 static int __unregister_kprobe_top(struct kprobe *p)
1758 struct kprobe *ap, *list_p;
1760 /* Disable kprobe. This will disarm it if needed. */
1761 ap = __disable_kprobe(p);
1762 if (IS_ERR(ap))
1763 return PTR_ERR(ap);
1765 if (ap == p)
1767 * This probe is an independent(and non-optimized) kprobe
1768 * (not an aggrprobe). Remove from the hash list.
1770 goto disarmed;
1772 /* Following process expects this probe is an aggrprobe */
1773 WARN_ON(!kprobe_aggrprobe(ap));
1775 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1777 * !disarmed could be happen if the probe is under delayed
1778 * unoptimizing.
1780 goto disarmed;
1781 else {
1782 /* If disabling probe has special handlers, update aggrprobe */
1783 if (p->post_handler && !kprobe_gone(p)) {
1784 list_for_each_entry(list_p, &ap->list, list) {
1785 if ((list_p != p) && (list_p->post_handler))
1786 goto noclean;
1788 ap->post_handler = NULL;
1790 noclean:
1792 * Remove from the aggrprobe: this path will do nothing in
1793 * __unregister_kprobe_bottom().
1795 list_del_rcu(&p->list);
1796 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1798 * Try to optimize this probe again, because post
1799 * handler may have been changed.
1801 optimize_kprobe(ap);
1803 return 0;
1805 disarmed:
1806 hlist_del_rcu(&ap->hlist);
1807 return 0;
1810 static void __unregister_kprobe_bottom(struct kprobe *p)
1812 struct kprobe *ap;
1814 if (list_empty(&p->list))
1815 /* This is an independent kprobe */
1816 arch_remove_kprobe(p);
1817 else if (list_is_singular(&p->list)) {
1818 /* This is the last child of an aggrprobe */
1819 ap = list_entry(p->list.next, struct kprobe, list);
1820 list_del(&p->list);
1821 free_aggr_kprobe(ap);
1823 /* Otherwise, do nothing. */
1826 int register_kprobes(struct kprobe **kps, int num)
1828 int i, ret = 0;
1830 if (num <= 0)
1831 return -EINVAL;
1832 for (i = 0; i < num; i++) {
1833 ret = register_kprobe(kps[i]);
1834 if (ret < 0) {
1835 if (i > 0)
1836 unregister_kprobes(kps, i);
1837 break;
1840 return ret;
1842 EXPORT_SYMBOL_GPL(register_kprobes);
1844 void unregister_kprobe(struct kprobe *p)
1846 unregister_kprobes(&p, 1);
1848 EXPORT_SYMBOL_GPL(unregister_kprobe);
1850 void unregister_kprobes(struct kprobe **kps, int num)
1852 int i;
1854 if (num <= 0)
1855 return;
1856 mutex_lock(&kprobe_mutex);
1857 for (i = 0; i < num; i++)
1858 if (__unregister_kprobe_top(kps[i]) < 0)
1859 kps[i]->addr = NULL;
1860 mutex_unlock(&kprobe_mutex);
1862 synchronize_rcu();
1863 for (i = 0; i < num; i++)
1864 if (kps[i]->addr)
1865 __unregister_kprobe_bottom(kps[i]);
1867 EXPORT_SYMBOL_GPL(unregister_kprobes);
1869 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1870 unsigned long val, void *data)
1872 return NOTIFY_DONE;
1874 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1876 static struct notifier_block kprobe_exceptions_nb = {
1877 .notifier_call = kprobe_exceptions_notify,
1878 .priority = 0x7fffffff /* we need to be notified first */
1881 unsigned long __weak arch_deref_entry_point(void *entry)
1883 return (unsigned long)entry;
1886 #ifdef CONFIG_KRETPROBES
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1891 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 unsigned long hash, flags = 0;
1895 struct kretprobe_instance *ri;
1898 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 * just skip the probe and increase the (inexact) 'nmissed'
1900 * statistical counter, so that the user is informed that
1901 * something happened:
1903 if (unlikely(in_nmi())) {
1904 rp->nmissed++;
1905 return 0;
1908 /* TODO: consider to only swap the RA after the last pre_handler fired */
1909 hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 raw_spin_lock_irqsave(&rp->lock, flags);
1911 if (!hlist_empty(&rp->free_instances)) {
1912 ri = hlist_entry(rp->free_instances.first,
1913 struct kretprobe_instance, hlist);
1914 hlist_del(&ri->hlist);
1915 raw_spin_unlock_irqrestore(&rp->lock, flags);
1917 ri->rp = rp;
1918 ri->task = current;
1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 raw_spin_lock_irqsave(&rp->lock, flags);
1922 hlist_add_head(&ri->hlist, &rp->free_instances);
1923 raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 return 0;
