1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency
= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity
= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency
= 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly
;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
87 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
89 int sched_thermal_decay_shift
;
90 static int __init
setup_sched_thermal_decay_shift(char *str
)
94 if (kstrtoint(str
, 0, &_shift
))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
97 sched_thermal_decay_shift
= clamp(_shift
, 0, 10);
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift
);
104 * For asym packing, by default the lower numbered CPU has higher priority.
106 int __weak
arch_asym_cpu_priority(int cpu
)
112 * The margin used when comparing utilization with CPU capacity.
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
120 #ifdef CONFIG_CFS_BANDWIDTH
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
129 * (default: 5 msec, units: microseconds)
131 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
134 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
140 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
146 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
159 * This idea comes from the SD scheduler of Con Kolivas:
161 static unsigned int get_update_sysctl_factor(void)
163 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
166 switch (sysctl_sched_tunable_scaling
) {
167 case SCHED_TUNABLESCALING_NONE
:
170 case SCHED_TUNABLESCALING_LINEAR
:
173 case SCHED_TUNABLESCALING_LOG
:
175 factor
= 1 + ilog2(cpus
);
182 static void update_sysctl(void)
184 unsigned int factor
= get_update_sysctl_factor();
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity
);
189 SET_SYSCTL(sched_latency
);
190 SET_SYSCTL(sched_wakeup_granularity
);
194 void __init
sched_init_granularity(void)
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
202 static void __update_inv_weight(struct load_weight
*lw
)
206 if (likely(lw
->inv_weight
))
209 w
= scale_load_down(lw
->weight
);
211 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
213 else if (unlikely(!w
))
214 lw
->inv_weight
= WMULT_CONST
;
216 lw
->inv_weight
= WMULT_CONST
/ w
;
220 * delta_exec * weight / lw.weight
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
231 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
233 u64 fact
= scale_load_down(weight
);
234 int shift
= WMULT_SHIFT
;
236 __update_inv_weight(lw
);
238 if (unlikely(fact
>> 32)) {
245 fact
= mul_u32_u32(fact
, lw
->inv_weight
);
252 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
256 const struct sched_class fair_sched_class
;
258 /**************************************************************
259 * CFS operations on generic schedulable entities:
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct
*task_of(struct sched_entity
*se
)
265 SCHED_WARN_ON(!entity_is_task(se
));
266 return container_of(se
, struct task_struct
, se
);
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
273 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
290 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
295 if (cfs_rq
&& task_group_is_autogroup(cfs_rq
->tg
))
296 autogroup_path(cfs_rq
->tg
, path
, len
);
297 else if (cfs_rq
&& cfs_rq
->tg
->css
.cgroup
)
298 cgroup_path(cfs_rq
->tg
->css
.cgroup
, path
, len
);
300 strlcpy(path
, "(null)", len
);
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
305 struct rq
*rq
= rq_of(cfs_rq
);
306 int cpu
= cpu_of(rq
);
309 return rq
->tmp_alone_branch
== &rq
->leaf_cfs_rq_list
;
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
322 if (cfs_rq
->tg
->parent
&&
323 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
330 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
331 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
337 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
341 if (!cfs_rq
->tg
->parent
) {
343 * cfs rq without parent should be put
344 * at the tail of the list.
346 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
347 &rq
->leaf_cfs_rq_list
);
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
352 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
362 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, rq
->tmp_alone_branch
);
364 * update tmp_alone_branch to points to the new begin
367 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
373 if (cfs_rq
->on_list
) {
374 struct rq
*rq
= rq_of(cfs_rq
);
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
383 if (rq
->tmp_alone_branch
== &cfs_rq
->leaf_cfs_rq_list
)
384 rq
->tmp_alone_branch
= cfs_rq
->leaf_cfs_rq_list
.prev
;
386 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
391 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
393 SCHED_WARN_ON(rq
->tmp_alone_branch
!= &rq
->leaf_cfs_rq_list
);
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq
*
403 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
405 if (se
->cfs_rq
== pse
->cfs_rq
)
411 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
417 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
419 int se_depth
, pse_depth
;
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
428 /* First walk up until both entities are at same depth */
429 se_depth
= (*se
)->depth
;
430 pse_depth
= (*pse
)->depth
;
432 while (se_depth
> pse_depth
) {
434 *se
= parent_entity(*se
);
437 while (pse_depth
> se_depth
) {
439 *pse
= parent_entity(*pse
);
442 while (!is_same_group(*se
, *pse
)) {
443 *se
= parent_entity(*se
);
444 *pse
= parent_entity(*pse
);
448 #else /* !CONFIG_FAIR_GROUP_SCHED */
450 static inline struct task_struct
*task_of(struct sched_entity
*se
)
452 return container_of(se
, struct task_struct
, se
);
455 #define for_each_sched_entity(se) \
456 for (; se; se = NULL)
458 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
460 return &task_rq(p
)->cfs
;
463 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
465 struct task_struct
*p
= task_of(se
);
466 struct rq
*rq
= task_rq(p
);
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
477 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
480 strlcpy(path
, "(null)", len
);
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
492 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
499 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
505 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
514 /**************************************************************
515 * Scheduling class tree data structure manipulation methods:
518 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
520 s64 delta
= (s64
)(vruntime
- max_vruntime
);
522 max_vruntime
= vruntime
;
527 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
529 s64 delta
= (s64
)(vruntime
- min_vruntime
);
531 min_vruntime
= vruntime
;
536 static inline int entity_before(struct sched_entity
*a
,
537 struct sched_entity
*b
)
539 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
542 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
544 struct sched_entity
*curr
= cfs_rq
->curr
;
545 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
547 u64 vruntime
= cfs_rq
->min_vruntime
;
551 vruntime
= curr
->vruntime
;
556 if (leftmost
) { /* non-empty tree */
557 struct sched_entity
*se
;
558 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
561 vruntime
= se
->vruntime
;
563 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
566 /* ensure we never gain time by being placed backwards. */
567 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
570 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
575 * Enqueue an entity into the rb-tree:
577 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
579 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
580 struct rb_node
*parent
= NULL
;
581 struct sched_entity
*entry
;
582 bool leftmost
= true;
585 * Find the right place in the rbtree:
589 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
594 if (entity_before(se
, entry
)) {
595 link
= &parent
->rb_left
;
597 link
= &parent
->rb_right
;
602 rb_link_node(&se
->run_node
, parent
, link
);
603 rb_insert_color_cached(&se
->run_node
,
604 &cfs_rq
->tasks_timeline
, leftmost
);
607 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
609 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
612 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
614 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
619 return rb_entry(left
, struct sched_entity
, run_node
);
622 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
624 struct rb_node
*next
= rb_next(&se
->run_node
);
629 return rb_entry(next
, struct sched_entity
, run_node
);
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
635 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
640 return rb_entry(last
, struct sched_entity
, run_node
);
643 /**************************************************************
644 * Scheduling class statistics methods:
647 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
648 void *buffer
, size_t *lenp
, loff_t
*ppos
)
650 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
651 unsigned int factor
= get_update_sysctl_factor();
656 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
657 sysctl_sched_min_granularity
);
659 #define WRT_SYSCTL(name) \
660 (normalized_sysctl_##name = sysctl_##name / (factor))
661 WRT_SYSCTL(sched_min_granularity
);
662 WRT_SYSCTL(sched_latency
);
663 WRT_SYSCTL(sched_wakeup_granularity
);
673 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
675 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
676 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
682 * The idea is to set a period in which each task runs once.
684 * When there are too many tasks (sched_nr_latency) we have to stretch
685 * this period because otherwise the slices get too small.
687 * p = (nr <= nl) ? l : l*nr/nl
689 static u64
__sched_period(unsigned long nr_running
)
691 if (unlikely(nr_running
> sched_nr_latency
))
692 return nr_running
* sysctl_sched_min_granularity
;
694 return sysctl_sched_latency
;
698 * We calculate the wall-time slice from the period by taking a part
699 * proportional to the weight.
703 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
705 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
707 for_each_sched_entity(se
) {
708 struct load_weight
*load
;
709 struct load_weight lw
;
711 cfs_rq
= cfs_rq_of(se
);
712 load
= &cfs_rq
->load
;
714 if (unlikely(!se
->on_rq
)) {
717 update_load_add(&lw
, se
->load
.weight
);
720 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
726 * We calculate the vruntime slice of a to-be-inserted task.
730 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
732 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
738 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
739 static unsigned long task_h_load(struct task_struct
*p
);
740 static unsigned long capacity_of(int cpu
);
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity
*se
)
745 struct sched_avg
*sa
= &se
->avg
;
747 memset(sa
, 0, sizeof(*sa
));
750 * Tasks are initialized with full load to be seen as heavy tasks until
751 * they get a chance to stabilize to their real load level.
752 * Group entities are initialized with zero load to reflect the fact that
753 * nothing has been attached to the task group yet.
755 if (entity_is_task(se
))
756 sa
->load_avg
= scale_load_down(se
->load
.weight
);
758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
761 static void attach_entity_cfs_rq(struct sched_entity
*se
);
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
778 * where n denotes the nth task and cpu_scale the CPU capacity.
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
789 void post_init_entity_util_avg(struct task_struct
*p
)
791 struct sched_entity
*se
= &p
->se
;
792 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
793 struct sched_avg
*sa
= &se
->avg
;
794 long cpu_scale
= arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
)));
795 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
798 if (cfs_rq
->avg
.util_avg
!= 0) {
799 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
800 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
802 if (sa
->util_avg
> cap
)
809 sa
->runnable_avg
= sa
->util_avg
;
811 if (p
->sched_class
!= &fair_sched_class
) {
813 * For !fair tasks do:
815 update_cfs_rq_load_avg(now, cfs_rq);
816 attach_entity_load_avg(cfs_rq, se);
817 switched_from_fair(rq, p);
819 * such that the next switched_to_fair() has the
822 se
->avg
.last_update_time
= cfs_rq_clock_pelt(cfs_rq
);
826 attach_entity_cfs_rq(se
);
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity
*se
)
833 void post_init_entity_util_avg(struct task_struct
*p
)
836 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
839 #endif /* CONFIG_SMP */
842 * Update the current task's runtime statistics.
844 static void update_curr(struct cfs_rq
*cfs_rq
)
846 struct sched_entity
*curr
= cfs_rq
->curr
;
847 u64 now
= rq_clock_task(rq_of(cfs_rq
));
853 delta_exec
= now
- curr
->exec_start
;
854 if (unlikely((s64
)delta_exec
<= 0))
857 curr
->exec_start
= now
;
859 schedstat_set(curr
->statistics
.exec_max
,
860 max(delta_exec
, curr
->statistics
.exec_max
));
862 curr
->sum_exec_runtime
+= delta_exec
;
863 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
865 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
866 update_min_vruntime(cfs_rq
);
868 if (entity_is_task(curr
)) {
869 struct task_struct
*curtask
= task_of(curr
);
871 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
872 cgroup_account_cputime(curtask
, delta_exec
);
873 account_group_exec_runtime(curtask
, delta_exec
);
876 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
879 static void update_curr_fair(struct rq
*rq
)
881 update_curr(cfs_rq_of(&rq
->curr
->se
));
885 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
887 u64 wait_start
, prev_wait_start
;
889 if (!schedstat_enabled())
892 wait_start
= rq_clock(rq_of(cfs_rq
));
893 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
895 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
896 likely(wait_start
> prev_wait_start
))
897 wait_start
-= prev_wait_start
;
899 __schedstat_set(se
->statistics
.wait_start
, wait_start
);
903 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
905 struct task_struct
*p
;
908 if (!schedstat_enabled())
911 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
913 if (entity_is_task(se
)) {
915 if (task_on_rq_migrating(p
)) {
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
921 __schedstat_set(se
->statistics
.wait_start
, delta
);
924 trace_sched_stat_wait(p
, delta
);
927 __schedstat_set(se
->statistics
.wait_max
,
928 max(schedstat_val(se
->statistics
.wait_max
), delta
));
929 __schedstat_inc(se
->statistics
.wait_count
);
930 __schedstat_add(se
->statistics
.wait_sum
, delta
);
931 __schedstat_set(se
->statistics
.wait_start
, 0);
935 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
937 struct task_struct
*tsk
= NULL
;
938 u64 sleep_start
, block_start
;
940 if (!schedstat_enabled())
943 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
944 block_start
= schedstat_val(se
->statistics
.block_start
);
946 if (entity_is_task(se
))
950 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
955 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
956 __schedstat_set(se
->statistics
.sleep_max
, delta
);
958 __schedstat_set(se
->statistics
.sleep_start
, 0);
959 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
962 account_scheduler_latency(tsk
, delta
>> 10, 1);
963 trace_sched_stat_sleep(tsk
, delta
);
967 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
972 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
973 __schedstat_set(se
->statistics
.block_max
, delta
);
975 __schedstat_set(se
->statistics
.block_start
, 0);
976 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
979 if (tsk
->in_iowait
) {
980 __schedstat_add(se
->statistics
.iowait_sum
, delta
);
981 __schedstat_inc(se
->statistics
.iowait_count
);
982 trace_sched_stat_iowait(tsk
, delta
);
985 trace_sched_stat_blocked(tsk
, delta
);
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
992 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
993 profile_hits(SLEEP_PROFILING
,
994 (void *)get_wchan(tsk
),
997 account_scheduler_latency(tsk
, delta
>> 10, 0);
1003 * Task is being enqueued - update stats:
1006 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1008 if (!schedstat_enabled())
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1015 if (se
!= cfs_rq
->curr
)
1016 update_stats_wait_start(cfs_rq
, se
);
1018 if (flags
& ENQUEUE_WAKEUP
)
1019 update_stats_enqueue_sleeper(cfs_rq
, se
);
1023 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1026 if (!schedstat_enabled())
1030 * Mark the end of the wait period if dequeueing a
1033 if (se
!= cfs_rq
->curr
)
1034 update_stats_wait_end(cfs_rq
, se
);
1036 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1037 struct task_struct
*tsk
= task_of(se
);
1039 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1040 __schedstat_set(se
->statistics
.sleep_start
,
1041 rq_clock(rq_of(cfs_rq
)));
1042 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1043 __schedstat_set(se
->statistics
.block_start
,
1044 rq_clock(rq_of(cfs_rq
)));
1049 * We are picking a new current task - update its stats:
1052 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1055 * We are starting a new run period:
1057 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1060 /**************************************************
1061 * Scheduling class queueing methods:
1064 #ifdef CONFIG_NUMA_BALANCING
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
1070 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size
= 256;
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1080 refcount_t refcount
;
1082 spinlock_t lock
; /* nr_tasks, tasks */
1087 struct rcu_head rcu
;
1088 unsigned long total_faults
;
1089 unsigned long max_faults_cpu
;
1091 * Faults_cpu is used to decide whether memory should move
1092 * towards the CPU. As a consequence, these stats are weighted
1093 * more by CPU use than by memory faults.
1095 unsigned long *faults_cpu
;
1096 unsigned long faults
[];
1100 * For functions that can be called in multiple contexts that permit reading
1101 * ->numa_group (see struct task_struct for locking rules).
1103 static struct numa_group
*deref_task_numa_group(struct task_struct
*p
)
1105 return rcu_dereference_check(p
->numa_group
, p
== current
||
1106 (lockdep_is_held(&task_rq(p
)->lock
) && !READ_ONCE(p
->on_cpu
)));
1109 static struct numa_group
*deref_curr_numa_group(struct task_struct
*p
)
1111 return rcu_dereference_protected(p
->numa_group
, p
== current
);
1114 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1115 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1117 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1119 unsigned long rss
= 0;
1120 unsigned long nr_scan_pages
;
1123 * Calculations based on RSS as non-present and empty pages are skipped
1124 * by the PTE scanner and NUMA hinting faults should be trapped based
1127 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1128 rss
= get_mm_rss(p
->mm
);
1130 rss
= nr_scan_pages
;
1132 rss
= round_up(rss
, nr_scan_pages
);
1133 return rss
/ nr_scan_pages
;
1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137 #define MAX_SCAN_WINDOW 2560
1139 static unsigned int task_scan_min(struct task_struct
*p
)
1141 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1142 unsigned int scan
, floor
;
1143 unsigned int windows
= 1;
1145 if (scan_size
< MAX_SCAN_WINDOW
)
1146 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1147 floor
= 1000 / windows
;
1149 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1150 return max_t(unsigned int, floor
, scan
);
1153 static unsigned int task_scan_start(struct task_struct
*p
)
1155 unsigned long smin
= task_scan_min(p
);
1156 unsigned long period
= smin
;
1157 struct numa_group
*ng
;
1159 /* Scale the maximum scan period with the amount of shared memory. */
1161 ng
= rcu_dereference(p
->numa_group
);
1163 unsigned long shared
= group_faults_shared(ng
);
1164 unsigned long private = group_faults_priv(ng
);
1166 period
*= refcount_read(&ng
->refcount
);
1167 period
*= shared
+ 1;
1168 period
/= private + shared
+ 1;
1172 return max(smin
, period
);
1175 static unsigned int task_scan_max(struct task_struct
*p
)
1177 unsigned long smin
= task_scan_min(p
);
1179 struct numa_group
*ng
;
1181 /* Watch for min being lower than max due to floor calculations */
1182 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1184 /* Scale the maximum scan period with the amount of shared memory. */
1185 ng
= deref_curr_numa_group(p
);
1187 unsigned long shared
= group_faults_shared(ng
);
1188 unsigned long private = group_faults_priv(ng
);
1189 unsigned long period
= smax
;
1191 period
*= refcount_read(&ng
->refcount
);
1192 period
*= shared
+ 1;
1193 period
/= private + shared
+ 1;
1195 smax
= max(smax
, period
);
1198 return max(smin
, smax
);
1201 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1203 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1204 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1207 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1209 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1210 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1213 /* Shared or private faults. */
1214 #define NR_NUMA_HINT_FAULT_TYPES 2
1216 /* Memory and CPU locality */
1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1219 /* Averaged statistics, and temporary buffers. */
1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1222 pid_t
task_numa_group_id(struct task_struct
*p
)
1224 struct numa_group
*ng
;
1228 ng
= rcu_dereference(p
->numa_group
);
1237 * The averaged statistics, shared & private, memory & CPU,
1238 * occupy the first half of the array. The second half of the
1239 * array is for current counters, which are averaged into the
1240 * first set by task_numa_placement.
1242 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1244 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1247 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1249 if (!p
->numa_faults
)
1252 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1253 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1256 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1258 struct numa_group
*ng
= deref_task_numa_group(p
);
1263 return ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1264 ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1267 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1269 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1270 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1273 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1275 unsigned long faults
= 0;
1278 for_each_online_node(node
) {
1279 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1285 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1287 unsigned long faults
= 0;
1290 for_each_online_node(node
) {
1291 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299 * considered part of a numa group's pseudo-interleaving set. Migrations
1300 * between these nodes are slowed down, to allow things to settle down.
1302 #define ACTIVE_NODE_FRACTION 3
1304 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1306 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1309 /* Handle placement on systems where not all nodes are directly connected. */
1310 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1311 int maxdist
, bool task
)
1313 unsigned long score
= 0;
1317 * All nodes are directly connected, and the same distance
1318 * from each other. No need for fancy placement algorithms.
1320 if (sched_numa_topology_type
== NUMA_DIRECT
)
1324 * This code is called for each node, introducing N^2 complexity,
1325 * which should be ok given the number of nodes rarely exceeds 8.
