Linux 5.8-rc4
[linux/fpc-iii.git] / kernel / sched / core.c
blobca5db40392d4106679c42f99b1d23f58b7545dae
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
11 #include <linux/nospec.h>
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
23 #include "pelt.h"
24 #include "smp.h"
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
30 * Export tracepoints that act as a bare tracehook (ie: have no trace event
31 * associated with them) to allow external modules to probe them.
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
44 * Debugging: various feature bits
46 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47 * sysctl_sched_features, defined in sched.h, to allow constants propagation
48 * at compile time and compiler optimization based on features default.
50 #define SCHED_FEAT(name, enabled) \
51 (1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
55 #undef SCHED_FEAT
56 #endif
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
65 * period over which we measure -rt task CPU usage in us.
66 * default: 1s
68 unsigned int sysctl_sched_rt_period = 1000000;
70 __read_mostly int scheduler_running;
73 * part of the period that we allow rt tasks to run in us.
74 * default: 0.95s
76 int sysctl_sched_rt_runtime = 950000;
79 * __task_rq_lock - lock the rq @p resides on.
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 __acquires(rq->lock)
84 struct rq *rq;
86 lockdep_assert_held(&p->pi_lock);
88 for (;;) {
89 rq = task_rq(p);
90 raw_spin_lock(&rq->lock);
91 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 rq_pin_lock(rq, rf);
93 return rq;
95 raw_spin_unlock(&rq->lock);
97 while (unlikely(task_on_rq_migrating(p)))
98 cpu_relax();
103 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 __acquires(p->pi_lock)
107 __acquires(rq->lock)
109 struct rq *rq;
111 for (;;) {
112 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 rq = task_rq(p);
114 raw_spin_lock(&rq->lock);
116 * move_queued_task() task_rq_lock()
118 * ACQUIRE (rq->lock)
119 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
120 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
121 * [S] ->cpu = new_cpu [L] task_rq()
122 * [L] ->on_rq
123 * RELEASE (rq->lock)
125 * If we observe the old CPU in task_rq_lock(), the acquire of
126 * the old rq->lock will fully serialize against the stores.
128 * If we observe the new CPU in task_rq_lock(), the address
129 * dependency headed by '[L] rq = task_rq()' and the acquire
130 * will pair with the WMB to ensure we then also see migrating.
132 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 rq_pin_lock(rq, rf);
134 return rq;
136 raw_spin_unlock(&rq->lock);
137 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
139 while (unlikely(task_on_rq_migrating(p)))
140 cpu_relax();
145 * RQ-clock updating methods:
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
151 * In theory, the compile should just see 0 here, and optimize out the call
152 * to sched_rt_avg_update. But I don't trust it...
154 s64 __maybe_unused steal = 0, irq_delta = 0;
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
160 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 * this case when a previous update_rq_clock() happened inside a
162 * {soft,}irq region.
164 * When this happens, we stop ->clock_task and only update the
165 * prev_irq_time stamp to account for the part that fit, so that a next
166 * update will consume the rest. This ensures ->clock_task is
167 * monotonic.
169 * It does however cause some slight miss-attribution of {soft,}irq
170 * time, a more accurate solution would be to update the irq_time using
171 * the current rq->clock timestamp, except that would require using
172 * atomic ops.
174 if (irq_delta > delta)
175 irq_delta = delta;
177 rq->prev_irq_time += irq_delta;
178 delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 if (static_key_false((&paravirt_steal_rq_enabled))) {
182 steal = paravirt_steal_clock(cpu_of(rq));
183 steal -= rq->prev_steal_time_rq;
185 if (unlikely(steal > delta))
186 steal = delta;
188 rq->prev_steal_time_rq += steal;
189 delta -= steal;
191 #endif
193 rq->clock_task += delta;
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 update_rq_clock_pelt(rq, delta);
202 void update_rq_clock(struct rq *rq)
204 s64 delta;
206 lockdep_assert_held(&rq->lock);
208 if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 return;
211 #ifdef CONFIG_SCHED_DEBUG
212 if (sched_feat(WARN_DOUBLE_CLOCK))
213 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
217 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 if (delta < 0)
219 return;
220 rq->clock += delta;
221 update_rq_clock_task(rq, delta);
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
227 csd->flags = 0;
228 csd->func = func;
229 csd->info = rq;
232 #ifdef CONFIG_SCHED_HRTICK
234 * Use HR-timers to deliver accurate preemption points.
237 static void hrtick_clear(struct rq *rq)
239 if (hrtimer_active(&rq->hrtick_timer))
240 hrtimer_cancel(&rq->hrtick_timer);
244 * High-resolution timer tick.
245 * Runs from hardirq context with interrupts disabled.
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
249 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 struct rq_flags rf;
252 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
254 rq_lock(rq, &rf);
255 update_rq_clock(rq);
256 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 rq_unlock(rq, &rf);
259 return HRTIMER_NORESTART;
262 #ifdef CONFIG_SMP
264 static void __hrtick_restart(struct rq *rq)
266 struct hrtimer *timer = &rq->hrtick_timer;
268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
272 * called from hardirq (IPI) context
274 static void __hrtick_start(void *arg)
276 struct rq *rq = arg;
277 struct rq_flags rf;
279 rq_lock(rq, &rf);
280 __hrtick_restart(rq);
281 rq_unlock(rq, &rf);
285 * Called to set the hrtick timer state.
287 * called with rq->lock held and irqs disabled
289 void hrtick_start(struct rq *rq, u64 delay)
291 struct hrtimer *timer = &rq->hrtick_timer;
292 ktime_t time;
293 s64 delta;
296 * Don't schedule slices shorter than 10000ns, that just
297 * doesn't make sense and can cause timer DoS.
299 delta = max_t(s64, delay, 10000LL);
300 time = ktime_add_ns(timer->base->get_time(), delta);
302 hrtimer_set_expires(timer, time);
304 if (rq == this_rq())
305 __hrtick_restart(rq);
306 else
307 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
310 #else
312 * Called to set the hrtick timer state.
314 * called with rq->lock held and irqs disabled
316 void hrtick_start(struct rq *rq, u64 delay)
319 * Don't schedule slices shorter than 10000ns, that just
320 * doesn't make sense. Rely on vruntime for fairness.
322 delay = max_t(u64, delay, 10000LL);
323 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 HRTIMER_MODE_REL_PINNED_HARD);
327 #endif /* CONFIG_SMP */
329 static void hrtick_rq_init(struct rq *rq)
331 #ifdef CONFIG_SMP
332 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 rq->hrtick_timer.function = hrtick;
337 #else /* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
342 static inline void hrtick_rq_init(struct rq *rq)
345 #endif /* CONFIG_SCHED_HRTICK */
348 * cmpxchg based fetch_or, macro so it works for different integer types
350 #define fetch_or(ptr, mask) \
351 ({ \
352 typeof(ptr) _ptr = (ptr); \
353 typeof(mask) _mask = (mask); \
354 typeof(*_ptr) _old, _val = *_ptr; \
356 for (;;) { \
357 _old = cmpxchg(_ptr, _val, _val | _mask); \
358 if (_old == _val) \
359 break; \
360 _val = _old; \
362 _old; \
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
367 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368 * this avoids any races wrt polling state changes and thereby avoids
369 * spurious IPIs.
371 static bool set_nr_and_not_polling(struct task_struct *p)
373 struct thread_info *ti = task_thread_info(p);
374 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
378 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
380 * If this returns true, then the idle task promises to call
381 * sched_ttwu_pending() and reschedule soon.
383 static bool set_nr_if_polling(struct task_struct *p)
385 struct thread_info *ti = task_thread_info(p);
386 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
388 for (;;) {
389 if (!(val & _TIF_POLLING_NRFLAG))
390 return false;
391 if (val & _TIF_NEED_RESCHED)
392 return true;
393 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 if (old == val)
395 break;
396 val = old;
398 return true;
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
404 set_tsk_need_resched(p);
405 return true;
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
411 return false;
413 #endif
414 #endif
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
418 struct wake_q_node *node = &task->wake_q;
421 * Atomically grab the task, if ->wake_q is !nil already it means
422 * its already queued (either by us or someone else) and will get the
423 * wakeup due to that.
425 * In order to ensure that a pending wakeup will observe our pending
426 * state, even in the failed case, an explicit smp_mb() must be used.
428 smp_mb__before_atomic();
429 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 return false;
433 * The head is context local, there can be no concurrency.
435 *head->lastp = node;
436 head->lastp = &node->next;
437 return true;
441 * wake_q_add() - queue a wakeup for 'later' waking.
442 * @head: the wake_q_head to add @task to
443 * @task: the task to queue for 'later' wakeup
445 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447 * instantly.
449 * This function must be used as-if it were wake_up_process(); IOW the task
450 * must be ready to be woken at this location.
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
454 if (__wake_q_add(head, task))
455 get_task_struct(task);
459 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460 * @head: the wake_q_head to add @task to
461 * @task: the task to queue for 'later' wakeup
463 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465 * instantly.
467 * This function must be used as-if it were wake_up_process(); IOW the task
468 * must be ready to be woken at this location.
470 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471 * that already hold reference to @task can call the 'safe' version and trust
472 * wake_q to do the right thing depending whether or not the @task is already
473 * queued for wakeup.
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
477 if (!__wake_q_add(head, task))
478 put_task_struct(task);
481 void wake_up_q(struct wake_q_head *head)
483 struct wake_q_node *node = head->first;
485 while (node != WAKE_Q_TAIL) {
486 struct task_struct *task;
488 task = container_of(node, struct task_struct, wake_q);
489 BUG_ON(!task);
490 /* Task can safely be re-inserted now: */
491 node = node->next;
492 task->wake_q.next = NULL;
495 * wake_up_process() executes a full barrier, which pairs with
496 * the queueing in wake_q_add() so as not to miss wakeups.
498 wake_up_process(task);
499 put_task_struct(task);
504 * resched_curr - mark rq's current task 'to be rescheduled now'.
506 * On UP this means the setting of the need_resched flag, on SMP it
507 * might also involve a cross-CPU call to trigger the scheduler on
508 * the target CPU.
510 void resched_curr(struct rq *rq)
512 struct task_struct *curr = rq->curr;
513 int cpu;
515 lockdep_assert_held(&rq->lock);
517 if (test_tsk_need_resched(curr))
518 return;
520 cpu = cpu_of(rq);
522 if (cpu == smp_processor_id()) {
523 set_tsk_need_resched(curr);
524 set_preempt_need_resched();
525 return;
528 if (set_nr_and_not_polling(curr))
529 smp_send_reschedule(cpu);
530 else
531 trace_sched_wake_idle_without_ipi(cpu);
534 void resched_cpu(int cpu)
536 struct rq *rq = cpu_rq(cpu);
537 unsigned long flags;
539 raw_spin_lock_irqsave(&rq->lock, flags);
540 if (cpu_online(cpu) || cpu == smp_processor_id())
541 resched_curr(rq);
542 raw_spin_unlock_irqrestore(&rq->lock, flags);
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
548 * In the semi idle case, use the nearest busy CPU for migrating timers
549 * from an idle CPU. This is good for power-savings.
551 * We don't do similar optimization for completely idle system, as
552 * selecting an idle CPU will add more delays to the timers than intended
553 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
555 int get_nohz_timer_target(void)
557 int i, cpu = smp_processor_id(), default_cpu = -1;
558 struct sched_domain *sd;
560 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 if (!idle_cpu(cpu))
562 return cpu;
563 default_cpu = cpu;
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu_and(i, sched_domain_span(sd),
569 housekeeping_cpumask(HK_FLAG_TIMER)) {
570 if (cpu == i)
571 continue;
573 if (!idle_cpu(i)) {
574 cpu = i;
575 goto unlock;
580 if (default_cpu == -1)
581 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 cpu = default_cpu;
583 unlock:
584 rcu_read_unlock();
585 return cpu;
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
598 static void wake_up_idle_cpu(int cpu)
600 struct rq *rq = cpu_rq(cpu);
602 if (cpu == smp_processor_id())
603 return;
605 if (set_nr_and_not_polling(rq->idle))
606 smp_send_reschedule(cpu);
607 else
608 trace_sched_wake_idle_without_ipi(cpu);
611 static bool wake_up_full_nohz_cpu(int cpu)
614 * We just need the target to call irq_exit() and re-evaluate
615 * the next tick. The nohz full kick at least implies that.
616 * If needed we can still optimize that later with an
617 * empty IRQ.
619 if (cpu_is_offline(cpu))
620 return true; /* Don't try to wake offline CPUs. */
621 if (tick_nohz_full_cpu(cpu)) {
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 tick_nohz_full_kick_cpu(cpu);
625 return true;
628 return false;
632 * Wake up the specified CPU. If the CPU is going offline, it is the
633 * caller's responsibility to deal with the lost wakeup, for example,
634 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
636 void wake_up_nohz_cpu(int cpu)
638 if (!wake_up_full_nohz_cpu(cpu))
639 wake_up_idle_cpu(cpu);
642 static void nohz_csd_func(void *info)
644 struct rq *rq = info;
645 int cpu = cpu_of(rq);
646 unsigned int flags;
649 * Release the rq::nohz_csd.
651 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 WARN_ON(!(flags & NOHZ_KICK_MASK));
654 rq->idle_balance = idle_cpu(cpu);
655 if (rq->idle_balance && !need_resched()) {
656 rq->nohz_idle_balance = flags;
657 raise_softirq_irqoff(SCHED_SOFTIRQ);
661 #endif /* CONFIG_NO_HZ_COMMON */
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
666 int fifo_nr_running;
668 /* Deadline tasks, even if single, need the tick */
669 if (rq->dl.dl_nr_running)
670 return false;
673 * If there are more than one RR tasks, we need the tick to effect the
674 * actual RR behaviour.
676 if (rq->rt.rr_nr_running) {
677 if (rq->rt.rr_nr_running == 1)
678 return true;
679 else
680 return false;
684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 * forced preemption between FIFO tasks.
687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 if (fifo_nr_running)
689 return true;
692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 * if there's more than one we need the tick for involuntary
694 * preemption.
696 if (rq->nr_running > 1)
697 return false;
699 return true;
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
710 * Caller must hold rcu_lock or sufficient equivalent.
712 int walk_tg_tree_from(struct task_group *from,
713 tg_visitor down, tg_visitor up, void *data)
715 struct task_group *parent, *child;
716 int ret;
718 parent = from;
720 down:
721 ret = (*down)(parent, data);
722 if (ret)
723 goto out;
724 list_for_each_entry_rcu(child, &parent->children, siblings) {
725 parent = child;
726 goto down;
729 continue;
731 ret = (*up)(parent, data);
732 if (ret || parent == from)
733 goto out;
735 child = parent;
736 parent = parent->parent;
737 if (parent)
738 goto up;
739 out:
740 return ret;
743 int tg_nop(struct task_group *tg, void *data)
745 return 0;
747 #endif
749 static void set_load_weight(struct task_struct *p, bool update_load)
751 int prio = p->static_prio - MAX_RT_PRIO;
752 struct load_weight *load = &p->se.load;
755 * SCHED_IDLE tasks get minimal weight:
757 if (task_has_idle_policy(p)) {
758 load->weight = scale_load(WEIGHT_IDLEPRIO);
759 load->inv_weight = WMULT_IDLEPRIO;
760 return;
764 * SCHED_OTHER tasks have to update their load when changing their
765 * weight
767 if (update_load && p->sched_class == &fair_sched_class) {
768 reweight_task(p, prio);
769 } else {
770 load->weight = scale_load(sched_prio_to_weight[prio]);
771 load->inv_weight = sched_prio_to_wmult[prio];
775 #ifdef CONFIG_UCLAMP_TASK
777 * Serializes updates of utilization clamp values
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
786 static DEFINE_MUTEX(uclamp_mutex);
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
800 #define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
805 return clamp_value / UCLAMP_BUCKET_DELTA;
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
842 return uclamp_none(UCLAMP_MIN);
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895 #endif
897 return uc_req;
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
918 return uc_req;
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
923 struct uclamp_se uc_eff;
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return (unsigned long)p->uclamp[clamp_id].value;
929 uc_eff = uclamp_eff_get(p, clamp_id);
931 return (unsigned long)uc_eff.value;
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
951 lockdep_assert_held(&rq->lock);
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
991 lockdep_assert_held(&rq->lock);
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1005 if (likely(bucket->tasks))
1006 return;
1008 rq_clamp = READ_ONCE(uc_rq->value);
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1022 enum uclamp_id clamp_id;
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1037 enum uclamp_id clamp_id;
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1049 struct rq_flags rf;
1050 struct rq *rq;
1053 * Lock the task and the rq where the task is (or was) queued.
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1060 rq = task_rq_lock(p, &rf);
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1073 task_rq_unlock(rq, p, &rf);
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1092 css_task_iter_end(&it);
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1098 struct task_group *tg = &root_task_group;
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void *buffer, size_t *lenp, loff_t *ppos)
1116 bool update_root_tg = false;
1117 int old_min, old_max;
1118 int result;
1120 mutex_lock(&uclamp_mutex);
1121 old_min = sysctl_sched_uclamp_util_min;
1122 old_max = sysctl_sched_uclamp_util_max;
1124 result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 if (result)
1126 goto undo;
1127 if (!write)
1128 goto done;
1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 result = -EINVAL;
1133 goto undo;
1136 if (old_min != sysctl_sched_uclamp_util_min) {
1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 sysctl_sched_uclamp_util_min, false);
1139 update_root_tg = true;
1141 if (old_max != sysctl_sched_uclamp_util_max) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 sysctl_sched_uclamp_util_max, false);
1144 update_root_tg = true;
1147 if (update_root_tg)
1148 uclamp_update_root_tg();
1151 * We update all RUNNABLE tasks only when task groups are in use.
1152 * Otherwise, keep it simple and do just a lazy update at each next
1153 * task enqueue time.
1156 goto done;
1158 undo:
1159 sysctl_sched_uclamp_util_min = old_min;
1160 sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 mutex_unlock(&uclamp_mutex);
1164 return result;
1167 static int uclamp_validate(struct task_struct *p,
1168 const struct sched_attr *attr)
1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 lower_bound = attr->sched_util_min;
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 upper_bound = attr->sched_util_max;
1178 if (lower_bound > upper_bound)
1179 return -EINVAL;
1180 if (upper_bound > SCHED_CAPACITY_SCALE)
1181 return -EINVAL;
1183 return 0;
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 const struct sched_attr *attr)
1189 enum uclamp_id clamp_id;
1192 * On scheduling class change, reset to default clamps for tasks
1193 * without a task-specific value.
1195 for_each_clamp_id(clamp_id) {
1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 unsigned int clamp_value = uclamp_none(clamp_id);
1199 /* Keep using defined clamps across class changes */
1200 if (uc_se->user_defined)
1201 continue;
1203 /* By default, RT tasks always get 100% boost */
1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 clamp_value = uclamp_none(UCLAMP_MAX);
1207 uclamp_se_set(uc_se, clamp_value, false);
1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 return;
1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 attr->sched_util_min, true);
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 attr->sched_util_max, true);
1224 static void uclamp_fork(struct task_struct *p)
1226 enum uclamp_id clamp_id;
1228 for_each_clamp_id(clamp_id)
1229 p->uclamp[clamp_id].active = false;
1231 if (likely(!p->sched_reset_on_fork))
1232 return;
1234 for_each_clamp_id(clamp_id) {
1235 uclamp_se_set(&p->uclamp_req[clamp_id],
1236 uclamp_none(clamp_id), false);
1240 static void __init init_uclamp(void)
1242 struct uclamp_se uc_max = {};
1243 enum uclamp_id clamp_id;
1244 int cpu;
1246 mutex_init(&uclamp_mutex);
1248 for_each_possible_cpu(cpu) {
1249 memset(&cpu_rq(cpu)->uclamp, 0,
1250 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 cpu_rq(cpu)->uclamp_flags = 0;
1254 for_each_clamp_id(clamp_id) {
1255 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 uclamp_none(clamp_id), false);
1259 /* System defaults allow max clamp values for both indexes */
1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 for_each_clamp_id(clamp_id) {
1262 uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 root_task_group.uclamp_req[clamp_id] = uc_max;
1265 root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 const struct sched_attr *attr)
1276 return -EOPNOTSUPP;
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1286 if (!(flags & ENQUEUE_NOCLOCK))
1287 update_rq_clock(rq);
1289 if (!(flags & ENQUEUE_RESTORE)) {
1290 sched_info_queued(rq, p);
1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1294 uclamp_rq_inc(rq, p);
1295 p->sched_class->enqueue_task(rq, p, flags);
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1300 if (!(flags & DEQUEUE_NOCLOCK))
1301 update_rq_clock(rq);
1303 if (!(flags & DEQUEUE_SAVE)) {
1304 sched_info_dequeued(rq, p);
1305 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1308 uclamp_rq_dec(rq, p);
1309 p->sched_class->dequeue_task(rq, p, flags);
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1314 if (task_contributes_to_load(p))
1315 rq->nr_uninterruptible--;
1317 enqueue_task(rq, p, flags);
1319 p->on_rq = TASK_ON_RQ_QUEUED;
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326 if (task_contributes_to_load(p))
1327 rq->nr_uninterruptible++;
1329 dequeue_task(rq, p, flags);
1333 * __normal_prio - return the priority that is based on the static prio
1335 static inline int __normal_prio(struct task_struct *p)
1337 return p->static_prio;
1341 * Calculate the expected normal priority: i.e. priority
1342 * without taking RT-inheritance into account. Might be
1343 * boosted by interactivity modifiers. Changes upon fork,
1344 * setprio syscalls, and whenever the interactivity
1345 * estimator recalculates.
1347 static inline int normal_prio(struct task_struct *p)
1349 int prio;
1351 if (task_has_dl_policy(p))
1352 prio = MAX_DL_PRIO-1;
1353 else if (task_has_rt_policy(p))
1354 prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 else
1356 prio = __normal_prio(p);
1357 return prio;
1361 * Calculate the current priority, i.e. the priority
1362 * taken into account by the scheduler. This value might
1363 * be boosted by RT tasks, or might be boosted by
1364 * interactivity modifiers. Will be RT if the task got
1365 * RT-boosted. If not then it returns p->normal_prio.
1367 static int effective_prio(struct task_struct *p)
1369 p->normal_prio = normal_prio(p);
1371 * If we are RT tasks or we were boosted to RT priority,
1372 * keep the priority unchanged. Otherwise, update priority
1373 * to the normal priority:
1375 if (!rt_prio(p->prio))
1376 return p->normal_prio;
1377 return p->prio;
1381 * task_curr - is this task currently executing on a CPU?
1382 * @p: the task in question.
1384 * Return: 1 if the task is currently executing. 0 otherwise.
1386 inline int task_curr(const struct task_struct *p)
1388 return cpu_curr(task_cpu(p)) == p;
1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393 * use the balance_callback list if you want balancing.
1395 * this means any call to check_class_changed() must be followed by a call to
1396 * balance_callback().
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 const struct sched_class *prev_class,
1400 int oldprio)
1402 if (prev_class != p->sched_class) {
1403 if (prev_class->switched_from)
1404 prev_class->switched_from(rq, p);
1406 p->sched_class->switched_to(rq, p);
1407 } else if (oldprio != p->prio || dl_task(p))
1408 p->sched_class->prio_changed(rq, p, oldprio);
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1413 const struct sched_class *class;
1415 if (p->sched_class == rq->curr->sched_class) {
1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 } else {
1418 for_each_class(class) {
1419 if (class == rq->curr->sched_class)
1420 break;
1421 if (class == p->sched_class) {
1422 resched_curr(rq);
1423 break;
1429 * A queue event has occurred, and we're going to schedule. In
1430 * this case, we can save a useless back to back clock update.
1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 rq_clock_skip_update(rq);
1436 #ifdef CONFIG_SMP
1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440 * __set_cpus_allowed_ptr() and select_fallback_rq().
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 return false;
1447 if (is_per_cpu_kthread(p))
1448 return cpu_online(cpu);
1450 return cpu_active(cpu);
1454 * This is how migration works:
1456 * 1) we invoke migration_cpu_stop() on the target CPU using
1457 * stop_one_cpu().
1458 * 2) stopper starts to run (implicitly forcing the migrated thread
1459 * off the CPU)
1460 * 3) it checks whether the migrated task is still in the wrong runqueue.
1461 * 4) if it's in the wrong runqueue then the migration thread removes
1462 * it and puts it into the right queue.