1927 arch_prepare_kretprobe(ri, regs);
1929 /* XXX(hch): why is there no hlist_move_head? */
1930 INIT_HLIST_NODE(&ri->hlist);
1931 kretprobe_table_lock(hash, &flags);
1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 kretprobe_table_unlock(hash, &flags);
1934 } else {
1935 rp->nmissed++;
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1938 return 0;
1940 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1942 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1944 return !offset;
1947 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1951 if (IS_ERR(kp_addr))
1952 return false;
1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 !arch_kprobe_on_func_entry(offset))
1956 return false;
1958 return true;
1961 int register_kretprobe(struct kretprobe *rp)
1963 int ret = 0;
1964 struct kretprobe_instance *inst;
1965 int i;
1966 void *addr;
1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 return -EINVAL;
1971 if (kretprobe_blacklist_size) {
1972 addr = kprobe_addr(&rp->kp);
1973 if (IS_ERR(addr))
1974 return PTR_ERR(addr);
1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 if (kretprobe_blacklist[i].addr == addr)
1978 return -EINVAL;
1982 rp->kp.pre_handler = pre_handler_kretprobe;
1983 rp->kp.post_handler = NULL;
1984 rp->kp.fault_handler = NULL;
1986 /* Pre-allocate memory for max kretprobe instances */
1987 if (rp->maxactive <= 0) {
1988 #ifdef CONFIG_PREEMPTION
1989 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1990 #else
1991 rp->maxactive = num_possible_cpus();
1992 #endif
1994 raw_spin_lock_init(&rp->lock);
1995 INIT_HLIST_HEAD(&rp->free_instances);
1996 for (i = 0; i < rp->maxactive; i++) {
1997 inst = kmalloc(sizeof(struct kretprobe_instance) +
1998 rp->data_size, GFP_KERNEL);
1999 if (inst == NULL) {
2000 free_rp_inst(rp);
2001 return -ENOMEM;
2003 INIT_HLIST_NODE(&inst->hlist);
2004 hlist_add_head(&inst->hlist, &rp->free_instances);
2007 rp->nmissed = 0;
2008 /* Establish function entry probe point */
2009 ret = register_kprobe(&rp->kp);
2010 if (ret != 0)
2011 free_rp_inst(rp);
2012 return ret;
2014 EXPORT_SYMBOL_GPL(register_kretprobe);
2016 int register_kretprobes(struct kretprobe **rps, int num)
2018 int ret = 0, i;
2020 if (num <= 0)
2021 return -EINVAL;
2022 for (i = 0; i < num; i++) {
2023 ret = register_kretprobe(rps[i]);
2024 if (ret < 0) {
2025 if (i > 0)
2026 unregister_kretprobes(rps, i);
2027 break;
2030 return ret;
2032 EXPORT_SYMBOL_GPL(register_kretprobes);
2034 void unregister_kretprobe(struct kretprobe *rp)
2036 unregister_kretprobes(&rp, 1);
2038 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2040 void unregister_kretprobes(struct kretprobe **rps, int num)
2042 int i;
2044 if (num <= 0)
2045 return;
2046 mutex_lock(&kprobe_mutex);
2047 for (i = 0; i < num; i++)
2048 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2049 rps[i]->kp.addr = NULL;
2050 mutex_unlock(&kprobe_mutex);
2052 synchronize_rcu();
2053 for (i = 0; i < num; i++) {
2054 if (rps[i]->kp.addr) {
2055 __unregister_kprobe_bottom(&rps[i]->kp);
2056 cleanup_rp_inst(rps[i]);
2060 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2062 #else /* CONFIG_KRETPROBES */
2063 int register_kretprobe(struct kretprobe *rp)
2065 return -ENOSYS;
2067 EXPORT_SYMBOL_GPL(register_kretprobe);
2069 int register_kretprobes(struct kretprobe **rps, int num)
2071 return -ENOSYS;
2073 EXPORT_SYMBOL_GPL(register_kretprobes);
2075 void unregister_kretprobe(struct kretprobe *rp)
2078 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080 void unregister_kretprobes(struct kretprobe **rps, int num)
2083 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2085 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2087 return 0;
2089 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2091 #endif /* CONFIG_KRETPROBES */
2093 /* Set the kprobe gone and remove its instruction buffer. */
2094 static void kill_kprobe(struct kprobe *p)
2096 struct kprobe *kp;
2098 lockdep_assert_held(&kprobe_mutex);
2100 p->flags |= KPROBE_FLAG_GONE;
2101 if (kprobe_aggrprobe(p)) {
2103 * If this is an aggr_kprobe, we have to list all the
2104 * chained probes and mark them GONE.