1327 for_each_online_node(node
) {
1328 unsigned long faults
;
1329 int dist
= node_distance(nid
, node
);
1332 * The furthest away nodes in the system are not interesting
1333 * for placement; nid was already counted.
1335 if (dist
== sched_max_numa_distance
|| node
== nid
)
1339 * On systems with a backplane NUMA topology, compare groups
1340 * of nodes, and move tasks towards the group with the most
1341 * memory accesses. When comparing two nodes at distance
1342 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 * of each group. Skip other nodes.
1345 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1349 /* Add up the faults from nearby nodes. */
1351 faults
= task_faults(p
, node
);
1353 faults
= group_faults(p
, node
);
1356 * On systems with a glueless mesh NUMA topology, there are
1357 * no fixed "groups of nodes". Instead, nodes that are not
1358 * directly connected bounce traffic through intermediate
1359 * nodes; a numa_group can occupy any set of nodes.
1360 * The further away a node is, the less the faults count.
1361 * This seems to result in good task placement.
1363 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1364 faults
*= (sched_max_numa_distance
- dist
);
1365 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1375 * These return the fraction of accesses done by a particular task, or
1376 * task group, on a particular numa node. The group weight is given a
1377 * larger multiplier, in order to group tasks together that are almost
1378 * evenly spread out between numa nodes.
1380 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1383 unsigned long faults
, total_faults
;
1385 if (!p
->numa_faults
)
1388 total_faults
= p
->total_numa_faults
;
1393 faults
= task_faults(p
, nid
);
1394 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1396 return 1000 * faults
/ total_faults
;
1399 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1402 struct numa_group
*ng
= deref_task_numa_group(p
);
1403 unsigned long faults
, total_faults
;
1408 total_faults
= ng
->total_faults
;
1413 faults
= group_faults(p
, nid
);
1414 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1416 return 1000 * faults
/ total_faults
;
1419 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1420 int src_nid
, int dst_cpu
)
1422 struct numa_group
*ng
= deref_curr_numa_group(p
);
1423 int dst_nid
= cpu_to_node(dst_cpu
);
1424 int last_cpupid
, this_cpupid
;
1426 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1427 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1430 * Allow first faults or private faults to migrate immediately early in
1431 * the lifetime of a task. The magic number 4 is based on waiting for
1432 * two full passes of the "multi-stage node selection" test that is
1435 if ((p
->numa_preferred_nid
== NUMA_NO_NODE
|| p
->numa_scan_seq
<= 4) &&
1436 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1440 * Multi-stage node selection is used in conjunction with a periodic
1441 * migration fault to build a temporal task<->page relation. By using
1442 * a two-stage filter we remove short/unlikely relations.
1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 * a task's usage of a particular page (n_p) per total usage of this
1446 * page (n_t) (in a given time-span) to a probability.
1448 * Our periodic faults will sample this probability and getting the
1449 * same result twice in a row, given these samples are fully
1450 * independent, is then given by P(n)^2, provided our sample period
1451 * is sufficiently short compared to the usage pattern.
1453 * This quadric squishes small probabilities, making it less likely we
1454 * act on an unlikely task<->page relation.
1456 if (!cpupid_pid_unset(last_cpupid
) &&
1457 cpupid_to_nid(last_cpupid
) != dst_nid
)
1460 /* Always allow migrate on private faults */
1461 if (cpupid_match_pid(p
, last_cpupid
))
1464 /* A shared fault, but p->numa_group has not been set up yet. */
1469 * Destination node is much more heavily used than the source
1470 * node? Allow migration.
1472 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1473 ACTIVE_NODE_FRACTION
)
1477 * Distribute memory according to CPU & memory use on each node,
1478 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1480 * faults_cpu(dst) 3 faults_cpu(src)
1481 * --------------- * - > ---------------
1482 * faults_mem(dst) 4 faults_mem(src)
1484 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1485 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1489 * 'numa_type' describes the node at the moment of load balancing.
1492 /* The node has spare capacity that can be used to run more tasks. */
1495 * The node is fully used and the tasks don't compete for more CPU
1496 * cycles. Nevertheless, some tasks might wait before running.
1500 * The node is overloaded and can't provide expected CPU cycles to all
1506 /* Cached statistics for all CPUs within a node */
1510 /* Total compute capacity of CPUs on a node */
1511 unsigned long compute_capacity
;
1512 unsigned int nr_running
;
1513 unsigned int weight
;
1514 enum numa_type node_type
;
1518 static inline bool is_core_idle(int cpu
)
1520 #ifdef CONFIG_SCHED_SMT
1523 for_each_cpu(sibling
, cpu_smt_mask(cpu
)) {
1535 struct task_numa_env
{
1536 struct task_struct
*p
;
1538 int src_cpu
, src_nid
;
1539 int dst_cpu
, dst_nid
;
1541 struct numa_stats src_stats
, dst_stats
;
1546 struct task_struct
*best_task
;
1551 static unsigned long cpu_load(struct rq
*rq
);
1552 static unsigned long cpu_util(int cpu
);
1553 static inline long adjust_numa_imbalance(int imbalance
, int src_nr_running
);
1556 numa_type
numa_classify(unsigned int imbalance_pct
,
1557 struct numa_stats
*ns
)
1559 if ((ns
->nr_running
> ns
->weight
) &&
1560 ((ns
->compute_capacity
* 100) < (ns
->util
* imbalance_pct
)))
1561 return node_overloaded
;
1563 if ((ns
->nr_running
< ns
->weight
) ||
1564 ((ns
->compute_capacity
* 100) > (ns
->util
* imbalance_pct
)))
1565 return node_has_spare
;
1567 return node_fully_busy
;
1570 #ifdef CONFIG_SCHED_SMT
1571 /* Forward declarations of select_idle_sibling helpers */
1572 static inline bool test_idle_cores(int cpu
, bool def
);
1573 static inline int numa_idle_core(int idle_core
, int cpu
)
1575 if (!static_branch_likely(&sched_smt_present
) ||
1576 idle_core
>= 0 || !test_idle_cores(cpu
, false))
1580 * Prefer cores instead of packing HT siblings
1581 * and triggering future load balancing.
1583 if (is_core_idle(cpu
))
1589 static inline int numa_idle_core(int idle_core
, int cpu
)
1596 * Gather all necessary information to make NUMA balancing placement
1597 * decisions that are compatible with standard load balancer. This
1598 * borrows code and logic from update_sg_lb_stats but sharing a
1599 * common implementation is impractical.
1601 static void update_numa_stats(struct task_numa_env
*env
,
1602 struct numa_stats
*ns
, int nid
,
1605 int cpu
, idle_core
= -1;
1607 memset(ns
, 0, sizeof(*ns
));
1611 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1612 struct rq
*rq
= cpu_rq(cpu
);
1614 ns
->load
+= cpu_load(rq
);
1615 ns
->util
+= cpu_util(cpu
);
1616 ns
->nr_running
+= rq
->cfs
.h_nr_running
;
1617 ns
->compute_capacity
+= capacity_of(cpu
);
1619 if (find_idle
&& !rq
->nr_running
&& idle_cpu(cpu
)) {
1620 if (READ_ONCE(rq
->numa_migrate_on
) ||
1621 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1624 if (ns
->idle_cpu
== -1)
1627 idle_core
= numa_idle_core(idle_core
, cpu
);
1632 ns
->weight
= cpumask_weight(cpumask_of_node(nid
));
1634 ns
->node_type
= numa_classify(env
->imbalance_pct
, ns
);
1637 ns
->idle_cpu
= idle_core
;
1640 static void task_numa_assign(struct task_numa_env
*env
,
1641 struct task_struct
*p
, long imp
)
1643 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
1645 /* Check if run-queue part of active NUMA balance. */
1646 if (env
->best_cpu
!= env
->dst_cpu
&& xchg(&rq
->numa_migrate_on
, 1)) {
1648 int start
= env
->dst_cpu
;
1650 /* Find alternative idle CPU. */
1651 for_each_cpu_wrap(cpu
, cpumask_of_node(env
->dst_nid
), start
) {
1652 if (cpu
== env
->best_cpu
|| !idle_cpu(cpu
) ||
1653 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
)) {
1658 rq
= cpu_rq(env
->dst_cpu
);
1659 if (!xchg(&rq
->numa_migrate_on
, 1))
1663 /* Failed to find an alternative idle CPU */
1669 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 * found a better CPU to move/swap.
1672 if (env
->best_cpu
!= -1 && env
->best_cpu
!= env
->dst_cpu
) {
1673 rq
= cpu_rq(env
->best_cpu
);
1674 WRITE_ONCE(rq
->numa_migrate_on
, 0);
1678 put_task_struct(env
->best_task
);
1683 env
->best_imp
= imp
;
1684 env
->best_cpu
= env
->dst_cpu
;
1687 static bool load_too_imbalanced(long src_load
, long dst_load
,
1688 struct task_numa_env
*env
)
1691 long orig_src_load
, orig_dst_load
;
1692 long src_capacity
, dst_capacity
;
1695 * The load is corrected for the CPU capacity available on each node.
1698 * ------------ vs ---------
1699 * src_capacity dst_capacity
1701 src_capacity
= env
->src_stats
.compute_capacity
;
1702 dst_capacity
= env
->dst_stats
.compute_capacity
;
1704 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
1706 orig_src_load
= env
->src_stats
.load
;
1707 orig_dst_load
= env
->dst_stats
.load
;
1709 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
1711 /* Would this change make things worse? */
1712 return (imb
> old_imb
);
1716 * Maximum NUMA importance can be 1998 (2*999);
1717 * SMALLIMP @ 30 would be close to 1998/64.
1718 * Used to deter task migration.
1723 * This checks if the overall compute and NUMA accesses of the system would
1724 * be improved if the source tasks was migrated to the target dst_cpu taking
1725 * into account that it might be best if task running on the dst_cpu should
1726 * be exchanged with the source task
1728 static bool task_numa_compare(struct task_numa_env
*env
,
1729 long taskimp
, long groupimp
, bool maymove
)
1731 struct numa_group
*cur_ng
, *p_ng
= deref_curr_numa_group(env
->p
);
1732 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1733 long imp
= p_ng
? groupimp
: taskimp
;
1734 struct task_struct
*cur
;
1735 long src_load
, dst_load
;
1736 int dist
= env
->dist
;
1739 bool stopsearch
= false;
1741 if (READ_ONCE(dst_rq
->numa_migrate_on
))
1745 cur
= rcu_dereference(dst_rq
->curr
);
1746 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1750 * Because we have preemption enabled we can get migrated around and
1751 * end try selecting ourselves (current == env->p) as a swap candidate.
1753 if (cur
== env
->p
) {
1759 if (maymove
&& moveimp
>= env
->best_imp
)
1765 /* Skip this swap candidate if cannot move to the source cpu. */
1766 if (!cpumask_test_cpu(env
->src_cpu
, cur
->cpus_ptr
))
1770 * Skip this swap candidate if it is not moving to its preferred
1771 * node and the best task is.
1773 if (env
->best_task
&&
1774 env
->best_task
->numa_preferred_nid
== env
->src_nid
&&
1775 cur
->numa_preferred_nid
!= env
->src_nid
) {
1780 * "imp" is the fault differential for the source task between the
1781 * source and destination node. Calculate the total differential for
1782 * the source task and potential destination task. The more negative
1783 * the value is, the more remote accesses that would be expected to
1784 * be incurred if the tasks were swapped.
1786 * If dst and source tasks are in the same NUMA group, or not
1787 * in any group then look only at task weights.
1789 cur_ng
= rcu_dereference(cur
->numa_group
);
1790 if (cur_ng
== p_ng
) {
1791 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1792 task_weight(cur
, env
->dst_nid
, dist
);
1794 * Add some hysteresis to prevent swapping the
1795 * tasks within a group over tiny differences.
1801 * Compare the group weights. If a task is all by itself
1802 * (not part of a group), use the task weight instead.
1805 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1806 group_weight(cur
, env
->dst_nid
, dist
);
1808 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1809 task_weight(cur
, env
->dst_nid
, dist
);
1812 /* Discourage picking a task already on its preferred node */
1813 if (cur
->numa_preferred_nid
== env
->dst_nid
)
1817 * Encourage picking a task that moves to its preferred node.
1818 * This potentially makes imp larger than it's maximum of
1819 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 * case, it does not matter.
1822 if (cur
->numa_preferred_nid
== env
->src_nid
)
1825 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
1832 * Prefer swapping with a task moving to its preferred node over a
1835 if (env
->best_task
&& cur
->numa_preferred_nid
== env
->src_nid
&&
1836 env
->best_task
->numa_preferred_nid
!= env
->src_nid
) {
1841 * If the NUMA importance is less than SMALLIMP,
1842 * task migration might only result in ping pong
1843 * of tasks and also hurt performance due to cache
1846 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
1850 * In the overloaded case, try and keep the load balanced.
1852 load
= task_h_load(env
->p
) - task_h_load(cur
);
1856 dst_load
= env
->dst_stats
.load
+ load
;
1857 src_load
= env
->src_stats
.load
- load
;
1859 if (load_too_imbalanced(src_load
, dst_load
, env
))
1863 /* Evaluate an idle CPU for a task numa move. */
1865 int cpu
= env
->dst_stats
.idle_cpu
;
1867 /* Nothing cached so current CPU went idle since the search. */
1872 * If the CPU is no longer truly idle and the previous best CPU
1873 * is, keep using it.
1875 if (!idle_cpu(cpu
) && env
->best_cpu
>= 0 &&
1876 idle_cpu(env
->best_cpu
)) {
1877 cpu
= env
->best_cpu
;
1883 task_numa_assign(env
, cur
, imp
);
1886 * If a move to idle is allowed because there is capacity or load
1887 * balance improves then stop the search. While a better swap
1888 * candidate may exist, a search is not free.
1890 if (maymove
&& !cur
&& env
->best_cpu
>= 0 && idle_cpu(env
->best_cpu
))
1894 * If a swap candidate must be identified and the current best task
1895 * moves its preferred node then stop the search.
1897 if (!maymove
&& env
->best_task
&&
1898 env
->best_task
->numa_preferred_nid
== env
->src_nid
) {
1907 static void task_numa_find_cpu(struct task_numa_env
*env
,
1908 long taskimp
, long groupimp
)
1910 bool maymove
= false;
1914 * If dst node has spare capacity, then check if there is an
1915 * imbalance that would be overruled by the load balancer.
1917 if (env
->dst_stats
.node_type
== node_has_spare
) {
1918 unsigned int imbalance
;
1919 int src_running
, dst_running
;
1922 * Would movement cause an imbalance? Note that if src has
1923 * more running tasks that the imbalance is ignored as the
1924 * move improves the imbalance from the perspective of the
1925 * CPU load balancer.