1463 * 5) stopper completes and stop_one_cpu() returns and the migration
1464 * is done.
1468 * move_queued_task - move a queued task to new rq.
1470 * Returns (locked) new rq. Old rq's lock is released.
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 struct task_struct *p, int new_cpu)
1475 lockdep_assert_held(&rq->lock);
1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 set_task_cpu(p, new_cpu);
1480 rq_unlock(rq, rf);
1482 rq = cpu_rq(new_cpu);
1484 rq_lock(rq, rf);
1485 BUG_ON(task_cpu(p) != new_cpu);
1486 enqueue_task(rq, p, 0);
1487 p->on_rq = TASK_ON_RQ_QUEUED;
1488 check_preempt_curr(rq, p, 0);
1490 return rq;
1493 struct migration_arg {
1494 struct task_struct *task;
1495 int dest_cpu;
1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500 * this because either it can't run here any more (set_cpus_allowed()
1501 * away from this CPU, or CPU going down), or because we're
1502 * attempting to rebalance this task on exec (sched_exec).
1504 * So we race with normal scheduler movements, but that's OK, as long
1505 * as the task is no longer on this CPU.
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 struct task_struct *p, int dest_cpu)
1510 /* Affinity changed (again). */
1511 if (!is_cpu_allowed(p, dest_cpu))
1512 return rq;
1514 update_rq_clock(rq);
1515 rq = move_queued_task(rq, rf, p, dest_cpu);
1517 return rq;
1521 * migration_cpu_stop - this will be executed by a highprio stopper thread
1522 * and performs thread migration by bumping thread off CPU then
1523 * 'pushing' onto another runqueue.
1525 static int migration_cpu_stop(void *data)
1527 struct migration_arg *arg = data;
1528 struct task_struct *p = arg->task;
1529 struct rq *rq = this_rq();
1530 struct rq_flags rf;
1533 * The original target CPU might have gone down and we might
1534 * be on another CPU but it doesn't matter.
1536 local_irq_disable();
1538 * We need to explicitly wake pending tasks before running
1539 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1542 flush_smp_call_function_from_idle();
1544 raw_spin_lock(&p->pi_lock);
1545 rq_lock(rq, &rf);
1547 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 * we're holding p->pi_lock.
1551 if (task_rq(p) == rq) {
1552 if (task_on_rq_queued(p))
1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 else
1555 p->wake_cpu = arg->dest_cpu;
1557 rq_unlock(rq, &rf);
1558 raw_spin_unlock(&p->pi_lock);
1560 local_irq_enable();
1561 return 0;
1565 * sched_class::set_cpus_allowed must do the below, but is not required to
1566 * actually call this function.
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1570 cpumask_copy(&p->cpus_mask, new_mask);
1571 p->nr_cpus_allowed = cpumask_weight(new_mask);
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1576 struct rq *rq = task_rq(p);
1577 bool queued, running;
1579 lockdep_assert_held(&p->pi_lock);
1581 queued = task_on_rq_queued(p);
1582 running = task_current(rq, p);
1584 if (queued) {
1586 * Because __kthread_bind() calls this on blocked tasks without
1587 * holding rq->lock.
1589 lockdep_assert_held(&rq->lock);
1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1592 if (running)
1593 put_prev_task(rq, p);
1595 p->sched_class->set_cpus_allowed(p, new_mask);
1597 if (queued)
1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 if (running)
1600 set_next_task(rq, p);
1604 * Change a given task's CPU affinity. Migrate the thread to a
1605 * proper CPU and schedule it away if the CPU it's executing on
1606 * is removed from the allowed bitmask.
1608 * NOTE: the caller must have a valid reference to the task, the
1609 * task must not exit() & deallocate itself prematurely. The
1610 * call is not atomic; no spinlocks may be held.
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 const struct cpumask *new_mask, bool check)
1615 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 unsigned int dest_cpu;
1617 struct rq_flags rf;
1618 struct rq *rq;
1619 int ret = 0;
1621 rq = task_rq_lock(p, &rf);
1622 update_rq_clock(rq);
1624 if (p->flags & PF_KTHREAD) {
1626 * Kernel threads are allowed on online && !active CPUs
1628 cpu_valid_mask = cpu_online_mask;
1632 * Must re-check here, to close a race against __kthread_bind(),
1633 * sched_setaffinity() is not guaranteed to observe the flag.
1635 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 ret = -EINVAL;
1637 goto out;
1640 if (cpumask_equal(&p->cpus_mask, new_mask))
1641 goto out;
1644 * Picking a ~random cpu helps in cases where we are changing affinity
1645 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 * immediately required to distribute the tasks within their new mask.
1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 if (dest_cpu >= nr_cpu_ids) {
1650 ret = -EINVAL;
1651 goto out;
1654 do_set_cpus_allowed(p, new_mask);
1656 if (p->flags & PF_KTHREAD) {
1658 * For kernel threads that do indeed end up on online &&
1659 * !active we want to ensure they are strict per-CPU threads.
1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 !cpumask_intersects(new_mask, cpu_active_mask) &&
1663 p->nr_cpus_allowed != 1);
1666 /* Can the task run on the task's current CPU? If so, we're done */
1667 if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 goto out;
1670 if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 struct migration_arg arg = { p, dest_cpu };
1672 /* Need help from migration thread: drop lock and wait. */
1673 task_rq_unlock(rq, p, &rf);
1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 return 0;
1676 } else if (task_on_rq_queued(p)) {
1678 * OK, since we're going to drop the lock immediately
1679 * afterwards anyway.
1681 rq = move_queued_task(rq, &rf, p, dest_cpu);
1683 out:
1684 task_rq_unlock(rq, p, &rf);
1686 return ret;
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1691 return __set_cpus_allowed_ptr(p, new_mask, false);
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1697 #ifdef CONFIG_SCHED_DEBUG
1699 * We should never call set_task_cpu() on a blocked task,
1700 * ttwu() will sort out the placement.
1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 !p->on_rq);
1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 * time relying on p->on_rq.
1710 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 p->sched_class == &fair_sched_class &&
1712 (p->on_rq && !task_on_rq_migrating(p)));
1714 #ifdef CONFIG_LOCKDEP
1716 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1719 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 * see task_group().
1722 * Furthermore, all task_rq users should acquire both locks, see
1723 * task_rq_lock().
1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1731 WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1734 trace_sched_migrate_task(p, new_cpu);
1736 if (task_cpu(p) != new_cpu) {
1737 if (p->sched_class->migrate_task_rq)
1738 p->sched_class->migrate_task_rq(p, new_cpu);
1739 p->se.nr_migrations++;
1740 rseq_migrate(p);
1741 perf_event_task_migrate(p);
1744 __set_task_cpu(p, new_cpu);
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1750 if (task_on_rq_queued(p)) {
1751 struct rq *src_rq, *dst_rq;
1752 struct rq_flags srf, drf;
1754 src_rq = task_rq(p);
1755 dst_rq = cpu_rq(cpu);
1757 rq_pin_lock(src_rq, &srf);
1758 rq_pin_lock(dst_rq, &drf);
1760 deactivate_task(src_rq, p, 0);
1761 set_task_cpu(p, cpu);
1762 activate_task(dst_rq, p, 0);
1763 check_preempt_curr(dst_rq, p, 0);
1765 rq_unpin_lock(dst_rq, &drf);
1766 rq_unpin_lock(src_rq, &srf);
1768 } else {
1770 * Task isn't running anymore; make it appear like we migrated
1771 * it before it went to sleep. This means on wakeup we make the
1772 * previous CPU our target instead of where it really is.
1774 p->wake_cpu = cpu;
1778 struct migration_swap_arg {
1779 struct task_struct *src_task, *dst_task;
1780 int src_cpu, dst_cpu;
1783 static int migrate_swap_stop(void *data)
1785 struct migration_swap_arg *arg = data;
1786 struct rq *src_rq, *dst_rq;
1787 int ret = -EAGAIN;
1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 return -EAGAIN;
1792 src_rq = cpu_rq(arg->src_cpu);
1793 dst_rq = cpu_rq(arg->dst_cpu);
1795 double_raw_lock(&arg->src_task->pi_lock,
1796 &arg->dst_task->pi_lock);
1797 double_rq_lock(src_rq, dst_rq);
1799 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 goto unlock;
1802 if (task_cpu(arg->src_task) != arg->src_cpu)
1803 goto unlock;
1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 goto unlock;
1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 goto unlock;
1811 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1814 ret = 0;
1816 unlock:
1817 double_rq_unlock(src_rq, dst_rq);
1818 raw_spin_unlock(&arg->dst_task->pi_lock);
1819 raw_spin_unlock(&arg->src_task->pi_lock);
1821 return ret;
1825 * Cross migrate two tasks
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 int target_cpu, int curr_cpu)
1830 struct migration_swap_arg arg;
1831 int ret = -EINVAL;
1833 arg = (struct migration_swap_arg){
1834 .src_task = cur,
1835 .src_cpu = curr_cpu,
1836 .dst_task = p,
1837 .dst_cpu = target_cpu,
1840 if (arg.src_cpu == arg.dst_cpu)
1841 goto out;
1844 * These three tests are all lockless; this is OK since all of them
1845 * will be re-checked with proper locks held further down the line.
1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 goto out;
1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 goto out;
1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 goto out;
1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1859 out:
1860 return ret;
1862 #endif /* CONFIG_NUMA_BALANCING */
1865 * wait_task_inactive - wait for a thread to unschedule.
1867 * If @match_state is nonzero, it's the @p->state value just checked and
1868 * not expected to change. If it changes, i.e. @p might have woken up,
1869 * then return zero. When we succeed in waiting for @p to be off its CPU,
1870 * we return a positive number (its total switch count). If a second call
1871 * a short while later returns the same number, the caller can be sure that
1872 * @p has remained unscheduled the whole time.
1874 * The caller must ensure that the task *will* unschedule sometime soon,
1875 * else this function might spin for a *long* time. This function can't
1876 * be called with interrupts off, or it may introduce deadlock with
1877 * smp_call_function() if an IPI is sent by the same process we are
1878 * waiting to become inactive.
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1882 int running, queued;
1883 struct rq_flags rf;
1884 unsigned long ncsw;
1885 struct rq *rq;
1887 for (;;) {
1889 * We do the initial early heuristics without holding
1890 * any task-queue locks at all. We'll only try to get
1891 * the runqueue lock when things look like they will
1892 * work out!
1894 rq = task_rq(p);
1897 * If the task is actively running on another CPU
1898 * still, just relax and busy-wait without holding
1899 * any locks.
1901 * NOTE! Since we don't hold any locks, it's not
1902 * even sure that "rq" stays as the right runqueue!
1903 * But we don't care, since "task_running()" will
1904 * return false if the runqueue has changed and p
1905 * is actually now running somewhere else!
1907 while (task_running(rq, p)) {
1908 if (match_state && unlikely(p->state != match_state))
1909 return 0;
1910 cpu_relax();
1914 * Ok, time to look more closely! We need the rq
1915 * lock now, to be *sure*. If we're wrong, we'll
1916 * just go back and repeat.
1918 rq = task_rq_lock(p, &rf);
1919 trace_sched_wait_task(p);
1920 running = task_running(rq, p);
1921 queued = task_on_rq_queued(p);
1922 ncsw = 0;
1923 if (!match_state || p->state == match_state)
1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 task_rq_unlock(rq, p, &rf);
1928 * If it changed from the expected state, bail out now.
1930 if (unlikely(!ncsw))
1931 break;
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1937 * Oops. Go back and try again..
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1949 * So if it was still runnable (but just not actively
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1953 if (unlikely(queued)) {
1954 ktime_t to = NSEC_PER_SEC / HZ;
1956 set_current_state(TASK_UNINTERRUPTIBLE);
1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 continue;
1962 * Ahh, all good. It wasn't running, and it wasn't
1963 * runnable, which means that it will never become
1964 * running in the future either. We're all done!
1966 break;
1969 return ncsw;
1972 /***
1973 * kick_process - kick a running thread to enter/exit the kernel
1974 * @p: the to-be-kicked thread
1976 * Cause a process which is running on another CPU to enter
1977 * kernel-mode, without any delay. (to get signals handled.)
1979 * NOTE: this function doesn't have to take the runqueue lock,
1980 * because all it wants to ensure is that the remote task enters
1981 * the kernel. If the IPI races and the task has been migrated
1982 * to another CPU then no harm is done and the purpose has been
1983 * achieved as well.
1985 void kick_process(struct task_struct *p)
1987 int cpu;
1989 preempt_disable();
1990 cpu = task_cpu(p);
1991 if ((cpu != smp_processor_id()) && task_curr(p))
1992 smp_send_reschedule(cpu);
1993 preempt_enable();
1995 EXPORT_SYMBOL_GPL(kick_process);
1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2000 * A few notes on cpu_active vs cpu_online:
2002 * - cpu_active must be a subset of cpu_online
2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005 * see __set_cpus_allowed_ptr(). At this point the newly online
2006 * CPU isn't yet part of the sched domains, and balancing will not
2007 * see it.
2009 * - on CPU-down we clear cpu_active() to mask the sched domains and
2010 * avoid the load balancer to place new tasks on the to be removed
2011 * CPU. Existing tasks will remain running there and will be taken
2012 * off.
2014 * This means that fallback selection must not select !active CPUs.
2015 * And can assume that any active CPU must be online. Conversely
2016 * select_task_rq() below may allow selection of !active CPUs in order
2017 * to satisfy the above rules.
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2021 int nid = cpu_to_node(cpu);
2022 const struct cpumask *nodemask = NULL;
2023 enum { cpuset, possible, fail } state = cpuset;
2024 int dest_cpu;
2027 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 * will return -1. There is no CPU on the node, and we should
2029 * select the CPU on the other node.
2031 if (nid != -1) {
2032 nodemask = cpumask_of_node(nid);
2034 /* Look for allowed, online CPU in same node. */
2035 for_each_cpu(dest_cpu, nodemask) {
2036 if (!cpu_active(dest_cpu))
2037 continue;
2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 return dest_cpu;
2043 for (;;) {
2044 /* Any allowed, online CPU? */
2045 for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 if (!is_cpu_allowed(p, dest_cpu))
2047 continue;
2049 goto out;
2052 /* No more Mr. Nice Guy. */
2053 switch (state) {
2054 case cpuset:
2055 if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 cpuset_cpus_allowed_fallback(p);
2057 state = possible;
2058 break;
2060 /* Fall-through */
2061 case possible:
2062 do_set_cpus_allowed(p, cpu_possible_mask);
2063 state = fail;
2064 break;
2066 case fail:
2067 BUG();
2068 break;
2072 out:
2073 if (state != cpuset) {
2075 * Don't tell them about moving exiting tasks or
2076 * kernel threads (both mm NULL), since they never
2077 * leave kernel.
2079 if (p->mm && printk_ratelimit()) {
2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 task_pid_nr(p), p->comm, cpu);
2085 return dest_cpu;
2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2094 lockdep_assert_held(&p->pi_lock);
2096 if (p->nr_cpus_allowed > 1)
2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 else
2099 cpu = cpumask_any(p->cpus_ptr);
2102 * In order not to call set_task_cpu() on a blocking task we need
2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 * CPU.
2106 * Since this is common to all placement strategies, this lives here.
2108 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 * not worry about this generic constraint ]
2111 if (unlikely(!is_cpu_allowed(p, cpu)))
2112 cpu = select_fallback_rq(task_cpu(p), p);
2114 return cpu;
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2122 if (stop) {
2124 * Make it appear like a SCHED_FIFO task, its something
2125 * userspace knows about and won't get confused about.
2127 * Also, it will make PI more or less work without too
2128 * much confusion -- but then, stop work should not
2129 * rely on PI working anyway.
2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2133 stop->sched_class = &stop_sched_class;
2136 cpu_rq(cpu)->stop = stop;
2138 if (old_stop) {
2140 * Reset it back to a normal scheduling class so that
2141 * it can die in pieces.
2143 old_stop->sched_class = &rt_sched_class;
2147 #else
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 const struct cpumask *new_mask, bool check)
2152 return set_cpus_allowed_ptr(p, new_mask);
2155 #endif /* CONFIG_SMP */
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2160 struct rq *rq;
2162 if (!schedstat_enabled())
2163 return;
2165 rq = this_rq();
2167 #ifdef CONFIG_SMP
2168 if (cpu == rq->cpu) {
2169 __schedstat_inc(rq->ttwu_local);
2170 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 } else {
2172 struct sched_domain *sd;
2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 rcu_read_lock();
2176 for_each_domain(rq->cpu, sd) {
2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 __schedstat_inc(sd->ttwu_wake_remote);
2179 break;
2182 rcu_read_unlock();
2185 if (wake_flags & WF_MIGRATED)
2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2189 __schedstat_inc(rq->ttwu_count);
2190 __schedstat_inc(p->se.statistics.nr_wakeups);
2192 if (wake_flags & WF_SYNC)
2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2197 * Mark the task runnable and perform wakeup-preemption.
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 struct rq_flags *rf)
2202 check_preempt_curr(rq, p, wake_flags);
2203 p->state = TASK_RUNNING;
2204 trace_sched_wakeup(p);
2206 #ifdef CONFIG_SMP
2207 if (p->sched_class->task_woken) {
2209 * Our task @p is fully woken up and running; so its safe to
2210 * drop the rq->lock, hereafter rq is only used for statistics.
2212 rq_unpin_lock(rq, rf);
2213 p->sched_class->task_woken(rq, p);
2214 rq_repin_lock(rq, rf);
2217 if (rq->idle_stamp) {
2218 u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 u64 max = 2*rq->max_idle_balance_cost;
2221 update_avg(&rq->avg_idle, delta);
2223 if (rq->avg_idle > max)
2224 rq->avg_idle = max;
2226 rq->idle_stamp = 0;
2228 #endif
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 struct rq_flags *rf)
2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2237 lockdep_assert_held(&rq->lock);
2239 #ifdef CONFIG_SMP
2240 if (p->sched_contributes_to_load)
2241 rq->nr_uninterruptible--;
2243 if (wake_flags & WF_MIGRATED)
2244 en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2247 activate_task(rq, p, en_flags);
2248 ttwu_do_wakeup(rq, p, wake_flags, rf);
2252 * Called in case the task @p isn't fully descheduled from its runqueue,
2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254 * since all we need to do is flip p->state to TASK_RUNNING, since
2255 * the task is still ->on_rq.
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2259 struct rq_flags rf;
2260 struct rq *rq;
2261 int ret = 0;
2263 rq = __task_rq_lock(p, &rf);
2264 if (task_on_rq_queued(p)) {
2265 /* check_preempt_curr() may use rq clock */
2266 update_rq_clock(rq);
2267 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 ret = 1;
2270 __task_rq_unlock(rq, &rf);
2272 return ret;
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void *arg)
2278 struct llist_node *llist = arg;
2279 struct rq *rq = this_rq();
2280 struct task_struct *p, *t;
2281 struct rq_flags rf;
2283 if (!llist)
2284 return;
2287 * rq::ttwu_pending racy indication of out-standing wakeups.
2288 * Races such that false-negatives are possible, since they
2289 * are shorter lived that false-positives would be.
2291 WRITE_ONCE(rq->ttwu_pending, 0);
2293 rq_lock_irqsave(rq, &rf);
2294 update_rq_clock(rq);
2296 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2297 if (WARN_ON_ONCE(p->on_cpu))
2298 smp_cond_load_acquire(&p->on_cpu, !VAL);
2300 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2301 set_task_cpu(p, cpu_of(rq));
2303 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2306 rq_unlock_irqrestore(rq, &rf);
2309 void send_call_function_single_ipi(int cpu)
2311 struct rq *rq = cpu_rq(cpu);
2313 if (!set_nr_if_polling(rq->idle))
2314 arch_send_call_function_single_ipi(cpu);
2315 else
2316 trace_sched_wake_idle_without_ipi(cpu);
2320 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2321 * necessary. The wakee CPU on receipt of the IPI will queue the task
2322 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2323 * of the wakeup instead of the waker.
2325 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2327 struct rq *rq = cpu_rq(cpu);
2329 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2331 WRITE_ONCE(rq->ttwu_pending, 1);
2332 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2335 void wake_up_if_idle(int cpu)
2337 struct rq *rq = cpu_rq(cpu);
2338 struct rq_flags rf;
2340 rcu_read_lock();
2342 if (!is_idle_task(rcu_dereference(rq->curr)))
2343 goto out;
2345 if (set_nr_if_polling(rq->idle)) {
2346 trace_sched_wake_idle_without_ipi(cpu);
2347 } else {
2348 rq_lock_irqsave(rq, &rf);
2349 if (is_idle_task(rq->curr))
2350 smp_send_reschedule(cpu);
2351 /* Else CPU is not idle, do nothing here: */
2352 rq_unlock_irqrestore(rq, &rf);
2355 out:
2356 rcu_read_unlock();
2359 bool cpus_share_cache(int this_cpu, int that_cpu)
2361 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2364 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2367 * If the CPU does not share cache, then queue the task on the
2368 * remote rqs wakelist to avoid accessing remote data.
2370 if (!cpus_share_cache(smp_processor_id(), cpu))
2371 return true;
2374 * If the task is descheduling and the only running task on the
2375 * CPU then use the wakelist to offload the task activation to
2376 * the soon-to-be-idle CPU as the current CPU is likely busy.
2377 * nr_running is checked to avoid unnecessary task stacking.
2379 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2380 return true;
2382 return false;
2385 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2387 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2388 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2389 return false;
2391 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2392 __ttwu_queue_wakelist(p, cpu, wake_flags);
2393 return true;
2396 return false;
2398 #endif /* CONFIG_SMP */
2400 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2402 struct rq *rq = cpu_rq(cpu);
2403 struct rq_flags rf;
2405 #if defined(CONFIG_SMP)
2406 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2407 return;
2408 #endif
2410 rq_lock(rq, &rf);
2411 update_rq_clock(rq);
2412 ttwu_do_activate(rq, p, wake_flags, &rf);
2413 rq_unlock(rq, &rf);
2417 * Notes on Program-Order guarantees on SMP systems.
2419 * MIGRATION
2421 * The basic program-order guarantee on SMP systems is that when a task [t]
2422 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2423 * execution on its new CPU [c1].
2425 * For migration (of runnable tasks) this is provided by the following means:
2427 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2428 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2429 * rq(c1)->lock (if not at the same time, then in that order).
2430 * C) LOCK of the rq(c1)->lock scheduling in task
2432 * Release/acquire chaining guarantees that B happens after A and C after B.
2433 * Note: the CPU doing B need not be c0 or c1
2435 * Example:
2437 * CPU0 CPU1 CPU2
2439 * LOCK rq(0)->lock
2440 * sched-out X
2441 * sched-in Y
2442 * UNLOCK rq(0)->lock
2444 * LOCK rq(0)->lock // orders against CPU0
2445 * dequeue X
2446 * UNLOCK rq(0)->lock
2448 * LOCK rq(1)->lock
2449 * enqueue X
2450 * UNLOCK rq(1)->lock
2452 * LOCK rq(1)->lock // orders against CPU2
2453 * sched-out Z
2454 * sched-in X
2455 * UNLOCK rq(1)->lock
2458 * BLOCKING -- aka. SLEEP + WAKEUP
2460 * For blocking we (obviously) need to provide the same guarantee as for
2461 * migration. However the means are completely different as there is no lock
2462 * chain to provide order. Instead we do:
2464 * 1) smp_store_release(X->on_cpu, 0)
2465 * 2) smp_cond_load_acquire(!X->on_cpu)
2467 * Example:
2469 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2471 * LOCK rq(0)->lock LOCK X->pi_lock
2472 * dequeue X
2473 * sched-out X
2474 * smp_store_release(X->on_cpu, 0);
2476 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2477 * X->state = WAKING
2478 * set_task_cpu(X,2)
2480 * LOCK rq(2)->lock
2481 * enqueue X
2482 * X->state = RUNNING
2483 * UNLOCK rq(2)->lock
2485 * LOCK rq(2)->lock // orders against CPU1
2486 * sched-out Z
2487 * sched-in X
2488 * UNLOCK rq(2)->lock
2490 * UNLOCK X->pi_lock
2491 * UNLOCK rq(0)->lock
2494 * However, for wakeups there is a second guarantee we must provide, namely we
2495 * must ensure that CONDITION=1 done by the caller can not be reordered with
2496 * accesses to the task state; see try_to_wake_up() and set_current_state().