2106 list_for_each_entry(kp, &p->list, list)
2107 kp->flags |= KPROBE_FLAG_GONE;
2108 p->post_handler = NULL;
2109 kill_optimized_kprobe(p);
2112 * Here, we can remove insn_slot safely, because no thread calls
2113 * the original probed function (which will be freed soon) any more.
2115 arch_remove_kprobe(p);
2118 /* Disable one kprobe */
2119 int disable_kprobe(struct kprobe *kp)
2121 int ret = 0;
2122 struct kprobe *p;
2124 mutex_lock(&kprobe_mutex);
2126 /* Disable this kprobe */
2127 p = __disable_kprobe(kp);
2128 if (IS_ERR(p))
2129 ret = PTR_ERR(p);
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2134 EXPORT_SYMBOL_GPL(disable_kprobe);
2136 /* Enable one kprobe */
2137 int enable_kprobe(struct kprobe *kp)
2139 int ret = 0;
2140 struct kprobe *p;
2142 mutex_lock(&kprobe_mutex);
2144 /* Check whether specified probe is valid. */
2145 p = __get_valid_kprobe(kp);
2146 if (unlikely(p == NULL)) {
2147 ret = -EINVAL;
2148 goto out;
2151 if (kprobe_gone(kp)) {
2152 /* This kprobe has gone, we couldn't enable it. */
2153 ret = -EINVAL;
2154 goto out;
2157 if (p != kp)
2158 kp->flags &= ~KPROBE_FLAG_DISABLED;
2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 p->flags &= ~KPROBE_FLAG_DISABLED;
2162 ret = arm_kprobe(p);
2163 if (ret)
2164 p->flags |= KPROBE_FLAG_DISABLED;
2166 out:
2167 mutex_unlock(&kprobe_mutex);
2168 return ret;
2170 EXPORT_SYMBOL_GPL(enable_kprobe);
2172 /* Caller must NOT call this in usual path. This is only for critical case */
2173 void dump_kprobe(struct kprobe *kp)
2175 pr_err("Dumping kprobe:\n");
2176 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2177 kp->symbol_name, kp->offset, kp->addr);
2179 NOKPROBE_SYMBOL(dump_kprobe);
2181 int kprobe_add_ksym_blacklist(unsigned long entry)
2183 struct kprobe_blacklist_entry *ent;
2184 unsigned long offset = 0, size = 0;
2186 if (!kernel_text_address(entry) ||
2187 !kallsyms_lookup_size_offset(entry, &size, &offset))
2188 return -EINVAL;
2190 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2191 if (!ent)
2192 return -ENOMEM;
2193 ent->start_addr = entry;
2194 ent->end_addr = entry + size;
2195 INIT_LIST_HEAD(&ent->list);
2196 list_add_tail(&ent->list, &kprobe_blacklist);
2198 return (int)size;
2201 /* Add all symbols in given area into kprobe blacklist */
2202 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2204 unsigned long entry;
2205 int ret = 0;
2207 for (entry = start; entry < end; entry += ret) {
2208 ret = kprobe_add_ksym_blacklist(entry);
2209 if (ret < 0)
2210 return ret;
2211 if (ret == 0) /* In case of alias symbol */
2212 ret = 1;
2214 return 0;
2217 /* Remove all symbols in given area from kprobe blacklist */
2218 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2220 struct kprobe_blacklist_entry *ent, *n;
2222 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2223 if (ent->start_addr < start || ent->start_addr >= end)
2224 continue;
2225 list_del(&ent->list);
2226 kfree(ent);
2230 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2232 kprobe_remove_area_blacklist(entry, entry + 1);
2235 int __init __weak arch_populate_kprobe_blacklist(void)
2237 return 0;
2241 * Lookup and populate the kprobe_blacklist.
2243 * Unlike the kretprobe blacklist, we'll need to determine
2244 * the range of addresses that belong to the said functions,
2245 * since a kprobe need not necessarily be at the beginning
2246 * of a function.