1927 src_running
= env
->src_stats
.nr_running
- 1;
1928 dst_running
= env
->dst_stats
.nr_running
+ 1;
1929 imbalance
= max(0, dst_running
- src_running
);
1930 imbalance
= adjust_numa_imbalance(imbalance
, src_running
);
1932 /* Use idle CPU if there is no imbalance */
1935 if (env
->dst_stats
.idle_cpu
>= 0) {
1936 env
->dst_cpu
= env
->dst_stats
.idle_cpu
;
1937 task_numa_assign(env
, NULL
, 0);
1942 long src_load
, dst_load
, load
;
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1947 load
= task_h_load(env
->p
);
1948 dst_load
= env
->dst_stats
.load
+ load
;
1949 src_load
= env
->src_stats
.load
- load
;
1950 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
1953 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1954 /* Skip this CPU if the source task cannot migrate */
1955 if (!cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1959 if (task_numa_compare(env
, taskimp
, groupimp
, maymove
))
1964 static int task_numa_migrate(struct task_struct
*p
)
1966 struct task_numa_env env
= {
1969 .src_cpu
= task_cpu(p
),
1970 .src_nid
= task_node(p
),
1972 .imbalance_pct
= 112,
1978 unsigned long taskweight
, groupweight
;
1979 struct sched_domain
*sd
;
1980 long taskimp
, groupimp
;
1981 struct numa_group
*ng
;
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1994 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1996 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2005 if (unlikely(!sd
)) {
2006 sched_setnuma(p
, task_node(p
));
2010 env
.dst_nid
= p
->numa_preferred_nid
;
2011 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2012 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2013 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2014 update_numa_stats(&env
, &env
.src_stats
, env
.src_nid
, false);
2015 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
2016 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
2017 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2019 /* Try to find a spot on the preferred nid. */
2020 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2029 ng
= deref_curr_numa_group(p
);
2030 if (env
.best_cpu
== -1 || (ng
&& ng
->active_nodes
> 1)) {
2031 for_each_online_node(nid
) {
2032 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
2035 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2036 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
2038 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2039 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2042 /* Only consider nodes where both task and groups benefit */
2043 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
2044 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
2045 if (taskimp
< 0 && groupimp
< 0)
2050 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2051 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2064 if (env
.best_cpu
== -1)
2067 nid
= cpu_to_node(env
.best_cpu
);
2069 if (nid
!= p
->numa_preferred_nid
)
2070 sched_setnuma(p
, nid
);
2073 /* No better CPU than the current one was found. */
2074 if (env
.best_cpu
== -1) {
2075 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, -1);
2079 best_rq
= cpu_rq(env
.best_cpu
);
2080 if (env
.best_task
== NULL
) {
2081 ret
= migrate_task_to(p
, env
.best_cpu
);
2082 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2084 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, env
.best_cpu
);
2088 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
2089 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2092 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_task
, env
.best_cpu
);
2093 put_task_struct(env
.best_task
);
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct
*p
)
2100 unsigned long interval
= HZ
;
2102 /* This task has no NUMA fault statistics yet */
2103 if (unlikely(p
->numa_preferred_nid
== NUMA_NO_NODE
|| !p
->numa_faults
))
2106 /* Periodically retry migrating the task to the preferred node */
2107 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
2108 p
->numa_migrate_retry
= jiffies
+ interval
;
2110 /* Success if task is already running on preferred CPU */
2111 if (task_node(p
) == p
->numa_preferred_nid
)
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2115 task_numa_migrate(p
);
2119 * Find out how many nodes on the workload is actively running on. Do this by
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2124 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
2126 unsigned long faults
, max_faults
= 0;
2127 int nid
, active_nodes
= 0;
2129 for_each_online_node(nid
) {
2130 faults
= group_faults_cpu(numa_group
, nid
);
2131 if (faults
> max_faults
)
2132 max_faults
= faults
;
2135 for_each_online_node(nid
) {
2136 faults
= group_faults_cpu(numa_group
, nid
);
2137 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
2141 numa_group
->max_faults_cpu
= max_faults
;
2142 numa_group
->active_nodes
= active_nodes
;
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2161 static void update_task_scan_period(struct task_struct
*p
,
2162 unsigned long shared
, unsigned long private)
2164 unsigned int period_slot
;
2165 int lr_ratio
, ps_ratio
;
2168 unsigned long remote
= p
->numa_faults_locality
[0];
2169 unsigned long local
= p
->numa_faults_locality
[1];
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
2178 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
2179 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
2180 p
->numa_scan_period
<< 1);
2182 p
->mm
->numa_next_scan
= jiffies
+
2183 msecs_to_jiffies(p
->numa_scan_period
);
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2194 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
2195 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
2196 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
2198 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2203 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
2206 diff
= slot
* period_slot
;
2207 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2213 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
2216 diff
= slot
* period_slot
;
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
2223 int ratio
= max(lr_ratio
, ps_ratio
);
2224 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
2227 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
2228 task_scan_min(p
), task_scan_max(p
));
2229 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2239 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2241 u64 runtime
, delta
, now
;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now
= p
->se
.exec_start
;
2244 runtime
= p
->se
.sum_exec_runtime
;
2246 if (p
->last_task_numa_placement
) {
2247 delta
= runtime
- p
->last_sum_exec_runtime
;
2248 *period
= now
- p
->last_task_numa_placement
;
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64
)*period
< 0))
2254 delta
= p
->se
.avg
.load_sum
;
2255 *period
= LOAD_AVG_MAX
;
2258 p
->last_sum_exec_runtime
= runtime
;
2259 p
->last_task_numa_placement
= now
;
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2269 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type
== NUMA_DIRECT
)
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2283 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2284 unsigned long score
, max_score
= 0;
2285 int node
, max_node
= nid
;
2287 dist
= sched_max_numa_distance
;
2289 for_each_online_node(node
) {
2290 score
= group_weight(p
, node
, dist
);
2291 if (score
> max_score
) {
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2308 nodes
= node_online_map
;
2309 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2310 unsigned long max_faults
= 0;
2311 nodemask_t max_group
= NODE_MASK_NONE
;
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist
))
2318 for_each_node_mask(a
, nodes
) {
2319 unsigned long faults
= 0;
2320 nodemask_t this_group
;
2321 nodes_clear(this_group
);
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b
, nodes
) {
2325 if (node_distance(a
, b
) < dist
) {
2326 faults
+= group_faults(p
, b
);
2327 node_set(b
, this_group
);
2328 node_clear(b
, nodes
);
2332 /* Remember the top group. */
2333 if (faults
> max_faults
) {
2334 max_faults
= faults
;
2335 max_group
= this_group
;
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2344 /* Next round, evaluate the nodes within max_group. */
2352 static void task_numa_placement(struct task_struct
*p
)
2354 int seq
, nid
, max_nid
= NUMA_NO_NODE
;
2355 unsigned long max_faults
= 0;
2356 unsigned long fault_types
[2] = { 0, 0 };
2357 unsigned long total_faults
;
2358 u64 runtime
, period
;
2359 spinlock_t
*group_lock
= NULL
;
2360 struct numa_group
*ng
;
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2367 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2368 if (p
->numa_scan_seq
== seq
)
2370 p
->numa_scan_seq
= seq
;
2371 p
->numa_scan_period_max
= task_scan_max(p
);
2373 total_faults
= p
->numa_faults_locality
[0] +
2374 p
->numa_faults_locality
[1];
2375 runtime
= numa_get_avg_runtime(p
, &period
);
2377 /* If the task is part of a group prevent parallel updates to group stats */
2378 ng
= deref_curr_numa_group(p
);
2380 group_lock
= &ng
->lock
;
2381 spin_lock_irq(group_lock
);
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid
) {
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2388 unsigned long faults
= 0, group_faults
= 0;
2391 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2392 long diff
, f_diff
, f_weight
;
2394 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2395 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2396 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2397 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2399 /* Decay existing window, copy faults since last scan */
2400 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2401 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2402 p
->numa_faults
[membuf_idx
] = 0;
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2411 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2412 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2414 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2415 p
->numa_faults
[cpubuf_idx
] = 0;
2417 p
->numa_faults
[mem_idx
] += diff
;
2418 p
->numa_faults
[cpu_idx
] += f_diff
;
2419 faults
+= p
->numa_faults
[mem_idx
];
2420 p
->total_numa_faults
+= diff
;
2423 * safe because we can only change our own group
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2429 ng
->faults
[mem_idx
] += diff
;
2430 ng
->faults_cpu
[mem_idx
] += f_diff
;
2431 ng
->total_faults
+= diff
;
2432 group_faults
+= ng
->faults
[mem_idx
];
2437 if (faults
> max_faults
) {
2438 max_faults
= faults
;
2441 } else if (group_faults
> max_faults
) {
2442 max_faults
= group_faults
;
2448 numa_group_count_active_nodes(ng
);
2449 spin_unlock_irq(group_lock
);
2450 max_nid
= preferred_group_nid(p
, max_nid
);
2454 /* Set the new preferred node */
2455 if (max_nid
!= p
->numa_preferred_nid
)
2456 sched_setnuma(p
, max_nid
);
2459 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2462 static inline int get_numa_group(struct numa_group
*grp
)
2464 return refcount_inc_not_zero(&grp
->refcount
);
2467 static inline void put_numa_group(struct numa_group
*grp
)
2469 if (refcount_dec_and_test(&grp
->refcount
))
2470 kfree_rcu(grp
, rcu
);
2473 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2476 struct numa_group
*grp
, *my_grp
;
2477 struct task_struct
*tsk
;
2479 int cpu
= cpupid_to_cpu(cpupid
);
2482 if (unlikely(!deref_curr_numa_group(p
))) {
2483 unsigned int size
= sizeof(struct numa_group
) +
2484 4*nr_node_ids
*sizeof(unsigned long);
2486 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2490 refcount_set(&grp
->refcount
, 1);
2491 grp
->active_nodes
= 1;
2492 grp
->max_faults_cpu
= 0;
2493 spin_lock_init(&grp
->lock
);
2495 /* Second half of the array tracks nids where faults happen */
2496 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2499 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2500 grp
->faults
[i
] = p
->numa_faults
[i
];
2502 grp
->total_faults
= p
->total_numa_faults
;
2505 rcu_assign_pointer(p
->numa_group
, grp
);
2509 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2511 if (!cpupid_match_pid(tsk
, cpupid
))
2514 grp
= rcu_dereference(tsk
->numa_group
);
2518 my_grp
= deref_curr_numa_group(p
);
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2526 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2530 * Tie-break on the grp address.
2532 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2535 /* Always join threads in the same process. */
2536 if (tsk
->mm
== current
->mm
)
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags
& TNF_SHARED
)
2543 /* Update priv based on whether false sharing was detected */
2546 if (join
&& !get_numa_group(grp
))
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2557 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2558 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2559 grp
->faults
[i
] += p
->numa_faults
[i
];
2561 my_grp
->total_faults
-= p
->total_numa_faults
;
2562 grp
->total_faults
+= p
->total_numa_faults
;
2567 spin_unlock(&my_grp
->lock
);
2568 spin_unlock_irq(&grp
->lock
);
2570 rcu_assign_pointer(p
->numa_group
, grp
);
2572 put_numa_group(my_grp
);
2581 * Get rid of NUMA staticstics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2587 void task_numa_free(struct task_struct
*p
, bool final
)
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group
*grp
= rcu_dereference_raw(p
->numa_group
);
2591 unsigned long *numa_faults
= p
->numa_faults
;
2592 unsigned long flags
;
2599 spin_lock_irqsave(&grp
->lock
, flags
);
2600 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2601 grp
->faults
[i
] -= p
->numa_faults
[i
];
2602 grp
->total_faults
-= p
->total_numa_faults
;
2605 spin_unlock_irqrestore(&grp
->lock
, flags
);
2606 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2607 put_numa_group(grp
);
2611 p
->numa_faults
= NULL
;
2614 p
->total_numa_faults
= 0;
2615 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2621 * Got a PROT_NONE fault for a page on @node.
2623 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2625 struct task_struct
*p
= current
;
2626 bool migrated
= flags
& TNF_MIGRATED
;
2627 int cpu_node
= task_node(current
);
2628 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2629 struct numa_group
*ng
;
2632 if (!static_branch_likely(&sched_numa_balancing
))
2635 /* for example, ksmd faulting in a user's mm */
2639 /* Allocate buffer to track faults on a per-node basis */
2640 if (unlikely(!p
->numa_faults
)) {
2641 int size
= sizeof(*p
->numa_faults
) *
2642 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2644 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2645 if (!p
->numa_faults
)
2648 p
->total_numa_faults
= 0;
2649 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2656 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2659 priv
= cpupid_match_pid(p
, last_cpupid
);
2660 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2661 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2670 ng
= deref_curr_numa_group(p
);
2671 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2672 numa_is_active_node(cpu_node
, ng
) &&
2673 numa_is_active_node(mem_node
, ng
))
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2680 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
2681 task_numa_placement(p
);
2682 numa_migrate_preferred(p
);
2686 p
->numa_pages_migrated
+= pages
;
2687 if (flags
& TNF_MIGRATE_FAIL
)
2688 p
->numa_faults_locality
[2] += pages
;
2690 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2691 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2692 p
->numa_faults_locality
[local
] += pages
;
2695 static void reset_ptenuma_scan(struct task_struct
*p
)
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2705 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2706 p
->mm
->numa_scan_offset
= 0;
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2713 static void task_numa_work(struct callback_head
*work
)
2715 unsigned long migrate
, next_scan
, now
= jiffies
;
2716 struct task_struct
*p
= current
;
2717 struct mm_struct
*mm
= p
->mm
;
2718 u64 runtime
= p
->se
.sum_exec_runtime
;
2719 struct vm_area_struct
*vma
;
2720 unsigned long start
, end
;
2721 unsigned long nr_pte_updates
= 0;
2722 long pages
, virtpages
;
2724 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2728 * Who cares about NUMA placement when they're dying.
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2735 if (p
->flags
& PF_EXITING
)
2738 if (!mm
->numa_next_scan
) {
2739 mm
->numa_next_scan
= now
+
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2744 * Enforce maximal scan/migration frequency..
2746 migrate
= mm
->numa_next_scan
;
2747 if (time_before(now
, migrate
))
2750 if (p
->numa_scan_period
== 0) {
2751 p
->numa_scan_period_max
= task_scan_max(p
);
2752 p
->numa_scan_period
= task_scan_start(p
);
2755 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2756 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2763 p
->node_stamp
+= 2 * TICK_NSEC
;
2765 start
= mm
->numa_scan_offset
;
2766 pages
= sysctl_numa_balancing_scan_size
;
2767 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2768 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2773 if (!mmap_read_trylock(mm
))
2775 vma
= find_vma(mm
, start
);
2777 reset_ptenuma_scan(p
);
2781 for (; vma
; vma
= vma
->vm_next
) {
2782 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2783 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2794 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2801 if (!vma_is_accessible(vma
))
2805 start
= max(start
, vma
->vm_start
);
2806 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2807 end
= min(end
, vma
->vm_end
);
2808 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2819 pages
-= (end
- start
) >> PAGE_SHIFT
;
2820 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2823 if (pages
<= 0 || virtpages
<= 0)
2827 } while (end
!= vma
->vm_end
);
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
2838 mm
->numa_scan_offset
= start
;
2840 reset_ptenuma_scan(p
);
2841 mmap_read_unlock(mm
);
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2849 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2850 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2851 p
->node_stamp
+= 32 * diff
;
2855 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
2858 struct mm_struct
*mm
= p
->mm
;
2861 mm_users
= atomic_read(&mm
->mm_users
);
2862 if (mm_users
== 1) {
2863 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2864 mm
->numa_scan_seq
= 0;
2868 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
2869 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2870 /* Protect against double add, see task_tick_numa and task_numa_work */
2871 p
->numa_work
.next
= &p
->numa_work
;
2872 p
->numa_faults
= NULL
;
2873 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2874 p
->last_task_numa_placement
= 0;
2875 p
->last_sum_exec_runtime
= 0;
2877 init_task_work(&p
->numa_work
, task_numa_work
);
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags
& CLONE_VM
)) {
2881 p
->numa_preferred_nid
= NUMA_NO_NODE
;
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2892 delay
= min_t(unsigned int, task_scan_max(current
),
2893 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
2894 delay
+= 2 * TICK_NSEC
;
2895 p
->node_stamp
= delay
;
2900 * Drive the periodic memory faults..
2902 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2904 struct callback_head
*work
= &curr
->numa_work
;
2908 * We don't care about NUMA placement if we don't have memory.
2910 if ((curr
->flags
& (PF_EXITING
| PF_KTHREAD
)) || work
->next
!= work
)
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2919 now
= curr
->se
.sum_exec_runtime
;
2920 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2922 if (now
> curr
->node_stamp
+ period
) {
2923 if (!curr
->node_stamp
)
2924 curr
->numa_scan_period
= task_scan_start(curr
);
2925 curr
->node_stamp
+= period
;
2927 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
))
2928 task_work_add(curr
, work
, true);
2932 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
2934 int src_nid
= cpu_to_node(task_cpu(p
));
2935 int dst_nid
= cpu_to_node(new_cpu
);
2937 if (!static_branch_likely(&sched_numa_balancing
))
2940 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
2943 if (src_nid
== dst_nid
)
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2951 if (p
->numa_scan_seq
) {
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2957 if (dst_nid
== p
->numa_preferred_nid
||
2958 (p
->numa_preferred_nid
!= NUMA_NO_NODE
&&
2959 src_nid
!= p
->numa_preferred_nid
))
2963 p
->numa_scan_period
= task_scan_start(p
);
2967 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2971 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2975 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2979 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
2983 #endif /* CONFIG_NUMA_BALANCING */
2986 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2988 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2990 if (entity_is_task(se
)) {
2991 struct rq
*rq
= rq_of(cfs_rq
);
2993 account_numa_enqueue(rq
, task_of(se
));
2994 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2997 cfs_rq
->nr_running
++;
3001 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3003 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3005 if (entity_is_task(se
)) {
3006 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
3007 list_del_init(&se
->group_node
);
3010 cfs_rq
->nr_running
--;
3014 * Signed add and clamp on underflow.
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3020 #define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3027 if (val < 0 && res > var) \
3030 WRITE_ONCE(*ptr, res); \
3034 * Unsigned subtract and clamp on underflow.
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3040 #define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3047 WRITE_ONCE(*ptr, res); \
3051 * Remove and clamp on negative, from a local variable.
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3056 #define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3063 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3065 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3066 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
3070 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3072 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3073 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
3077 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3079 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3082 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
3083 unsigned long weight
)
3086 /* commit outstanding execution time */
3087 if (cfs_rq
->curr
== se
)
3088 update_curr(cfs_rq
);
3089 account_entity_dequeue(cfs_rq
, se
);
3091 dequeue_load_avg(cfs_rq
, se
);
3093 update_load_set(&se
->load
, weight
);
3097 u32 divider
= LOAD_AVG_MAX
- 1024 + se
->avg
.period_contrib
;
3099 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
3103 enqueue_load_avg(cfs_rq
, se
);
3105 account_entity_enqueue(cfs_rq
, se
);
3109 void reweight_task(struct task_struct
*p
, int prio
)
3111 struct sched_entity
*se
= &p
->se
;
3112 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3113 struct load_weight
*load
= &se
->load
;
3114 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
3116 reweight_entity(cfs_rq
, se
, weight
);
3117 load
->inv_weight
= sched_prio_to_wmult
[prio
];
3120 #ifdef CONFIG_FAIR_GROUP_SCHED
3123 * All this does is approximate the hierarchical proportion which includes that
3124 * global sum we all love to hate.
3126 * That is, the weight of a group entity, is the proportional share of the
3127 * group weight based on the group runqueue weights. That is:
3129 * tg->weight * grq->load.weight
3130 * ge->load.weight = ----------------------------- (1)
3131 * \Sum grq->load.weight
3133 * Now, because computing that sum is prohibitively expensive to compute (been
3134 * there, done that) we approximate it with this average stuff. The average
3135 * moves slower and therefore the approximation is cheaper and more stable.
3137 * So instead of the above, we substitute:
3139 * grq->load.weight -> grq->avg.load_avg (2)
3141 * which yields the following:
3143 * tg->weight * grq->avg.load_avg
3144 * ge->load.weight = ------------------------------ (3)
3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 * That is shares_avg, and it is right (given the approximation (2)).
3151 * The problem with it is that because the average is slow -- it was designed
3152 * to be exactly that of course -- this leads to transients in boundary
3153 * conditions. In specific, the case where the group was idle and we start the
3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155 * yielding bad latency etc..
3157 * Now, in that special case (1) reduces to:
3159 * tg->weight * grq->load.weight
3160 * ge->load.weight = ----------------------------- = tg->weight (4)
3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 * So what we do is modify our approximation (3) to approach (4) in the (near)
3170 * tg->weight * grq->load.weight
3171 * --------------------------------------------------- (5)
3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3178 * tg->weight * grq->load.weight
3179 * ge->load.weight = ----------------------------- (6)
3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185 * max(grq->load.weight, grq->avg.load_avg)
3187 * And that is shares_weight and is icky. In the (near) UP case it approaches
3188 * (4) while in the normal case it approaches (3). It consistently
3189 * overestimates the ge->load.weight and therefore:
3191 * \Sum ge->load.weight >= tg->weight
3195 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
3197 long tg_weight
, tg_shares
, load
, shares
;
3198 struct task_group
*tg
= cfs_rq
->tg
;
3200 tg_shares
= READ_ONCE(tg
->shares
);
3202 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
3204 tg_weight
= atomic_long_read(&tg
->load_avg
);
3206 /* Ensure tg_weight >= load */
3207 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
3210 shares
= (tg_shares
* load
);
3212 shares
/= tg_weight
;
3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 * of a group with small tg->shares value. It is a floor value which is
3217 * assigned as a minimum load.weight to the sched_entity representing
3218 * the group on a CPU.
3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3226 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
3228 #endif /* CONFIG_SMP */
3230 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3233 * Recomputes the group entity based on the current state of its group
3236 static void update_cfs_group(struct sched_entity
*se
)
3238 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3244 if (throttled_hierarchy(gcfs_rq
))
3248 shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
3250 if (likely(se
->load
.weight
== shares
))
3253 shares
= calc_group_shares(gcfs_rq
);
3256 reweight_entity(cfs_rq_of(se
), se
, shares
);
3259 #else /* CONFIG_FAIR_GROUP_SCHED */
3260 static inline void update_cfs_group(struct sched_entity
*se
)
3263 #endif /* CONFIG_FAIR_GROUP_SCHED */
3265 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
3267 struct rq
*rq
= rq_of(cfs_rq
);
3269 if (&rq
->cfs
== cfs_rq
) {
3271 * There are a few boundary cases this might miss but it should
3272 * get called often enough that that should (hopefully) not be
3275 * It will not get called when we go idle, because the idle
3276 * thread is a different class (!fair), nor will the utilization
3277 * number include things like RT tasks.
3279 * As is, the util number is not freq-invariant (we'd have to
3280 * implement arch_scale_freq_capacity() for that).
3284 cpufreq_update_util(rq
, flags
);
3289 #ifdef CONFIG_FAIR_GROUP_SCHED
3291 * update_tg_load_avg - update the tg's load avg
3292 * @cfs_rq: the cfs_rq whose avg changed
3293 * @force: update regardless of how small the difference
3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296 * However, because tg->load_avg is a global value there are performance
3299 * In order to avoid having to look at the other cfs_rq's, we use a
3300 * differential update where we store the last value we propagated. This in
3301 * turn allows skipping updates if the differential is 'small'.
3303 * Updating tg's load_avg is necessary before update_cfs_share().
3305 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
3307 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3310 * No need to update load_avg for root_task_group as it is not used.
3312 if (cfs_rq
->tg
== &root_task_group
)
3315 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3316 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3317 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3322 * Called within set_task_rq() right before setting a task's CPU. The
3323 * caller only guarantees p->pi_lock is held; no other assumptions,
3324 * including the state of rq->lock, should be made.