2500 * try_to_wake_up - wake up a thread
2501 * @p: the thread to be awakened
2502 * @state: the mask of task states that can be woken
2503 * @wake_flags: wake modifier flags (WF_*)
2505 * If (@state & @p->state) @p->state = TASK_RUNNING.
2507 * If the task was not queued/runnable, also place it back on a runqueue.
2509 * Atomic against schedule() which would dequeue a task, also see
2510 * set_current_state().
2512 * This function executes a full memory barrier before accessing the task
2513 * state; see set_current_state().
2515 * Return: %true if @p->state changes (an actual wakeup was done),
2516 * %false otherwise.
2518 static int
2519 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2521 unsigned long flags;
2522 int cpu, success = 0;
2524 preempt_disable();
2525 if (p == current) {
2527 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2528 * == smp_processor_id()'. Together this means we can special
2529 * case the whole 'p->on_rq && ttwu_remote()' case below
2530 * without taking any locks.
2532 * In particular:
2533 * - we rely on Program-Order guarantees for all the ordering,
2534 * - we're serialized against set_special_state() by virtue of
2535 * it disabling IRQs (this allows not taking ->pi_lock).
2537 if (!(p->state & state))
2538 goto out;
2540 success = 1;
2541 trace_sched_waking(p);
2542 p->state = TASK_RUNNING;
2543 trace_sched_wakeup(p);
2544 goto out;
2548 * If we are going to wake up a thread waiting for CONDITION we
2549 * need to ensure that CONDITION=1 done by the caller can not be
2550 * reordered with p->state check below. This pairs with mb() in
2551 * set_current_state() the waiting thread does.
2553 raw_spin_lock_irqsave(&p->pi_lock, flags);
2554 smp_mb__after_spinlock();
2555 if (!(p->state & state))
2556 goto unlock;
2558 trace_sched_waking(p);
2560 /* We're going to change ->state: */
2561 success = 1;
2564 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2565 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2566 * in smp_cond_load_acquire() below.
2568 * sched_ttwu_pending() try_to_wake_up()
2569 * STORE p->on_rq = 1 LOAD p->state
2570 * UNLOCK rq->lock
2572 * __schedule() (switch to task 'p')
2573 * LOCK rq->lock smp_rmb();
2574 * smp_mb__after_spinlock();
2575 * UNLOCK rq->lock
2577 * [task p]
2578 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2580 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2581 * __schedule(). See the comment for smp_mb__after_spinlock().
2583 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2585 smp_rmb();
2586 if (p->on_rq && ttwu_remote(p, wake_flags))
2587 goto unlock;
2589 if (p->in_iowait) {
2590 delayacct_blkio_end(p);
2591 atomic_dec(&task_rq(p)->nr_iowait);
2594 #ifdef CONFIG_SMP
2595 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2596 p->state = TASK_WAKING;
2599 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2600 * possible to, falsely, observe p->on_cpu == 0.
2602 * One must be running (->on_cpu == 1) in order to remove oneself
2603 * from the runqueue.
2605 * __schedule() (switch to task 'p') try_to_wake_up()
2606 * STORE p->on_cpu = 1 LOAD p->on_rq
2607 * UNLOCK rq->lock
2609 * __schedule() (put 'p' to sleep)
2610 * LOCK rq->lock smp_rmb();
2611 * smp_mb__after_spinlock();
2612 * STORE p->on_rq = 0 LOAD p->on_cpu
2614 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2615 * __schedule(). See the comment for smp_mb__after_spinlock().
2617 smp_rmb();
2620 * If the owning (remote) CPU is still in the middle of schedule() with
2621 * this task as prev, considering queueing p on the remote CPUs wake_list
2622 * which potentially sends an IPI instead of spinning on p->on_cpu to
2623 * let the waker make forward progress. This is safe because IRQs are
2624 * disabled and the IPI will deliver after on_cpu is cleared.
2626 * Ensure we load task_cpu(p) after p->on_cpu:
2628 * set_task_cpu(p, cpu);
2629 * STORE p->cpu = @cpu
2630 * __schedule() (switch to task 'p')
2631 * LOCK rq->lock
2632 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2633 * STORE p->on_cpu = 1 LOAD p->cpu
2635 * to ensure we observe the correct CPU on which the task is currently
2636 * scheduling.
2638 if (smp_load_acquire(&p->on_cpu) &&
2639 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2640 goto unlock;
2643 * If the owning (remote) CPU is still in the middle of schedule() with
2644 * this task as prev, wait until its done referencing the task.
2646 * Pairs with the smp_store_release() in finish_task().
2648 * This ensures that tasks getting woken will be fully ordered against
2649 * their previous state and preserve Program Order.
2651 smp_cond_load_acquire(&p->on_cpu, !VAL);
2653 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2654 if (task_cpu(p) != cpu) {
2655 wake_flags |= WF_MIGRATED;
2656 psi_ttwu_dequeue(p);
2657 set_task_cpu(p, cpu);
2659 #else
2660 cpu = task_cpu(p);
2661 #endif /* CONFIG_SMP */
2663 ttwu_queue(p, cpu, wake_flags);
2664 unlock:
2665 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2666 out:
2667 if (success)
2668 ttwu_stat(p, task_cpu(p), wake_flags);
2669 preempt_enable();
2671 return success;
2675 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2676 * @p: Process for which the function is to be invoked.
2677 * @func: Function to invoke.
2678 * @arg: Argument to function.
2680 * If the specified task can be quickly locked into a definite state
2681 * (either sleeping or on a given runqueue), arrange to keep it in that
2682 * state while invoking @func(@arg). This function can use ->on_rq and
2683 * task_curr() to work out what the state is, if required. Given that
2684 * @func can be invoked with a runqueue lock held, it had better be quite
2685 * lightweight.
2687 * Returns:
2688 * @false if the task slipped out from under the locks.
2689 * @true if the task was locked onto a runqueue or is sleeping.
2690 * However, @func can override this by returning @false.
2692 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2694 bool ret = false;
2695 struct rq_flags rf;
2696 struct rq *rq;
2698 lockdep_assert_irqs_enabled();
2699 raw_spin_lock_irq(&p->pi_lock);
2700 if (p->on_rq) {
2701 rq = __task_rq_lock(p, &rf);
2702 if (task_rq(p) == rq)
2703 ret = func(p, arg);
2704 rq_unlock(rq, &rf);
2705 } else {
2706 switch (p->state) {
2707 case TASK_RUNNING:
2708 case TASK_WAKING:
2709 break;
2710 default:
2711 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2712 if (!p->on_rq)
2713 ret = func(p, arg);
2716 raw_spin_unlock_irq(&p->pi_lock);
2717 return ret;
2721 * wake_up_process - Wake up a specific process
2722 * @p: The process to be woken up.
2724 * Attempt to wake up the nominated process and move it to the set of runnable
2725 * processes.
2727 * Return: 1 if the process was woken up, 0 if it was already running.
2729 * This function executes a full memory barrier before accessing the task state.
2731 int wake_up_process(struct task_struct *p)
2733 return try_to_wake_up(p, TASK_NORMAL, 0);
2735 EXPORT_SYMBOL(wake_up_process);
2737 int wake_up_state(struct task_struct *p, unsigned int state)
2739 return try_to_wake_up(p, state, 0);
2743 * Perform scheduler related setup for a newly forked process p.
2744 * p is forked by current.
2746 * __sched_fork() is basic setup used by init_idle() too:
2748 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2750 p->on_rq = 0;
2752 p->se.on_rq = 0;
2753 p->se.exec_start = 0;
2754 p->se.sum_exec_runtime = 0;
2755 p->se.prev_sum_exec_runtime = 0;
2756 p->se.nr_migrations = 0;
2757 p->se.vruntime = 0;
2758 INIT_LIST_HEAD(&p->se.group_node);
2760 #ifdef CONFIG_FAIR_GROUP_SCHED
2761 p->se.cfs_rq = NULL;
2762 #endif
2764 #ifdef CONFIG_SCHEDSTATS
2765 /* Even if schedstat is disabled, there should not be garbage */
2766 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2767 #endif
2769 RB_CLEAR_NODE(&p->dl.rb_node);
2770 init_dl_task_timer(&p->dl);
2771 init_dl_inactive_task_timer(&p->dl);
2772 __dl_clear_params(p);
2774 INIT_LIST_HEAD(&p->rt.run_list);
2775 p->rt.timeout = 0;
2776 p->rt.time_slice = sched_rr_timeslice;
2777 p->rt.on_rq = 0;
2778 p->rt.on_list = 0;
2780 #ifdef CONFIG_PREEMPT_NOTIFIERS
2781 INIT_HLIST_HEAD(&p->preempt_notifiers);
2782 #endif
2784 #ifdef CONFIG_COMPACTION
2785 p->capture_control = NULL;
2786 #endif
2787 init_numa_balancing(clone_flags, p);
2788 #ifdef CONFIG_SMP
2789 p->wake_entry.u_flags = CSD_TYPE_TTWU;
2790 #endif
2793 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2795 #ifdef CONFIG_NUMA_BALANCING
2797 void set_numabalancing_state(bool enabled)
2799 if (enabled)
2800 static_branch_enable(&sched_numa_balancing);
2801 else
2802 static_branch_disable(&sched_numa_balancing);
2805 #ifdef CONFIG_PROC_SYSCTL
2806 int sysctl_numa_balancing(struct ctl_table *table, int write,
2807 void *buffer, size_t *lenp, loff_t *ppos)
2809 struct ctl_table t;
2810 int err;
2811 int state = static_branch_likely(&sched_numa_balancing);
2813 if (write && !capable(CAP_SYS_ADMIN))
2814 return -EPERM;
2816 t = *table;
2817 t.data = &state;
2818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2819 if (err < 0)
2820 return err;
2821 if (write)
2822 set_numabalancing_state(state);
2823 return err;
2825 #endif
2826 #endif
2828 #ifdef CONFIG_SCHEDSTATS
2830 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2831 static bool __initdata __sched_schedstats = false;
2833 static void set_schedstats(bool enabled)
2835 if (enabled)
2836 static_branch_enable(&sched_schedstats);
2837 else
2838 static_branch_disable(&sched_schedstats);
2841 void force_schedstat_enabled(void)
2843 if (!schedstat_enabled()) {
2844 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2845 static_branch_enable(&sched_schedstats);
2849 static int __init setup_schedstats(char *str)
2851 int ret = 0;
2852 if (!str)
2853 goto out;
2856 * This code is called before jump labels have been set up, so we can't
2857 * change the static branch directly just yet. Instead set a temporary
2858 * variable so init_schedstats() can do it later.
2860 if (!strcmp(str, "enable")) {
2861 __sched_schedstats = true;
2862 ret = 1;
2863 } else if (!strcmp(str, "disable")) {
2864 __sched_schedstats = false;
2865 ret = 1;
2867 out:
2868 if (!ret)
2869 pr_warn("Unable to parse schedstats=\n");
2871 return ret;
2873 __setup("schedstats=", setup_schedstats);
2875 static void __init init_schedstats(void)
2877 set_schedstats(__sched_schedstats);
2880 #ifdef CONFIG_PROC_SYSCTL
2881 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2882 size_t *lenp, loff_t *ppos)
2884 struct ctl_table t;
2885 int err;
2886 int state = static_branch_likely(&sched_schedstats);
2888 if (write && !capable(CAP_SYS_ADMIN))
2889 return -EPERM;
2891 t = *table;
2892 t.data = &state;
2893 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2894 if (err < 0)
2895 return err;
2896 if (write)
2897 set_schedstats(state);
2898 return err;
2900 #endif /* CONFIG_PROC_SYSCTL */
2901 #else /* !CONFIG_SCHEDSTATS */
2902 static inline void init_schedstats(void) {}
2903 #endif /* CONFIG_SCHEDSTATS */
2906 * fork()/clone()-time setup:
2908 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2910 unsigned long flags;
2912 __sched_fork(clone_flags, p);
2914 * We mark the process as NEW here. This guarantees that
2915 * nobody will actually run it, and a signal or other external
2916 * event cannot wake it up and insert it on the runqueue either.
2918 p->state = TASK_NEW;
2921 * Make sure we do not leak PI boosting priority to the child.
2923 p->prio = current->normal_prio;
2925 uclamp_fork(p);
2928 * Revert to default priority/policy on fork if requested.
2930 if (unlikely(p->sched_reset_on_fork)) {
2931 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2932 p->policy = SCHED_NORMAL;
2933 p->static_prio = NICE_TO_PRIO(0);
2934 p->rt_priority = 0;
2935 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2936 p->static_prio = NICE_TO_PRIO(0);
2938 p->prio = p->normal_prio = __normal_prio(p);
2939 set_load_weight(p, false);
2942 * We don't need the reset flag anymore after the fork. It has
2943 * fulfilled its duty:
2945 p->sched_reset_on_fork = 0;
2948 if (dl_prio(p->prio))
2949 return -EAGAIN;
2950 else if (rt_prio(p->prio))
2951 p->sched_class = &rt_sched_class;
2952 else
2953 p->sched_class = &fair_sched_class;
2955 init_entity_runnable_average(&p->se);
2958 * The child is not yet in the pid-hash so no cgroup attach races,
2959 * and the cgroup is pinned to this child due to cgroup_fork()
2960 * is ran before sched_fork().
2962 * Silence PROVE_RCU.
2964 raw_spin_lock_irqsave(&p->pi_lock, flags);
2966 * We're setting the CPU for the first time, we don't migrate,
2967 * so use __set_task_cpu().
2969 __set_task_cpu(p, smp_processor_id());
2970 if (p->sched_class->task_fork)
2971 p->sched_class->task_fork(p);
2972 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2974 #ifdef CONFIG_SCHED_INFO
2975 if (likely(sched_info_on()))
2976 memset(&p->sched_info, 0, sizeof(p->sched_info));
2977 #endif
2978 #if defined(CONFIG_SMP)
2979 p->on_cpu = 0;
2980 #endif
2981 init_task_preempt_count(p);
2982 #ifdef CONFIG_SMP
2983 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2984 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2985 #endif
2986 return 0;
2989 unsigned long to_ratio(u64 period, u64 runtime)
2991 if (runtime == RUNTIME_INF)
2992 return BW_UNIT;
2995 * Doing this here saves a lot of checks in all
2996 * the calling paths, and returning zero seems
2997 * safe for them anyway.
2999 if (period == 0)
3000 return 0;
3002 return div64_u64(runtime << BW_SHIFT, period);
3006 * wake_up_new_task - wake up a newly created task for the first time.
3008 * This function will do some initial scheduler statistics housekeeping
3009 * that must be done for every newly created context, then puts the task
3010 * on the runqueue and wakes it.
3012 void wake_up_new_task(struct task_struct *p)
3014 struct rq_flags rf;
3015 struct rq *rq;
3017 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3018 p->state = TASK_RUNNING;
3019 #ifdef CONFIG_SMP
3021 * Fork balancing, do it here and not earlier because:
3022 * - cpus_ptr can change in the fork path
3023 * - any previously selected CPU might disappear through hotplug
3025 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3026 * as we're not fully set-up yet.
3028 p->recent_used_cpu = task_cpu(p);
3029 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3030 #endif
3031 rq = __task_rq_lock(p, &rf);
3032 update_rq_clock(rq);
3033 post_init_entity_util_avg(p);
3035 activate_task(rq, p, ENQUEUE_NOCLOCK);
3036 trace_sched_wakeup_new(p);
3037 check_preempt_curr(rq, p, WF_FORK);
3038 #ifdef CONFIG_SMP
3039 if (p->sched_class->task_woken) {
3041 * Nothing relies on rq->lock after this, so its fine to
3042 * drop it.
3044 rq_unpin_lock(rq, &rf);
3045 p->sched_class->task_woken(rq, p);
3046 rq_repin_lock(rq, &rf);
3048 #endif
3049 task_rq_unlock(rq, p, &rf);
3052 #ifdef CONFIG_PREEMPT_NOTIFIERS
3054 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3056 void preempt_notifier_inc(void)
3058 static_branch_inc(&preempt_notifier_key);
3060 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3062 void preempt_notifier_dec(void)
3064 static_branch_dec(&preempt_notifier_key);
3066 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3069 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3070 * @notifier: notifier struct to register
3072 void preempt_notifier_register(struct preempt_notifier *notifier)
3074 if (!static_branch_unlikely(&preempt_notifier_key))
3075 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3077 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3079 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3082 * preempt_notifier_unregister - no longer interested in preemption notifications
3083 * @notifier: notifier struct to unregister
3085 * This is *not* safe to call from within a preemption notifier.
3087 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3089 hlist_del(&notifier->link);
3091 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3093 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3095 struct preempt_notifier *notifier;
3097 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3098 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3101 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3103 if (static_branch_unlikely(&preempt_notifier_key))
3104 __fire_sched_in_preempt_notifiers(curr);
3107 static void
3108 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3109 struct task_struct *next)
3111 struct preempt_notifier *notifier;
3113 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3114 notifier->ops->sched_out(notifier, next);
3117 static __always_inline void
3118 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3119 struct task_struct *next)
3121 if (static_branch_unlikely(&preempt_notifier_key))
3122 __fire_sched_out_preempt_notifiers(curr, next);
3125 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3127 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3131 static inline void
3132 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3133 struct task_struct *next)
3137 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3139 static inline void prepare_task(struct task_struct *next)
3141 #ifdef CONFIG_SMP
3143 * Claim the task as running, we do this before switching to it
3144 * such that any running task will have this set.
3146 next->on_cpu = 1;
3147 #endif
3150 static inline void finish_task(struct task_struct *prev)
3152 #ifdef CONFIG_SMP
3154 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3155 * We must ensure this doesn't happen until the switch is completely
3156 * finished.
3158 * In particular, the load of prev->state in finish_task_switch() must
3159 * happen before this.
3161 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3163 smp_store_release(&prev->on_cpu, 0);
3164 #endif
3167 static inline void
3168 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3171 * Since the runqueue lock will be released by the next
3172 * task (which is an invalid locking op but in the case
3173 * of the scheduler it's an obvious special-case), so we
3174 * do an early lockdep release here:
3176 rq_unpin_lock(rq, rf);
3177 spin_release(&rq->lock.dep_map, _THIS_IP_);
3178 #ifdef CONFIG_DEBUG_SPINLOCK
3179 /* this is a valid case when another task releases the spinlock */
3180 rq->lock.owner = next;
3181 #endif
3184 static inline void finish_lock_switch(struct rq *rq)
3187 * If we are tracking spinlock dependencies then we have to
3188 * fix up the runqueue lock - which gets 'carried over' from
3189 * prev into current:
3191 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3192 raw_spin_unlock_irq(&rq->lock);
3196 * NOP if the arch has not defined these:
3199 #ifndef prepare_arch_switch
3200 # define prepare_arch_switch(next) do { } while (0)
3201 #endif
3203 #ifndef finish_arch_post_lock_switch
3204 # define finish_arch_post_lock_switch() do { } while (0)
3205 #endif
3208 * prepare_task_switch - prepare to switch tasks
3209 * @rq: the runqueue preparing to switch
3210 * @prev: the current task that is being switched out
3211 * @next: the task we are going to switch to.
3213 * This is called with the rq lock held and interrupts off. It must
3214 * be paired with a subsequent finish_task_switch after the context
3215 * switch.
3217 * prepare_task_switch sets up locking and calls architecture specific
3218 * hooks.
3220 static inline void
3221 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3222 struct task_struct *next)
3224 kcov_prepare_switch(prev);
3225 sched_info_switch(rq, prev, next);
3226 perf_event_task_sched_out(prev, next);
3227 rseq_preempt(prev);
3228 fire_sched_out_preempt_notifiers(prev, next);
3229 prepare_task(next);
3230 prepare_arch_switch(next);
3234 * finish_task_switch - clean up after a task-switch
3235 * @prev: the thread we just switched away from.
3237 * finish_task_switch must be called after the context switch, paired
3238 * with a prepare_task_switch call before the context switch.
3239 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3240 * and do any other architecture-specific cleanup actions.
3242 * Note that we may have delayed dropping an mm in context_switch(). If
3243 * so, we finish that here outside of the runqueue lock. (Doing it
3244 * with the lock held can cause deadlocks; see schedule() for
3245 * details.)
3247 * The context switch have flipped the stack from under us and restored the
3248 * local variables which were saved when this task called schedule() in the
3249 * past. prev == current is still correct but we need to recalculate this_rq
3250 * because prev may have moved to another CPU.
3252 static struct rq *finish_task_switch(struct task_struct *prev)
3253 __releases(rq->lock)
3255 struct rq *rq = this_rq();
3256 struct mm_struct *mm = rq->prev_mm;
3257 long prev_state;
3260 * The previous task will have left us with a preempt_count of 2
3261 * because it left us after:
3263 * schedule()
3264 * preempt_disable(); // 1
3265 * __schedule()
3266 * raw_spin_lock_irq(&rq->lock) // 2
3268 * Also, see FORK_PREEMPT_COUNT.
3270 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3271 "corrupted preempt_count: %s/%d/0x%x\n",
3272 current->comm, current->pid, preempt_count()))
3273 preempt_count_set(FORK_PREEMPT_COUNT);
3275 rq->prev_mm = NULL;
3278 * A task struct has one reference for the use as "current".
3279 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3280 * schedule one last time. The schedule call will never return, and
3281 * the scheduled task must drop that reference.
3283 * We must observe prev->state before clearing prev->on_cpu (in
3284 * finish_task), otherwise a concurrent wakeup can get prev
3285 * running on another CPU and we could rave with its RUNNING -> DEAD
3286 * transition, resulting in a double drop.
3288 prev_state = prev->state;
3289 vtime_task_switch(prev);
3290 perf_event_task_sched_in(prev, current);
3291 finish_task(prev);
3292 finish_lock_switch(rq);
3293 finish_arch_post_lock_switch();
3294 kcov_finish_switch(current);
3296 fire_sched_in_preempt_notifiers(current);
3298 * When switching through a kernel thread, the loop in
3299 * membarrier_{private,global}_expedited() may have observed that
3300 * kernel thread and not issued an IPI. It is therefore possible to
3301 * schedule between user->kernel->user threads without passing though
3302 * switch_mm(). Membarrier requires a barrier after storing to
3303 * rq->curr, before returning to userspace, so provide them here:
3305 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3306 * provided by mmdrop(),
3307 * - a sync_core for SYNC_CORE.
3309 if (mm) {
3310 membarrier_mm_sync_core_before_usermode(mm);
3311 mmdrop(mm);
3313 if (unlikely(prev_state == TASK_DEAD)) {
3314 if (prev->sched_class->task_dead)
3315 prev->sched_class->task_dead(prev);
3318 * Remove function-return probe instances associated with this
3319 * task and put them back on the free list.
3321 kprobe_flush_task(prev);
3323 /* Task is done with its stack. */
3324 put_task_stack(prev);
3326 put_task_struct_rcu_user(prev);
3329 tick_nohz_task_switch();
3330 return rq;
3333 #ifdef CONFIG_SMP
3335 /* rq->lock is NOT held, but preemption is disabled */
3336 static void __balance_callback(struct rq *rq)
3338 struct callback_head *head, *next;
3339 void (*func)(struct rq *rq);
3340 unsigned long flags;
3342 raw_spin_lock_irqsave(&rq->lock, flags);
3343 head = rq->balance_callback;
3344 rq->balance_callback = NULL;
3345 while (head) {
3346 func = (void (*)(struct rq *))head->func;
3347 next = head->next;
3348 head->next = NULL;
3349 head = next;
3351 func(rq);
3353 raw_spin_unlock_irqrestore(&rq->lock, flags);
3356 static inline void balance_callback(struct rq *rq)
3358 if (unlikely(rq->balance_callback))
3359 __balance_callback(rq);
3362 #else
3364 static inline void balance_callback(struct rq *rq)
3368 #endif
3371 * schedule_tail - first thing a freshly forked thread must call.
3372 * @prev: the thread we just switched away from.
3374 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3375 __releases(rq->lock)
3377 struct rq *rq;
3380 * New tasks start with FORK_PREEMPT_COUNT, see there and
3381 * finish_task_switch() for details.
3383 * finish_task_switch() will drop rq->lock() and lower preempt_count
3384 * and the preempt_enable() will end up enabling preemption (on
3385 * PREEMPT_COUNT kernels).
3388 rq = finish_task_switch(prev);
3389 balance_callback(rq);
3390 preempt_enable();
3392 if (current->set_child_tid)
3393 put_user(task_pid_vnr(current), current->set_child_tid);
3395 calculate_sigpending();
3399 * context_switch - switch to the new MM and the new thread's register state.