2248 static int __init populate_kprobe_blacklist(unsigned long *start,
2249 unsigned long *end)
2251 unsigned long entry;
2252 unsigned long *iter;
2253 int ret;
2255 for (iter = start; iter < end; iter++) {
2256 entry = arch_deref_entry_point((void *)*iter);
2257 ret = kprobe_add_ksym_blacklist(entry);
2258 if (ret == -EINVAL)
2259 continue;
2260 if (ret < 0)
2261 return ret;
2264 /* Symbols in __kprobes_text are blacklisted */
2265 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2266 (unsigned long)__kprobes_text_end);
2267 if (ret)
2268 return ret;
2270 /* Symbols in noinstr section are blacklisted */
2271 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2272 (unsigned long)__noinstr_text_end);
2274 return ret ? : arch_populate_kprobe_blacklist();
2277 static void add_module_kprobe_blacklist(struct module *mod)
2279 unsigned long start, end;
2280 int i;
2282 if (mod->kprobe_blacklist) {
2283 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2284 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2287 start = (unsigned long)mod->kprobes_text_start;
2288 if (start) {
2289 end = start + mod->kprobes_text_size;
2290 kprobe_add_area_blacklist(start, end);
2293 start = (unsigned long)mod->noinstr_text_start;
2294 if (start) {
2295 end = start + mod->noinstr_text_size;
2296 kprobe_add_area_blacklist(start, end);
2300 static void remove_module_kprobe_blacklist(struct module *mod)
2302 unsigned long start, end;
2303 int i;
2305 if (mod->kprobe_blacklist) {
2306 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2307 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2310 start = (unsigned long)mod->kprobes_text_start;
2311 if (start) {
2312 end = start + mod->kprobes_text_size;
2313 kprobe_remove_area_blacklist(start, end);
2316 start = (unsigned long)mod->noinstr_text_start;
2317 if (start) {
2318 end = start + mod->noinstr_text_size;
2319 kprobe_remove_area_blacklist(start, end);
2323 /* Module notifier call back, checking kprobes on the module */
2324 static int kprobes_module_callback(struct notifier_block *nb,
2325 unsigned long val, void *data)
2327 struct module *mod = data;
2328 struct hlist_head *head;
2329 struct kprobe *p;
2330 unsigned int i;
2331 int checkcore = (val == MODULE_STATE_GOING);
2333 if (val == MODULE_STATE_COMING) {
2334 mutex_lock(&kprobe_mutex);
2335 add_module_kprobe_blacklist(mod);
2336 mutex_unlock(&kprobe_mutex);
2338 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2339 return NOTIFY_DONE;
2342 * When MODULE_STATE_GOING was notified, both of module .text and
2343 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2344 * notified, only .init.text section would be freed. We need to
2345 * disable kprobes which have been inserted in the sections.
2347 mutex_lock(&kprobe_mutex);
2348 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2349 head = &kprobe_table[i];
2350 hlist_for_each_entry(p, head, hlist)
2351 if (within_module_init((unsigned long)p->addr, mod) ||
2352 (checkcore &&
2353 within_module_core((unsigned long)p->addr, mod))) {
2355 * The vaddr this probe is installed will soon
2356 * be vfreed buy not synced to disk. Hence,
2357 * disarming the breakpoint isn't needed.
2359 * Note, this will also move any optimized probes
2360 * that are pending to be removed from their
2361 * corresponding lists to the freeing_list and
2362 * will not be touched by the delayed
2363 * kprobe_optimizer work handler.