3326 void set_task_rq_fair(struct sched_entity
*se
,
3327 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3329 u64 p_last_update_time
;
3330 u64 n_last_update_time
;
3332 if (!sched_feat(ATTACH_AGE_LOAD
))
3336 * We are supposed to update the task to "current" time, then its up to
3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 * getting what current time is, so simply throw away the out-of-date
3339 * time. This will result in the wakee task is less decayed, but giving
3340 * the wakee more load sounds not bad.
3342 if (!(se
->avg
.last_update_time
&& prev
))
3345 #ifndef CONFIG_64BIT
3347 u64 p_last_update_time_copy
;
3348 u64 n_last_update_time_copy
;
3351 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3352 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3356 p_last_update_time
= prev
->avg
.last_update_time
;
3357 n_last_update_time
= next
->avg
.last_update_time
;
3359 } while (p_last_update_time
!= p_last_update_time_copy
||
3360 n_last_update_time
!= n_last_update_time_copy
);
3363 p_last_update_time
= prev
->avg
.last_update_time
;
3364 n_last_update_time
= next
->avg
.last_update_time
;
3366 __update_load_avg_blocked_se(p_last_update_time
, se
);
3367 se
->avg
.last_update_time
= n_last_update_time
;
3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373 * propagate its contribution. The key to this propagation is the invariant
3374 * that for each group:
3376 * ge->avg == grq->avg (1)
3378 * _IFF_ we look at the pure running and runnable sums. Because they
3379 * represent the very same entity, just at different points in the hierarchy.
3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382 * and simply copies the running/runnable sum over (but still wrong, because
3383 * the group entity and group rq do not have their PELT windows aligned).
3385 * However, update_tg_cfs_load() is more complex. So we have:
3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3389 * And since, like util, the runnable part should be directly transferable,
3390 * the following would _appear_ to be the straight forward approach:
3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3394 * And per (1) we have:
3396 * ge->avg.runnable_avg == grq->avg.runnable_avg
3400 * ge->load.weight * grq->avg.load_avg
3401 * ge->avg.load_avg = ----------------------------------- (4)
3404 * Except that is wrong!
3406 * Because while for entities historical weight is not important and we
3407 * really only care about our future and therefore can consider a pure
3408 * runnable sum, runqueues can NOT do this.
3410 * We specifically want runqueues to have a load_avg that includes
3411 * historical weights. Those represent the blocked load, the load we expect
3412 * to (shortly) return to us. This only works by keeping the weights as
3413 * integral part of the sum. We therefore cannot decompose as per (3).
3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418 * runnable section of these tasks overlap (or not). If they were to perfectly
3419 * align the rq as a whole would be runnable 2/3 of the time. If however we
3420 * always have at least 1 runnable task, the rq as a whole is always runnable.
3422 * So we'll have to approximate.. :/
3424 * Given the constraint:
3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3428 * We can construct a rule that adds runnable to a rq by assuming minimal
3431 * On removal, we'll assume each task is equally runnable; which yields:
3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3435 * XXX: only do this for the part of runnable > running ?
3440 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3442 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3444 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3445 * See ___update_load_avg() for details.
3447 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3449 /* Nothing to update */
3453 /* Set new sched_entity's utilization */
3454 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3455 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3459 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* divider
;
3463 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3465 long delta
= gcfs_rq
->avg
.runnable_avg
- se
->avg
.runnable_avg
;
3467 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3468 * See ___update_load_avg() for details.
3470 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3472 /* Nothing to update */
3476 /* Set new sched_entity's runnable */
3477 se
->avg
.runnable_avg
= gcfs_rq
->avg
.runnable_avg
;
3478 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3480 /* Update parent cfs_rq runnable */
3481 add_positive(&cfs_rq
->avg
.runnable_avg
, delta
);
3482 cfs_rq
->avg
.runnable_sum
= cfs_rq
->avg
.runnable_avg
* divider
;
3486 update_tg_cfs_load(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3488 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3489 unsigned long load_avg
;
3497 gcfs_rq
->prop_runnable_sum
= 0;
3500 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3501 * See ___update_load_avg() for details.
3503 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3505 if (runnable_sum
>= 0) {
3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 * the CPU is saturated running == runnable.
3510 runnable_sum
+= se
->avg
.load_sum
;
3511 runnable_sum
= min_t(long, runnable_sum
, divider
);
3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 * assuming all tasks are equally runnable.
3517 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3518 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3519 scale_load_down(gcfs_rq
->load
.weight
));
3522 /* But make sure to not inflate se's runnable */
3523 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3527 * runnable_sum can't be lower than running_sum
3528 * Rescale running sum to be in the same range as runnable sum
3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3530 * runnable_sum is in [0 : LOAD_AVG_MAX]
3532 running_sum
= se
->avg
.util_sum
>> SCHED_CAPACITY_SHIFT
;
3533 runnable_sum
= max(runnable_sum
, running_sum
);
3535 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3536 load_avg
= div_s64(load_sum
, divider
);
3538 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3539 delta_avg
= load_avg
- se
->avg
.load_avg
;
3541 se
->avg
.load_sum
= runnable_sum
;
3542 se
->avg
.load_avg
= load_avg
;
3543 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3544 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3547 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3549 cfs_rq
->propagate
= 1;
3550 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3553 /* Update task and its cfs_rq load average */
3554 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3556 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3558 if (entity_is_task(se
))
3561 gcfs_rq
= group_cfs_rq(se
);
3562 if (!gcfs_rq
->propagate
)
3565 gcfs_rq
->propagate
= 0;
3567 cfs_rq
= cfs_rq_of(se
);
3569 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3571 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3572 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3573 update_tg_cfs_load(cfs_rq
, se
, gcfs_rq
);
3575 trace_pelt_cfs_tp(cfs_rq
);
3576 trace_pelt_se_tp(se
);
3582 * Check if we need to update the load and the utilization of a blocked
3585 static inline bool skip_blocked_update(struct sched_entity
*se
)
3587 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3590 * If sched_entity still have not zero load or utilization, we have to
3593 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3597 * If there is a pending propagation, we have to update the load and
3598 * the utilization of the sched_entity:
3600 if (gcfs_rq
->propagate
)
3604 * Otherwise, the load and the utilization of the sched_entity is
3605 * already zero and there is no pending propagation, so it will be a
3606 * waste of time to try to decay it:
3611 #else /* CONFIG_FAIR_GROUP_SCHED */
3613 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3615 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3620 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3622 #endif /* CONFIG_FAIR_GROUP_SCHED */
3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3626 * @now: current time, as per cfs_rq_clock_pelt()
3627 * @cfs_rq: cfs_rq to update
3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631 * post_init_entity_util_avg().
3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3635 * Returns true if the load decayed or we removed load.
3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638 * call update_tg_load_avg() when this function returns true.
3641 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3643 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable
= 0;
3644 struct sched_avg
*sa
= &cfs_rq
->avg
;
3647 if (cfs_rq
->removed
.nr
) {
3649 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3651 raw_spin_lock(&cfs_rq
->removed
.lock
);
3652 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3653 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3654 swap(cfs_rq
->removed
.runnable_avg
, removed_runnable
);
3655 cfs_rq
->removed
.nr
= 0;
3656 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3659 sub_positive(&sa
->load_avg
, r
);
3660 sub_positive(&sa
->load_sum
, r
* divider
);
3663 sub_positive(&sa
->util_avg
, r
);
3664 sub_positive(&sa
->util_sum
, r
* divider
);
3666 r
= removed_runnable
;
3667 sub_positive(&sa
->runnable_avg
, r
);
3668 sub_positive(&sa
->runnable_sum
, r
* divider
);
3671 * removed_runnable is the unweighted version of removed_load so we
3672 * can use it to estimate removed_load_sum.
3674 add_tg_cfs_propagate(cfs_rq
,
3675 -(long)(removed_runnable
* divider
) >> SCHED_CAPACITY_SHIFT
);
3680 decayed
|= __update_load_avg_cfs_rq(now
, cfs_rq
);
3682 #ifndef CONFIG_64BIT
3684 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692 * @cfs_rq: cfs_rq to attach to
3693 * @se: sched_entity to attach
3695 * Must call update_cfs_rq_load_avg() before this, since we rely on
3696 * cfs_rq->avg.last_update_time being current.
3698 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3701 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3702 * See ___update_load_avg() for details.
3704 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3707 * When we attach the @se to the @cfs_rq, we must align the decay
3708 * window because without that, really weird and wonderful things can
3713 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3714 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3717 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3718 * period_contrib. This isn't strictly correct, but since we're
3719 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3722 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3724 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3726 se
->avg
.load_sum
= divider
;
3727 if (se_weight(se
)) {
3729 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3732 enqueue_load_avg(cfs_rq
, se
);
3733 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3734 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3735 cfs_rq
->avg
.runnable_avg
+= se
->avg
.runnable_avg
;
3736 cfs_rq
->avg
.runnable_sum
+= se
->avg
.runnable_sum
;
3738 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3740 cfs_rq_util_change(cfs_rq
, 0);
3742 trace_pelt_cfs_tp(cfs_rq
);
3746 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3747 * @cfs_rq: cfs_rq to detach from
3748 * @se: sched_entity to detach
3750 * Must call update_cfs_rq_load_avg() before this, since we rely on
3751 * cfs_rq->avg.last_update_time being current.
3753 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3755 dequeue_load_avg(cfs_rq
, se
);
3756 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3757 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3758 sub_positive(&cfs_rq
->avg
.runnable_avg
, se
->avg
.runnable_avg
);
3759 sub_positive(&cfs_rq
->avg
.runnable_sum
, se
->avg
.runnable_sum
);
3761 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3763 cfs_rq_util_change(cfs_rq
, 0);
3765 trace_pelt_cfs_tp(cfs_rq
);
3769 * Optional action to be done while updating the load average
3771 #define UPDATE_TG 0x1
3772 #define SKIP_AGE_LOAD 0x2
3773 #define DO_ATTACH 0x4
3775 /* Update task and its cfs_rq load average */
3776 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3778 u64 now
= cfs_rq_clock_pelt(cfs_rq
);
3782 * Track task load average for carrying it to new CPU after migrated, and
3783 * track group sched_entity load average for task_h_load calc in migration
3785 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3786 __update_load_avg_se(now
, cfs_rq
, se
);
3788 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3789 decayed
|= propagate_entity_load_avg(se
);
3791 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3794 * DO_ATTACH means we're here from enqueue_entity().
3795 * !last_update_time means we've passed through
3796 * migrate_task_rq_fair() indicating we migrated.
3798 * IOW we're enqueueing a task on a new CPU.
3800 attach_entity_load_avg(cfs_rq
, se
);
3801 update_tg_load_avg(cfs_rq
, 0);
3803 } else if (decayed
) {
3804 cfs_rq_util_change(cfs_rq
, 0);
3806 if (flags
& UPDATE_TG
)
3807 update_tg_load_avg(cfs_rq
, 0);
3811 #ifndef CONFIG_64BIT
3812 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3814 u64 last_update_time_copy
;
3815 u64 last_update_time
;
3818 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3820 last_update_time
= cfs_rq
->avg
.last_update_time
;
3821 } while (last_update_time
!= last_update_time_copy
);
3823 return last_update_time
;
3826 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3828 return cfs_rq
->avg
.last_update_time
;
3833 * Synchronize entity load avg of dequeued entity without locking
3836 static void sync_entity_load_avg(struct sched_entity
*se
)
3838 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3839 u64 last_update_time
;
3841 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3842 __update_load_avg_blocked_se(last_update_time
, se
);
3846 * Task first catches up with cfs_rq, and then subtract
3847 * itself from the cfs_rq (task must be off the queue now).
3849 static void remove_entity_load_avg(struct sched_entity
*se
)
3851 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3852 unsigned long flags
;
3855 * tasks cannot exit without having gone through wake_up_new_task() ->
3856 * post_init_entity_util_avg() which will have added things to the
3857 * cfs_rq, so we can remove unconditionally.
3860 sync_entity_load_avg(se
);
3862 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3863 ++cfs_rq
->removed
.nr
;
3864 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3865 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3866 cfs_rq
->removed
.runnable_avg
+= se
->avg
.runnable_avg
;
3867 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq
*cfs_rq
)
3872 return cfs_rq
->avg
.runnable_avg
;
3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3877 return cfs_rq
->avg
.load_avg
;
3880 static int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
);
3882 static inline unsigned long task_util(struct task_struct
*p
)
3884 return READ_ONCE(p
->se
.avg
.util_avg
);
3887 static inline unsigned long _task_util_est(struct task_struct
*p
)
3889 struct util_est ue
= READ_ONCE(p
->se
.avg
.util_est
);
3891 return (max(ue
.ewma
, ue
.enqueued
) | UTIL_AVG_UNCHANGED
);
3894 static inline unsigned long task_util_est(struct task_struct
*p
)
3896 return max(task_util(p
), _task_util_est(p
));
3899 #ifdef CONFIG_UCLAMP_TASK
3900 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3902 return clamp(task_util_est(p
),
3903 uclamp_eff_value(p
, UCLAMP_MIN
),
3904 uclamp_eff_value(p
, UCLAMP_MAX
));
3907 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3909 return task_util_est(p
);
3913 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
3914 struct task_struct
*p
)
3916 unsigned int enqueued
;
3918 if (!sched_feat(UTIL_EST
))
3921 /* Update root cfs_rq's estimated utilization */
3922 enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3923 enqueued
+= _task_util_est(p
);
3924 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, enqueued
);
3928 * Check if a (signed) value is within a specified (unsigned) margin,
3929 * based on the observation that:
3931 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3933 * NOTE: this only works when value + maring < INT_MAX.
3935 static inline bool within_margin(int value
, int margin
)
3937 return ((unsigned int)(value
+ margin
- 1) < (2 * margin
- 1));
3941 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
, bool task_sleep
)
3943 long last_ewma_diff
;
3947 if (!sched_feat(UTIL_EST
))
3950 /* Update root cfs_rq's estimated utilization */
3951 ue
.enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3952 ue
.enqueued
-= min_t(unsigned int, ue
.enqueued
, _task_util_est(p
));
3953 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, ue
.enqueued
);
3956 * Skip update of task's estimated utilization when the task has not
3957 * yet completed an activation, e.g. being migrated.
3963 * If the PELT values haven't changed since enqueue time,
3964 * skip the util_est update.
3966 ue
= p
->se
.avg
.util_est
;
3967 if (ue
.enqueued
& UTIL_AVG_UNCHANGED
)
3971 * Reset EWMA on utilization increases, the moving average is used only
3972 * to smooth utilization decreases.
3974 ue
.enqueued
= (task_util(p
) | UTIL_AVG_UNCHANGED
);
3975 if (sched_feat(UTIL_EST_FASTUP
)) {
3976 if (ue
.ewma
< ue
.enqueued
) {
3977 ue
.ewma
= ue
.enqueued
;
3983 * Skip update of task's estimated utilization when its EWMA is
3984 * already ~1% close to its last activation value.
3986 last_ewma_diff
= ue
.enqueued
- ue
.ewma
;
3987 if (within_margin(last_ewma_diff
, (SCHED_CAPACITY_SCALE
/ 100)))
3991 * To avoid overestimation of actual task utilization, skip updates if
3992 * we cannot grant there is idle time in this CPU.
3994 cpu
= cpu_of(rq_of(cfs_rq
));
3995 if (task_util(p
) > capacity_orig_of(cpu
))
3999 * Update Task's estimated utilization
4001 * When *p completes an activation we can consolidate another sample
4002 * of the task size. This is done by storing the current PELT value
4003 * as ue.enqueued and by using this value to update the Exponential
4004 * Weighted Moving Average (EWMA):
4006 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4007 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4008 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4009 * = w * ( last_ewma_diff ) + ewma(t-1)
4010 * = w * (last_ewma_diff + ewma(t-1) / w)
4012 * Where 'w' is the weight of new samples, which is configured to be
4013 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4015 ue
.ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
4016 ue
.ewma
+= last_ewma_diff
;
4017 ue
.ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
4019 WRITE_ONCE(p
->se
.avg
.util_est
, ue
);
4022 static inline int task_fits_capacity(struct task_struct
*p
, long capacity
)
4024 return fits_capacity(uclamp_task_util(p
), capacity
);
4027 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
)
4029 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
4033 rq
->misfit_task_load
= 0;
4037 if (task_fits_capacity(p
, capacity_of(cpu_of(rq
)))) {
4038 rq
->misfit_task_load
= 0;
4042 rq
->misfit_task_load
= task_h_load(p
);
4045 #else /* CONFIG_SMP */
4047 #define UPDATE_TG 0x0
4048 #define SKIP_AGE_LOAD 0x0
4049 #define DO_ATTACH 0x0
4051 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
4053 cfs_rq_util_change(cfs_rq
, 0);
4056 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
4059 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4061 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4063 static inline int newidle_balance(struct rq
*rq
, struct rq_flags
*rf
)
4069 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
4072 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
4074 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
) {}
4076 #endif /* CONFIG_SMP */
4078 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4080 #ifdef CONFIG_SCHED_DEBUG
4081 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
4086 if (d
> 3*sysctl_sched_latency
)
4087 schedstat_inc(cfs_rq
->nr_spread_over
);
4092 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
4094 u64 vruntime
= cfs_rq
->min_vruntime
;
4097 * The 'current' period is already promised to the current tasks,
4098 * however the extra weight of the new task will slow them down a
4099 * little, place the new task so that it fits in the slot that
4100 * stays open at the end.
4102 if (initial
&& sched_feat(START_DEBIT
))
4103 vruntime
+= sched_vslice(cfs_rq
, se
);
4105 /* sleeps up to a single latency don't count. */
4107 unsigned long thresh
= sysctl_sched_latency
;
4110 * Halve their sleep time's effect, to allow
4111 * for a gentler effect of sleepers:
4113 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
4119 /* ensure we never gain time by being placed backwards. */
4120 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
4123 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
4125 static inline void check_schedstat_required(void)
4127 #ifdef CONFIG_SCHEDSTATS
4128 if (schedstat_enabled())
4131 /* Force schedstat enabled if a dependent tracepoint is active */
4132 if (trace_sched_stat_wait_enabled() ||
4133 trace_sched_stat_sleep_enabled() ||
4134 trace_sched_stat_iowait_enabled() ||
4135 trace_sched_stat_blocked_enabled() ||
4136 trace_sched_stat_runtime_enabled()) {
4137 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4138 "stat_blocked and stat_runtime require the "
4139 "kernel parameter schedstats=enable or "
4140 "kernel.sched_schedstats=1\n");
4145 static inline bool cfs_bandwidth_used(void);
4152 * update_min_vruntime()
4153 * vruntime -= min_vruntime
4157 * update_min_vruntime()
4158 * vruntime += min_vruntime
4160 * this way the vruntime transition between RQs is done when both
4161 * min_vruntime are up-to-date.
4165 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4166 * vruntime -= min_vruntime
4170 * update_min_vruntime()
4171 * vruntime += min_vruntime
4173 * this way we don't have the most up-to-date min_vruntime on the originating
4174 * CPU and an up-to-date min_vruntime on the destination CPU.
4178 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4180 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
4181 bool curr
= cfs_rq
->curr
== se
;
4184 * If we're the current task, we must renormalise before calling
4188 se
->vruntime
+= cfs_rq
->min_vruntime
;
4190 update_curr(cfs_rq
);
4193 * Otherwise, renormalise after, such that we're placed at the current
4194 * moment in time, instead of some random moment in the past. Being
4195 * placed in the past could significantly boost this task to the
4196 * fairness detriment of existing tasks.