3401 static __always_inline struct rq *
3402 context_switch(struct rq *rq, struct task_struct *prev,
3403 struct task_struct *next, struct rq_flags *rf)
3405 prepare_task_switch(rq, prev, next);
3408 * For paravirt, this is coupled with an exit in switch_to to
3409 * combine the page table reload and the switch backend into
3410 * one hypercall.
3412 arch_start_context_switch(prev);
3415 * kernel -> kernel lazy + transfer active
3416 * user -> kernel lazy + mmgrab() active
3418 * kernel -> user switch + mmdrop() active
3419 * user -> user switch
3421 if (!next->mm) { // to kernel
3422 enter_lazy_tlb(prev->active_mm, next);
3424 next->active_mm = prev->active_mm;
3425 if (prev->mm) // from user
3426 mmgrab(prev->active_mm);
3427 else
3428 prev->active_mm = NULL;
3429 } else { // to user
3430 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3432 * sys_membarrier() requires an smp_mb() between setting
3433 * rq->curr / membarrier_switch_mm() and returning to userspace.
3435 * The below provides this either through switch_mm(), or in
3436 * case 'prev->active_mm == next->mm' through
3437 * finish_task_switch()'s mmdrop().
3439 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3441 if (!prev->mm) { // from kernel
3442 /* will mmdrop() in finish_task_switch(). */
3443 rq->prev_mm = prev->active_mm;
3444 prev->active_mm = NULL;
3448 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3450 prepare_lock_switch(rq, next, rf);
3452 /* Here we just switch the register state and the stack. */
3453 switch_to(prev, next, prev);
3454 barrier();
3456 return finish_task_switch(prev);
3460 * nr_running and nr_context_switches:
3462 * externally visible scheduler statistics: current number of runnable
3463 * threads, total number of context switches performed since bootup.
3465 unsigned long nr_running(void)
3467 unsigned long i, sum = 0;
3469 for_each_online_cpu(i)
3470 sum += cpu_rq(i)->nr_running;
3472 return sum;
3476 * Check if only the current task is running on the CPU.
3478 * Caution: this function does not check that the caller has disabled
3479 * preemption, thus the result might have a time-of-check-to-time-of-use
3480 * race. The caller is responsible to use it correctly, for example:
3482 * - from a non-preemptible section (of course)
3484 * - from a thread that is bound to a single CPU
3486 * - in a loop with very short iterations (e.g. a polling loop)
3488 bool single_task_running(void)
3490 return raw_rq()->nr_running == 1;
3492 EXPORT_SYMBOL(single_task_running);
3494 unsigned long long nr_context_switches(void)
3496 int i;
3497 unsigned long long sum = 0;
3499 for_each_possible_cpu(i)
3500 sum += cpu_rq(i)->nr_switches;
3502 return sum;
3506 * Consumers of these two interfaces, like for example the cpuidle menu
3507 * governor, are using nonsensical data. Preferring shallow idle state selection
3508 * for a CPU that has IO-wait which might not even end up running the task when
3509 * it does become runnable.
3512 unsigned long nr_iowait_cpu(int cpu)
3514 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3518 * IO-wait accounting, and how its mostly bollocks (on SMP).
3520 * The idea behind IO-wait account is to account the idle time that we could
3521 * have spend running if it were not for IO. That is, if we were to improve the
3522 * storage performance, we'd have a proportional reduction in IO-wait time.
3524 * This all works nicely on UP, where, when a task blocks on IO, we account
3525 * idle time as IO-wait, because if the storage were faster, it could've been
3526 * running and we'd not be idle.
3528 * This has been extended to SMP, by doing the same for each CPU. This however
3529 * is broken.
3531 * Imagine for instance the case where two tasks block on one CPU, only the one
3532 * CPU will have IO-wait accounted, while the other has regular idle. Even
3533 * though, if the storage were faster, both could've ran at the same time,
3534 * utilising both CPUs.
3536 * This means, that when looking globally, the current IO-wait accounting on
3537 * SMP is a lower bound, by reason of under accounting.
3539 * Worse, since the numbers are provided per CPU, they are sometimes
3540 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3541 * associated with any one particular CPU, it can wake to another CPU than it
3542 * blocked on. This means the per CPU IO-wait number is meaningless.
3544 * Task CPU affinities can make all that even more 'interesting'.
3547 unsigned long nr_iowait(void)
3549 unsigned long i, sum = 0;
3551 for_each_possible_cpu(i)
3552 sum += nr_iowait_cpu(i);
3554 return sum;
3557 #ifdef CONFIG_SMP
3560 * sched_exec - execve() is a valuable balancing opportunity, because at
3561 * this point the task has the smallest effective memory and cache footprint.
3563 void sched_exec(void)
3565 struct task_struct *p = current;
3566 unsigned long flags;
3567 int dest_cpu;
3569 raw_spin_lock_irqsave(&p->pi_lock, flags);
3570 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3571 if (dest_cpu == smp_processor_id())
3572 goto unlock;
3574 if (likely(cpu_active(dest_cpu))) {
3575 struct migration_arg arg = { p, dest_cpu };
3577 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3578 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3579 return;
3581 unlock:
3582 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3585 #endif
3587 DEFINE_PER_CPU(struct kernel_stat, kstat);
3588 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3590 EXPORT_PER_CPU_SYMBOL(kstat);
3591 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3594 * The function fair_sched_class.update_curr accesses the struct curr
3595 * and its field curr->exec_start; when called from task_sched_runtime(),
3596 * we observe a high rate of cache misses in practice.
3597 * Prefetching this data results in improved performance.
3599 static inline void prefetch_curr_exec_start(struct task_struct *p)
3601 #ifdef CONFIG_FAIR_GROUP_SCHED
3602 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3603 #else
3604 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3605 #endif
3606 prefetch(curr);
3607 prefetch(&curr->exec_start);
3611 * Return accounted runtime for the task.
3612 * In case the task is currently running, return the runtime plus current's
3613 * pending runtime that have not been accounted yet.
3615 unsigned long long task_sched_runtime(struct task_struct *p)
3617 struct rq_flags rf;
3618 struct rq *rq;
3619 u64 ns;
3621 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3623 * 64-bit doesn't need locks to atomically read a 64-bit value.
3624 * So we have a optimization chance when the task's delta_exec is 0.
3625 * Reading ->on_cpu is racy, but this is ok.
3627 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3628 * If we race with it entering CPU, unaccounted time is 0. This is
3629 * indistinguishable from the read occurring a few cycles earlier.
3630 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3631 * been accounted, so we're correct here as well.
3633 if (!p->on_cpu || !task_on_rq_queued(p))
3634 return p->se.sum_exec_runtime;
3635 #endif
3637 rq = task_rq_lock(p, &rf);
3639 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3640 * project cycles that may never be accounted to this
3641 * thread, breaking clock_gettime().
3643 if (task_current(rq, p) && task_on_rq_queued(p)) {
3644 prefetch_curr_exec_start(p);
3645 update_rq_clock(rq);
3646 p->sched_class->update_curr(rq);
3648 ns = p->se.sum_exec_runtime;
3649 task_rq_unlock(rq, p, &rf);
3651 return ns;
3654 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3656 void arch_set_thermal_pressure(struct cpumask *cpus,
3657 unsigned long th_pressure)
3659 int cpu;
3661 for_each_cpu(cpu, cpus)
3662 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3666 * This function gets called by the timer code, with HZ frequency.
3667 * We call it with interrupts disabled.
3669 void scheduler_tick(void)
3671 int cpu = smp_processor_id();
3672 struct rq *rq = cpu_rq(cpu);
3673 struct task_struct *curr = rq->curr;
3674 struct rq_flags rf;
3675 unsigned long thermal_pressure;
3677 arch_scale_freq_tick();
3678 sched_clock_tick();
3680 rq_lock(rq, &rf);
3682 update_rq_clock(rq);
3683 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3684 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3685 curr->sched_class->task_tick(rq, curr, 0);
3686 calc_global_load_tick(rq);
3687 psi_task_tick(rq);
3689 rq_unlock(rq, &rf);
3691 perf_event_task_tick();
3693 #ifdef CONFIG_SMP
3694 rq->idle_balance = idle_cpu(cpu);
3695 trigger_load_balance(rq);
3696 #endif
3699 #ifdef CONFIG_NO_HZ_FULL
3701 struct tick_work {
3702 int cpu;
3703 atomic_t state;
3704 struct delayed_work work;
3706 /* Values for ->state, see diagram below. */
3707 #define TICK_SCHED_REMOTE_OFFLINE 0
3708 #define TICK_SCHED_REMOTE_OFFLINING 1
3709 #define TICK_SCHED_REMOTE_RUNNING 2
3712 * State diagram for ->state:
3715 * TICK_SCHED_REMOTE_OFFLINE
3716 * | ^
3717 * | |
3718 * | | sched_tick_remote()
3719 * | |
3720 * | |
3721 * +--TICK_SCHED_REMOTE_OFFLINING
3722 * | ^
3723 * | |
3724 * sched_tick_start() | | sched_tick_stop()
3725 * | |
3726 * V |
3727 * TICK_SCHED_REMOTE_RUNNING
3730 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3731 * and sched_tick_start() are happy to leave the state in RUNNING.
3734 static struct tick_work __percpu *tick_work_cpu;
3736 static void sched_tick_remote(struct work_struct *work)
3738 struct delayed_work *dwork = to_delayed_work(work);
3739 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3740 int cpu = twork->cpu;
3741 struct rq *rq = cpu_rq(cpu);
3742 struct task_struct *curr;
3743 struct rq_flags rf;
3744 u64 delta;
3745 int os;
3748 * Handle the tick only if it appears the remote CPU is running in full
3749 * dynticks mode. The check is racy by nature, but missing a tick or
3750 * having one too much is no big deal because the scheduler tick updates
3751 * statistics and checks timeslices in a time-independent way, regardless
3752 * of when exactly it is running.
3754 if (!tick_nohz_tick_stopped_cpu(cpu))
3755 goto out_requeue;
3757 rq_lock_irq(rq, &rf);
3758 curr = rq->curr;
3759 if (cpu_is_offline(cpu))
3760 goto out_unlock;
3762 update_rq_clock(rq);
3764 if (!is_idle_task(curr)) {
3766 * Make sure the next tick runs within a reasonable
3767 * amount of time.
3769 delta = rq_clock_task(rq) - curr->se.exec_start;
3770 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3772 curr->sched_class->task_tick(rq, curr, 0);
3774 calc_load_nohz_remote(rq);
3775 out_unlock:
3776 rq_unlock_irq(rq, &rf);
3777 out_requeue:
3780 * Run the remote tick once per second (1Hz). This arbitrary
3781 * frequency is large enough to avoid overload but short enough
3782 * to keep scheduler internal stats reasonably up to date. But
3783 * first update state to reflect hotplug activity if required.
3785 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3786 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3787 if (os == TICK_SCHED_REMOTE_RUNNING)
3788 queue_delayed_work(system_unbound_wq, dwork, HZ);
3791 static void sched_tick_start(int cpu)
3793 int os;
3794 struct tick_work *twork;
3796 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3797 return;
3799 WARN_ON_ONCE(!tick_work_cpu);
3801 twork = per_cpu_ptr(tick_work_cpu, cpu);
3802 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3803 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3804 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3805 twork->cpu = cpu;
3806 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3807 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3811 #ifdef CONFIG_HOTPLUG_CPU
3812 static void sched_tick_stop(int cpu)
3814 struct tick_work *twork;
3815 int os;
3817 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3818 return;
3820 WARN_ON_ONCE(!tick_work_cpu);
3822 twork = per_cpu_ptr(tick_work_cpu, cpu);
3823 /* There cannot be competing actions, but don't rely on stop-machine. */
3824 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3825 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3826 /* Don't cancel, as this would mess up the state machine. */
3828 #endif /* CONFIG_HOTPLUG_CPU */
3830 int __init sched_tick_offload_init(void)
3832 tick_work_cpu = alloc_percpu(struct tick_work);
3833 BUG_ON(!tick_work_cpu);
3834 return 0;
3837 #else /* !CONFIG_NO_HZ_FULL */
3838 static inline void sched_tick_start(int cpu) { }
3839 static inline void sched_tick_stop(int cpu) { }
3840 #endif
3842 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3843 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3845 * If the value passed in is equal to the current preempt count
3846 * then we just disabled preemption. Start timing the latency.
3848 static inline void preempt_latency_start(int val)
3850 if (preempt_count() == val) {
3851 unsigned long ip = get_lock_parent_ip();
3852 #ifdef CONFIG_DEBUG_PREEMPT
3853 current->preempt_disable_ip = ip;
3854 #endif
3855 trace_preempt_off(CALLER_ADDR0, ip);
3859 void preempt_count_add(int val)
3861 #ifdef CONFIG_DEBUG_PREEMPT
3863 * Underflow?
3865 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3866 return;
3867 #endif
3868 __preempt_count_add(val);
3869 #ifdef CONFIG_DEBUG_PREEMPT
3871 * Spinlock count overflowing soon?
3873 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3874 PREEMPT_MASK - 10);
3875 #endif
3876 preempt_latency_start(val);
3878 EXPORT_SYMBOL(preempt_count_add);
3879 NOKPROBE_SYMBOL(preempt_count_add);
3882 * If the value passed in equals to the current preempt count
3883 * then we just enabled preemption. Stop timing the latency.
3885 static inline void preempt_latency_stop(int val)
3887 if (preempt_count() == val)
3888 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3891 void preempt_count_sub(int val)
3893 #ifdef CONFIG_DEBUG_PREEMPT
3895 * Underflow?
3897 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3898 return;
3900 * Is the spinlock portion underflowing?
3902 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3903 !(preempt_count() & PREEMPT_MASK)))
3904 return;
3905 #endif
3907 preempt_latency_stop(val);
3908 __preempt_count_sub(val);
3910 EXPORT_SYMBOL(preempt_count_sub);
3911 NOKPROBE_SYMBOL(preempt_count_sub);
3913 #else
3914 static inline void preempt_latency_start(int val) { }
3915 static inline void preempt_latency_stop(int val) { }
3916 #endif
3918 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3920 #ifdef CONFIG_DEBUG_PREEMPT
3921 return p->preempt_disable_ip;
3922 #else
3923 return 0;
3924 #endif
3928 * Print scheduling while atomic bug:
3930 static noinline void __schedule_bug(struct task_struct *prev)
3932 /* Save this before calling printk(), since that will clobber it */
3933 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3935 if (oops_in_progress)
3936 return;
3938 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3939 prev->comm, prev->pid, preempt_count());
3941 debug_show_held_locks(prev);
3942 print_modules();
3943 if (irqs_disabled())
3944 print_irqtrace_events(prev);
3945 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3946 && in_atomic_preempt_off()) {
3947 pr_err("Preemption disabled at:");
3948 print_ip_sym(KERN_ERR, preempt_disable_ip);
3950 if (panic_on_warn)
3951 panic("scheduling while atomic\n");
3953 dump_stack();
3954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3958 * Various schedule()-time debugging checks and statistics:
3960 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3962 #ifdef CONFIG_SCHED_STACK_END_CHECK
3963 if (task_stack_end_corrupted(prev))
3964 panic("corrupted stack end detected inside scheduler\n");
3966 if (task_scs_end_corrupted(prev))
3967 panic("corrupted shadow stack detected inside scheduler\n");
3968 #endif
3970 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3971 if (!preempt && prev->state && prev->non_block_count) {
3972 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3973 prev->comm, prev->pid, prev->non_block_count);
3974 dump_stack();
3975 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3977 #endif
3979 if (unlikely(in_atomic_preempt_off())) {
3980 __schedule_bug(prev);
3981 preempt_count_set(PREEMPT_DISABLED);
3983 rcu_sleep_check();
3985 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3987 schedstat_inc(this_rq()->sched_count);
3990 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3991 struct rq_flags *rf)
3993 #ifdef CONFIG_SMP
3994 const struct sched_class *class;
3996 * We must do the balancing pass before put_prev_task(), such
3997 * that when we release the rq->lock the task is in the same
3998 * state as before we took rq->lock.
4000 * We can terminate the balance pass as soon as we know there is
4001 * a runnable task of @class priority or higher.
4003 for_class_range(class, prev->sched_class, &idle_sched_class) {
4004 if (class->balance(rq, prev, rf))
4005 break;
4007 #endif
4009 put_prev_task(rq, prev);
4013 * Pick up the highest-prio task:
4015 static inline struct task_struct *
4016 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4018 const struct sched_class *class;
4019 struct task_struct *p;
4022 * Optimization: we know that if all tasks are in the fair class we can
4023 * call that function directly, but only if the @prev task wasn't of a
4024 * higher scheduling class, because otherwise those loose the
4025 * opportunity to pull in more work from other CPUs.
4027 if (likely((prev->sched_class == &idle_sched_class ||
4028 prev->sched_class == &fair_sched_class) &&
4029 rq->nr_running == rq->cfs.h_nr_running)) {
4031 p = pick_next_task_fair(rq, prev, rf);
4032 if (unlikely(p == RETRY_TASK))
4033 goto restart;
4035 /* Assumes fair_sched_class->next == idle_sched_class */
4036 if (!p) {
4037 put_prev_task(rq, prev);
4038 p = pick_next_task_idle(rq);
4041 return p;
4044 restart:
4045 put_prev_task_balance(rq, prev, rf);
4047 for_each_class(class) {
4048 p = class->pick_next_task(rq);
4049 if (p)
4050 return p;
4053 /* The idle class should always have a runnable task: */
4054 BUG();
4058 * __schedule() is the main scheduler function.
4060 * The main means of driving the scheduler and thus entering this function are:
4062 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4064 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4065 * paths. For example, see arch/x86/entry_64.S.
4067 * To drive preemption between tasks, the scheduler sets the flag in timer
4068 * interrupt handler scheduler_tick().
4070 * 3. Wakeups don't really cause entry into schedule(). They add a
4071 * task to the run-queue and that's it.
4073 * Now, if the new task added to the run-queue preempts the current
4074 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4075 * called on the nearest possible occasion:
4077 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4079 * - in syscall or exception context, at the next outmost
4080 * preempt_enable(). (this might be as soon as the wake_up()'s
4081 * spin_unlock()!)
4083 * - in IRQ context, return from interrupt-handler to
4084 * preemptible context
4086 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4087 * then at the next:
4089 * - cond_resched() call
4090 * - explicit schedule() call
4091 * - return from syscall or exception to user-space
4092 * - return from interrupt-handler to user-space
4094 * WARNING: must be called with preemption disabled!
4096 static void __sched notrace __schedule(bool preempt)
4098 struct task_struct *prev, *next;
4099 unsigned long *switch_count;
4100 struct rq_flags rf;
4101 struct rq *rq;
4102 int cpu;
4104 cpu = smp_processor_id();
4105 rq = cpu_rq(cpu);
4106 prev = rq->curr;
4108 schedule_debug(prev, preempt);
4110 if (sched_feat(HRTICK))
4111 hrtick_clear(rq);
4113 local_irq_disable();
4114 rcu_note_context_switch(preempt);
4117 * Make sure that signal_pending_state()->signal_pending() below
4118 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4119 * done by the caller to avoid the race with signal_wake_up().
4121 * The membarrier system call requires a full memory barrier
4122 * after coming from user-space, before storing to rq->curr.
4124 rq_lock(rq, &rf);
4125 smp_mb__after_spinlock();
4127 /* Promote REQ to ACT */
4128 rq->clock_update_flags <<= 1;
4129 update_rq_clock(rq);
4131 switch_count = &prev->nivcsw;
4132 if (!preempt && prev->state) {
4133 if (signal_pending_state(prev->state, prev)) {
4134 prev->state = TASK_RUNNING;
4135 } else {
4136 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4138 if (prev->in_iowait) {
4139 atomic_inc(&rq->nr_iowait);
4140 delayacct_blkio_start();
4143 switch_count = &prev->nvcsw;
4146 next = pick_next_task(rq, prev, &rf);
4147 clear_tsk_need_resched(prev);
4148 clear_preempt_need_resched();
4150 if (likely(prev != next)) {
4151 rq->nr_switches++;
4153 * RCU users of rcu_dereference(rq->curr) may not see
4154 * changes to task_struct made by pick_next_task().
4156 RCU_INIT_POINTER(rq->curr, next);
4158 * The membarrier system call requires each architecture
4159 * to have a full memory barrier after updating
4160 * rq->curr, before returning to user-space.
4162 * Here are the schemes providing that barrier on the
4163 * various architectures:
4164 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4165 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4166 * - finish_lock_switch() for weakly-ordered
4167 * architectures where spin_unlock is a full barrier,
4168 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4169 * is a RELEASE barrier),
4171 ++*switch_count;
4173 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4175 trace_sched_switch(preempt, prev, next);
4177 /* Also unlocks the rq: */
4178 rq = context_switch(rq, prev, next, &rf);
4179 } else {
4180 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4181 rq_unlock_irq(rq, &rf);
4184 balance_callback(rq);
4187 void __noreturn do_task_dead(void)
4189 /* Causes final put_task_struct in finish_task_switch(): */
4190 set_special_state(TASK_DEAD);
4192 /* Tell freezer to ignore us: */
4193 current->flags |= PF_NOFREEZE;
4195 __schedule(false);
4196 BUG();
4198 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4199 for (;;)
4200 cpu_relax();
4203 static inline void sched_submit_work(struct task_struct *tsk)
4205 if (!tsk->state)
4206 return;
4209 * If a worker went to sleep, notify and ask workqueue whether
4210 * it wants to wake up a task to maintain concurrency.
4211 * As this function is called inside the schedule() context,
4212 * we disable preemption to avoid it calling schedule() again
4213 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4214 * requires it.
4216 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4217 preempt_disable();
4218 if (tsk->flags & PF_WQ_WORKER)
4219 wq_worker_sleeping(tsk);
4220 else
4221 io_wq_worker_sleeping(tsk);
4222 preempt_enable_no_resched();
4225 if (tsk_is_pi_blocked(tsk))
4226 return;
4229 * If we are going to sleep and we have plugged IO queued,
4230 * make sure to submit it to avoid deadlocks.
4232 if (blk_needs_flush_plug(tsk))
4233 blk_schedule_flush_plug(tsk);
4236 static void sched_update_worker(struct task_struct *tsk)
4238 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4239 if (tsk->flags & PF_WQ_WORKER)
4240 wq_worker_running(tsk);
4241 else
4242 io_wq_worker_running(tsk);
4246 asmlinkage __visible void __sched schedule(void)
4248 struct task_struct *tsk = current;
4250 sched_submit_work(tsk);
4251 do {
4252 preempt_disable();
4253 __schedule(false);
4254 sched_preempt_enable_no_resched();
4255 } while (need_resched());
4256 sched_update_worker(tsk);
4258 EXPORT_SYMBOL(schedule);
4261 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4262 * state (have scheduled out non-voluntarily) by making sure that all
4263 * tasks have either left the run queue or have gone into user space.
4264 * As idle tasks do not do either, they must not ever be preempted
4265 * (schedule out non-voluntarily).
4267 * schedule_idle() is similar to schedule_preempt_disable() except that it
4268 * never enables preemption because it does not call sched_submit_work().
4270 void __sched schedule_idle(void)
4273 * As this skips calling sched_submit_work(), which the idle task does
4274 * regardless because that function is a nop when the task is in a
4275 * TASK_RUNNING state, make sure this isn't used someplace that the
4276 * current task can be in any other state. Note, idle is always in the
4277 * TASK_RUNNING state.
4279 WARN_ON_ONCE(current->state);
4280 do {
4281 __schedule(false);
4282 } while (need_resched());
4285 #ifdef CONFIG_CONTEXT_TRACKING
4286 asmlinkage __visible void __sched schedule_user(void)
4289 * If we come here after a random call to set_need_resched(),
4290 * or we have been woken up remotely but the IPI has not yet arrived,
4291 * we haven't yet exited the RCU idle mode. Do it here manually until
4292 * we find a better solution.
4294 * NB: There are buggy callers of this function. Ideally we
4295 * should warn if prev_state != CONTEXT_USER, but that will trigger
4296 * too frequently to make sense yet.