2365 kill_kprobe(p);
2368 if (val == MODULE_STATE_GOING)
2369 remove_module_kprobe_blacklist(mod);
2370 mutex_unlock(&kprobe_mutex);
2371 return NOTIFY_DONE;
2374 static struct notifier_block kprobe_module_nb = {
2375 .notifier_call = kprobes_module_callback,
2376 .priority = 0
2379 /* Markers of _kprobe_blacklist section */
2380 extern unsigned long __start_kprobe_blacklist[];
2381 extern unsigned long __stop_kprobe_blacklist[];
2383 static int __init init_kprobes(void)
2385 int i, err = 0;
2387 /* FIXME allocate the probe table, currently defined statically */
2388 /* initialize all list heads */
2389 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2390 INIT_HLIST_HEAD(&kprobe_table[i]);
2391 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2392 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2395 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2396 __stop_kprobe_blacklist);
2397 if (err) {
2398 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2399 pr_err("Please take care of using kprobes.\n");
2402 if (kretprobe_blacklist_size) {
2403 /* lookup the function address from its name */
2404 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2405 kretprobe_blacklist[i].addr =
2406 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2407 if (!kretprobe_blacklist[i].addr)
2408 printk("kretprobe: lookup failed: %s\n",
2409 kretprobe_blacklist[i].name);
2413 #if defined(CONFIG_OPTPROBES)
2414 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2415 /* Init kprobe_optinsn_slots */
2416 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2417 #endif
2418 /* By default, kprobes can be optimized */
2419 kprobes_allow_optimization = true;
2420 #endif
2422 /* By default, kprobes are armed */
2423 kprobes_all_disarmed = false;
2425 err = arch_init_kprobes();
2426 if (!err)
2427 err = register_die_notifier(&kprobe_exceptions_nb);
2428 if (!err)
2429 err = register_module_notifier(&kprobe_module_nb);
2431 kprobes_initialized = (err == 0);
2433 if (!err)
2434 init_test_probes();
2435 return err;
2437 subsys_initcall(init_kprobes);
2439 #ifdef CONFIG_DEBUG_FS
2440 static void report_probe(struct seq_file *pi, struct kprobe *p,
2441 const char *sym, int offset, char *modname, struct kprobe *pp)
2443 char *kprobe_type;
2444 void *addr = p->addr;
2446 if (p->pre_handler == pre_handler_kretprobe)
2447 kprobe_type = "r";
2448 else
2449 kprobe_type = "k";
2451 if (!kallsyms_show_value())
2452 addr = NULL;
2454 if (sym)
2455 seq_printf(pi, "%px %s %s+0x%x %s ",
2456 addr, kprobe_type, sym, offset,
2457 (modname ? modname : " "));
2458 else /* try to use %pS */
2459 seq_printf(pi, "%px %s %pS ",
2460 addr, kprobe_type, p->addr);
2462 if (!pp)
2463 pp = p;
2464 seq_printf(pi, "%s%s%s%s\n",
2465 (kprobe_gone(p) ? "[GONE]" : ""),
2466 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2467 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2468 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2471 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2473 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2476 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2478 (*pos)++;
2479 if (*pos >= KPROBE_TABLE_SIZE)
2480 return NULL;
2481 return pos;
2484 static void kprobe_seq_stop(struct seq_file *f, void *v)
2486 /* Nothing to do */
2489 static int show_kprobe_addr(struct seq_file *pi, void *v)
2491 struct hlist_head *head;
2492 struct kprobe *p, *kp;
2493 const char *sym = NULL;
2494 unsigned int i = *(loff_t *) v;
2495 unsigned long offset = 0;
2496 char *modname, namebuf[KSYM_NAME_LEN];
2498 head = &kprobe_table[i];
2499 preempt_disable();
2500 hlist_for_each_entry_rcu(p, head, hlist) {
2501 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2502 &offset, &modname, namebuf);
2503 if (kprobe_aggrprobe(p)) {
2504 list_for_each_entry_rcu(kp, &p->list, list)
2505 report_probe(pi, kp, sym, offset, modname, p);
2506 } else
2507 report_probe(pi, p, sym, offset, modname, NULL);
2509 preempt_enable();
2510 return 0;
2513 static const struct seq_operations kprobes_sops = {
2514 .start = kprobe_seq_start,
2515 .next = kprobe_seq_next,
2516 .stop = kprobe_seq_stop,
2517 .show = show_kprobe_addr
2520 DEFINE_SEQ_ATTRIBUTE(kprobes);
2522 /* kprobes/blacklist -- shows which functions can not be probed */
2523 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2525 mutex_lock(&kprobe_mutex);
2526 return seq_list_start(&kprobe_blacklist, *pos);
2529 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2531 return seq_list_next(v, &kprobe_blacklist, pos);
2534 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2536 struct kprobe_blacklist_entry *ent =
2537 list_entry(v, struct kprobe_blacklist_entry, list);
2540 * If /proc/kallsyms is not showing kernel address, we won't
2541 * show them here either.