4198 if (renorm
&& !curr
)
4199 se
->vruntime
+= cfs_rq
->min_vruntime
;
4202 * When enqueuing a sched_entity, we must:
4203 * - Update loads to have both entity and cfs_rq synced with now.
4204 * - Add its load to cfs_rq->runnable_avg
4205 * - For group_entity, update its weight to reflect the new share of
4207 * - Add its new weight to cfs_rq->load.weight
4209 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
4210 se_update_runnable(se
);
4211 update_cfs_group(se
);
4212 account_entity_enqueue(cfs_rq
, se
);
4214 if (flags
& ENQUEUE_WAKEUP
)
4215 place_entity(cfs_rq
, se
, 0);
4217 check_schedstat_required();
4218 update_stats_enqueue(cfs_rq
, se
, flags
);
4219 check_spread(cfs_rq
, se
);
4221 __enqueue_entity(cfs_rq
, se
);
4225 * When bandwidth control is enabled, cfs might have been removed
4226 * because of a parent been throttled but cfs->nr_running > 1. Try to
4227 * add it unconditionnally.
4229 if (cfs_rq
->nr_running
== 1 || cfs_bandwidth_used())
4230 list_add_leaf_cfs_rq(cfs_rq
);
4232 if (cfs_rq
->nr_running
== 1)
4233 check_enqueue_throttle(cfs_rq
);
4236 static void __clear_buddies_last(struct sched_entity
*se
)
4238 for_each_sched_entity(se
) {
4239 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4240 if (cfs_rq
->last
!= se
)
4243 cfs_rq
->last
= NULL
;
4247 static void __clear_buddies_next(struct sched_entity
*se
)
4249 for_each_sched_entity(se
) {
4250 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4251 if (cfs_rq
->next
!= se
)
4254 cfs_rq
->next
= NULL
;
4258 static void __clear_buddies_skip(struct sched_entity
*se
)
4260 for_each_sched_entity(se
) {
4261 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4262 if (cfs_rq
->skip
!= se
)
4265 cfs_rq
->skip
= NULL
;
4269 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4271 if (cfs_rq
->last
== se
)
4272 __clear_buddies_last(se
);
4274 if (cfs_rq
->next
== se
)
4275 __clear_buddies_next(se
);
4277 if (cfs_rq
->skip
== se
)
4278 __clear_buddies_skip(se
);
4281 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4284 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4287 * Update run-time statistics of the 'current'.
4289 update_curr(cfs_rq
);
4292 * When dequeuing a sched_entity, we must:
4293 * - Update loads to have both entity and cfs_rq synced with now.
4294 * - Subtract its load from the cfs_rq->runnable_avg.
4295 * - Subtract its previous weight from cfs_rq->load.weight.
4296 * - For group entity, update its weight to reflect the new share
4297 * of its group cfs_rq.
4299 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4300 se_update_runnable(se
);
4302 update_stats_dequeue(cfs_rq
, se
, flags
);
4304 clear_buddies(cfs_rq
, se
);
4306 if (se
!= cfs_rq
->curr
)
4307 __dequeue_entity(cfs_rq
, se
);
4309 account_entity_dequeue(cfs_rq
, se
);
4312 * Normalize after update_curr(); which will also have moved
4313 * min_vruntime if @se is the one holding it back. But before doing
4314 * update_min_vruntime() again, which will discount @se's position and
4315 * can move min_vruntime forward still more.
4317 if (!(flags
& DEQUEUE_SLEEP
))
4318 se
->vruntime
-= cfs_rq
->min_vruntime
;
4320 /* return excess runtime on last dequeue */
4321 return_cfs_rq_runtime(cfs_rq
);
4323 update_cfs_group(se
);
4326 * Now advance min_vruntime if @se was the entity holding it back,
4327 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4328 * put back on, and if we advance min_vruntime, we'll be placed back
4329 * further than we started -- ie. we'll be penalized.
4331 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
4332 update_min_vruntime(cfs_rq
);
4336 * Preempt the current task with a newly woken task if needed:
4339 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4341 unsigned long ideal_runtime
, delta_exec
;
4342 struct sched_entity
*se
;
4345 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4346 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4347 if (delta_exec
> ideal_runtime
) {
4348 resched_curr(rq_of(cfs_rq
));
4350 * The current task ran long enough, ensure it doesn't get
4351 * re-elected due to buddy favours.
4353 clear_buddies(cfs_rq
, curr
);
4358 * Ensure that a task that missed wakeup preemption by a
4359 * narrow margin doesn't have to wait for a full slice.
4360 * This also mitigates buddy induced latencies under load.
4362 if (delta_exec
< sysctl_sched_min_granularity
)
4365 se
= __pick_first_entity(cfs_rq
);
4366 delta
= curr
->vruntime
- se
->vruntime
;
4371 if (delta
> ideal_runtime
)
4372 resched_curr(rq_of(cfs_rq
));
4376 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4378 /* 'current' is not kept within the tree. */
4381 * Any task has to be enqueued before it get to execute on
4382 * a CPU. So account for the time it spent waiting on the
4385 update_stats_wait_end(cfs_rq
, se
);
4386 __dequeue_entity(cfs_rq
, se
);
4387 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4390 update_stats_curr_start(cfs_rq
, se
);
4394 * Track our maximum slice length, if the CPU's load is at
4395 * least twice that of our own weight (i.e. dont track it
4396 * when there are only lesser-weight tasks around):
4398 if (schedstat_enabled() &&
4399 rq_of(cfs_rq
)->cfs
.load
.weight
>= 2*se
->load
.weight
) {
4400 schedstat_set(se
->statistics
.slice_max
,
4401 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4402 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4405 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4409 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4412 * Pick the next process, keeping these things in mind, in this order:
4413 * 1) keep things fair between processes/task groups
4414 * 2) pick the "next" process, since someone really wants that to run
4415 * 3) pick the "last" process, for cache locality
4416 * 4) do not run the "skip" process, if something else is available
4418 static struct sched_entity
*
4419 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4421 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4422 struct sched_entity
*se
;
4425 * If curr is set we have to see if its left of the leftmost entity
4426 * still in the tree, provided there was anything in the tree at all.
4428 if (!left
|| (curr
&& entity_before(curr
, left
)))
4431 se
= left
; /* ideally we run the leftmost entity */
4434 * Avoid running the skip buddy, if running something else can
4435 * be done without getting too unfair.
4437 if (cfs_rq
->skip
== se
) {
4438 struct sched_entity
*second
;
4441 second
= __pick_first_entity(cfs_rq
);
4443 second
= __pick_next_entity(se
);
4444 if (!second
|| (curr
&& entity_before(curr
, second
)))
4448 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4453 * Prefer last buddy, try to return the CPU to a preempted task.
4455 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
4459 * Someone really wants this to run. If it's not unfair, run it.
4461 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
4464 clear_buddies(cfs_rq
, se
);
4469 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4471 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4474 * If still on the runqueue then deactivate_task()
4475 * was not called and update_curr() has to be done:
4478 update_curr(cfs_rq
);
4480 /* throttle cfs_rqs exceeding runtime */
4481 check_cfs_rq_runtime(cfs_rq
);
4483 check_spread(cfs_rq
, prev
);
4486 update_stats_wait_start(cfs_rq
, prev
);
4487 /* Put 'current' back into the tree. */
4488 __enqueue_entity(cfs_rq
, prev
);
4489 /* in !on_rq case, update occurred at dequeue */
4490 update_load_avg(cfs_rq
, prev
, 0);
4492 cfs_rq
->curr
= NULL
;
4496 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4499 * Update run-time statistics of the 'current'.
4501 update_curr(cfs_rq
);
4504 * Ensure that runnable average is periodically updated.
4506 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4507 update_cfs_group(curr
);
4509 #ifdef CONFIG_SCHED_HRTICK
4511 * queued ticks are scheduled to match the slice, so don't bother
4512 * validating it and just reschedule.
4515 resched_curr(rq_of(cfs_rq
));
4519 * don't let the period tick interfere with the hrtick preemption
4521 if (!sched_feat(DOUBLE_TICK
) &&
4522 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4526 if (cfs_rq
->nr_running
> 1)
4527 check_preempt_tick(cfs_rq
, curr
);
4531 /**************************************************
4532 * CFS bandwidth control machinery
4535 #ifdef CONFIG_CFS_BANDWIDTH
4537 #ifdef CONFIG_JUMP_LABEL
4538 static struct static_key __cfs_bandwidth_used
;
4540 static inline bool cfs_bandwidth_used(void)
4542 return static_key_false(&__cfs_bandwidth_used
);
4545 void cfs_bandwidth_usage_inc(void)
4547 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4550 void cfs_bandwidth_usage_dec(void)
4552 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4554 #else /* CONFIG_JUMP_LABEL */
4555 static bool cfs_bandwidth_used(void)
4560 void cfs_bandwidth_usage_inc(void) {}
4561 void cfs_bandwidth_usage_dec(void) {}
4562 #endif /* CONFIG_JUMP_LABEL */
4565 * default period for cfs group bandwidth.
4566 * default: 0.1s, units: nanoseconds
4568 static inline u64
default_cfs_period(void)
4570 return 100000000ULL;
4573 static inline u64
sched_cfs_bandwidth_slice(void)
4575 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4579 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4580 * directly instead of rq->clock to avoid adding additional synchronization
4583 * requires cfs_b->lock
4585 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4587 if (cfs_b
->quota
!= RUNTIME_INF
)
4588 cfs_b
->runtime
= cfs_b
->quota
;
4591 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4593 return &tg
->cfs_bandwidth
;
4596 /* returns 0 on failure to allocate runtime */
4597 static int __assign_cfs_rq_runtime(struct cfs_bandwidth
*cfs_b
,
4598 struct cfs_rq
*cfs_rq
, u64 target_runtime
)
4600 u64 min_amount
, amount
= 0;
4602 lockdep_assert_held(&cfs_b
->lock
);
4604 /* note: this is a positive sum as runtime_remaining <= 0 */
4605 min_amount
= target_runtime
- cfs_rq
->runtime_remaining
;
4607 if (cfs_b
->quota
== RUNTIME_INF
)
4608 amount
= min_amount
;
4610 start_cfs_bandwidth(cfs_b
);
4612 if (cfs_b
->runtime
> 0) {
4613 amount
= min(cfs_b
->runtime
, min_amount
);
4614 cfs_b
->runtime
-= amount
;
4619 cfs_rq
->runtime_remaining
+= amount
;
4621 return cfs_rq
->runtime_remaining
> 0;
4624 /* returns 0 on failure to allocate runtime */
4625 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4627 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4630 raw_spin_lock(&cfs_b
->lock
);
4631 ret
= __assign_cfs_rq_runtime(cfs_b
, cfs_rq
, sched_cfs_bandwidth_slice());
4632 raw_spin_unlock(&cfs_b
->lock
);
4637 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4639 /* dock delta_exec before expiring quota (as it could span periods) */
4640 cfs_rq
->runtime_remaining
-= delta_exec
;
4642 if (likely(cfs_rq
->runtime_remaining
> 0))
4645 if (cfs_rq
->throttled
)
4648 * if we're unable to extend our runtime we resched so that the active
4649 * hierarchy can be throttled
4651 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4652 resched_curr(rq_of(cfs_rq
));
4655 static __always_inline
4656 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4658 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4661 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4664 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4666 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4669 /* check whether cfs_rq, or any parent, is throttled */
4670 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4672 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4676 * Ensure that neither of the group entities corresponding to src_cpu or
4677 * dest_cpu are members of a throttled hierarchy when performing group
4678 * load-balance operations.
4680 static inline int throttled_lb_pair(struct task_group
*tg
,
4681 int src_cpu
, int dest_cpu
)
4683 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4685 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4686 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4688 return throttled_hierarchy(src_cfs_rq
) ||
4689 throttled_hierarchy(dest_cfs_rq
);
4692 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4694 struct rq
*rq
= data
;
4695 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4697 cfs_rq
->throttle_count
--;
4698 if (!cfs_rq
->throttle_count
) {
4699 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4700 cfs_rq
->throttled_clock_task
;
4702 /* Add cfs_rq with already running entity in the list */
4703 if (cfs_rq
->nr_running
>= 1)
4704 list_add_leaf_cfs_rq(cfs_rq
);
4710 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4712 struct rq
*rq
= data
;
4713 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4715 /* group is entering throttled state, stop time */
4716 if (!cfs_rq
->throttle_count
) {
4717 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4718 list_del_leaf_cfs_rq(cfs_rq
);
4720 cfs_rq
->throttle_count
++;
4725 static bool throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4727 struct rq
*rq
= rq_of(cfs_rq
);
4728 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4729 struct sched_entity
*se
;
4730 long task_delta
, idle_task_delta
, dequeue
= 1;
4732 raw_spin_lock(&cfs_b
->lock
);
4733 /* This will start the period timer if necessary */
4734 if (__assign_cfs_rq_runtime(cfs_b
, cfs_rq
, 1)) {
4736 * We have raced with bandwidth becoming available, and if we
4737 * actually throttled the timer might not unthrottle us for an
4738 * entire period. We additionally needed to make sure that any
4739 * subsequent check_cfs_rq_runtime calls agree not to throttle
4740 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4741 * for 1ns of runtime rather than just check cfs_b.
4745 list_add_tail_rcu(&cfs_rq
->throttled_list
,
4746 &cfs_b
->throttled_cfs_rq
);
4748 raw_spin_unlock(&cfs_b
->lock
);
4751 return false; /* Throttle no longer required. */
4753 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4755 /* freeze hierarchy runnable averages while throttled */
4757 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4760 task_delta
= cfs_rq
->h_nr_running
;
4761 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4762 for_each_sched_entity(se
) {
4763 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4764 /* throttled entity or throttle-on-deactivate */
4769 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4771 update_load_avg(qcfs_rq
, se
, 0);
4772 se_update_runnable(se
);
4775 qcfs_rq
->h_nr_running
-= task_delta
;
4776 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
4778 if (qcfs_rq
->load
.weight
)
4783 sub_nr_running(rq
, task_delta
);
4786 * Note: distribution will already see us throttled via the
4787 * throttled-list. rq->lock protects completion.
4789 cfs_rq
->throttled
= 1;
4790 cfs_rq
->throttled_clock
= rq_clock(rq
);
4794 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4796 struct rq
*rq
= rq_of(cfs_rq
);
4797 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4798 struct sched_entity
*se
;
4799 long task_delta
, idle_task_delta
;
4801 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4803 cfs_rq
->throttled
= 0;
4805 update_rq_clock(rq
);
4807 raw_spin_lock(&cfs_b
->lock
);
4808 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4809 list_del_rcu(&cfs_rq
->throttled_list
);
4810 raw_spin_unlock(&cfs_b
->lock
);
4812 /* update hierarchical throttle state */
4813 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4815 if (!cfs_rq
->load
.weight
)
4818 task_delta
= cfs_rq
->h_nr_running
;
4819 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4820 for_each_sched_entity(se
) {
4823 cfs_rq
= cfs_rq_of(se
);
4824 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4826 cfs_rq
->h_nr_running
+= task_delta
;
4827 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4829 /* end evaluation on encountering a throttled cfs_rq */
4830 if (cfs_rq_throttled(cfs_rq
))
4831 goto unthrottle_throttle
;
4834 for_each_sched_entity(se
) {
4835 cfs_rq
= cfs_rq_of(se
);
4837 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4838 se_update_runnable(se
);
4840 cfs_rq
->h_nr_running
+= task_delta
;
4841 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4844 /* end evaluation on encountering a throttled cfs_rq */
4845 if (cfs_rq_throttled(cfs_rq
))
4846 goto unthrottle_throttle
;
4849 * One parent has been throttled and cfs_rq removed from the
4850 * list. Add it back to not break the leaf list.
4852 if (throttled_hierarchy(cfs_rq
))
4853 list_add_leaf_cfs_rq(cfs_rq
);
4856 /* At this point se is NULL and we are at root level*/
4857 add_nr_running(rq
, task_delta
);
4859 unthrottle_throttle
:
4861 * The cfs_rq_throttled() breaks in the above iteration can result in
4862 * incomplete leaf list maintenance, resulting in triggering the
4865 for_each_sched_entity(se
) {
4866 cfs_rq
= cfs_rq_of(se
);
4868 if (list_add_leaf_cfs_rq(cfs_rq
))
4872 assert_list_leaf_cfs_rq(rq
);
4874 /* Determine whether we need to wake up potentially idle CPU: */
4875 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4879 static void distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
)
4881 struct cfs_rq
*cfs_rq
;
4882 u64 runtime
, remaining
= 1;
4885 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4887 struct rq
*rq
= rq_of(cfs_rq
);
4890 rq_lock_irqsave(rq
, &rf
);
4891 if (!cfs_rq_throttled(cfs_rq
))
4894 /* By the above check, this should never be true */
4895 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
4897 raw_spin_lock(&cfs_b
->lock
);
4898 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4899 if (runtime
> cfs_b
->runtime
)
4900 runtime
= cfs_b
->runtime
;
4901 cfs_b
->runtime
-= runtime
;
4902 remaining
= cfs_b
->runtime
;
4903 raw_spin_unlock(&cfs_b
->lock
);
4905 cfs_rq
->runtime_remaining
+= runtime
;
4907 /* we check whether we're throttled above */
4908 if (cfs_rq
->runtime_remaining
> 0)
4909 unthrottle_cfs_rq(cfs_rq
);
4912 rq_unlock_irqrestore(rq
, &rf
);
4921 * Responsible for refilling a task_group's bandwidth and unthrottling its
4922 * cfs_rqs as appropriate. If there has been no activity within the last
4923 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4924 * used to track this state.
4926 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
, unsigned long flags
)
4930 /* no need to continue the timer with no bandwidth constraint */
4931 if (cfs_b
->quota
== RUNTIME_INF
)
4932 goto out_deactivate
;
4934 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4935 cfs_b
->nr_periods
+= overrun
;
4938 * idle depends on !throttled (for the case of a large deficit), and if
4939 * we're going inactive then everything else can be deferred
4941 if (cfs_b
->idle
&& !throttled
)
4942 goto out_deactivate
;
4944 __refill_cfs_bandwidth_runtime(cfs_b
);
4947 /* mark as potentially idle for the upcoming period */
4952 /* account preceding periods in which throttling occurred */
4953 cfs_b
->nr_throttled
+= overrun
;
4956 * This check is repeated as we release cfs_b->lock while we unthrottle.
4958 while (throttled
&& cfs_b
->runtime
> 0) {
4959 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4960 /* we can't nest cfs_b->lock while distributing bandwidth */
4961 distribute_cfs_runtime(cfs_b
);
4962 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4964 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4968 * While we are ensured activity in the period following an
4969 * unthrottle, this also covers the case in which the new bandwidth is
4970 * insufficient to cover the existing bandwidth deficit. (Forcing the
4971 * timer to remain active while there are any throttled entities.)
4981 /* a cfs_rq won't donate quota below this amount */
4982 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4983 /* minimum remaining period time to redistribute slack quota */
4984 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4985 /* how long we wait to gather additional slack before distributing */
4986 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4989 * Are we near the end of the current quota period?
4991 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4992 * hrtimer base being cleared by hrtimer_start. In the case of
4993 * migrate_hrtimers, base is never cleared, so we are fine.