4298 enum ctx_state prev_state = exception_enter();
4299 schedule();
4300 exception_exit(prev_state);
4302 #endif
4305 * schedule_preempt_disabled - called with preemption disabled
4307 * Returns with preemption disabled. Note: preempt_count must be 1
4309 void __sched schedule_preempt_disabled(void)
4311 sched_preempt_enable_no_resched();
4312 schedule();
4313 preempt_disable();
4316 static void __sched notrace preempt_schedule_common(void)
4318 do {
4320 * Because the function tracer can trace preempt_count_sub()
4321 * and it also uses preempt_enable/disable_notrace(), if
4322 * NEED_RESCHED is set, the preempt_enable_notrace() called
4323 * by the function tracer will call this function again and
4324 * cause infinite recursion.
4326 * Preemption must be disabled here before the function
4327 * tracer can trace. Break up preempt_disable() into two
4328 * calls. One to disable preemption without fear of being
4329 * traced. The other to still record the preemption latency,
4330 * which can also be traced by the function tracer.
4332 preempt_disable_notrace();
4333 preempt_latency_start(1);
4334 __schedule(true);
4335 preempt_latency_stop(1);
4336 preempt_enable_no_resched_notrace();
4339 * Check again in case we missed a preemption opportunity
4340 * between schedule and now.
4342 } while (need_resched());
4345 #ifdef CONFIG_PREEMPTION
4347 * This is the entry point to schedule() from in-kernel preemption
4348 * off of preempt_enable.
4350 asmlinkage __visible void __sched notrace preempt_schedule(void)
4353 * If there is a non-zero preempt_count or interrupts are disabled,
4354 * we do not want to preempt the current task. Just return..
4356 if (likely(!preemptible()))
4357 return;
4359 preempt_schedule_common();
4361 NOKPROBE_SYMBOL(preempt_schedule);
4362 EXPORT_SYMBOL(preempt_schedule);
4365 * preempt_schedule_notrace - preempt_schedule called by tracing
4367 * The tracing infrastructure uses preempt_enable_notrace to prevent
4368 * recursion and tracing preempt enabling caused by the tracing
4369 * infrastructure itself. But as tracing can happen in areas coming
4370 * from userspace or just about to enter userspace, a preempt enable
4371 * can occur before user_exit() is called. This will cause the scheduler
4372 * to be called when the system is still in usermode.
4374 * To prevent this, the preempt_enable_notrace will use this function
4375 * instead of preempt_schedule() to exit user context if needed before
4376 * calling the scheduler.
4378 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4380 enum ctx_state prev_ctx;
4382 if (likely(!preemptible()))
4383 return;
4385 do {
4387 * Because the function tracer can trace preempt_count_sub()
4388 * and it also uses preempt_enable/disable_notrace(), if
4389 * NEED_RESCHED is set, the preempt_enable_notrace() called
4390 * by the function tracer will call this function again and
4391 * cause infinite recursion.
4393 * Preemption must be disabled here before the function
4394 * tracer can trace. Break up preempt_disable() into two
4395 * calls. One to disable preemption without fear of being
4396 * traced. The other to still record the preemption latency,
4397 * which can also be traced by the function tracer.
4399 preempt_disable_notrace();
4400 preempt_latency_start(1);
4402 * Needs preempt disabled in case user_exit() is traced
4403 * and the tracer calls preempt_enable_notrace() causing
4404 * an infinite recursion.
4406 prev_ctx = exception_enter();
4407 __schedule(true);
4408 exception_exit(prev_ctx);
4410 preempt_latency_stop(1);
4411 preempt_enable_no_resched_notrace();
4412 } while (need_resched());
4414 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4416 #endif /* CONFIG_PREEMPTION */
4419 * This is the entry point to schedule() from kernel preemption
4420 * off of irq context.
4421 * Note, that this is called and return with irqs disabled. This will
4422 * protect us against recursive calling from irq.
4424 asmlinkage __visible void __sched preempt_schedule_irq(void)
4426 enum ctx_state prev_state;
4428 /* Catch callers which need to be fixed */
4429 BUG_ON(preempt_count() || !irqs_disabled());
4431 prev_state = exception_enter();
4433 do {
4434 preempt_disable();
4435 local_irq_enable();
4436 __schedule(true);
4437 local_irq_disable();
4438 sched_preempt_enable_no_resched();
4439 } while (need_resched());
4441 exception_exit(prev_state);
4444 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4445 void *key)
4447 return try_to_wake_up(curr->private, mode, wake_flags);
4449 EXPORT_SYMBOL(default_wake_function);
4451 #ifdef CONFIG_RT_MUTEXES
4453 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4455 if (pi_task)
4456 prio = min(prio, pi_task->prio);
4458 return prio;
4461 static inline int rt_effective_prio(struct task_struct *p, int prio)
4463 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4465 return __rt_effective_prio(pi_task, prio);
4469 * rt_mutex_setprio - set the current priority of a task
4470 * @p: task to boost
4471 * @pi_task: donor task
4473 * This function changes the 'effective' priority of a task. It does
4474 * not touch ->normal_prio like __setscheduler().
4476 * Used by the rt_mutex code to implement priority inheritance
4477 * logic. Call site only calls if the priority of the task changed.
4479 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4481 int prio, oldprio, queued, running, queue_flag =
4482 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4483 const struct sched_class *prev_class;
4484 struct rq_flags rf;
4485 struct rq *rq;
4487 /* XXX used to be waiter->prio, not waiter->task->prio */
4488 prio = __rt_effective_prio(pi_task, p->normal_prio);
4491 * If nothing changed; bail early.
4493 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4494 return;
4496 rq = __task_rq_lock(p, &rf);
4497 update_rq_clock(rq);
4499 * Set under pi_lock && rq->lock, such that the value can be used under
4500 * either lock.
4502 * Note that there is loads of tricky to make this pointer cache work
4503 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4504 * ensure a task is de-boosted (pi_task is set to NULL) before the
4505 * task is allowed to run again (and can exit). This ensures the pointer
4506 * points to a blocked task -- which guaratees the task is present.
4508 p->pi_top_task = pi_task;
4511 * For FIFO/RR we only need to set prio, if that matches we're done.
4513 if (prio == p->prio && !dl_prio(prio))
4514 goto out_unlock;
4517 * Idle task boosting is a nono in general. There is one
4518 * exception, when PREEMPT_RT and NOHZ is active:
4520 * The idle task calls get_next_timer_interrupt() and holds
4521 * the timer wheel base->lock on the CPU and another CPU wants
4522 * to access the timer (probably to cancel it). We can safely
4523 * ignore the boosting request, as the idle CPU runs this code
4524 * with interrupts disabled and will complete the lock
4525 * protected section without being interrupted. So there is no
4526 * real need to boost.
4528 if (unlikely(p == rq->idle)) {
4529 WARN_ON(p != rq->curr);
4530 WARN_ON(p->pi_blocked_on);
4531 goto out_unlock;
4534 trace_sched_pi_setprio(p, pi_task);
4535 oldprio = p->prio;
4537 if (oldprio == prio)
4538 queue_flag &= ~DEQUEUE_MOVE;
4540 prev_class = p->sched_class;
4541 queued = task_on_rq_queued(p);
4542 running = task_current(rq, p);
4543 if (queued)
4544 dequeue_task(rq, p, queue_flag);
4545 if (running)
4546 put_prev_task(rq, p);
4549 * Boosting condition are:
4550 * 1. -rt task is running and holds mutex A
4551 * --> -dl task blocks on mutex A
4553 * 2. -dl task is running and holds mutex A
4554 * --> -dl task blocks on mutex A and could preempt the
4555 * running task
4557 if (dl_prio(prio)) {
4558 if (!dl_prio(p->normal_prio) ||
4559 (pi_task && dl_prio(pi_task->prio) &&
4560 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4561 p->dl.dl_boosted = 1;
4562 queue_flag |= ENQUEUE_REPLENISH;
4563 } else
4564 p->dl.dl_boosted = 0;
4565 p->sched_class = &dl_sched_class;
4566 } else if (rt_prio(prio)) {
4567 if (dl_prio(oldprio))
4568 p->dl.dl_boosted = 0;
4569 if (oldprio < prio)
4570 queue_flag |= ENQUEUE_HEAD;
4571 p->sched_class = &rt_sched_class;
4572 } else {
4573 if (dl_prio(oldprio))
4574 p->dl.dl_boosted = 0;
4575 if (rt_prio(oldprio))
4576 p->rt.timeout = 0;
4577 p->sched_class = &fair_sched_class;
4580 p->prio = prio;
4582 if (queued)
4583 enqueue_task(rq, p, queue_flag);
4584 if (running)
4585 set_next_task(rq, p);
4587 check_class_changed(rq, p, prev_class, oldprio);
4588 out_unlock:
4589 /* Avoid rq from going away on us: */
4590 preempt_disable();
4591 __task_rq_unlock(rq, &rf);
4593 balance_callback(rq);
4594 preempt_enable();
4596 #else
4597 static inline int rt_effective_prio(struct task_struct *p, int prio)
4599 return prio;
4601 #endif
4603 void set_user_nice(struct task_struct *p, long nice)
4605 bool queued, running;
4606 int old_prio;
4607 struct rq_flags rf;
4608 struct rq *rq;
4610 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4611 return;
4613 * We have to be careful, if called from sys_setpriority(),
4614 * the task might be in the middle of scheduling on another CPU.
4616 rq = task_rq_lock(p, &rf);
4617 update_rq_clock(rq);
4620 * The RT priorities are set via sched_setscheduler(), but we still
4621 * allow the 'normal' nice value to be set - but as expected
4622 * it wont have any effect on scheduling until the task is
4623 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4625 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4626 p->static_prio = NICE_TO_PRIO(nice);
4627 goto out_unlock;
4629 queued = task_on_rq_queued(p);
4630 running = task_current(rq, p);
4631 if (queued)
4632 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4633 if (running)
4634 put_prev_task(rq, p);
4636 p->static_prio = NICE_TO_PRIO(nice);
4637 set_load_weight(p, true);
4638 old_prio = p->prio;
4639 p->prio = effective_prio(p);
4641 if (queued)
4642 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4643 if (running)
4644 set_next_task(rq, p);
4647 * If the task increased its priority or is running and
4648 * lowered its priority, then reschedule its CPU:
4650 p->sched_class->prio_changed(rq, p, old_prio);
4652 out_unlock:
4653 task_rq_unlock(rq, p, &rf);
4655 EXPORT_SYMBOL(set_user_nice);
4658 * can_nice - check if a task can reduce its nice value
4659 * @p: task
4660 * @nice: nice value
4662 int can_nice(const struct task_struct *p, const int nice)
4664 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4665 int nice_rlim = nice_to_rlimit(nice);
4667 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4668 capable(CAP_SYS_NICE));
4671 #ifdef __ARCH_WANT_SYS_NICE
4674 * sys_nice - change the priority of the current process.
4675 * @increment: priority increment
4677 * sys_setpriority is a more generic, but much slower function that
4678 * does similar things.
4680 SYSCALL_DEFINE1(nice, int, increment)
4682 long nice, retval;
4685 * Setpriority might change our priority at the same moment.
4686 * We don't have to worry. Conceptually one call occurs first
4687 * and we have a single winner.
4689 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4690 nice = task_nice(current) + increment;
4692 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4693 if (increment < 0 && !can_nice(current, nice))
4694 return -EPERM;
4696 retval = security_task_setnice(current, nice);
4697 if (retval)
4698 return retval;
4700 set_user_nice(current, nice);
4701 return 0;
4704 #endif
4707 * task_prio - return the priority value of a given task.
4708 * @p: the task in question.
4710 * Return: The priority value as seen by users in /proc.
4711 * RT tasks are offset by -200. Normal tasks are centered
4712 * around 0, value goes from -16 to +15.
4714 int task_prio(const struct task_struct *p)
4716 return p->prio - MAX_RT_PRIO;
4720 * idle_cpu - is a given CPU idle currently?
4721 * @cpu: the processor in question.
4723 * Return: 1 if the CPU is currently idle. 0 otherwise.
4725 int idle_cpu(int cpu)
4727 struct rq *rq = cpu_rq(cpu);
4729 if (rq->curr != rq->idle)
4730 return 0;
4732 if (rq->nr_running)
4733 return 0;
4735 #ifdef CONFIG_SMP
4736 if (rq->ttwu_pending)
4737 return 0;
4738 #endif
4740 return 1;
4744 * available_idle_cpu - is a given CPU idle for enqueuing work.
4745 * @cpu: the CPU in question.
4747 * Return: 1 if the CPU is currently idle. 0 otherwise.
4749 int available_idle_cpu(int cpu)
4751 if (!idle_cpu(cpu))
4752 return 0;
4754 if (vcpu_is_preempted(cpu))
4755 return 0;
4757 return 1;
4761 * idle_task - return the idle task for a given CPU.
4762 * @cpu: the processor in question.
4764 * Return: The idle task for the CPU @cpu.
4766 struct task_struct *idle_task(int cpu)
4768 return cpu_rq(cpu)->idle;
4772 * find_process_by_pid - find a process with a matching PID value.
4773 * @pid: the pid in question.
4775 * The task of @pid, if found. %NULL otherwise.
4777 static struct task_struct *find_process_by_pid(pid_t pid)
4779 return pid ? find_task_by_vpid(pid) : current;
4783 * sched_setparam() passes in -1 for its policy, to let the functions
4784 * it calls know not to change it.
4786 #define SETPARAM_POLICY -1
4788 static void __setscheduler_params(struct task_struct *p,
4789 const struct sched_attr *attr)
4791 int policy = attr->sched_policy;
4793 if (policy == SETPARAM_POLICY)
4794 policy = p->policy;
4796 p->policy = policy;
4798 if (dl_policy(policy))
4799 __setparam_dl(p, attr);
4800 else if (fair_policy(policy))
4801 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4804 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4805 * !rt_policy. Always setting this ensures that things like
4806 * getparam()/getattr() don't report silly values for !rt tasks.
4808 p->rt_priority = attr->sched_priority;
4809 p->normal_prio = normal_prio(p);
4810 set_load_weight(p, true);
4813 /* Actually do priority change: must hold pi & rq lock. */
4814 static void __setscheduler(struct rq *rq, struct task_struct *p,
4815 const struct sched_attr *attr, bool keep_boost)
4818 * If params can't change scheduling class changes aren't allowed
4819 * either.
4821 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4822 return;
4824 __setscheduler_params(p, attr);
4827 * Keep a potential priority boosting if called from
4828 * sched_setscheduler().
4830 p->prio = normal_prio(p);
4831 if (keep_boost)
4832 p->prio = rt_effective_prio(p, p->prio);
4834 if (dl_prio(p->prio))
4835 p->sched_class = &dl_sched_class;
4836 else if (rt_prio(p->prio))
4837 p->sched_class = &rt_sched_class;
4838 else
4839 p->sched_class = &fair_sched_class;
4843 * Check the target process has a UID that matches the current process's:
4845 static bool check_same_owner(struct task_struct *p)
4847 const struct cred *cred = current_cred(), *pcred;
4848 bool match;
4850 rcu_read_lock();
4851 pcred = __task_cred(p);
4852 match = (uid_eq(cred->euid, pcred->euid) ||
4853 uid_eq(cred->euid, pcred->uid));
4854 rcu_read_unlock();
4855 return match;
4858 static int __sched_setscheduler(struct task_struct *p,
4859 const struct sched_attr *attr,
4860 bool user, bool pi)
4862 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4863 MAX_RT_PRIO - 1 - attr->sched_priority;
4864 int retval, oldprio, oldpolicy = -1, queued, running;
4865 int new_effective_prio, policy = attr->sched_policy;
4866 const struct sched_class *prev_class;
4867 struct rq_flags rf;
4868 int reset_on_fork;
4869 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4870 struct rq *rq;
4872 /* The pi code expects interrupts enabled */
4873 BUG_ON(pi && in_interrupt());
4874 recheck:
4875 /* Double check policy once rq lock held: */
4876 if (policy < 0) {
4877 reset_on_fork = p->sched_reset_on_fork;
4878 policy = oldpolicy = p->policy;
4879 } else {
4880 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4882 if (!valid_policy(policy))
4883 return -EINVAL;
4886 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4887 return -EINVAL;
4890 * Valid priorities for SCHED_FIFO and SCHED_RR are
4891 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4892 * SCHED_BATCH and SCHED_IDLE is 0.
4894 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4895 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4896 return -EINVAL;
4897 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4898 (rt_policy(policy) != (attr->sched_priority != 0)))
4899 return -EINVAL;
4902 * Allow unprivileged RT tasks to decrease priority:
4904 if (user && !capable(CAP_SYS_NICE)) {
4905 if (fair_policy(policy)) {
4906 if (attr->sched_nice < task_nice(p) &&
4907 !can_nice(p, attr->sched_nice))
4908 return -EPERM;
4911 if (rt_policy(policy)) {
4912 unsigned long rlim_rtprio =
4913 task_rlimit(p, RLIMIT_RTPRIO);
4915 /* Can't set/change the rt policy: */
4916 if (policy != p->policy && !rlim_rtprio)
4917 return -EPERM;
4919 /* Can't increase priority: */
4920 if (attr->sched_priority > p->rt_priority &&
4921 attr->sched_priority > rlim_rtprio)
4922 return -EPERM;
4926 * Can't set/change SCHED_DEADLINE policy at all for now
4927 * (safest behavior); in the future we would like to allow
4928 * unprivileged DL tasks to increase their relative deadline
4929 * or reduce their runtime (both ways reducing utilization)
4931 if (dl_policy(policy))
4932 return -EPERM;
4935 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4936 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4938 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4939 if (!can_nice(p, task_nice(p)))
4940 return -EPERM;
4943 /* Can't change other user's priorities: */
4944 if (!check_same_owner(p))
4945 return -EPERM;
4947 /* Normal users shall not reset the sched_reset_on_fork flag: */
4948 if (p->sched_reset_on_fork && !reset_on_fork)
4949 return -EPERM;
4952 if (user) {
4953 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4954 return -EINVAL;
4956 retval = security_task_setscheduler(p);
4957 if (retval)
4958 return retval;
4961 /* Update task specific "requested" clamps */
4962 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4963 retval = uclamp_validate(p, attr);
4964 if (retval)
4965 return retval;
4968 if (pi)
4969 cpuset_read_lock();
4972 * Make sure no PI-waiters arrive (or leave) while we are
4973 * changing the priority of the task:
4975 * To be able to change p->policy safely, the appropriate
4976 * runqueue lock must be held.
4978 rq = task_rq_lock(p, &rf);
4979 update_rq_clock(rq);
4982 * Changing the policy of the stop threads its a very bad idea:
4984 if (p == rq->stop) {
4985 retval = -EINVAL;
4986 goto unlock;
4990 * If not changing anything there's no need to proceed further,
4991 * but store a possible modification of reset_on_fork.
4993 if (unlikely(policy == p->policy)) {
4994 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4995 goto change;
4996 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4997 goto change;
4998 if (dl_policy(policy) && dl_param_changed(p, attr))
4999 goto change;
5000 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5001 goto change;
5003 p->sched_reset_on_fork = reset_on_fork;
5004 retval = 0;
5005 goto unlock;
5007 change:
5009 if (user) {
5010 #ifdef CONFIG_RT_GROUP_SCHED
5012 * Do not allow realtime tasks into groups that have no runtime
5013 * assigned.
5015 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5016 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5017 !task_group_is_autogroup(task_group(p))) {
5018 retval = -EPERM;
5019 goto unlock;
5021 #endif
5022 #ifdef CONFIG_SMP
5023 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5024 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5025 cpumask_t *span = rq->rd->span;
5028 * Don't allow tasks with an affinity mask smaller than
5029 * the entire root_domain to become SCHED_DEADLINE. We
5030 * will also fail if there's no bandwidth available.
5032 if (!cpumask_subset(span, p->cpus_ptr) ||
5033 rq->rd->dl_bw.bw == 0) {
5034 retval = -EPERM;
5035 goto unlock;
5038 #endif
5041 /* Re-check policy now with rq lock held: */
5042 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5043 policy = oldpolicy = -1;
5044 task_rq_unlock(rq, p, &rf);
5045 if (pi)
5046 cpuset_read_unlock();
5047 goto recheck;
5051 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5052 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5053 * is available.
5055 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5056 retval = -EBUSY;
5057 goto unlock;
5060 p->sched_reset_on_fork = reset_on_fork;
5061 oldprio = p->prio;
5063 if (pi) {
5065 * Take priority boosted tasks into account. If the new
5066 * effective priority is unchanged, we just store the new
5067 * normal parameters and do not touch the scheduler class and
5068 * the runqueue. This will be done when the task deboost
5069 * itself.
5071 new_effective_prio = rt_effective_prio(p, newprio);
5072 if (new_effective_prio == oldprio)
5073 queue_flags &= ~DEQUEUE_MOVE;
5076 queued = task_on_rq_queued(p);
5077 running = task_current(rq, p);
5078 if (queued)
5079 dequeue_task(rq, p, queue_flags);
5080 if (running)
5081 put_prev_task(rq, p);
5083 prev_class = p->sched_class;
5085 __setscheduler(rq, p, attr, pi);
5086 __setscheduler_uclamp(p, attr);
5088 if (queued) {
5090 * We enqueue to tail when the priority of a task is
5091 * increased (user space view).
5093 if (oldprio < p->prio)
5094 queue_flags |= ENQUEUE_HEAD;
5096 enqueue_task(rq, p, queue_flags);
5098 if (running)
5099 set_next_task(rq, p);
5101 check_class_changed(rq, p, prev_class, oldprio);
5103 /* Avoid rq from going away on us: */
5104 preempt_disable();
5105 task_rq_unlock(rq, p, &rf);
5107 if (pi) {
5108 cpuset_read_unlock();
5109 rt_mutex_adjust_pi(p);
5112 /* Run balance callbacks after we've adjusted the PI chain: */
5113 balance_callback(rq);
5114 preempt_enable();
5116 return 0;
5118 unlock:
5119 task_rq_unlock(rq, p, &rf);
5120 if (pi)
5121 cpuset_read_unlock();
5122 return retval;
5125 static int _sched_setscheduler(struct task_struct *p, int policy,
5126 const struct sched_param *param, bool check)
5128 struct sched_attr attr = {
5129 .sched_policy = policy,
5130 .sched_priority = param->sched_priority,
5131 .sched_nice = PRIO_TO_NICE(p->static_prio),
5134 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5135 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5136 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5137 policy &= ~SCHED_RESET_ON_FORK;
5138 attr.sched_policy = policy;
5141 return __sched_setscheduler(p, &attr, check, true);
5144 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5145 * @p: the task in question.
5146 * @policy: new policy.
5147 * @param: structure containing the new RT priority.
5149 * Return: 0 on success. An error code otherwise.
5151 * NOTE that the task may be already dead.
5153 int sched_setscheduler(struct task_struct *p, int policy,
5154 const struct sched_param *param)
5156 return _sched_setscheduler(p, policy, param, true);
5158 EXPORT_SYMBOL_GPL(sched_setscheduler);
5160 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5162 return __sched_setscheduler(p, attr, true, true);
5164 EXPORT_SYMBOL_GPL(sched_setattr);
5166 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5168 return __sched_setscheduler(p, attr, false, true);
5172 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5173 * @p: the task in question.
5174 * @policy: new policy.
5175 * @param: structure containing the new RT priority.
5177 * Just like sched_setscheduler, only don't bother checking if the
5178 * current context has permission. For example, this is needed in
5179 * stop_machine(): we create temporary high priority worker threads,
5180 * but our caller might not have that capability.
5182 * Return: 0 on success. An error code otherwise.
5184 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5185 const struct sched_param *param)
5187 return _sched_setscheduler(p, policy, param, false);
5189 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5191 static int
5192 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5194 struct sched_param lparam;
5195 struct task_struct *p;
5196 int retval;
5198 if (!param || pid < 0)
5199 return -EINVAL;
5200 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5201 return -EFAULT;
5203 rcu_read_lock();
5204 retval = -ESRCH;
5205 p = find_process_by_pid(pid);
5206 if (likely(p))
5207 get_task_struct(p);
5208 rcu_read_unlock();
5210 if (likely(p)) {
5211 retval = sched_setscheduler(p, policy, &lparam);
5212 put_task_struct(p);
5215 return retval;
5219 * Mimics kernel/events/core.c perf_copy_attr().