2543 if (!kallsyms_show_value())
2544 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2545 (void *)ent->start_addr);
2546 else
2547 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2548 (void *)ent->end_addr, (void *)ent->start_addr);
2549 return 0;
2552 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2554 mutex_unlock(&kprobe_mutex);
2557 static const struct seq_operations kprobe_blacklist_sops = {
2558 .start = kprobe_blacklist_seq_start,
2559 .next = kprobe_blacklist_seq_next,
2560 .stop = kprobe_blacklist_seq_stop,
2561 .show = kprobe_blacklist_seq_show,
2563 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2565 static int arm_all_kprobes(void)
2567 struct hlist_head *head;
2568 struct kprobe *p;
2569 unsigned int i, total = 0, errors = 0;
2570 int err, ret = 0;
2572 mutex_lock(&kprobe_mutex);
2574 /* If kprobes are armed, just return */
2575 if (!kprobes_all_disarmed)
2576 goto already_enabled;
2579 * optimize_kprobe() called by arm_kprobe() checks
2580 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2581 * arm_kprobe.
2583 kprobes_all_disarmed = false;
2584 /* Arming kprobes doesn't optimize kprobe itself */
2585 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2586 head = &kprobe_table[i];
2587 /* Arm all kprobes on a best-effort basis */
2588 hlist_for_each_entry(p, head, hlist) {
2589 if (!kprobe_disabled(p)) {
2590 err = arm_kprobe(p);
2591 if (err) {
2592 errors++;
2593 ret = err;
2595 total++;
2600 if (errors)
2601 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2602 errors, total);
2603 else
2604 pr_info("Kprobes globally enabled\n");
2606 already_enabled:
2607 mutex_unlock(&kprobe_mutex);
2608 return ret;
2611 static int disarm_all_kprobes(void)
2613 struct hlist_head *head;
2614 struct kprobe *p;
2615 unsigned int i, total = 0, errors = 0;
2616 int err, ret = 0;
2618 mutex_lock(&kprobe_mutex);
2620 /* If kprobes are already disarmed, just return */
2621 if (kprobes_all_disarmed) {
2622 mutex_unlock(&kprobe_mutex);
2623 return 0;
2626 kprobes_all_disarmed = true;
2628 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2629 head = &kprobe_table[i];
2630 /* Disarm all kprobes on a best-effort basis */
2631 hlist_for_each_entry(p, head, hlist) {
2632 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2633 err = disarm_kprobe(p, false);
2634 if (err) {
2635 errors++;
2636 ret = err;
2638 total++;
2643 if (errors)
2644 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2645 errors, total);
2646 else
2647 pr_info("Kprobes globally disabled\n");
2649 mutex_unlock(&kprobe_mutex);
2651 /* Wait for disarming all kprobes by optimizer */
2652 wait_for_kprobe_optimizer();
2654 return ret;
2658 * XXX: The debugfs bool file interface doesn't allow for callbacks
2659 * when the bool state is switched. We can reuse that facility when
2660 * available
2662 static ssize_t read_enabled_file_bool(struct file *file,
2663 char __user *user_buf, size_t count, loff_t *ppos)
2665 char buf[3];
2667 if (!kprobes_all_disarmed)
2668 buf[0] = '1';
2669 else
2670 buf[0] = '0';
2671 buf[1] = '\n';
2672 buf[2] = 0x00;
2673 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2676 static ssize_t write_enabled_file_bool(struct file *file,
2677 const char __user *user_buf, size_t count, loff_t *ppos)
2679 char buf[32];
2680 size_t buf_size;
2681 int ret = 0;
2683 buf_size = min(count, (sizeof(buf)-1));
2684 if (copy_from_user(buf, user_buf, buf_size))
2685 return -EFAULT;
2687 buf[buf_size] = '\0';
2688 switch (buf[0]) {
2689 case 'y':
2690 case 'Y':
2691 case '1':
2692 ret = arm_all_kprobes();
2693 break;
2694 case 'n':
2695 case 'N':
2696 case '0':
2697 ret = disarm_all_kprobes();
2698 break;
2699 default:
2700 return -EINVAL;
2703 if (ret)
2704 return ret;
2706 return count;
2709 static const struct file_operations fops_kp = {
2710 .read = read_enabled_file_bool,
2711 .write = write_enabled_file_bool,
2712 .llseek = default_llseek,
2715 static int __init debugfs_kprobe_init(void)
2717 struct dentry *dir;
2718 unsigned int value = 1;
2720 dir = debugfs_create_dir("kprobes", NULL);
2722 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2724 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2726 debugfs_create_file("blacklist", 0400, dir, NULL,
2727 &kprobe_blacklist_fops);
2729 return 0;
2732 late_initcall(debugfs_kprobe_init);
2733 #endif /* CONFIG_DEBUG_FS */