4995 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4997 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
5000 /* if the call-back is running a quota refresh is already occurring */
5001 if (hrtimer_callback_running(refresh_timer
))
5004 /* is a quota refresh about to occur? */
5005 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
5006 if (remaining
< min_expire
)
5012 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
5014 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
5016 /* if there's a quota refresh soon don't bother with slack */
5017 if (runtime_refresh_within(cfs_b
, min_left
))
5020 /* don't push forwards an existing deferred unthrottle */
5021 if (cfs_b
->slack_started
)
5023 cfs_b
->slack_started
= true;
5025 hrtimer_start(&cfs_b
->slack_timer
,
5026 ns_to_ktime(cfs_bandwidth_slack_period
),
5030 /* we know any runtime found here is valid as update_curr() precedes return */
5031 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5033 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
5034 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
5036 if (slack_runtime
<= 0)
5039 raw_spin_lock(&cfs_b
->lock
);
5040 if (cfs_b
->quota
!= RUNTIME_INF
) {
5041 cfs_b
->runtime
+= slack_runtime
;
5043 /* we are under rq->lock, defer unthrottling using a timer */
5044 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
5045 !list_empty(&cfs_b
->throttled_cfs_rq
))
5046 start_cfs_slack_bandwidth(cfs_b
);
5048 raw_spin_unlock(&cfs_b
->lock
);
5050 /* even if it's not valid for return we don't want to try again */
5051 cfs_rq
->runtime_remaining
-= slack_runtime
;
5054 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5056 if (!cfs_bandwidth_used())
5059 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
5062 __return_cfs_rq_runtime(cfs_rq
);
5066 * This is done with a timer (instead of inline with bandwidth return) since
5067 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5069 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
5071 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
5072 unsigned long flags
;
5074 /* confirm we're still not at a refresh boundary */
5075 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5076 cfs_b
->slack_started
= false;
5078 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
5079 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5083 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
5084 runtime
= cfs_b
->runtime
;
5086 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5091 distribute_cfs_runtime(cfs_b
);
5093 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5094 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5098 * When a group wakes up we want to make sure that its quota is not already
5099 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5100 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5102 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
5104 if (!cfs_bandwidth_used())
5107 /* an active group must be handled by the update_curr()->put() path */
5108 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
5111 /* ensure the group is not already throttled */
5112 if (cfs_rq_throttled(cfs_rq
))
5115 /* update runtime allocation */
5116 account_cfs_rq_runtime(cfs_rq
, 0);
5117 if (cfs_rq
->runtime_remaining
<= 0)
5118 throttle_cfs_rq(cfs_rq
);
5121 static void sync_throttle(struct task_group
*tg
, int cpu
)
5123 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
5125 if (!cfs_bandwidth_used())
5131 cfs_rq
= tg
->cfs_rq
[cpu
];
5132 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
5134 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
5135 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
5138 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5139 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5141 if (!cfs_bandwidth_used())
5144 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
5148 * it's possible for a throttled entity to be forced into a running
5149 * state (e.g. set_curr_task), in this case we're finished.
5151 if (cfs_rq_throttled(cfs_rq
))
5154 return throttle_cfs_rq(cfs_rq
);
5157 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
5159 struct cfs_bandwidth
*cfs_b
=
5160 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
5162 do_sched_cfs_slack_timer(cfs_b
);
5164 return HRTIMER_NORESTART
;
5167 extern const u64 max_cfs_quota_period
;
5169 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
5171 struct cfs_bandwidth
*cfs_b
=
5172 container_of(timer
, struct cfs_bandwidth
, period_timer
);
5173 unsigned long flags
;
5178 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5180 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
5184 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
, flags
);
5187 u64
new, old
= ktime_to_ns(cfs_b
->period
);
5190 * Grow period by a factor of 2 to avoid losing precision.
5191 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5195 if (new < max_cfs_quota_period
) {
5196 cfs_b
->period
= ns_to_ktime(new);
5199 pr_warn_ratelimited(
5200 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5202 div_u64(new, NSEC_PER_USEC
),
5203 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5205 pr_warn_ratelimited(
5206 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5208 div_u64(old
, NSEC_PER_USEC
),
5209 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5212 /* reset count so we don't come right back in here */
5217 cfs_b
->period_active
= 0;
5218 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5220 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
5223 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5225 raw_spin_lock_init(&cfs_b
->lock
);
5227 cfs_b
->quota
= RUNTIME_INF
;
5228 cfs_b
->period
= ns_to_ktime(default_cfs_period());
5230 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
5231 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
5232 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
5233 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5234 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
5235 cfs_b
->slack_started
= false;
5238 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5240 cfs_rq
->runtime_enabled
= 0;
5241 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
5244 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5246 lockdep_assert_held(&cfs_b
->lock
);
5248 if (cfs_b
->period_active
)
5251 cfs_b
->period_active
= 1;
5252 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
5253 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
5256 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5258 /* init_cfs_bandwidth() was not called */
5259 if (!cfs_b
->throttled_cfs_rq
.next
)
5262 hrtimer_cancel(&cfs_b
->period_timer
);
5263 hrtimer_cancel(&cfs_b
->slack_timer
);
5267 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5269 * The race is harmless, since modifying bandwidth settings of unhooked group
5270 * bits doesn't do much.
5273 /* cpu online calback */
5274 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
5276 struct task_group
*tg
;
5278 lockdep_assert_held(&rq
->lock
);
5281 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5282 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
5283 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5285 raw_spin_lock(&cfs_b
->lock
);
5286 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
5287 raw_spin_unlock(&cfs_b
->lock
);
5292 /* cpu offline callback */
5293 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
5295 struct task_group
*tg
;
5297 lockdep_assert_held(&rq
->lock
);
5300 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5301 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5303 if (!cfs_rq
->runtime_enabled
)
5307 * clock_task is not advancing so we just need to make sure
5308 * there's some valid quota amount
5310 cfs_rq
->runtime_remaining
= 1;
5312 * Offline rq is schedulable till CPU is completely disabled
5313 * in take_cpu_down(), so we prevent new cfs throttling here.
5315 cfs_rq
->runtime_enabled
= 0;
5317 if (cfs_rq_throttled(cfs_rq
))
5318 unthrottle_cfs_rq(cfs_rq
);
5323 #else /* CONFIG_CFS_BANDWIDTH */
5325 static inline bool cfs_bandwidth_used(void)
5330 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
5331 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
5332 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
5333 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
5334 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5336 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5341 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5346 static inline int throttled_lb_pair(struct task_group
*tg
,
5347 int src_cpu
, int dest_cpu
)
5352 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5354 #ifdef CONFIG_FAIR_GROUP_SCHED
5355 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5358 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5362 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5363 static inline void update_runtime_enabled(struct rq
*rq
) {}
5364 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5366 #endif /* CONFIG_CFS_BANDWIDTH */
5368 /**************************************************
5369 * CFS operations on tasks:
5372 #ifdef CONFIG_SCHED_HRTICK
5373 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5375 struct sched_entity
*se
= &p
->se
;
5376 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5378 SCHED_WARN_ON(task_rq(p
) != rq
);
5380 if (rq
->cfs
.h_nr_running
> 1) {
5381 u64 slice
= sched_slice(cfs_rq
, se
);
5382 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5383 s64 delta
= slice
- ran
;
5390 hrtick_start(rq
, delta
);
5395 * called from enqueue/dequeue and updates the hrtick when the
5396 * current task is from our class and nr_running is low enough
5399 static void hrtick_update(struct rq
*rq
)
5401 struct task_struct
*curr
= rq
->curr
;
5403 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5406 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5407 hrtick_start_fair(rq
, curr
);
5409 #else /* !CONFIG_SCHED_HRTICK */
5411 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5415 static inline void hrtick_update(struct rq
*rq
)
5421 static inline unsigned long cpu_util(int cpu
);
5423 static inline bool cpu_overutilized(int cpu
)
5425 return !fits_capacity(cpu_util(cpu
), capacity_of(cpu
));
5428 static inline void update_overutilized_status(struct rq
*rq
)
5430 if (!READ_ONCE(rq
->rd
->overutilized
) && cpu_overutilized(rq
->cpu
)) {
5431 WRITE_ONCE(rq
->rd
->overutilized
, SG_OVERUTILIZED
);
5432 trace_sched_overutilized_tp(rq
->rd
, SG_OVERUTILIZED
);
5436 static inline void update_overutilized_status(struct rq
*rq
) { }
5439 /* Runqueue only has SCHED_IDLE tasks enqueued */
5440 static int sched_idle_rq(struct rq
*rq
)
5442 return unlikely(rq
->nr_running
== rq
->cfs
.idle_h_nr_running
&&
5447 static int sched_idle_cpu(int cpu
)
5449 return sched_idle_rq(cpu_rq(cpu
));
5454 * The enqueue_task method is called before nr_running is
5455 * increased. Here we update the fair scheduling stats and
5456 * then put the task into the rbtree:
5459 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5461 struct cfs_rq
*cfs_rq
;
5462 struct sched_entity
*se
= &p
->se
;
5463 int idle_h_nr_running
= task_has_idle_policy(p
);
5466 * The code below (indirectly) updates schedutil which looks at
5467 * the cfs_rq utilization to select a frequency.
5468 * Let's add the task's estimated utilization to the cfs_rq's
5469 * estimated utilization, before we update schedutil.
5471 util_est_enqueue(&rq
->cfs
, p
);
5474 * If in_iowait is set, the code below may not trigger any cpufreq
5475 * utilization updates, so do it here explicitly with the IOWAIT flag
5479 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5481 for_each_sched_entity(se
) {
5484 cfs_rq
= cfs_rq_of(se
);
5485 enqueue_entity(cfs_rq
, se
, flags
);
5487 cfs_rq
->h_nr_running
++;
5488 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5490 /* end evaluation on encountering a throttled cfs_rq */
5491 if (cfs_rq_throttled(cfs_rq
))
5492 goto enqueue_throttle
;
5494 flags
= ENQUEUE_WAKEUP
;
5497 for_each_sched_entity(se
) {
5498 cfs_rq
= cfs_rq_of(se
);
5500 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5501 se_update_runnable(se
);
5502 update_cfs_group(se
);
5504 cfs_rq
->h_nr_running
++;
5505 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5507 /* end evaluation on encountering a throttled cfs_rq */
5508 if (cfs_rq_throttled(cfs_rq
))
5509 goto enqueue_throttle
;
5512 * One parent has been throttled and cfs_rq removed from the
5513 * list. Add it back to not break the leaf list.
5515 if (throttled_hierarchy(cfs_rq
))
5516 list_add_leaf_cfs_rq(cfs_rq
);
5519 /* At this point se is NULL and we are at root level*/
5520 add_nr_running(rq
, 1);
5523 * Since new tasks are assigned an initial util_avg equal to
5524 * half of the spare capacity of their CPU, tiny tasks have the
5525 * ability to cross the overutilized threshold, which will
5526 * result in the load balancer ruining all the task placement
5527 * done by EAS. As a way to mitigate that effect, do not account
5528 * for the first enqueue operation of new tasks during the
5529 * overutilized flag detection.
5531 * A better way of solving this problem would be to wait for
5532 * the PELT signals of tasks to converge before taking them
5533 * into account, but that is not straightforward to implement,
5534 * and the following generally works well enough in practice.
5536 if (flags
& ENQUEUE_WAKEUP
)
5537 update_overutilized_status(rq
);
5540 if (cfs_bandwidth_used()) {
5542 * When bandwidth control is enabled; the cfs_rq_throttled()
5543 * breaks in the above iteration can result in incomplete
5544 * leaf list maintenance, resulting in triggering the assertion
5547 for_each_sched_entity(se
) {
5548 cfs_rq
= cfs_rq_of(se
);
5550 if (list_add_leaf_cfs_rq(cfs_rq
))
5555 assert_list_leaf_cfs_rq(rq
);
5560 static void set_next_buddy(struct sched_entity
*se
);
5563 * The dequeue_task method is called before nr_running is
5564 * decreased. We remove the task from the rbtree and
5565 * update the fair scheduling stats:
5567 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5569 struct cfs_rq
*cfs_rq
;
5570 struct sched_entity
*se
= &p
->se
;
5571 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5572 int idle_h_nr_running
= task_has_idle_policy(p
);
5573 bool was_sched_idle
= sched_idle_rq(rq
);
5575 for_each_sched_entity(se
) {
5576 cfs_rq
= cfs_rq_of(se
);
5577 dequeue_entity(cfs_rq
, se
, flags
);
5579 cfs_rq
->h_nr_running
--;
5580 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5582 /* end evaluation on encountering a throttled cfs_rq */
5583 if (cfs_rq_throttled(cfs_rq
))
5584 goto dequeue_throttle
;
5586 /* Don't dequeue parent if it has other entities besides us */
5587 if (cfs_rq
->load
.weight
) {
5588 /* Avoid re-evaluating load for this entity: */
5589 se
= parent_entity(se
);
5591 * Bias pick_next to pick a task from this cfs_rq, as
5592 * p is sleeping when it is within its sched_slice.
5594 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5598 flags
|= DEQUEUE_SLEEP
;
5601 for_each_sched_entity(se
) {
5602 cfs_rq
= cfs_rq_of(se
);
5604 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5605 se_update_runnable(se
);
5606 update_cfs_group(se
);
5608 cfs_rq
->h_nr_running
--;
5609 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5611 /* end evaluation on encountering a throttled cfs_rq */
5612 if (cfs_rq_throttled(cfs_rq
))
5613 goto dequeue_throttle
;
5619 sub_nr_running(rq
, 1);
5621 /* balance early to pull high priority tasks */
5622 if (unlikely(!was_sched_idle
&& sched_idle_rq(rq
)))
5623 rq
->next_balance
= jiffies
;
5625 util_est_dequeue(&rq
->cfs
, p
, task_sleep
);
5631 /* Working cpumask for: load_balance, load_balance_newidle. */
5632 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5633 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5635 #ifdef CONFIG_NO_HZ_COMMON
5638 cpumask_var_t idle_cpus_mask
;
5640 int has_blocked
; /* Idle CPUS has blocked load */
5641 unsigned long next_balance
; /* in jiffy units */
5642 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
5643 } nohz ____cacheline_aligned
;
5645 #endif /* CONFIG_NO_HZ_COMMON */
5647 static unsigned long cpu_load(struct rq
*rq
)
5649 return cfs_rq_load_avg(&rq
->cfs
);
5653 * cpu_load_without - compute CPU load without any contributions from *p
5654 * @cpu: the CPU which load is requested
5655 * @p: the task which load should be discounted
5657 * The load of a CPU is defined by the load of tasks currently enqueued on that
5658 * CPU as well as tasks which are currently sleeping after an execution on that
5661 * This method returns the load of the specified CPU by discounting the load of
5662 * the specified task, whenever the task is currently contributing to the CPU
5665 static unsigned long cpu_load_without(struct rq
*rq
, struct task_struct
*p
)
5667 struct cfs_rq
*cfs_rq
;
5670 /* Task has no contribution or is new */
5671 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5672 return cpu_load(rq
);
5675 load
= READ_ONCE(cfs_rq
->avg
.load_avg
);
5677 /* Discount task's util from CPU's util */
5678 lsub_positive(&load
, task_h_load(p
));
5683 static unsigned long cpu_runnable(struct rq
*rq
)
5685 return cfs_rq_runnable_avg(&rq
->cfs
);
5688 static unsigned long cpu_runnable_without(struct rq
*rq
, struct task_struct
*p
)
5690 struct cfs_rq
*cfs_rq
;
5691 unsigned int runnable
;
5693 /* Task has no contribution or is new */
5694 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5695 return cpu_runnable(rq
);
5698 runnable
= READ_ONCE(cfs_rq
->avg
.runnable_avg
);
5700 /* Discount task's runnable from CPU's runnable */
5701 lsub_positive(&runnable
, p
->se
.avg
.runnable_avg
);
5706 static unsigned long capacity_of(int cpu
)
5708 return cpu_rq(cpu
)->cpu_capacity
;
5711 static void record_wakee(struct task_struct
*p
)
5714 * Only decay a single time; tasks that have less then 1 wakeup per
5715 * jiffy will not have built up many flips.
5717 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5718 current
->wakee_flips
>>= 1;
5719 current
->wakee_flip_decay_ts
= jiffies
;
5722 if (current
->last_wakee
!= p
) {
5723 current
->last_wakee
= p
;
5724 current
->wakee_flips
++;
5729 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5731 * A waker of many should wake a different task than the one last awakened
5732 * at a frequency roughly N times higher than one of its wakees.
5734 * In order to determine whether we should let the load spread vs consolidating
5735 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5736 * partner, and a factor of lls_size higher frequency in the other.
5738 * With both conditions met, we can be relatively sure that the relationship is
5739 * non-monogamous, with partner count exceeding socket size.
5741 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5742 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5745 static int wake_wide(struct task_struct
*p
)
5747 unsigned int master
= current
->wakee_flips
;
5748 unsigned int slave
= p
->wakee_flips
;
5749 int factor
= __this_cpu_read(sd_llc_size
);
5752 swap(master
, slave
);
5753 if (slave
< factor
|| master
< slave
* factor
)
5759 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5760 * soonest. For the purpose of speed we only consider the waking and previous
5763 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5764 * cache-affine and is (or will be) idle.
5766 * wake_affine_weight() - considers the weight to reflect the average
5767 * scheduling latency of the CPUs. This seems to work
5768 * for the overloaded case.
5771 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
5774 * If this_cpu is idle, it implies the wakeup is from interrupt
5775 * context. Only allow the move if cache is shared. Otherwise an
5776 * interrupt intensive workload could force all tasks onto one
5777 * node depending on the IO topology or IRQ affinity settings.
5779 * If the prev_cpu is idle and cache affine then avoid a migration.
5780 * There is no guarantee that the cache hot data from an interrupt
5781 * is more important than cache hot data on the prev_cpu and from
5782 * a cpufreq perspective, it's better to have higher utilisation
5785 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
5786 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
5788 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5791 return nr_cpumask_bits
;
5795 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5796 int this_cpu
, int prev_cpu
, int sync
)
5798 s64 this_eff_load
, prev_eff_load
;
5799 unsigned long task_load
;
5801 this_eff_load
= cpu_load(cpu_rq(this_cpu
));
5804 unsigned long current_load
= task_h_load(current
);
5806 if (current_load
> this_eff_load
)
5809 this_eff_load
-= current_load
;
5812 task_load
= task_h_load(p
);
5814 this_eff_load
+= task_load
;
5815 if (sched_feat(WA_BIAS
))
5816 this_eff_load
*= 100;
5817 this_eff_load
*= capacity_of(prev_cpu
);
5819 prev_eff_load
= cpu_load(cpu_rq(prev_cpu
));
5820 prev_eff_load
-= task_load
;
5821 if (sched_feat(WA_BIAS
))
5822 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5823 prev_eff_load
*= capacity_of(this_cpu
);
5826 * If sync, adjust the weight of prev_eff_load such that if
5827 * prev_eff == this_eff that select_idle_sibling() will consider
5828 * stacking the wakee on top of the waker if no other CPU is
5834 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
5837 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5838 int this_cpu
, int prev_cpu
, int sync
)
5840 int target
= nr_cpumask_bits
;
5842 if (sched_feat(WA_IDLE
))
5843 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
5845 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
5846 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5848 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5849 if (target
== nr_cpumask_bits
)
5852 schedstat_inc(sd
->ttwu_move_affine
);
5853 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5857 static struct sched_group
*
5858 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
);
5861 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5864 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5866 unsigned long load
, min_load
= ULONG_MAX
;
5867 unsigned int min_exit_latency
= UINT_MAX
;
5868 u64 latest_idle_timestamp
= 0;
5869 int least_loaded_cpu
= this_cpu
;
5870 int shallowest_idle_cpu
= -1;
5873 /* Check if we have any choice: */
5874 if (group
->group_weight
== 1)
5875 return cpumask_first(sched_group_span(group
));
5877 /* Traverse only the allowed CPUs */
5878 for_each_cpu_and(i
, sched_group_span(group
), p
->cpus_ptr
) {
5879 if (sched_idle_cpu(i
))
5882 if (available_idle_cpu(i
)) {
5883 struct rq
*rq
= cpu_rq(i
);
5884 struct cpuidle_state
*idle
= idle_get_state(rq
);
5885 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5887 * We give priority to a CPU whose idle state
5888 * has the smallest exit latency irrespective
5889 * of any idle timestamp.