5221 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5223 u32 size;
5224 int ret;
5226 /* Zero the full structure, so that a short copy will be nice: */
5227 memset(attr, 0, sizeof(*attr));
5229 ret = get_user(size, &uattr->size);
5230 if (ret)
5231 return ret;
5233 /* ABI compatibility quirk: */
5234 if (!size)
5235 size = SCHED_ATTR_SIZE_VER0;
5236 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5237 goto err_size;
5239 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5240 if (ret) {
5241 if (ret == -E2BIG)
5242 goto err_size;
5243 return ret;
5246 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5247 size < SCHED_ATTR_SIZE_VER1)
5248 return -EINVAL;
5251 * XXX: Do we want to be lenient like existing syscalls; or do we want
5252 * to be strict and return an error on out-of-bounds values?
5254 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5256 return 0;
5258 err_size:
5259 put_user(sizeof(*attr), &uattr->size);
5260 return -E2BIG;
5264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5265 * @pid: the pid in question.
5266 * @policy: new policy.
5267 * @param: structure containing the new RT priority.
5269 * Return: 0 on success. An error code otherwise.
5271 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5273 if (policy < 0)
5274 return -EINVAL;
5276 return do_sched_setscheduler(pid, policy, param);
5280 * sys_sched_setparam - set/change the RT priority of a thread
5281 * @pid: the pid in question.
5282 * @param: structure containing the new RT priority.
5284 * Return: 0 on success. An error code otherwise.
5286 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5288 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5292 * sys_sched_setattr - same as above, but with extended sched_attr
5293 * @pid: the pid in question.
5294 * @uattr: structure containing the extended parameters.
5295 * @flags: for future extension.
5297 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5298 unsigned int, flags)
5300 struct sched_attr attr;
5301 struct task_struct *p;
5302 int retval;
5304 if (!uattr || pid < 0 || flags)
5305 return -EINVAL;
5307 retval = sched_copy_attr(uattr, &attr);
5308 if (retval)
5309 return retval;
5311 if ((int)attr.sched_policy < 0)
5312 return -EINVAL;
5313 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5314 attr.sched_policy = SETPARAM_POLICY;
5316 rcu_read_lock();
5317 retval = -ESRCH;
5318 p = find_process_by_pid(pid);
5319 if (likely(p))
5320 get_task_struct(p);
5321 rcu_read_unlock();
5323 if (likely(p)) {
5324 retval = sched_setattr(p, &attr);
5325 put_task_struct(p);
5328 return retval;
5332 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5333 * @pid: the pid in question.
5335 * Return: On success, the policy of the thread. Otherwise, a negative error
5336 * code.
5338 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5340 struct task_struct *p;
5341 int retval;
5343 if (pid < 0)
5344 return -EINVAL;
5346 retval = -ESRCH;
5347 rcu_read_lock();
5348 p = find_process_by_pid(pid);
5349 if (p) {
5350 retval = security_task_getscheduler(p);
5351 if (!retval)
5352 retval = p->policy
5353 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5355 rcu_read_unlock();
5356 return retval;
5360 * sys_sched_getparam - get the RT priority of a thread
5361 * @pid: the pid in question.
5362 * @param: structure containing the RT priority.
5364 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5365 * code.
5367 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5369 struct sched_param lp = { .sched_priority = 0 };
5370 struct task_struct *p;
5371 int retval;
5373 if (!param || pid < 0)
5374 return -EINVAL;
5376 rcu_read_lock();
5377 p = find_process_by_pid(pid);
5378 retval = -ESRCH;
5379 if (!p)
5380 goto out_unlock;
5382 retval = security_task_getscheduler(p);
5383 if (retval)
5384 goto out_unlock;
5386 if (task_has_rt_policy(p))
5387 lp.sched_priority = p->rt_priority;
5388 rcu_read_unlock();
5391 * This one might sleep, we cannot do it with a spinlock held ...
5393 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5395 return retval;
5397 out_unlock:
5398 rcu_read_unlock();
5399 return retval;
5403 * Copy the kernel size attribute structure (which might be larger
5404 * than what user-space knows about) to user-space.
5406 * Note that all cases are valid: user-space buffer can be larger or
5407 * smaller than the kernel-space buffer. The usual case is that both
5408 * have the same size.
5410 static int
5411 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5412 struct sched_attr *kattr,
5413 unsigned int usize)
5415 unsigned int ksize = sizeof(*kattr);
5417 if (!access_ok(uattr, usize))
5418 return -EFAULT;
5421 * sched_getattr() ABI forwards and backwards compatibility:
5423 * If usize == ksize then we just copy everything to user-space and all is good.
5425 * If usize < ksize then we only copy as much as user-space has space for,
5426 * this keeps ABI compatibility as well. We skip the rest.
5428 * If usize > ksize then user-space is using a newer version of the ABI,
5429 * which part the kernel doesn't know about. Just ignore it - tooling can
5430 * detect the kernel's knowledge of attributes from the attr->size value
5431 * which is set to ksize in this case.
5433 kattr->size = min(usize, ksize);
5435 if (copy_to_user(uattr, kattr, kattr->size))
5436 return -EFAULT;
5438 return 0;
5442 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5443 * @pid: the pid in question.
5444 * @uattr: structure containing the extended parameters.
5445 * @usize: sizeof(attr) for fwd/bwd comp.
5446 * @flags: for future extension.
5448 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5449 unsigned int, usize, unsigned int, flags)
5451 struct sched_attr kattr = { };
5452 struct task_struct *p;
5453 int retval;
5455 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5456 usize < SCHED_ATTR_SIZE_VER0 || flags)
5457 return -EINVAL;
5459 rcu_read_lock();
5460 p = find_process_by_pid(pid);
5461 retval = -ESRCH;
5462 if (!p)
5463 goto out_unlock;
5465 retval = security_task_getscheduler(p);
5466 if (retval)
5467 goto out_unlock;
5469 kattr.sched_policy = p->policy;
5470 if (p->sched_reset_on_fork)
5471 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5472 if (task_has_dl_policy(p))
5473 __getparam_dl(p, &kattr);
5474 else if (task_has_rt_policy(p))
5475 kattr.sched_priority = p->rt_priority;
5476 else
5477 kattr.sched_nice = task_nice(p);
5479 #ifdef CONFIG_UCLAMP_TASK
5480 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5481 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5482 #endif
5484 rcu_read_unlock();
5486 return sched_attr_copy_to_user(uattr, &kattr, usize);
5488 out_unlock:
5489 rcu_read_unlock();
5490 return retval;
5493 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5495 cpumask_var_t cpus_allowed, new_mask;
5496 struct task_struct *p;
5497 int retval;
5499 rcu_read_lock();
5501 p = find_process_by_pid(pid);
5502 if (!p) {
5503 rcu_read_unlock();
5504 return -ESRCH;
5507 /* Prevent p going away */
5508 get_task_struct(p);
5509 rcu_read_unlock();
5511 if (p->flags & PF_NO_SETAFFINITY) {
5512 retval = -EINVAL;
5513 goto out_put_task;
5515 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5516 retval = -ENOMEM;
5517 goto out_put_task;
5519 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5520 retval = -ENOMEM;
5521 goto out_free_cpus_allowed;
5523 retval = -EPERM;
5524 if (!check_same_owner(p)) {
5525 rcu_read_lock();
5526 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5527 rcu_read_unlock();
5528 goto out_free_new_mask;
5530 rcu_read_unlock();
5533 retval = security_task_setscheduler(p);
5534 if (retval)
5535 goto out_free_new_mask;
5538 cpuset_cpus_allowed(p, cpus_allowed);
5539 cpumask_and(new_mask, in_mask, cpus_allowed);
5542 * Since bandwidth control happens on root_domain basis,
5543 * if admission test is enabled, we only admit -deadline
5544 * tasks allowed to run on all the CPUs in the task's
5545 * root_domain.
5547 #ifdef CONFIG_SMP
5548 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5549 rcu_read_lock();
5550 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5551 retval = -EBUSY;
5552 rcu_read_unlock();
5553 goto out_free_new_mask;
5555 rcu_read_unlock();
5557 #endif
5558 again:
5559 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5561 if (!retval) {
5562 cpuset_cpus_allowed(p, cpus_allowed);
5563 if (!cpumask_subset(new_mask, cpus_allowed)) {
5565 * We must have raced with a concurrent cpuset
5566 * update. Just reset the cpus_allowed to the
5567 * cpuset's cpus_allowed
5569 cpumask_copy(new_mask, cpus_allowed);
5570 goto again;
5573 out_free_new_mask:
5574 free_cpumask_var(new_mask);
5575 out_free_cpus_allowed:
5576 free_cpumask_var(cpus_allowed);
5577 out_put_task:
5578 put_task_struct(p);
5579 return retval;
5582 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5583 struct cpumask *new_mask)
5585 if (len < cpumask_size())
5586 cpumask_clear(new_mask);
5587 else if (len > cpumask_size())
5588 len = cpumask_size();
5590 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5594 * sys_sched_setaffinity - set the CPU affinity of a process
5595 * @pid: pid of the process
5596 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5597 * @user_mask_ptr: user-space pointer to the new CPU mask
5599 * Return: 0 on success. An error code otherwise.
5601 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5602 unsigned long __user *, user_mask_ptr)
5604 cpumask_var_t new_mask;
5605 int retval;
5607 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5608 return -ENOMEM;
5610 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5611 if (retval == 0)
5612 retval = sched_setaffinity(pid, new_mask);
5613 free_cpumask_var(new_mask);
5614 return retval;
5617 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5619 struct task_struct *p;
5620 unsigned long flags;
5621 int retval;
5623 rcu_read_lock();
5625 retval = -ESRCH;
5626 p = find_process_by_pid(pid);
5627 if (!p)
5628 goto out_unlock;
5630 retval = security_task_getscheduler(p);
5631 if (retval)
5632 goto out_unlock;
5634 raw_spin_lock_irqsave(&p->pi_lock, flags);
5635 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5636 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5638 out_unlock:
5639 rcu_read_unlock();
5641 return retval;
5645 * sys_sched_getaffinity - get the CPU affinity of a process
5646 * @pid: pid of the process
5647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5648 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5650 * Return: size of CPU mask copied to user_mask_ptr on success. An
5651 * error code otherwise.
5653 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5654 unsigned long __user *, user_mask_ptr)
5656 int ret;
5657 cpumask_var_t mask;
5659 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5660 return -EINVAL;
5661 if (len & (sizeof(unsigned long)-1))
5662 return -EINVAL;
5664 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5665 return -ENOMEM;
5667 ret = sched_getaffinity(pid, mask);
5668 if (ret == 0) {
5669 unsigned int retlen = min(len, cpumask_size());
5671 if (copy_to_user(user_mask_ptr, mask, retlen))
5672 ret = -EFAULT;
5673 else
5674 ret = retlen;
5676 free_cpumask_var(mask);
5678 return ret;
5682 * sys_sched_yield - yield the current processor to other threads.
5684 * This function yields the current CPU to other tasks. If there are no
5685 * other threads running on this CPU then this function will return.
5687 * Return: 0.
5689 static void do_sched_yield(void)
5691 struct rq_flags rf;
5692 struct rq *rq;
5694 rq = this_rq_lock_irq(&rf);
5696 schedstat_inc(rq->yld_count);
5697 current->sched_class->yield_task(rq);
5700 * Since we are going to call schedule() anyway, there's
5701 * no need to preempt or enable interrupts:
5703 preempt_disable();
5704 rq_unlock(rq, &rf);
5705 sched_preempt_enable_no_resched();
5707 schedule();
5710 SYSCALL_DEFINE0(sched_yield)
5712 do_sched_yield();
5713 return 0;
5716 #ifndef CONFIG_PREEMPTION
5717 int __sched _cond_resched(void)
5719 if (should_resched(0)) {
5720 preempt_schedule_common();
5721 return 1;
5723 rcu_all_qs();
5724 return 0;
5726 EXPORT_SYMBOL(_cond_resched);
5727 #endif
5730 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5731 * call schedule, and on return reacquire the lock.
5733 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5734 * operations here to prevent schedule() from being called twice (once via
5735 * spin_unlock(), once by hand).
5737 int __cond_resched_lock(spinlock_t *lock)
5739 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5740 int ret = 0;
5742 lockdep_assert_held(lock);
5744 if (spin_needbreak(lock) || resched) {
5745 spin_unlock(lock);
5746 if (resched)
5747 preempt_schedule_common();
5748 else
5749 cpu_relax();
5750 ret = 1;
5751 spin_lock(lock);
5753 return ret;
5755 EXPORT_SYMBOL(__cond_resched_lock);
5758 * yield - yield the current processor to other threads.
5760 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5762 * The scheduler is at all times free to pick the calling task as the most
5763 * eligible task to run, if removing the yield() call from your code breaks
5764 * it, its already broken.
5766 * Typical broken usage is:
5768 * while (!event)
5769 * yield();
5771 * where one assumes that yield() will let 'the other' process run that will
5772 * make event true. If the current task is a SCHED_FIFO task that will never
5773 * happen. Never use yield() as a progress guarantee!!
5775 * If you want to use yield() to wait for something, use wait_event().
5776 * If you want to use yield() to be 'nice' for others, use cond_resched().
5777 * If you still want to use yield(), do not!
5779 void __sched yield(void)
5781 set_current_state(TASK_RUNNING);
5782 do_sched_yield();
5784 EXPORT_SYMBOL(yield);
5787 * yield_to - yield the current processor to another thread in
5788 * your thread group, or accelerate that thread toward the
5789 * processor it's on.
5790 * @p: target task
5791 * @preempt: whether task preemption is allowed or not
5793 * It's the caller's job to ensure that the target task struct
5794 * can't go away on us before we can do any checks.
5796 * Return:
5797 * true (>0) if we indeed boosted the target task.
5798 * false (0) if we failed to boost the target.
5799 * -ESRCH if there's no task to yield to.
5801 int __sched yield_to(struct task_struct *p, bool preempt)
5803 struct task_struct *curr = current;
5804 struct rq *rq, *p_rq;
5805 unsigned long flags;
5806 int yielded = 0;
5808 local_irq_save(flags);
5809 rq = this_rq();
5811 again:
5812 p_rq = task_rq(p);
5814 * If we're the only runnable task on the rq and target rq also
5815 * has only one task, there's absolutely no point in yielding.
5817 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5818 yielded = -ESRCH;
5819 goto out_irq;
5822 double_rq_lock(rq, p_rq);
5823 if (task_rq(p) != p_rq) {
5824 double_rq_unlock(rq, p_rq);
5825 goto again;
5828 if (!curr->sched_class->yield_to_task)
5829 goto out_unlock;
5831 if (curr->sched_class != p->sched_class)
5832 goto out_unlock;
5834 if (task_running(p_rq, p) || p->state)
5835 goto out_unlock;
5837 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5838 if (yielded) {
5839 schedstat_inc(rq->yld_count);
5841 * Make p's CPU reschedule; pick_next_entity takes care of
5842 * fairness.
5844 if (preempt && rq != p_rq)
5845 resched_curr(p_rq);
5848 out_unlock:
5849 double_rq_unlock(rq, p_rq);
5850 out_irq:
5851 local_irq_restore(flags);
5853 if (yielded > 0)
5854 schedule();
5856 return yielded;
5858 EXPORT_SYMBOL_GPL(yield_to);
5860 int io_schedule_prepare(void)
5862 int old_iowait = current->in_iowait;
5864 current->in_iowait = 1;
5865 blk_schedule_flush_plug(current);
5867 return old_iowait;
5870 void io_schedule_finish(int token)
5872 current->in_iowait = token;
5876 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5877 * that process accounting knows that this is a task in IO wait state.
5879 long __sched io_schedule_timeout(long timeout)
5881 int token;
5882 long ret;
5884 token = io_schedule_prepare();
5885 ret = schedule_timeout(timeout);
5886 io_schedule_finish(token);
5888 return ret;
5890 EXPORT_SYMBOL(io_schedule_timeout);
5892 void __sched io_schedule(void)
5894 int token;
5896 token = io_schedule_prepare();
5897 schedule();
5898 io_schedule_finish(token);
5900 EXPORT_SYMBOL(io_schedule);
5903 * sys_sched_get_priority_max - return maximum RT priority.
5904 * @policy: scheduling class.
5906 * Return: On success, this syscall returns the maximum
5907 * rt_priority that can be used by a given scheduling class.
5908 * On failure, a negative error code is returned.
5910 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5912 int ret = -EINVAL;
5914 switch (policy) {
5915 case SCHED_FIFO:
5916 case SCHED_RR:
5917 ret = MAX_USER_RT_PRIO-1;
5918 break;
5919 case SCHED_DEADLINE:
5920 case SCHED_NORMAL:
5921 case SCHED_BATCH:
5922 case SCHED_IDLE:
5923 ret = 0;
5924 break;
5926 return ret;
5930 * sys_sched_get_priority_min - return minimum RT priority.
5931 * @policy: scheduling class.
5933 * Return: On success, this syscall returns the minimum
5934 * rt_priority that can be used by a given scheduling class.
5935 * On failure, a negative error code is returned.
5937 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5939 int ret = -EINVAL;
5941 switch (policy) {
5942 case SCHED_FIFO:
5943 case SCHED_RR:
5944 ret = 1;
5945 break;
5946 case SCHED_DEADLINE:
5947 case SCHED_NORMAL:
5948 case SCHED_BATCH:
5949 case SCHED_IDLE:
5950 ret = 0;
5952 return ret;
5955 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5957 struct task_struct *p;
5958 unsigned int time_slice;
5959 struct rq_flags rf;
5960 struct rq *rq;
5961 int retval;
5963 if (pid < 0)
5964 return -EINVAL;
5966 retval = -ESRCH;
5967 rcu_read_lock();
5968 p = find_process_by_pid(pid);
5969 if (!p)
5970 goto out_unlock;
5972 retval = security_task_getscheduler(p);
5973 if (retval)
5974 goto out_unlock;
5976 rq = task_rq_lock(p, &rf);
5977 time_slice = 0;
5978 if (p->sched_class->get_rr_interval)
5979 time_slice = p->sched_class->get_rr_interval(rq, p);
5980 task_rq_unlock(rq, p, &rf);
5982 rcu_read_unlock();
5983 jiffies_to_timespec64(time_slice, t);
5984 return 0;
5986 out_unlock:
5987 rcu_read_unlock();
5988 return retval;
5992 * sys_sched_rr_get_interval - return the default timeslice of a process.
5993 * @pid: pid of the process.
5994 * @interval: userspace pointer to the timeslice value.
5996 * this syscall writes the default timeslice value of a given process
5997 * into the user-space timespec buffer. A value of '0' means infinity.
5999 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6000 * an error code.
6002 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6003 struct __kernel_timespec __user *, interval)
6005 struct timespec64 t;
6006 int retval = sched_rr_get_interval(pid, &t);
6008 if (retval == 0)
6009 retval = put_timespec64(&t, interval);
6011 return retval;
6014 #ifdef CONFIG_COMPAT_32BIT_TIME
6015 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6016 struct old_timespec32 __user *, interval)
6018 struct timespec64 t;
6019 int retval = sched_rr_get_interval(pid, &t);
6021 if (retval == 0)
6022 retval = put_old_timespec32(&t, interval);
6023 return retval;
6025 #endif
6027 void sched_show_task(struct task_struct *p)
6029 unsigned long free = 0;
6030 int ppid;
6032 if (!try_get_task_stack(p))
6033 return;
6035 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6037 if (p->state == TASK_RUNNING)
6038 printk(KERN_CONT " running task ");
6039 #ifdef CONFIG_DEBUG_STACK_USAGE
6040 free = stack_not_used(p);
6041 #endif
6042 ppid = 0;
6043 rcu_read_lock();
6044 if (pid_alive(p))
6045 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6046 rcu_read_unlock();
6047 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6048 task_pid_nr(p), ppid,
6049 (unsigned long)task_thread_info(p)->flags);
6051 print_worker_info(KERN_INFO, p);
6052 show_stack(p, NULL, KERN_INFO);
6053 put_task_stack(p);
6055 EXPORT_SYMBOL_GPL(sched_show_task);
6057 static inline bool
6058 state_filter_match(unsigned long state_filter, struct task_struct *p)
6060 /* no filter, everything matches */
6061 if (!state_filter)
6062 return true;
6064 /* filter, but doesn't match */
6065 if (!(p->state & state_filter))
6066 return false;
6069 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6070 * TASK_KILLABLE).
6072 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6073 return false;
6075 return true;
6079 void show_state_filter(unsigned long state_filter)
6081 struct task_struct *g, *p;
6083 #if BITS_PER_LONG == 32
6084 printk(KERN_INFO
6085 " task PC stack pid father\n");
6086 #else
6087 printk(KERN_INFO
6088 " task PC stack pid father\n");
6089 #endif
6090 rcu_read_lock();
6091 for_each_process_thread(g, p) {
6093 * reset the NMI-timeout, listing all files on a slow
6094 * console might take a lot of time:
6095 * Also, reset softlockup watchdogs on all CPUs, because
6096 * another CPU might be blocked waiting for us to process
6097 * an IPI.
6099 touch_nmi_watchdog();
6100 touch_all_softlockup_watchdogs();
6101 if (state_filter_match(state_filter, p))
6102 sched_show_task(p);
6105 #ifdef CONFIG_SCHED_DEBUG
6106 if (!state_filter)
6107 sysrq_sched_debug_show();
6108 #endif
6109 rcu_read_unlock();
6111 * Only show locks if all tasks are dumped:
6113 if (!state_filter)
6114 debug_show_all_locks();
6118 * init_idle - set up an idle thread for a given CPU
6119 * @idle: task in question
6120 * @cpu: CPU the idle task belongs to
6122 * NOTE: this function does not set the idle thread's NEED_RESCHED
6123 * flag, to make booting more robust.
6125 void init_idle(struct task_struct *idle, int cpu)
6127 struct rq *rq = cpu_rq(cpu);
6128 unsigned long flags;
6130 __sched_fork(0, idle);
6132 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6133 raw_spin_lock(&rq->lock);
6135 idle->state = TASK_RUNNING;
6136 idle->se.exec_start = sched_clock();
6137 idle->flags |= PF_IDLE;
6139 scs_task_reset(idle);
6140 kasan_unpoison_task_stack(idle);
6142 #ifdef CONFIG_SMP
6144 * Its possible that init_idle() gets called multiple times on a task,
6145 * in that case do_set_cpus_allowed() will not do the right thing.
6147 * And since this is boot we can forgo the serialization.
6149 set_cpus_allowed_common(idle, cpumask_of(cpu));
6150 #endif
6152 * We're having a chicken and egg problem, even though we are
6153 * holding rq->lock, the CPU isn't yet set to this CPU so the
6154 * lockdep check in task_group() will fail.
6156 * Similar case to sched_fork(). / Alternatively we could
6157 * use task_rq_lock() here and obtain the other rq->lock.
6159 * Silence PROVE_RCU
6161 rcu_read_lock();
6162 __set_task_cpu(idle, cpu);
6163 rcu_read_unlock();
6165 rq->idle = idle;
6166 rcu_assign_pointer(rq->curr, idle);
6167 idle->on_rq = TASK_ON_RQ_QUEUED;
6168 #ifdef CONFIG_SMP
6169 idle->on_cpu = 1;
6170 #endif
6171 raw_spin_unlock(&rq->lock);
6172 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6174 /* Set the preempt count _outside_ the spinlocks! */
6175 init_idle_preempt_count(idle, cpu);
6178 * The idle tasks have their own, simple scheduling class:
6180 idle->sched_class = &idle_sched_class;
6181 ftrace_graph_init_idle_task(idle, cpu);
6182 vtime_init_idle(idle, cpu);
6183 #ifdef CONFIG_SMP
6184 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6185 #endif
6188 #ifdef CONFIG_SMP
6190 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6191 const struct cpumask *trial)
6193 int ret = 1;
6195 if (!cpumask_weight(cur))
6196 return ret;
6198 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6200 return ret;
6203 int task_can_attach(struct task_struct *p,
6204 const struct cpumask *cs_cpus_allowed)
6206 int ret = 0;
6209 * Kthreads which disallow setaffinity shouldn't be moved
6210 * to a new cpuset; we don't want to change their CPU
6211 * affinity and isolating such threads by their set of
6212 * allowed nodes is unnecessary. Thus, cpusets are not
6213 * applicable for such threads. This prevents checking for
6214 * success of set_cpus_allowed_ptr() on all attached tasks
6215 * before cpus_mask may be changed.