5891 min_exit_latency
= idle
->exit_latency
;
5892 latest_idle_timestamp
= rq
->idle_stamp
;
5893 shallowest_idle_cpu
= i
;
5894 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5895 rq
->idle_stamp
> latest_idle_timestamp
) {
5897 * If equal or no active idle state, then
5898 * the most recently idled CPU might have
5901 latest_idle_timestamp
= rq
->idle_stamp
;
5902 shallowest_idle_cpu
= i
;
5904 } else if (shallowest_idle_cpu
== -1) {
5905 load
= cpu_load(cpu_rq(i
));
5906 if (load
< min_load
) {
5908 least_loaded_cpu
= i
;
5913 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5916 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5917 int cpu
, int prev_cpu
, int sd_flag
)
5921 if (!cpumask_intersects(sched_domain_span(sd
), p
->cpus_ptr
))
5925 * We need task's util for cpu_util_without, sync it up to
5926 * prev_cpu's last_update_time.
5928 if (!(sd_flag
& SD_BALANCE_FORK
))
5929 sync_entity_load_avg(&p
->se
);
5932 struct sched_group
*group
;
5933 struct sched_domain
*tmp
;
5936 if (!(sd
->flags
& sd_flag
)) {
5941 group
= find_idlest_group(sd
, p
, cpu
);
5947 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5948 if (new_cpu
== cpu
) {
5949 /* Now try balancing at a lower domain level of 'cpu': */
5954 /* Now try balancing at a lower domain level of 'new_cpu': */
5956 weight
= sd
->span_weight
;
5958 for_each_domain(cpu
, tmp
) {
5959 if (weight
<= tmp
->span_weight
)
5961 if (tmp
->flags
& sd_flag
)
5969 #ifdef CONFIG_SCHED_SMT
5970 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5971 EXPORT_SYMBOL_GPL(sched_smt_present
);
5973 static inline void set_idle_cores(int cpu
, int val
)
5975 struct sched_domain_shared
*sds
;
5977 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5979 WRITE_ONCE(sds
->has_idle_cores
, val
);
5982 static inline bool test_idle_cores(int cpu
, bool def
)
5984 struct sched_domain_shared
*sds
;
5986 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5988 return READ_ONCE(sds
->has_idle_cores
);
5994 * Scans the local SMT mask to see if the entire core is idle, and records this
5995 * information in sd_llc_shared->has_idle_cores.
5997 * Since SMT siblings share all cache levels, inspecting this limited remote
5998 * state should be fairly cheap.
6000 void __update_idle_core(struct rq
*rq
)
6002 int core
= cpu_of(rq
);
6006 if (test_idle_cores(core
, true))
6009 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6013 if (!available_idle_cpu(cpu
))
6017 set_idle_cores(core
, 1);
6023 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6024 * there are no idle cores left in the system; tracked through
6025 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6027 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6029 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6032 if (!static_branch_likely(&sched_smt_present
))
6035 if (!test_idle_cores(target
, false))
6038 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6040 for_each_cpu_wrap(core
, cpus
, target
) {
6043 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6044 if (!available_idle_cpu(cpu
)) {
6049 cpumask_andnot(cpus
, cpus
, cpu_smt_mask(core
));
6056 * Failed to find an idle core; stop looking for one.
6058 set_idle_cores(target
, 0);
6064 * Scan the local SMT mask for idle CPUs.
6066 static int select_idle_smt(struct task_struct
*p
, int target
)
6070 if (!static_branch_likely(&sched_smt_present
))
6073 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
6074 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6076 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6083 #else /* CONFIG_SCHED_SMT */
6085 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6090 static inline int select_idle_smt(struct task_struct
*p
, int target
)
6095 #endif /* CONFIG_SCHED_SMT */
6098 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6099 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6100 * average idle time for this rq (as found in rq->avg_idle).
6102 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6104 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6105 struct sched_domain
*this_sd
;
6106 u64 avg_cost
, avg_idle
;
6108 int this = smp_processor_id();
6109 int cpu
, nr
= INT_MAX
;
6111 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
6116 * Due to large variance we need a large fuzz factor; hackbench in
6117 * particularly is sensitive here.
6119 avg_idle
= this_rq()->avg_idle
/ 512;
6120 avg_cost
= this_sd
->avg_scan_cost
+ 1;
6122 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
6125 if (sched_feat(SIS_PROP
)) {
6126 u64 span_avg
= sd
->span_weight
* avg_idle
;
6127 if (span_avg
> 4*avg_cost
)
6128 nr
= div_u64(span_avg
, avg_cost
);
6133 time
= cpu_clock(this);
6135 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6137 for_each_cpu_wrap(cpu
, cpus
, target
) {
6140 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6144 time
= cpu_clock(this) - time
;
6145 update_avg(&this_sd
->avg_scan_cost
, time
);
6151 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6152 * the task fits. If no CPU is big enough, but there are idle ones, try to
6153 * maximize capacity.
6156 select_idle_capacity(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6158 unsigned long best_cap
= 0;
6159 int cpu
, best_cpu
= -1;
6160 struct cpumask
*cpus
;
6162 sync_entity_load_avg(&p
->se
);
6164 cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6165 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6167 for_each_cpu_wrap(cpu
, cpus
, target
) {
6168 unsigned long cpu_cap
= capacity_of(cpu
);
6170 if (!available_idle_cpu(cpu
) && !sched_idle_cpu(cpu
))
6172 if (task_fits_capacity(p
, cpu_cap
))
6175 if (cpu_cap
> best_cap
) {
6185 * Try and locate an idle core/thread in the LLC cache domain.
6187 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
6189 struct sched_domain
*sd
;
6190 int i
, recent_used_cpu
;
6193 * For asymmetric CPU capacity systems, our domain of interest is
6194 * sd_asym_cpucapacity rather than sd_llc.
6196 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
6197 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, target
));
6199 * On an asymmetric CPU capacity system where an exclusive
6200 * cpuset defines a symmetric island (i.e. one unique
6201 * capacity_orig value through the cpuset), the key will be set
6202 * but the CPUs within that cpuset will not have a domain with
6203 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6209 i
= select_idle_capacity(p
, sd
, target
);
6210 return ((unsigned)i
< nr_cpumask_bits
) ? i
: target
;
6214 if (available_idle_cpu(target
) || sched_idle_cpu(target
))
6218 * If the previous CPU is cache affine and idle, don't be stupid:
6220 if (prev
!= target
&& cpus_share_cache(prev
, target
) &&
6221 (available_idle_cpu(prev
) || sched_idle_cpu(prev
)))
6225 * Allow a per-cpu kthread to stack with the wakee if the
6226 * kworker thread and the tasks previous CPUs are the same.
6227 * The assumption is that the wakee queued work for the
6228 * per-cpu kthread that is now complete and the wakeup is
6229 * essentially a sync wakeup. An obvious example of this
6230 * pattern is IO completions.
6232 if (is_per_cpu_kthread(current
) &&
6233 prev
== smp_processor_id() &&
6234 this_rq()->nr_running
<= 1) {
6238 /* Check a recently used CPU as a potential idle candidate: */
6239 recent_used_cpu
= p
->recent_used_cpu
;
6240 if (recent_used_cpu
!= prev
&&
6241 recent_used_cpu
!= target
&&
6242 cpus_share_cache(recent_used_cpu
, target
) &&
6243 (available_idle_cpu(recent_used_cpu
) || sched_idle_cpu(recent_used_cpu
)) &&
6244 cpumask_test_cpu(p
->recent_used_cpu
, p
->cpus_ptr
)) {
6246 * Replace recent_used_cpu with prev as it is a potential
6247 * candidate for the next wake:
6249 p
->recent_used_cpu
= prev
;
6250 return recent_used_cpu
;
6253 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
6257 i
= select_idle_core(p
, sd
, target
);
6258 if ((unsigned)i
< nr_cpumask_bits
)
6261 i
= select_idle_cpu(p
, sd
, target
);
6262 if ((unsigned)i
< nr_cpumask_bits
)
6265 i
= select_idle_smt(p
, target
);
6266 if ((unsigned)i
< nr_cpumask_bits
)
6273 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6274 * @cpu: the CPU to get the utilization of
6276 * The unit of the return value must be the one of capacity so we can compare
6277 * the utilization with the capacity of the CPU that is available for CFS task
6278 * (ie cpu_capacity).
6280 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6281 * recent utilization of currently non-runnable tasks on a CPU. It represents
6282 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6283 * capacity_orig is the cpu_capacity available at the highest frequency
6284 * (arch_scale_freq_capacity()).
6285 * The utilization of a CPU converges towards a sum equal to or less than the
6286 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6287 * the running time on this CPU scaled by capacity_curr.
6289 * The estimated utilization of a CPU is defined to be the maximum between its
6290 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6291 * currently RUNNABLE on that CPU.
6292 * This allows to properly represent the expected utilization of a CPU which
6293 * has just got a big task running since a long sleep period. At the same time
6294 * however it preserves the benefits of the "blocked utilization" in
6295 * describing the potential for other tasks waking up on the same CPU.
6297 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6298 * higher than capacity_orig because of unfortunate rounding in
6299 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6300 * the average stabilizes with the new running time. We need to check that the
6301 * utilization stays within the range of [0..capacity_orig] and cap it if
6302 * necessary. Without utilization capping, a group could be seen as overloaded
6303 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6304 * available capacity. We allow utilization to overshoot capacity_curr (but not
6305 * capacity_orig) as it useful for predicting the capacity required after task
6306 * migrations (scheduler-driven DVFS).
6308 * Return: the (estimated) utilization for the specified CPU
6310 static inline unsigned long cpu_util(int cpu
)
6312 struct cfs_rq
*cfs_rq
;
6315 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6316 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6318 if (sched_feat(UTIL_EST
))
6319 util
= max(util
, READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
));
6321 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6325 * cpu_util_without: compute cpu utilization without any contributions from *p
6326 * @cpu: the CPU which utilization is requested
6327 * @p: the task which utilization should be discounted
6329 * The utilization of a CPU is defined by the utilization of tasks currently
6330 * enqueued on that CPU as well as tasks which are currently sleeping after an
6331 * execution on that CPU.
6333 * This method returns the utilization of the specified CPU by discounting the
6334 * utilization of the specified task, whenever the task is currently
6335 * contributing to the CPU utilization.
6337 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
6339 struct cfs_rq
*cfs_rq
;
6342 /* Task has no contribution or is new */
6343 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
6344 return cpu_util(cpu
);
6346 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6347 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6349 /* Discount task's util from CPU's util */
6350 lsub_positive(&util
, task_util(p
));
6355 * a) if *p is the only task sleeping on this CPU, then:
6356 * cpu_util (== task_util) > util_est (== 0)
6357 * and thus we return:
6358 * cpu_util_without = (cpu_util - task_util) = 0
6360 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6362 * cpu_util >= task_util
6363 * cpu_util > util_est (== 0)
6364 * and thus we discount *p's blocked utilization to return:
6365 * cpu_util_without = (cpu_util - task_util) >= 0
6367 * c) if other tasks are RUNNABLE on that CPU and
6368 * util_est > cpu_util
6369 * then we use util_est since it returns a more restrictive
6370 * estimation of the spare capacity on that CPU, by just
6371 * considering the expected utilization of tasks already
6372 * runnable on that CPU.
6374 * Cases a) and b) are covered by the above code, while case c) is
6375 * covered by the following code when estimated utilization is
6378 if (sched_feat(UTIL_EST
)) {
6379 unsigned int estimated
=
6380 READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6383 * Despite the following checks we still have a small window
6384 * for a possible race, when an execl's select_task_rq_fair()
6385 * races with LB's detach_task():
6388 * p->on_rq = TASK_ON_RQ_MIGRATING;
6389 * ---------------------------------- A
6390 * deactivate_task() \
6391 * dequeue_task() + RaceTime
6392 * util_est_dequeue() /
6393 * ---------------------------------- B
6395 * The additional check on "current == p" it's required to
6396 * properly fix the execl regression and it helps in further
6397 * reducing the chances for the above race.
6399 if (unlikely(task_on_rq_queued(p
) || current
== p
))
6400 lsub_positive(&estimated
, _task_util_est(p
));
6402 util
= max(util
, estimated
);
6406 * Utilization (estimated) can exceed the CPU capacity, thus let's
6407 * clamp to the maximum CPU capacity to ensure consistency with
6408 * the cpu_util call.
6410 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6414 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6417 static unsigned long cpu_util_next(int cpu
, struct task_struct
*p
, int dst_cpu
)
6419 struct cfs_rq
*cfs_rq
= &cpu_rq(cpu
)->cfs
;
6420 unsigned long util_est
, util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6423 * If @p migrates from @cpu to another, remove its contribution. Or,
6424 * if @p migrates from another CPU to @cpu, add its contribution. In
6425 * the other cases, @cpu is not impacted by the migration, so the
6426 * util_avg should already be correct.
6428 if (task_cpu(p
) == cpu
&& dst_cpu
!= cpu
)
6429 sub_positive(&util
, task_util(p
));
6430 else if (task_cpu(p
) != cpu
&& dst_cpu
== cpu
)
6431 util
+= task_util(p
);
6433 if (sched_feat(UTIL_EST
)) {
6434 util_est
= READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6437 * During wake-up, the task isn't enqueued yet and doesn't
6438 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6439 * so just add it (if needed) to "simulate" what will be
6440 * cpu_util() after the task has been enqueued.
6443 util_est
+= _task_util_est(p
);
6445 util
= max(util
, util_est
);
6448 return min(util
, capacity_orig_of(cpu
));
6452 * compute_energy(): Estimates the energy that @pd would consume if @p was
6453 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6454 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6455 * to compute what would be the energy if we decided to actually migrate that
6459 compute_energy(struct task_struct
*p
, int dst_cpu
, struct perf_domain
*pd
)
6461 struct cpumask
*pd_mask
= perf_domain_span(pd
);
6462 unsigned long cpu_cap
= arch_scale_cpu_capacity(cpumask_first(pd_mask
));
6463 unsigned long max_util
= 0, sum_util
= 0;
6467 * The capacity state of CPUs of the current rd can be driven by CPUs
6468 * of another rd if they belong to the same pd. So, account for the
6469 * utilization of these CPUs too by masking pd with cpu_online_mask
6470 * instead of the rd span.
6472 * If an entire pd is outside of the current rd, it will not appear in
6473 * its pd list and will not be accounted by compute_energy().
6475 for_each_cpu_and(cpu
, pd_mask
, cpu_online_mask
) {
6476 unsigned long cpu_util
, util_cfs
= cpu_util_next(cpu
, p
, dst_cpu
);
6477 struct task_struct
*tsk
= cpu
== dst_cpu
? p
: NULL
;
6480 * Busy time computation: utilization clamping is not
6481 * required since the ratio (sum_util / cpu_capacity)
6482 * is already enough to scale the EM reported power
6483 * consumption at the (eventually clamped) cpu_capacity.
6485 sum_util
+= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6489 * Performance domain frequency: utilization clamping
6490 * must be considered since it affects the selection
6491 * of the performance domain frequency.
6492 * NOTE: in case RT tasks are running, by default the
6493 * FREQUENCY_UTIL's utilization can be max OPP.
6495 cpu_util
= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6496 FREQUENCY_UTIL
, tsk
);
6497 max_util
= max(max_util
, cpu_util
);
6500 return em_pd_energy(pd
->em_pd
, max_util
, sum_util
);
6504 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6505 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6506 * spare capacity in each performance domain and uses it as a potential
6507 * candidate to execute the task. Then, it uses the Energy Model to figure
6508 * out which of the CPU candidates is the most energy-efficient.
6510 * The rationale for this heuristic is as follows. In a performance domain,
6511 * all the most energy efficient CPU candidates (according to the Energy
6512 * Model) are those for which we'll request a low frequency. When there are
6513 * several CPUs for which the frequency request will be the same, we don't
6514 * have enough data to break the tie between them, because the Energy Model
6515 * only includes active power costs. With this model, if we assume that
6516 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6517 * the maximum spare capacity in a performance domain is guaranteed to be among
6518 * the best candidates of the performance domain.
6520 * In practice, it could be preferable from an energy standpoint to pack
6521 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6522 * but that could also hurt our chances to go cluster idle, and we have no
6523 * ways to tell with the current Energy Model if this is actually a good
6524 * idea or not. So, find_energy_efficient_cpu() basically favors
6525 * cluster-packing, and spreading inside a cluster. That should at least be
6526 * a good thing for latency, and this is consistent with the idea that most
6527 * of the energy savings of EAS come from the asymmetry of the system, and
6528 * not so much from breaking the tie between identical CPUs. That's also the
6529 * reason why EAS is enabled in the topology code only for systems where
6530 * SD_ASYM_CPUCAPACITY is set.
6532 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6533 * they don't have any useful utilization data yet and it's not possible to
6534 * forecast their impact on energy consumption. Consequently, they will be
6535 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6536 * to be energy-inefficient in some use-cases. The alternative would be to
6537 * bias new tasks towards specific types of CPUs first, or to try to infer
6538 * their util_avg from the parent task, but those heuristics could hurt
6539 * other use-cases too. So, until someone finds a better way to solve this,
6540 * let's keep things simple by re-using the existing slow path.
6542 static int find_energy_efficient_cpu(struct task_struct
*p
, int prev_cpu
)
6544 unsigned long prev_delta
= ULONG_MAX
, best_delta
= ULONG_MAX
;
6545 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
6546 unsigned long cpu_cap
, util
, base_energy
= 0;
6547 int cpu
, best_energy_cpu
= prev_cpu
;
6548 struct sched_domain
*sd
;
6549 struct perf_domain
*pd
;
6552 pd
= rcu_dereference(rd
->pd
);
6553 if (!pd
|| READ_ONCE(rd
->overutilized
))
6557 * Energy-aware wake-up happens on the lowest sched_domain starting
6558 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6560 sd
= rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity
));
6561 while (sd
&& !cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
6566 sync_entity_load_avg(&p
->se
);
6567 if (!task_util_est(p
))
6570 for (; pd
; pd
= pd
->next
) {
6571 unsigned long cur_delta
, spare_cap
, max_spare_cap
= 0;
6572 unsigned long base_energy_pd
;
6573 int max_spare_cap_cpu
= -1;
6575 /* Compute the 'base' energy of the pd, without @p */
6576 base_energy_pd
= compute_energy(p
, -1, pd
);
6577 base_energy
+= base_energy_pd
;
6579 for_each_cpu_and(cpu
, perf_domain_span(pd
), sched_domain_span(sd
)) {
6580 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6583 util
= cpu_util_next(cpu
, p
, cpu
);
6584 cpu_cap
= capacity_of(cpu
);
6585 spare_cap
= cpu_cap
- util
;
6588 * Skip CPUs that cannot satisfy the capacity request.