6217 if (p->flags & PF_NO_SETAFFINITY) {
6218 ret = -EINVAL;
6219 goto out;
6222 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6223 cs_cpus_allowed))
6224 ret = dl_task_can_attach(p, cs_cpus_allowed);
6226 out:
6227 return ret;
6230 bool sched_smp_initialized __read_mostly;
6232 #ifdef CONFIG_NUMA_BALANCING
6233 /* Migrate current task p to target_cpu */
6234 int migrate_task_to(struct task_struct *p, int target_cpu)
6236 struct migration_arg arg = { p, target_cpu };
6237 int curr_cpu = task_cpu(p);
6239 if (curr_cpu == target_cpu)
6240 return 0;
6242 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6243 return -EINVAL;
6245 /* TODO: This is not properly updating schedstats */
6247 trace_sched_move_numa(p, curr_cpu, target_cpu);
6248 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6252 * Requeue a task on a given node and accurately track the number of NUMA
6253 * tasks on the runqueues
6255 void sched_setnuma(struct task_struct *p, int nid)
6257 bool queued, running;
6258 struct rq_flags rf;
6259 struct rq *rq;
6261 rq = task_rq_lock(p, &rf);
6262 queued = task_on_rq_queued(p);
6263 running = task_current(rq, p);
6265 if (queued)
6266 dequeue_task(rq, p, DEQUEUE_SAVE);
6267 if (running)
6268 put_prev_task(rq, p);
6270 p->numa_preferred_nid = nid;
6272 if (queued)
6273 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6274 if (running)
6275 set_next_task(rq, p);
6276 task_rq_unlock(rq, p, &rf);
6278 #endif /* CONFIG_NUMA_BALANCING */
6280 #ifdef CONFIG_HOTPLUG_CPU
6282 * Ensure that the idle task is using init_mm right before its CPU goes
6283 * offline.
6285 void idle_task_exit(void)
6287 struct mm_struct *mm = current->active_mm;
6289 BUG_ON(cpu_online(smp_processor_id()));
6290 BUG_ON(current != this_rq()->idle);
6292 if (mm != &init_mm) {
6293 switch_mm(mm, &init_mm, current);
6294 finish_arch_post_lock_switch();
6297 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6301 * Since this CPU is going 'away' for a while, fold any nr_active delta
6302 * we might have. Assumes we're called after migrate_tasks() so that the
6303 * nr_active count is stable. We need to take the teardown thread which
6304 * is calling this into account, so we hand in adjust = 1 to the load
6305 * calculation.
6307 * Also see the comment "Global load-average calculations".
6309 static void calc_load_migrate(struct rq *rq)
6311 long delta = calc_load_fold_active(rq, 1);
6312 if (delta)
6313 atomic_long_add(delta, &calc_load_tasks);
6316 static struct task_struct *__pick_migrate_task(struct rq *rq)
6318 const struct sched_class *class;
6319 struct task_struct *next;
6321 for_each_class(class) {
6322 next = class->pick_next_task(rq);
6323 if (next) {
6324 next->sched_class->put_prev_task(rq, next);
6325 return next;
6329 /* The idle class should always have a runnable task */
6330 BUG();
6334 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6335 * try_to_wake_up()->select_task_rq().
6337 * Called with rq->lock held even though we'er in stop_machine() and
6338 * there's no concurrency possible, we hold the required locks anyway
6339 * because of lock validation efforts.
6341 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6343 struct rq *rq = dead_rq;
6344 struct task_struct *next, *stop = rq->stop;
6345 struct rq_flags orf = *rf;
6346 int dest_cpu;
6349 * Fudge the rq selection such that the below task selection loop
6350 * doesn't get stuck on the currently eligible stop task.
6352 * We're currently inside stop_machine() and the rq is either stuck
6353 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6354 * either way we should never end up calling schedule() until we're
6355 * done here.
6357 rq->stop = NULL;
6360 * put_prev_task() and pick_next_task() sched
6361 * class method both need to have an up-to-date
6362 * value of rq->clock[_task]
6364 update_rq_clock(rq);
6366 for (;;) {
6368 * There's this thread running, bail when that's the only
6369 * remaining thread:
6371 if (rq->nr_running == 1)
6372 break;
6374 next = __pick_migrate_task(rq);
6377 * Rules for changing task_struct::cpus_mask are holding
6378 * both pi_lock and rq->lock, such that holding either
6379 * stabilizes the mask.
6381 * Drop rq->lock is not quite as disastrous as it usually is
6382 * because !cpu_active at this point, which means load-balance
6383 * will not interfere. Also, stop-machine.
6385 rq_unlock(rq, rf);
6386 raw_spin_lock(&next->pi_lock);
6387 rq_relock(rq, rf);
6390 * Since we're inside stop-machine, _nothing_ should have
6391 * changed the task, WARN if weird stuff happened, because in
6392 * that case the above rq->lock drop is a fail too.
6394 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6395 raw_spin_unlock(&next->pi_lock);
6396 continue;
6399 /* Find suitable destination for @next, with force if needed. */
6400 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6401 rq = __migrate_task(rq, rf, next, dest_cpu);
6402 if (rq != dead_rq) {
6403 rq_unlock(rq, rf);
6404 rq = dead_rq;
6405 *rf = orf;
6406 rq_relock(rq, rf);
6408 raw_spin_unlock(&next->pi_lock);
6411 rq->stop = stop;
6413 #endif /* CONFIG_HOTPLUG_CPU */
6415 void set_rq_online(struct rq *rq)
6417 if (!rq->online) {
6418 const struct sched_class *class;
6420 cpumask_set_cpu(rq->cpu, rq->rd->online);
6421 rq->online = 1;
6423 for_each_class(class) {
6424 if (class->rq_online)
6425 class->rq_online(rq);
6430 void set_rq_offline(struct rq *rq)
6432 if (rq->online) {
6433 const struct sched_class *class;
6435 for_each_class(class) {
6436 if (class->rq_offline)
6437 class->rq_offline(rq);
6440 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6441 rq->online = 0;
6446 * used to mark begin/end of suspend/resume:
6448 static int num_cpus_frozen;
6451 * Update cpusets according to cpu_active mask. If cpusets are
6452 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6453 * around partition_sched_domains().
6455 * If we come here as part of a suspend/resume, don't touch cpusets because we
6456 * want to restore it back to its original state upon resume anyway.
6458 static void cpuset_cpu_active(void)
6460 if (cpuhp_tasks_frozen) {
6462 * num_cpus_frozen tracks how many CPUs are involved in suspend
6463 * resume sequence. As long as this is not the last online
6464 * operation in the resume sequence, just build a single sched
6465 * domain, ignoring cpusets.
6467 partition_sched_domains(1, NULL, NULL);
6468 if (--num_cpus_frozen)
6469 return;
6471 * This is the last CPU online operation. So fall through and
6472 * restore the original sched domains by considering the
6473 * cpuset configurations.
6475 cpuset_force_rebuild();
6477 cpuset_update_active_cpus();
6480 static int cpuset_cpu_inactive(unsigned int cpu)
6482 if (!cpuhp_tasks_frozen) {
6483 if (dl_cpu_busy(cpu))
6484 return -EBUSY;
6485 cpuset_update_active_cpus();
6486 } else {
6487 num_cpus_frozen++;
6488 partition_sched_domains(1, NULL, NULL);
6490 return 0;
6493 int sched_cpu_activate(unsigned int cpu)
6495 struct rq *rq = cpu_rq(cpu);
6496 struct rq_flags rf;
6498 #ifdef CONFIG_SCHED_SMT
6500 * When going up, increment the number of cores with SMT present.
6502 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6503 static_branch_inc_cpuslocked(&sched_smt_present);
6504 #endif
6505 set_cpu_active(cpu, true);
6507 if (sched_smp_initialized) {
6508 sched_domains_numa_masks_set(cpu);
6509 cpuset_cpu_active();
6513 * Put the rq online, if not already. This happens:
6515 * 1) In the early boot process, because we build the real domains
6516 * after all CPUs have been brought up.
6518 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6519 * domains.
6521 rq_lock_irqsave(rq, &rf);
6522 if (rq->rd) {
6523 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6524 set_rq_online(rq);
6526 rq_unlock_irqrestore(rq, &rf);
6528 return 0;
6531 int sched_cpu_deactivate(unsigned int cpu)
6533 int ret;
6535 set_cpu_active(cpu, false);
6537 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6538 * users of this state to go away such that all new such users will
6539 * observe it.
6541 * Do sync before park smpboot threads to take care the rcu boost case.
6543 synchronize_rcu();
6545 #ifdef CONFIG_SCHED_SMT
6547 * When going down, decrement the number of cores with SMT present.
6549 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6550 static_branch_dec_cpuslocked(&sched_smt_present);
6551 #endif
6553 if (!sched_smp_initialized)
6554 return 0;
6556 ret = cpuset_cpu_inactive(cpu);
6557 if (ret) {
6558 set_cpu_active(cpu, true);
6559 return ret;
6561 sched_domains_numa_masks_clear(cpu);
6562 return 0;
6565 static void sched_rq_cpu_starting(unsigned int cpu)
6567 struct rq *rq = cpu_rq(cpu);
6569 rq->calc_load_update = calc_load_update;
6570 update_max_interval();
6573 int sched_cpu_starting(unsigned int cpu)
6575 sched_rq_cpu_starting(cpu);
6576 sched_tick_start(cpu);
6577 return 0;
6580 #ifdef CONFIG_HOTPLUG_CPU
6581 int sched_cpu_dying(unsigned int cpu)
6583 struct rq *rq = cpu_rq(cpu);
6584 struct rq_flags rf;
6586 /* Handle pending wakeups and then migrate everything off */
6587 sched_tick_stop(cpu);
6589 rq_lock_irqsave(rq, &rf);
6590 if (rq->rd) {
6591 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6592 set_rq_offline(rq);
6594 migrate_tasks(rq, &rf);
6595 BUG_ON(rq->nr_running != 1);
6596 rq_unlock_irqrestore(rq, &rf);
6598 calc_load_migrate(rq);
6599 update_max_interval();
6600 nohz_balance_exit_idle(rq);
6601 hrtick_clear(rq);
6602 return 0;
6604 #endif
6606 void __init sched_init_smp(void)
6608 sched_init_numa();
6611 * There's no userspace yet to cause hotplug operations; hence all the
6612 * CPU masks are stable and all blatant races in the below code cannot
6613 * happen.
6615 mutex_lock(&sched_domains_mutex);
6616 sched_init_domains(cpu_active_mask);
6617 mutex_unlock(&sched_domains_mutex);
6619 /* Move init over to a non-isolated CPU */
6620 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6621 BUG();
6622 sched_init_granularity();
6624 init_sched_rt_class();
6625 init_sched_dl_class();
6627 sched_smp_initialized = true;
6630 static int __init migration_init(void)
6632 sched_cpu_starting(smp_processor_id());
6633 return 0;
6635 early_initcall(migration_init);
6637 #else
6638 void __init sched_init_smp(void)
6640 sched_init_granularity();
6642 #endif /* CONFIG_SMP */
6644 int in_sched_functions(unsigned long addr)
6646 return in_lock_functions(addr) ||
6647 (addr >= (unsigned long)__sched_text_start
6648 && addr < (unsigned long)__sched_text_end);
6651 #ifdef CONFIG_CGROUP_SCHED
6653 * Default task group.
6654 * Every task in system belongs to this group at bootup.
6656 struct task_group root_task_group;
6657 LIST_HEAD(task_groups);
6659 /* Cacheline aligned slab cache for task_group */
6660 static struct kmem_cache *task_group_cache __read_mostly;
6661 #endif
6663 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6664 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6666 void __init sched_init(void)
6668 unsigned long ptr = 0;
6669 int i;
6671 wait_bit_init();
6673 #ifdef CONFIG_FAIR_GROUP_SCHED
6674 ptr += 2 * nr_cpu_ids * sizeof(void **);
6675 #endif
6676 #ifdef CONFIG_RT_GROUP_SCHED
6677 ptr += 2 * nr_cpu_ids * sizeof(void **);
6678 #endif
6679 if (ptr) {
6680 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6682 #ifdef CONFIG_FAIR_GROUP_SCHED
6683 root_task_group.se = (struct sched_entity **)ptr;
6684 ptr += nr_cpu_ids * sizeof(void **);
6686 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6687 ptr += nr_cpu_ids * sizeof(void **);
6689 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6690 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6691 #endif /* CONFIG_FAIR_GROUP_SCHED */
6692 #ifdef CONFIG_RT_GROUP_SCHED
6693 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6694 ptr += nr_cpu_ids * sizeof(void **);
6696 root_task_group.rt_rq = (struct rt_rq **)ptr;
6697 ptr += nr_cpu_ids * sizeof(void **);
6699 #endif /* CONFIG_RT_GROUP_SCHED */
6701 #ifdef CONFIG_CPUMASK_OFFSTACK
6702 for_each_possible_cpu(i) {
6703 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6704 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6705 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6706 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6708 #endif /* CONFIG_CPUMASK_OFFSTACK */
6710 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6711 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6713 #ifdef CONFIG_SMP
6714 init_defrootdomain();
6715 #endif
6717 #ifdef CONFIG_RT_GROUP_SCHED
6718 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6719 global_rt_period(), global_rt_runtime());
6720 #endif /* CONFIG_RT_GROUP_SCHED */
6722 #ifdef CONFIG_CGROUP_SCHED
6723 task_group_cache = KMEM_CACHE(task_group, 0);
6725 list_add(&root_task_group.list, &task_groups);
6726 INIT_LIST_HEAD(&root_task_group.children);
6727 INIT_LIST_HEAD(&root_task_group.siblings);
6728 autogroup_init(&init_task);
6729 #endif /* CONFIG_CGROUP_SCHED */
6731 for_each_possible_cpu(i) {
6732 struct rq *rq;
6734 rq = cpu_rq(i);
6735 raw_spin_lock_init(&rq->lock);
6736 rq->nr_running = 0;
6737 rq->calc_load_active = 0;
6738 rq->calc_load_update = jiffies + LOAD_FREQ;
6739 init_cfs_rq(&rq->cfs);
6740 init_rt_rq(&rq->rt);
6741 init_dl_rq(&rq->dl);
6742 #ifdef CONFIG_FAIR_GROUP_SCHED
6743 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6744 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6746 * How much CPU bandwidth does root_task_group get?
6748 * In case of task-groups formed thr' the cgroup filesystem, it
6749 * gets 100% of the CPU resources in the system. This overall
6750 * system CPU resource is divided among the tasks of
6751 * root_task_group and its child task-groups in a fair manner,
6752 * based on each entity's (task or task-group's) weight
6753 * (se->load.weight).
6755 * In other words, if root_task_group has 10 tasks of weight
6756 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6757 * then A0's share of the CPU resource is:
6759 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6761 * We achieve this by letting root_task_group's tasks sit
6762 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6764 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6765 #endif /* CONFIG_FAIR_GROUP_SCHED */
6767 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6768 #ifdef CONFIG_RT_GROUP_SCHED
6769 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6770 #endif
6771 #ifdef CONFIG_SMP
6772 rq->sd = NULL;
6773 rq->rd = NULL;
6774 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6775 rq->balance_callback = NULL;
6776 rq->active_balance = 0;
6777 rq->next_balance = jiffies;
6778 rq->push_cpu = 0;
6779 rq->cpu = i;
6780 rq->online = 0;
6781 rq->idle_stamp = 0;
6782 rq->avg_idle = 2*sysctl_sched_migration_cost;
6783 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6785 INIT_LIST_HEAD(&rq->cfs_tasks);
6787 rq_attach_root(rq, &def_root_domain);
6788 #ifdef CONFIG_NO_HZ_COMMON
6789 rq->last_blocked_load_update_tick = jiffies;
6790 atomic_set(&rq->nohz_flags, 0);
6792 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6793 #endif
6794 #endif /* CONFIG_SMP */
6795 hrtick_rq_init(rq);
6796 atomic_set(&rq->nr_iowait, 0);
6799 set_load_weight(&init_task, false);
6802 * The boot idle thread does lazy MMU switching as well:
6804 mmgrab(&init_mm);
6805 enter_lazy_tlb(&init_mm, current);
6808 * Make us the idle thread. Technically, schedule() should not be
6809 * called from this thread, however somewhere below it might be,
6810 * but because we are the idle thread, we just pick up running again
6811 * when this runqueue becomes "idle".
6813 init_idle(current, smp_processor_id());
6815 calc_load_update = jiffies + LOAD_FREQ;
6817 #ifdef CONFIG_SMP
6818 idle_thread_set_boot_cpu();
6819 #endif
6820 init_sched_fair_class();
6822 init_schedstats();
6824 psi_init();
6826 init_uclamp();
6828 scheduler_running = 1;
6831 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6832 static inline int preempt_count_equals(int preempt_offset)
6834 int nested = preempt_count() + rcu_preempt_depth();
6836 return (nested == preempt_offset);
6839 void __might_sleep(const char *file, int line, int preempt_offset)
6842 * Blocking primitives will set (and therefore destroy) current->state,
6843 * since we will exit with TASK_RUNNING make sure we enter with it,
6844 * otherwise we will destroy state.
6846 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6847 "do not call blocking ops when !TASK_RUNNING; "
6848 "state=%lx set at [<%p>] %pS\n",
6849 current->state,
6850 (void *)current->task_state_change,
6851 (void *)current->task_state_change);
6853 ___might_sleep(file, line, preempt_offset);
6855 EXPORT_SYMBOL(__might_sleep);
6857 void ___might_sleep(const char *file, int line, int preempt_offset)
6859 /* Ratelimiting timestamp: */
6860 static unsigned long prev_jiffy;
6862 unsigned long preempt_disable_ip;
6864 /* WARN_ON_ONCE() by default, no rate limit required: */
6865 rcu_sleep_check();
6867 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6868 !is_idle_task(current) && !current->non_block_count) ||
6869 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6870 oops_in_progress)
6871 return;
6873 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6874 return;
6875 prev_jiffy = jiffies;
6877 /* Save this before calling printk(), since that will clobber it: */
6878 preempt_disable_ip = get_preempt_disable_ip(current);
6880 printk(KERN_ERR
6881 "BUG: sleeping function called from invalid context at %s:%d\n",
6882 file, line);
6883 printk(KERN_ERR
6884 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6885 in_atomic(), irqs_disabled(), current->non_block_count,
6886 current->pid, current->comm);
6888 if (task_stack_end_corrupted(current))
6889 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6891 debug_show_held_locks(current);
6892 if (irqs_disabled())
6893 print_irqtrace_events(current);
6894 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6895 && !preempt_count_equals(preempt_offset)) {
6896 pr_err("Preemption disabled at:");
6897 print_ip_sym(KERN_ERR, preempt_disable_ip);
6899 dump_stack();
6900 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6902 EXPORT_SYMBOL(___might_sleep);
6904 void __cant_sleep(const char *file, int line, int preempt_offset)
6906 static unsigned long prev_jiffy;
6908 if (irqs_disabled())
6909 return;
6911 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6912 return;
6914 if (preempt_count() > preempt_offset)
6915 return;
6917 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6918 return;
6919 prev_jiffy = jiffies;
6921 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6922 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6923 in_atomic(), irqs_disabled(),
6924 current->pid, current->comm);
6926 debug_show_held_locks(current);
6927 dump_stack();
6928 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6930 EXPORT_SYMBOL_GPL(__cant_sleep);
6931 #endif
6933 #ifdef CONFIG_MAGIC_SYSRQ
6934 void normalize_rt_tasks(void)
6936 struct task_struct *g, *p;
6937 struct sched_attr attr = {
6938 .sched_policy = SCHED_NORMAL,
6941 read_lock(&tasklist_lock);
6942 for_each_process_thread(g, p) {
6944 * Only normalize user tasks:
6946 if (p->flags & PF_KTHREAD)
6947 continue;
6949 p->se.exec_start = 0;
6950 schedstat_set(p->se.statistics.wait_start, 0);
6951 schedstat_set(p->se.statistics.sleep_start, 0);
6952 schedstat_set(p->se.statistics.block_start, 0);
6954 if (!dl_task(p) && !rt_task(p)) {
6956 * Renice negative nice level userspace
6957 * tasks back to 0:
6959 if (task_nice(p) < 0)
6960 set_user_nice(p, 0);
6961 continue;
6964 __sched_setscheduler(p, &attr, false, false);
6966 read_unlock(&tasklist_lock);
6969 #endif /* CONFIG_MAGIC_SYSRQ */
6971 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6973 * These functions are only useful for the IA64 MCA handling, or kdb.
6975 * They can only be called when the whole system has been
6976 * stopped - every CPU needs to be quiescent, and no scheduling
6977 * activity can take place. Using them for anything else would
6978 * be a serious bug, and as a result, they aren't even visible
6979 * under any other configuration.
6983 * curr_task - return the current task for a given CPU.
6984 * @cpu: the processor in question.
6986 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6988 * Return: The current task for @cpu.
6990 struct task_struct *curr_task(int cpu)
6992 return cpu_curr(cpu);
6995 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6997 #ifdef CONFIG_IA64
6999 * ia64_set_curr_task - set the current task for a given CPU.
7000 * @cpu: the processor in question.
7001 * @p: the task pointer to set.
7003 * Description: This function must only be used when non-maskable interrupts
7004 * are serviced on a separate stack. It allows the architecture to switch the
7005 * notion of the current task on a CPU in a non-blocking manner. This function
7006 * must be called with all CPU's synchronized, and interrupts disabled, the
7007 * and caller must save the original value of the current task (see
7008 * curr_task() above) and restore that value before reenabling interrupts and
7009 * re-starting the system.
7011 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7013 void ia64_set_curr_task(int cpu, struct task_struct *p)
7015 cpu_curr(cpu) = p;
7018 #endif
7020 #ifdef CONFIG_CGROUP_SCHED
7021 /* task_group_lock serializes the addition/removal of task groups */
7022 static DEFINE_SPINLOCK(task_group_lock);
7024 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7025 struct task_group *parent)
7027 #ifdef CONFIG_UCLAMP_TASK_GROUP
7028 enum uclamp_id clamp_id;
7030 for_each_clamp_id(clamp_id) {
7031 uclamp_se_set(&tg->uclamp_req[clamp_id],
7032 uclamp_none(clamp_id), false);
7033 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7035 #endif
7038 static void sched_free_group(struct task_group *tg)
7040 free_fair_sched_group(tg);
7041 free_rt_sched_group(tg);
7042 autogroup_free(tg);
7043 kmem_cache_free(task_group_cache, tg);
7046 /* allocate runqueue etc for a new task group */
7047 struct task_group *sched_create_group(struct task_group *parent)
7049 struct task_group *tg;
7051 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7052 if (!tg)
7053 return ERR_PTR(-ENOMEM);
7055 if (!alloc_fair_sched_group(tg, parent))
7056 goto err;
7058 if (!alloc_rt_sched_group(tg, parent))
7059 goto err;
7061 alloc_uclamp_sched_group(tg, parent);
7063 return tg;
7065 err:
7066 sched_free_group(tg);
7067 return ERR_PTR(-ENOMEM);
7070 void sched_online_group(struct task_group *tg, struct task_group *parent)
7072 unsigned long flags;
7074 spin_lock_irqsave(&task_group_lock, flags);
7075 list_add_rcu(&tg->list, &task_groups);
7077 /* Root should already exist: */
7078 WARN_ON(!parent);
7080 tg->parent = parent;
7081 INIT_LIST_HEAD(&tg->children);
7082 list_add_rcu(&tg->siblings, &parent->children);
7083 spin_unlock_irqrestore(&task_group_lock, flags);
7085 online_fair_sched_group(tg);
7088 /* rcu callback to free various structures associated with a task group */
7089 static void sched_free_group_rcu(struct rcu_head *rhp)
7091 /* Now it should be safe to free those cfs_rqs: */
7092 sched_free_group(container_of(rhp, struct task_group, rcu));
7095 void sched_destroy_group(struct task_group *tg)
7097 /* Wait for possible concurrent references to cfs_rqs complete: */
7098 call_rcu(&tg->rcu, sched_free_group_rcu);
7101 void sched_offline_group(struct task_group *tg)
7103 unsigned long flags;
7105 /* End participation in shares distribution: */
7106 unregister_fair_sched_group(tg);
7108 spin_lock_irqsave(&task_group_lock, flags);
7109 list_del_rcu(&tg->list);
7110 list_del_rcu(&tg->siblings);
7111 spin_unlock_irqrestore(&task_group_lock, flags);
7114 static void sched_change_group(struct task_struct *tsk, int type)
7116 struct task_group *tg;
7119 * All callers are synchronized by task_rq_lock(); we do not use RCU
7120 * which is pointless here. Thus, we pass "true" to task_css_check()
7121 * to prevent lockdep warnings.
7123 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7124 struct task_group, css);
7125 tg = autogroup_task_group(tsk, tg);
7126 tsk->sched_task_group = tg;
7128 #ifdef CONFIG_FAIR_GROUP_SCHED
7129 if (tsk->sched_class->task_change_group)
7130 tsk->sched_class->task_change_group(tsk, type);
7131 else
7132 #endif
7133 set_task_rq(tsk, task_cpu(tsk));
7137 * Change task's runqueue when it moves between groups.
7139 * The caller of this function should have put the task in its new group by
7140 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7141 * its new group.
7143 void sched_move_task(struct task_struct *tsk)
7145 int queued, running, queue_flags =
7146 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7147 struct rq_flags rf;
7148 struct rq *rq;
7150 rq = task_rq_lock(tsk, &rf);
7151 update_rq_clock(rq);
7153 running = task_current(rq, tsk);
7154 queued = task_on_rq_queued(tsk);
7156 if (queued)
7157 dequeue_task(rq, tsk, queue_flags);
7158 if (running)
7159 put_prev_task(rq, tsk);
7161 sched_change_group(tsk, TASK_MOVE_GROUP);
7163 if (queued)
7164 enqueue_task(rq, tsk, queue_flags);
7165 if (running) {
7166 set_next_task(rq, tsk);
7168 * After changing group, the running task may have joined a
7169 * throttled one but it's still the running task. Trigger a
7170 * resched to make sure that task can still run.
7172 resched_curr(rq);
7175 task_rq_unlock(rq, tsk, &rf);
7178 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7180 return css ? container_of(css, struct task_group, css) : NULL;
7183 static struct cgroup_subsys_state *
7184 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7186 struct task_group *parent = css_tg(parent_css);
7187 struct task_group *tg;
7189 if (!parent) {
7190 /* This is early initialization for the top cgroup */
7191 return &root_task_group.css;
7194 tg = sched_create_group(parent);
7195 if (IS_ERR(tg))
7196 return ERR_PTR(-ENOMEM);
7198 return &tg->css;
7201 /* Expose task group only after completing cgroup initialization */
7202 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7204 struct task_group *tg = css_tg(css);
7205 struct task_group *parent = css_tg(css->parent);
7207 if (parent)
7208 sched_online_group(tg, parent);
7210 #ifdef CONFIG_UCLAMP_TASK_GROUP
7211 /* Propagate the effective uclamp value for the new group */
7212 cpu_util_update_eff(css);
7213 #endif
7215 return 0;
7218 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7220 struct task_group *tg = css_tg(css);
7222 sched_offline_group(tg);
7225 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7227 struct task_group *tg = css_tg(css);
7230 * Relies on the RCU grace period between css_released() and this.
7232 sched_free_group(tg);
7236 * This is called before wake_up_new_task(), therefore we really only
7237 * have to set its group bits, all the other stuff does not apply.
7239 static void cpu_cgroup_fork(struct task_struct *task)
7241 struct rq_flags rf;
7242 struct rq *rq;
7244 rq = task_rq_lock(task, &rf);
7246 update_rq_clock(rq);
7247 sched_change_group(task, TASK_SET_GROUP);
7249 task_rq_unlock(rq, task, &rf);
7252 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7254 struct task_struct *task;
7255 struct cgroup_subsys_state *css;
7256 int ret = 0;
7258 cgroup_taskset_for_each(task, css, tset) {
7259 #ifdef CONFIG_RT_GROUP_SCHED
7260 if (!sched_rt_can_attach(css_tg(css), task))
7261 return -EINVAL;
7262 #endif
7264 * Serialize against wake_up_new_task() such that if its
7265 * running, we're sure to observe its full state.
7267 raw_spin_lock_irq(&task->pi_lock);
7269 * Avoid calling sched_move_task() before wake_up_new_task()
7270 * has happened. This would lead to problems with PELT, due to
7271 * move wanting to detach+attach while we're not attached yet.
7273 if (task->state == TASK_NEW)
7274 ret = -EINVAL;
7275 raw_spin_unlock_irq(&task->pi_lock);
7277 if (ret)
7278 break;
7280 return ret;
7283 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7285 struct task_struct *task;
7286 struct cgroup_subsys_state *css;
7288 cgroup_taskset_for_each(task, css, tset)
7289 sched_move_task(task);
7292 #ifdef CONFIG_UCLAMP_TASK_GROUP
7293 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7295 struct cgroup_subsys_state *top_css = css;
7296 struct uclamp_se *uc_parent = NULL;
7297 struct uclamp_se *uc_se = NULL;
7298 unsigned int eff[UCLAMP_CNT];
7299 enum uclamp_id clamp_id;
7300 unsigned int clamps;
7302 css_for_each_descendant_pre(css, top_css) {
7303 uc_parent = css_tg(css)->parent
7304 ? css_tg(css)->parent->uclamp : NULL;
7306 for_each_clamp_id(clamp_id) {
7307 /* Assume effective clamps matches requested clamps */
7308 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7309 /* Cap effective clamps with parent's effective clamps */
7310 if (uc_parent &&
7311 eff[clamp_id] > uc_parent[clamp_id].value) {
7312 eff[clamp_id] = uc_parent[clamp_id].value;
7315 /* Ensure protection is always capped by limit */
7316 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7318 /* Propagate most restrictive effective clamps */
7319 clamps = 0x0;
7320 uc_se = css_tg(css)->uclamp;
7321 for_each_clamp_id(clamp_id) {
7322 if (eff[clamp_id] == uc_se[clamp_id].value)
7323 continue;
7324 uc_se[clamp_id].value = eff[clamp_id];
7325 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7326 clamps |= (0x1 << clamp_id);
7328 if (!clamps) {
7329 css = css_rightmost_descendant(css);
7330 continue;
7333 /* Immediately update descendants RUNNABLE tasks */
7334 uclamp_update_active_tasks(css, clamps);
7339 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7340 * C expression. Since there is no way to convert a macro argument (N) into a
7341 * character constant, use two levels of macros.
7343 #define _POW10(exp) ((unsigned int)1e##exp)
7344 #define POW10(exp) _POW10(exp)
7346 struct uclamp_request {
7347 #define UCLAMP_PERCENT_SHIFT 2
7348 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7349 s64 percent;
7350 u64 util;
7351 int ret;
7354 static inline struct uclamp_request
7355 capacity_from_percent(char *buf)
7357 struct uclamp_request req = {
7358 .percent = UCLAMP_PERCENT_SCALE,
7359 .util = SCHED_CAPACITY_SCALE,
7360 .ret = 0,
7363 buf = strim(buf);
7364 if (strcmp(buf, "max")) {
7365 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7366 &req.percent);
7367 if (req.ret)
7368 return req;
7369 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7370 req.ret = -ERANGE;
7371 return req;
7374 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7375 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7378 return req;
7381 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7382 size_t nbytes, loff_t off,
7383 enum uclamp_id clamp_id)
7385 struct uclamp_request req;
7386 struct task_group *tg;
7388 req = capacity_from_percent(buf);
7389 if (req.ret)
7390 return req.ret;
7392 mutex_lock(&uclamp_mutex);
7393 rcu_read_lock();
7395 tg = css_tg(of_css(of));
7396 if (tg->uclamp_req[clamp_id].value != req.util)
7397 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7400 * Because of not recoverable conversion rounding we keep track of the
7401 * exact requested value
7403 tg->uclamp_pct[clamp_id] = req.percent;
7405 /* Update effective clamps to track the most restrictive value */
7406 cpu_util_update_eff(of_css(of));
7408 rcu_read_unlock();
7409 mutex_unlock(&uclamp_mutex);
7411 return nbytes;
7414 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7415 char *buf, size_t nbytes,
7416 loff_t off)
7418 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7421 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7422 char *buf, size_t nbytes,
7423 loff_t off)
7425 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7428 static inline void cpu_uclamp_print(struct seq_file *sf,
7429 enum uclamp_id clamp_id)
7431 struct task_group *tg;
7432 u64 util_clamp;
7433 u64 percent;
7434 u32 rem;
7436 rcu_read_lock();
7437 tg = css_tg(seq_css(sf));
7438 util_clamp = tg->uclamp_req[clamp_id].value;
7439 rcu_read_unlock();
7441 if (util_clamp == SCHED_CAPACITY_SCALE) {
7442 seq_puts(sf, "max\n");
7443 return;
7446 percent = tg->uclamp_pct[clamp_id];
7447 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7448 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7451 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7453 cpu_uclamp_print(sf, UCLAMP_MIN);
7454 return 0;
7457 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7459 cpu_uclamp_print(sf, UCLAMP_MAX);
7460 return 0;
7462 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7464 #ifdef CONFIG_FAIR_GROUP_SCHED
7465 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7466 struct cftype *cftype, u64 shareval)
7468 if (shareval > scale_load_down(ULONG_MAX))
7469 shareval = MAX_SHARES;
7470 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7473 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7474 struct cftype *cft)
7476 struct task_group *tg = css_tg(css);
7478 return (u64) scale_load_down(tg->shares);
7481 #ifdef CONFIG_CFS_BANDWIDTH
7482 static DEFINE_MUTEX(cfs_constraints_mutex);
7484 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7485 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7486 /* More than 203 days if BW_SHIFT equals 20. */
7487 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7489 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7491 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7493 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7494 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7496 if (tg == &root_task_group)
7497 return -EINVAL;
7500 * Ensure we have at some amount of bandwidth every period. This is
7501 * to prevent reaching a state of large arrears when throttled via
7502 * entity_tick() resulting in prolonged exit starvation.
7504 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7505 return -EINVAL;
7508 * Likewise, bound things on the otherside by preventing insane quota
7509 * periods. This also allows us to normalize in computing quota
7510 * feasibility.
7512 if (period > max_cfs_quota_period)
7513 return -EINVAL;
7516 * Bound quota to defend quota against overflow during bandwidth shift.
7518 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7519 return -EINVAL;
7522 * Prevent race between setting of cfs_rq->runtime_enabled and
7523 * unthrottle_offline_cfs_rqs().
7525 get_online_cpus();
7526 mutex_lock(&cfs_constraints_mutex);
7527 ret = __cfs_schedulable(tg, period, quota);
7528 if (ret)
7529 goto out_unlock;
7531 runtime_enabled = quota != RUNTIME_INF;
7532 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7534 * If we need to toggle cfs_bandwidth_used, off->on must occur
7535 * before making related changes, and on->off must occur afterwards
7537 if (runtime_enabled && !runtime_was_enabled)
7538 cfs_bandwidth_usage_inc();
7539 raw_spin_lock_irq(&cfs_b->lock);
7540 cfs_b->period = ns_to_ktime(period);
7541 cfs_b->quota = quota;
7543 __refill_cfs_bandwidth_runtime(cfs_b);
7545 /* Restart the period timer (if active) to handle new period expiry: */
7546 if (runtime_enabled)
7547 start_cfs_bandwidth(cfs_b);
7549 raw_spin_unlock_irq(&cfs_b->lock);
7551 for_each_online_cpu(i) {
7552 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7553 struct rq *rq = cfs_rq->rq;
7554 struct rq_flags rf;
7556 rq_lock_irq(rq, &rf);
7557 cfs_rq->runtime_enabled = runtime_enabled;
7558 cfs_rq->runtime_remaining = 0;
7560 if (cfs_rq->throttled)
7561 unthrottle_cfs_rq(cfs_rq);
7562 rq_unlock_irq(rq, &rf);
7564 if (runtime_was_enabled && !runtime_enabled)
7565 cfs_bandwidth_usage_dec();
7566 out_unlock:
7567 mutex_unlock(&cfs_constraints_mutex);
7568 put_online_cpus();
7570 return ret;
7573 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7575 u64 quota, period;
7577 period = ktime_to_ns(tg->cfs_bandwidth.period);
7578 if (cfs_quota_us < 0)
7579 quota = RUNTIME_INF;
7580 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7581 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7582 else
7583 return -EINVAL;
7585 return tg_set_cfs_bandwidth(tg, period, quota);
7588 static long tg_get_cfs_quota(struct task_group *tg)
7590 u64 quota_us;
7592 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7593 return -1;
7595 quota_us = tg->cfs_bandwidth.quota;
7596 do_div(quota_us, NSEC_PER_USEC);
7598 return quota_us;
7601 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7603 u64 quota, period;
7605 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7606 return -EINVAL;
7608 period = (u64)cfs_period_us * NSEC_PER_USEC;
7609 quota = tg->cfs_bandwidth.quota;
7611 return tg_set_cfs_bandwidth(tg, period, quota);
7614 static long tg_get_cfs_period(struct task_group *tg)
7616 u64 cfs_period_us;
7618 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7619 do_div(cfs_period_us, NSEC_PER_USEC);
7621 return cfs_period_us;
7624 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7625 struct cftype *cft)
7627 return tg_get_cfs_quota(css_tg(css));
7630 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7631 struct cftype *cftype, s64 cfs_quota_us)
7633 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7636 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7637 struct cftype *cft)
7639 return tg_get_cfs_period(css_tg(css));
7642 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7643 struct cftype *cftype, u64 cfs_period_us)
7645 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7648 struct cfs_schedulable_data {
7649 struct task_group *tg;
7650 u64 period, quota;
7654 * normalize group quota/period to be quota/max_period
7655 * note: units are usecs
7657 static u64 normalize_cfs_quota(struct task_group *tg,
7658 struct cfs_schedulable_data *d)
7660 u64 quota, period;
7662 if (tg == d->tg) {
7663 period = d->period;
7664 quota = d->quota;
7665 } else {
7666 period = tg_get_cfs_period(tg);
7667 quota = tg_get_cfs_quota(tg);
7670 /* note: these should typically be equivalent */
7671 if (quota == RUNTIME_INF || quota == -1)
7672 return RUNTIME_INF;
7674 return to_ratio(period, quota);
7677 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7679 struct cfs_schedulable_data *d = data;
7680 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7681 s64 quota = 0, parent_quota = -1;
7683 if (!tg->parent) {
7684 quota = RUNTIME_INF;
7685 } else {
7686 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7688 quota = normalize_cfs_quota(tg, d);
7689 parent_quota = parent_b->hierarchical_quota;
7692 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7693 * always take the min. On cgroup1, only inherit when no
7694 * limit is set:
7696 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7697 quota = min(quota, parent_quota);
7698 } else {
7699 if (quota == RUNTIME_INF)
7700 quota = parent_quota;
7701 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7702 return -EINVAL;
7705 cfs_b->hierarchical_quota = quota;
7707 return 0;
7710 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7712 int ret;
7713 struct cfs_schedulable_data data = {
7714 .tg = tg,
7715 .period = period,
7716 .quota = quota,
7719 if (quota != RUNTIME_INF) {
7720 do_div(data.period, NSEC_PER_USEC);
7721 do_div(data.quota, NSEC_PER_USEC);
7724 rcu_read_lock();
7725 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7726 rcu_read_unlock();
7728 return ret;
7731 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7733 struct task_group *tg = css_tg(seq_css(sf));
7734 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7736 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7737 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7738 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7740 if (schedstat_enabled() && tg != &root_task_group) {
7741 u64 ws = 0;
7742 int i;
7744 for_each_possible_cpu(i)
7745 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7747 seq_printf(sf, "wait_sum %llu\n", ws);
7750 return 0;
7752 #endif /* CONFIG_CFS_BANDWIDTH */
7753 #endif /* CONFIG_FAIR_GROUP_SCHED */
7755 #ifdef CONFIG_RT_GROUP_SCHED
7756 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7757 struct cftype *cft, s64 val)
7759 return sched_group_set_rt_runtime(css_tg(css), val);
7762 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7763 struct cftype *cft)
7765 return sched_group_rt_runtime(css_tg(css));
7768 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7769 struct cftype *cftype, u64 rt_period_us)
7771 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7774 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7775 struct cftype *cft)
7777 return sched_group_rt_period(css_tg(css));
7779 #endif /* CONFIG_RT_GROUP_SCHED */
7781 static struct cftype cpu_legacy_files[] = {
7782 #ifdef CONFIG_FAIR_GROUP_SCHED
7784 .name = "shares",
7785 .read_u64 = cpu_shares_read_u64,
7786 .write_u64 = cpu_shares_write_u64,
7788 #endif
7789 #ifdef CONFIG_CFS_BANDWIDTH
7791 .name = "cfs_quota_us",
7792 .read_s64 = cpu_cfs_quota_read_s64,
7793 .write_s64 = cpu_cfs_quota_write_s64,
7796 .name = "cfs_period_us",
7797 .read_u64 = cpu_cfs_period_read_u64,
7798 .write_u64 = cpu_cfs_period_write_u64,
7801 .name = "stat",
7802 .seq_show = cpu_cfs_stat_show,
7804 #endif
7805 #ifdef CONFIG_RT_GROUP_SCHED
7807 .name = "rt_runtime_us",
7808 .read_s64 = cpu_rt_runtime_read,
7809 .write_s64 = cpu_rt_runtime_write,
7812 .name = "rt_period_us",
7813 .read_u64 = cpu_rt_period_read_uint,
7814 .write_u64 = cpu_rt_period_write_uint,
7816 #endif
7817 #ifdef CONFIG_UCLAMP_TASK_GROUP
7819 .name = "uclamp.min",
7820 .flags = CFTYPE_NOT_ON_ROOT,
7821 .seq_show = cpu_uclamp_min_show,
7822 .write = cpu_uclamp_min_write,
7825 .name = "uclamp.max",
7826 .flags = CFTYPE_NOT_ON_ROOT,
7827 .seq_show = cpu_uclamp_max_show,
7828 .write = cpu_uclamp_max_write,
7830 #endif
7831 { } /* Terminate */
7834 static int cpu_extra_stat_show(struct seq_file *sf,
7835 struct cgroup_subsys_state *css)
7837 #ifdef CONFIG_CFS_BANDWIDTH
7839 struct task_group *tg = css_tg(css);
7840 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7841 u64 throttled_usec;
7843 throttled_usec = cfs_b->throttled_time;
7844 do_div(throttled_usec, NSEC_PER_USEC);
7846 seq_printf(sf, "nr_periods %d\n"
7847 "nr_throttled %d\n"
7848 "throttled_usec %llu\n",
7849 cfs_b->nr_periods, cfs_b->nr_throttled,
7850 throttled_usec);
7852 #endif
7853 return 0;
7856 #ifdef CONFIG_FAIR_GROUP_SCHED
7857 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7858 struct cftype *cft)
7860 struct task_group *tg = css_tg(css);
7861 u64 weight = scale_load_down(tg->shares);
7863 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7866 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7867 struct cftype *cft, u64 weight)
7870 * cgroup weight knobs should use the common MIN, DFL and MAX
7871 * values which are 1, 100 and 10000 respectively. While it loses
7872 * a bit of range on both ends, it maps pretty well onto the shares
7873 * value used by scheduler and the round-trip conversions preserve
7874 * the original value over the entire range.
7876 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7877 return -ERANGE;
7879 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7881 return sched_group_set_shares(css_tg(css), scale_load(weight));
7884 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7885 struct cftype *cft)
7887 unsigned long weight = scale_load_down(css_tg(css)->shares);
7888 int last_delta = INT_MAX;
7889 int prio, delta;
7891 /* find the closest nice value to the current weight */
7892 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7893 delta = abs(sched_prio_to_weight[prio] - weight);
7894 if (delta >= last_delta)
7895 break;
7896 last_delta = delta;
7899 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7902 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7903 struct cftype *cft, s64 nice)
7905 unsigned long weight;
7906 int idx;
7908 if (nice < MIN_NICE || nice > MAX_NICE)
7909 return -ERANGE;
7911 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7912 idx = array_index_nospec(idx, 40);
7913 weight = sched_prio_to_weight[idx];
7915 return sched_group_set_shares(css_tg(css), scale_load(weight));
7917 #endif
7919 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7920 long period, long quota)
7922 if (quota < 0)
7923 seq_puts(sf, "max");
7924 else
7925 seq_printf(sf, "%ld", quota);
7927 seq_printf(sf, " %ld\n", period);
7930 /* caller should put the current value in *@periodp before calling */
7931 static int __maybe_unused cpu_period_quota_parse(char *buf,
7932 u64 *periodp, u64 *quotap)
7934 char tok[21]; /* U64_MAX */
7936 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7937 return -EINVAL;
7939 *periodp *= NSEC_PER_USEC;
7941 if (sscanf(tok, "%llu", quotap))
7942 *quotap *= NSEC_PER_USEC;
7943 else if (!strcmp(tok, "max"))
7944 *quotap = RUNTIME_INF;
7945 else
7946 return -EINVAL;
7948 return 0;
7951 #ifdef CONFIG_CFS_BANDWIDTH
7952 static int cpu_max_show(struct seq_file *sf, void *v)
7954 struct task_group *tg = css_tg(seq_css(sf));
7956 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7957 return 0;
7960 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7961 char *buf, size_t nbytes, loff_t off)
7963 struct task_group *tg = css_tg(of_css(of));
7964 u64 period = tg_get_cfs_period(tg);
7965 u64 quota;
7966 int ret;
7968 ret = cpu_period_quota_parse(buf, &period, &quota);
7969 if (!ret)
7970 ret = tg_set_cfs_bandwidth(tg, period, quota);
7971 return ret ?: nbytes;
7973 #endif
7975 static struct cftype cpu_files[] = {
7976 #ifdef CONFIG_FAIR_GROUP_SCHED
7978 .name = "weight",
7979 .flags = CFTYPE_NOT_ON_ROOT,
7980 .read_u64 = cpu_weight_read_u64,
7981 .write_u64 = cpu_weight_write_u64,
7984 .name = "weight.nice",
7985 .flags = CFTYPE_NOT_ON_ROOT,
7986 .read_s64 = cpu_weight_nice_read_s64,
7987 .write_s64 = cpu_weight_nice_write_s64,
7989 #endif
7990 #ifdef CONFIG_CFS_BANDWIDTH
7992 .name = "max",
7993 .flags = CFTYPE_NOT_ON_ROOT,
7994 .seq_show = cpu_max_show,
7995 .write = cpu_max_write,
7997 #endif
7998 #ifdef CONFIG_UCLAMP_TASK_GROUP
8000 .name = "uclamp.min",
8001 .flags = CFTYPE_NOT_ON_ROOT,
8002 .seq_show = cpu_uclamp_min_show,
8003 .write = cpu_uclamp_min_write,
8006 .name = "uclamp.max",
8007 .flags = CFTYPE_NOT_ON_ROOT,
8008 .seq_show = cpu_uclamp_max_show,
8009 .write = cpu_uclamp_max_write,
8011 #endif
8012 { } /* terminate */
8015 struct cgroup_subsys cpu_cgrp_subsys = {
8016 .css_alloc = cpu_cgroup_css_alloc,
8017 .css_online = cpu_cgroup_css_online,
8018 .css_released = cpu_cgroup_css_released,
8019 .css_free = cpu_cgroup_css_free,
8020 .css_extra_stat_show = cpu_extra_stat_show,
8021 .fork = cpu_cgroup_fork,
8022 .can_attach = cpu_cgroup_can_attach,
8023 .attach = cpu_cgroup_attach,
8024 .legacy_cftypes = cpu_legacy_files,
8025 .dfl_cftypes = cpu_files,
8026 .early_init = true,
8027 .threaded = true,
8030 #endif /* CONFIG_CGROUP_SCHED */
8032 void dump_cpu_task(int cpu)
8034 pr_info("Task dump for CPU %d:\n", cpu);
8035 sched_show_task(cpu_curr(cpu));
8039 * Nice levels are multiplicative, with a gentle 10% change for every
8040 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8041 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8042 * that remained on nice 0.
8044 * The "10% effect" is relative and cumulative: from _any_ nice level,
8045 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8046 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8047 * If a task goes up by ~10% and another task goes down by ~10% then
8048 * the relative distance between them is ~25%.)
8050 const int sched_prio_to_weight[40] = {
8051 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8052 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8053 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8054 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8055 /* 0 */ 1024, 820, 655, 526, 423,
8056 /* 5 */ 335, 272, 215, 172, 137,
8057 /* 10 */ 110, 87, 70, 56, 45,
8058 /* 15 */ 36, 29, 23, 18, 15,
8062 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8064 * In cases where the weight does not change often, we can use the
8065 * precalculated inverse to speed up arithmetics by turning divisions
8066 * into multiplications:
8068 const u32 sched_prio_to_wmult[40] = {
8069 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8070 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8071 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8072 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8073 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8074 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8075 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8076 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8079 #undef CREATE_TRACE_POINTS