6589 * IOW, placing the task there would make the CPU
6590 * overutilized. Take uclamp into account to see how
6591 * much capacity we can get out of the CPU; this is
6592 * aligned with schedutil_cpu_util().
6594 util
= uclamp_rq_util_with(cpu_rq(cpu
), util
, p
);
6595 if (!fits_capacity(util
, cpu_cap
))
6598 /* Always use prev_cpu as a candidate. */
6599 if (cpu
== prev_cpu
) {
6600 prev_delta
= compute_energy(p
, prev_cpu
, pd
);
6601 prev_delta
-= base_energy_pd
;
6602 best_delta
= min(best_delta
, prev_delta
);
6606 * Find the CPU with the maximum spare capacity in
6607 * the performance domain
6609 if (spare_cap
> max_spare_cap
) {
6610 max_spare_cap
= spare_cap
;
6611 max_spare_cap_cpu
= cpu
;
6615 /* Evaluate the energy impact of using this CPU. */
6616 if (max_spare_cap_cpu
>= 0 && max_spare_cap_cpu
!= prev_cpu
) {
6617 cur_delta
= compute_energy(p
, max_spare_cap_cpu
, pd
);
6618 cur_delta
-= base_energy_pd
;
6619 if (cur_delta
< best_delta
) {
6620 best_delta
= cur_delta
;
6621 best_energy_cpu
= max_spare_cap_cpu
;
6629 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6630 * least 6% of the energy used by prev_cpu.
6632 if (prev_delta
== ULONG_MAX
)
6633 return best_energy_cpu
;
6635 if ((prev_delta
- best_delta
) > ((prev_delta
+ base_energy
) >> 4))
6636 return best_energy_cpu
;
6647 * select_task_rq_fair: Select target runqueue for the waking task in domains
6648 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6649 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6651 * Balances load by selecting the idlest CPU in the idlest group, or under
6652 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6654 * Returns the target CPU number.
6656 * preempt must be disabled.
6659 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
6661 struct sched_domain
*tmp
, *sd
= NULL
;
6662 int cpu
= smp_processor_id();
6663 int new_cpu
= prev_cpu
;
6664 int want_affine
= 0;
6665 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
6667 if (sd_flag
& SD_BALANCE_WAKE
) {
6670 if (sched_energy_enabled()) {
6671 new_cpu
= find_energy_efficient_cpu(p
, prev_cpu
);
6677 want_affine
= !wake_wide(p
) && cpumask_test_cpu(cpu
, p
->cpus_ptr
);
6681 for_each_domain(cpu
, tmp
) {
6683 * If both 'cpu' and 'prev_cpu' are part of this domain,
6684 * cpu is a valid SD_WAKE_AFFINE target.
6686 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6687 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6688 if (cpu
!= prev_cpu
)
6689 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
6691 sd
= NULL
; /* Prefer wake_affine over balance flags */
6695 if (tmp
->flags
& sd_flag
)
6697 else if (!want_affine
)
6703 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6704 } else if (sd_flag
& SD_BALANCE_WAKE
) { /* XXX always ? */
6707 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6710 current
->recent_used_cpu
= cpu
;
6717 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6720 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6721 * cfs_rq_of(p) references at time of call are still valid and identify the
6722 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6724 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
6727 * As blocked tasks retain absolute vruntime the migration needs to
6728 * deal with this by subtracting the old and adding the new
6729 * min_vruntime -- the latter is done by enqueue_entity() when placing
6730 * the task on the new runqueue.
6732 if (p
->state
== TASK_WAKING
) {
6733 struct sched_entity
*se
= &p
->se
;
6734 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6737 #ifndef CONFIG_64BIT
6738 u64 min_vruntime_copy
;
6741 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6743 min_vruntime
= cfs_rq
->min_vruntime
;
6744 } while (min_vruntime
!= min_vruntime_copy
);
6746 min_vruntime
= cfs_rq
->min_vruntime
;
6749 se
->vruntime
-= min_vruntime
;
6752 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6754 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6755 * rq->lock and can modify state directly.
6757 lockdep_assert_held(&task_rq(p
)->lock
);
6758 detach_entity_cfs_rq(&p
->se
);
6762 * We are supposed to update the task to "current" time, then
6763 * its up to date and ready to go to new CPU/cfs_rq. But we
6764 * have difficulty in getting what current time is, so simply
6765 * throw away the out-of-date time. This will result in the
6766 * wakee task is less decayed, but giving the wakee more load
6769 remove_entity_load_avg(&p
->se
);
6772 /* Tell new CPU we are migrated */
6773 p
->se
.avg
.last_update_time
= 0;
6775 /* We have migrated, no longer consider this task hot */
6776 p
->se
.exec_start
= 0;
6778 update_scan_period(p
, new_cpu
);
6781 static void task_dead_fair(struct task_struct
*p
)
6783 remove_entity_load_avg(&p
->se
);
6787 balance_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6792 return newidle_balance(rq
, rf
) != 0;
6794 #endif /* CONFIG_SMP */
6796 static unsigned long wakeup_gran(struct sched_entity
*se
)
6798 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6801 * Since its curr running now, convert the gran from real-time
6802 * to virtual-time in his units.
6804 * By using 'se' instead of 'curr' we penalize light tasks, so
6805 * they get preempted easier. That is, if 'se' < 'curr' then
6806 * the resulting gran will be larger, therefore penalizing the
6807 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6808 * be smaller, again penalizing the lighter task.
6810 * This is especially important for buddies when the leftmost
6811 * task is higher priority than the buddy.
6813 return calc_delta_fair(gran
, se
);
6817 * Should 'se' preempt 'curr'.
6831 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6833 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6838 gran
= wakeup_gran(se
);
6845 static void set_last_buddy(struct sched_entity
*se
)
6847 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6850 for_each_sched_entity(se
) {
6851 if (SCHED_WARN_ON(!se
->on_rq
))
6853 cfs_rq_of(se
)->last
= se
;
6857 static void set_next_buddy(struct sched_entity
*se
)
6859 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6862 for_each_sched_entity(se
) {
6863 if (SCHED_WARN_ON(!se
->on_rq
))
6865 cfs_rq_of(se
)->next
= se
;
6869 static void set_skip_buddy(struct sched_entity
*se
)
6871 for_each_sched_entity(se
)
6872 cfs_rq_of(se
)->skip
= se
;
6876 * Preempt the current task with a newly woken task if needed:
6878 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6880 struct task_struct
*curr
= rq
->curr
;
6881 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6882 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6883 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6884 int next_buddy_marked
= 0;
6886 if (unlikely(se
== pse
))
6890 * This is possible from callers such as attach_tasks(), in which we
6891 * unconditionally check_prempt_curr() after an enqueue (which may have
6892 * lead to a throttle). This both saves work and prevents false
6893 * next-buddy nomination below.
6895 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6898 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6899 set_next_buddy(pse
);
6900 next_buddy_marked
= 1;
6904 * We can come here with TIF_NEED_RESCHED already set from new task
6907 * Note: this also catches the edge-case of curr being in a throttled
6908 * group (e.g. via set_curr_task), since update_curr() (in the
6909 * enqueue of curr) will have resulted in resched being set. This
6910 * prevents us from potentially nominating it as a false LAST_BUDDY
6913 if (test_tsk_need_resched(curr
))
6916 /* Idle tasks are by definition preempted by non-idle tasks. */
6917 if (unlikely(task_has_idle_policy(curr
)) &&
6918 likely(!task_has_idle_policy(p
)))
6922 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6923 * is driven by the tick):
6925 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6928 find_matching_se(&se
, &pse
);
6929 update_curr(cfs_rq_of(se
));
6931 if (wakeup_preempt_entity(se
, pse
) == 1) {
6933 * Bias pick_next to pick the sched entity that is
6934 * triggering this preemption.
6936 if (!next_buddy_marked
)
6937 set_next_buddy(pse
);
6946 * Only set the backward buddy when the current task is still
6947 * on the rq. This can happen when a wakeup gets interleaved
6948 * with schedule on the ->pre_schedule() or idle_balance()
6949 * point, either of which can * drop the rq lock.
6951 * Also, during early boot the idle thread is in the fair class,
6952 * for obvious reasons its a bad idea to schedule back to it.
6954 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6957 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6961 struct task_struct
*
6962 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6964 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6965 struct sched_entity
*se
;
6966 struct task_struct
*p
;
6970 if (!sched_fair_runnable(rq
))
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974 if (!prev
|| prev
->sched_class
!= &fair_sched_class
)
6978 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6979 * likely that a next task is from the same cgroup as the current.
6981 * Therefore attempt to avoid putting and setting the entire cgroup
6982 * hierarchy, only change the part that actually changes.
6986 struct sched_entity
*curr
= cfs_rq
->curr
;
6989 * Since we got here without doing put_prev_entity() we also
6990 * have to consider cfs_rq->curr. If it is still a runnable
6991 * entity, update_curr() will update its vruntime, otherwise
6992 * forget we've ever seen it.
6996 update_curr(cfs_rq
);
7001 * This call to check_cfs_rq_runtime() will do the
7002 * throttle and dequeue its entity in the parent(s).
7003 * Therefore the nr_running test will indeed
7006 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
7009 if (!cfs_rq
->nr_running
)
7016 se
= pick_next_entity(cfs_rq
, curr
);
7017 cfs_rq
= group_cfs_rq(se
);
7023 * Since we haven't yet done put_prev_entity and if the selected task
7024 * is a different task than we started out with, try and touch the
7025 * least amount of cfs_rqs.
7028 struct sched_entity
*pse
= &prev
->se
;
7030 while (!(cfs_rq
= is_same_group(se
, pse
))) {
7031 int se_depth
= se
->depth
;
7032 int pse_depth
= pse
->depth
;
7034 if (se_depth
<= pse_depth
) {
7035 put_prev_entity(cfs_rq_of(pse
), pse
);
7036 pse
= parent_entity(pse
);
7038 if (se_depth
>= pse_depth
) {
7039 set_next_entity(cfs_rq_of(se
), se
);
7040 se
= parent_entity(se
);
7044 put_prev_entity(cfs_rq
, pse
);
7045 set_next_entity(cfs_rq
, se
);
7052 put_prev_task(rq
, prev
);
7055 se
= pick_next_entity(cfs_rq
, NULL
);
7056 set_next_entity(cfs_rq
, se
);
7057 cfs_rq
= group_cfs_rq(se
);
7062 done
: __maybe_unused
;
7065 * Move the next running task to the front of
7066 * the list, so our cfs_tasks list becomes MRU
7069 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
7072 if (hrtick_enabled(rq
))
7073 hrtick_start_fair(rq
, p
);
7075 update_misfit_status(p
, rq
);
7083 new_tasks
= newidle_balance(rq
, rf
);
7086 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7087 * possible for any higher priority task to appear. In that case we
7088 * must re-start the pick_next_entity() loop.
7097 * rq is about to be idle, check if we need to update the
7098 * lost_idle_time of clock_pelt
7100 update_idle_rq_clock_pelt(rq
);
7105 static struct task_struct
*__pick_next_task_fair(struct rq
*rq
)
7107 return pick_next_task_fair(rq
, NULL
, NULL
);
7111 * Account for a descheduled task:
7113 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
7115 struct sched_entity
*se
= &prev
->se
;
7116 struct cfs_rq
*cfs_rq
;
7118 for_each_sched_entity(se
) {
7119 cfs_rq
= cfs_rq_of(se
);
7120 put_prev_entity(cfs_rq
, se
);
7125 * sched_yield() is very simple
7127 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7129 static void yield_task_fair(struct rq
*rq
)
7131 struct task_struct
*curr
= rq
->curr
;
7132 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
7133 struct sched_entity
*se
= &curr
->se
;
7136 * Are we the only task in the tree?
7138 if (unlikely(rq
->nr_running
== 1))
7141 clear_buddies(cfs_rq
, se
);
7143 if (curr
->policy
!= SCHED_BATCH
) {
7144 update_rq_clock(rq
);
7146 * Update run-time statistics of the 'current'.
7148 update_curr(cfs_rq
);
7150 * Tell update_rq_clock() that we've just updated,
7151 * so we don't do microscopic update in schedule()
7152 * and double the fastpath cost.
7154 rq_clock_skip_update(rq
);
7160 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
7162 struct sched_entity
*se
= &p
->se
;
7164 /* throttled hierarchies are not runnable */
7165 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
7168 /* Tell the scheduler that we'd really like pse to run next. */
7171 yield_task_fair(rq
);
7177 /**************************************************
7178 * Fair scheduling class load-balancing methods.
7182 * The purpose of load-balancing is to achieve the same basic fairness the
7183 * per-CPU scheduler provides, namely provide a proportional amount of compute
7184 * time to each task. This is expressed in the following equation:
7186 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7188 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7189 * W_i,0 is defined as:
7191 * W_i,0 = \Sum_j w_i,j (2)
7193 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7194 * is derived from the nice value as per sched_prio_to_weight[].
7196 * The weight average is an exponential decay average of the instantaneous
7199 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7201 * C_i is the compute capacity of CPU i, typically it is the
7202 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7203 * can also include other factors [XXX].
7205 * To achieve this balance we define a measure of imbalance which follows
7206 * directly from (1):
7208 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7210 * We them move tasks around to minimize the imbalance. In the continuous
7211 * function space it is obvious this converges, in the discrete case we get
7212 * a few fun cases generally called infeasible weight scenarios.
7215 * - infeasible weights;
7216 * - local vs global optima in the discrete case. ]
7221 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7222 * for all i,j solution, we create a tree of CPUs that follows the hardware
7223 * topology where each level pairs two lower groups (or better). This results
7224 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7225 * tree to only the first of the previous level and we decrease the frequency
7226 * of load-balance at each level inv. proportional to the number of CPUs in
7232 * \Sum { --- * --- * 2^i } = O(n) (5)
7234 * `- size of each group
7235 * | | `- number of CPUs doing load-balance
7237 * `- sum over all levels
7239 * Coupled with a limit on how many tasks we can migrate every balance pass,
7240 * this makes (5) the runtime complexity of the balancer.
7242 * An important property here is that each CPU is still (indirectly) connected
7243 * to every other CPU in at most O(log n) steps:
7245 * The adjacency matrix of the resulting graph is given by:
7248 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7251 * And you'll find that:
7253 * A^(log_2 n)_i,j != 0 for all i,j (7)
7255 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7256 * The task movement gives a factor of O(m), giving a convergence complexity
7259 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7264 * In order to avoid CPUs going idle while there's still work to do, new idle
7265 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7266 * tree itself instead of relying on other CPUs to bring it work.
7268 * This adds some complexity to both (5) and (8) but it reduces the total idle
7276 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7279 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7284 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7286 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7288 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7291 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7292 * rewrite all of this once again.]
7295 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
7297 enum fbq_type
{ regular
, remote
, all
};
7300 * 'group_type' describes the group of CPUs at the moment of load balancing.
7302 * The enum is ordered by pulling priority, with the group with lowest priority
7303 * first so the group_type can simply be compared when selecting the busiest
7304 * group. See update_sd_pick_busiest().
7307 /* The group has spare capacity that can be used to run more tasks. */
7308 group_has_spare
= 0,
7310 * The group is fully used and the tasks don't compete for more CPU
7311 * cycles. Nevertheless, some tasks might wait before running.
7315 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7316 * and must be migrated to a more powerful CPU.
7320 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7321 * and the task should be migrated to it instead of running on the
7326 * The tasks' affinity constraints previously prevented the scheduler
7327 * from balancing the load across the system.
7331 * The CPU is overloaded and can't provide expected CPU cycles to all
7337 enum migration_type
{
7344 #define LBF_ALL_PINNED 0x01
7345 #define LBF_NEED_BREAK 0x02
7346 #define LBF_DST_PINNED 0x04
7347 #define LBF_SOME_PINNED 0x08
7348 #define LBF_NOHZ_STATS 0x10
7349 #define LBF_NOHZ_AGAIN 0x20
7352 struct sched_domain
*sd
;
7360 struct cpumask
*dst_grpmask
;
7362 enum cpu_idle_type idle
;
7364 /* The set of CPUs under consideration for load-balancing */
7365 struct cpumask
*cpus
;
7370 unsigned int loop_break
;
7371 unsigned int loop_max
;
7373 enum fbq_type fbq_type
;
7374 enum migration_type migration_type
;
7375 struct list_head tasks
;
7379 * Is this task likely cache-hot:
7381 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
7385 lockdep_assert_held(&env
->src_rq
->lock
);
7387 if (p
->sched_class
!= &fair_sched_class
)
7390 if (unlikely(task_has_idle_policy(p
)))
7394 * Buddy candidates are cache hot:
7396 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
7397 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
7398 &p
->se
== cfs_rq_of(&p
->se
)->last
))
7401 if (sysctl_sched_migration_cost
== -1)
7403 if (sysctl_sched_migration_cost
== 0)
7406 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7408 return delta
< (s64
)sysctl_sched_migration_cost
;
7411 #ifdef CONFIG_NUMA_BALANCING
7413 * Returns 1, if task migration degrades locality
7414 * Returns 0, if task migration improves locality i.e migration preferred.
7415 * Returns -1, if task migration is not affected by locality.
7417 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7419 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7420 unsigned long src_weight
, dst_weight
;
7421 int src_nid
, dst_nid
, dist
;
7423 if (!static_branch_likely(&sched_numa_balancing
))
7426 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7429 src_nid
= cpu_to_node(env
->src_cpu
);
7430 dst_nid
= cpu_to_node(env
->dst_cpu
);
7432 if (src_nid
== dst_nid
)
7435 /* Migrating away from the preferred node is always bad. */
7436 if (src_nid
== p
->numa_preferred_nid
) {
7437 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7443 /* Encourage migration to the preferred node. */
7444 if (dst_nid
== p
->numa_preferred_nid
)
7447 /* Leaving a core idle is often worse than degrading locality. */
7448 if (env
->idle
== CPU_IDLE
)
7451 dist
= node_distance(src_nid
, dst_nid
);
7453 src_weight
= group_weight(p
, src_nid
, dist
);
7454 dst_weight
= group_weight(p
, dst_nid
, dist
);
7456 src_weight
= task_weight(p
, src_nid
, dist
);
7457 dst_weight
= task_weight(p
, dst_nid
, dist
);
7460 return dst_weight
< src_weight
;
7464 static inline int migrate_degrades_locality(struct task_struct
*p
,
7472 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7475 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7479 lockdep_assert_held(&env
->src_rq
->lock
);
7482 * We do not migrate tasks that are:
7483 * 1) throttled_lb_pair, or
7484 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7485 * 3) running (obviously), or
7486 * 4) are cache-hot on their current CPU.
7488 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7491 if (!cpumask_test_cpu(env
->dst_cpu
, p
->cpus_ptr
)) {
7494 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7496 env
->flags
|= LBF_SOME_PINNED
;
7499 * Remember if this task can be migrated to any other CPU in
7500 * our sched_group. We may want to revisit it if we couldn't
7501 * meet load balance goals by pulling other tasks on src_cpu.
7503 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7504 * already computed one in current iteration.
7506 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7509 /* Prevent to re-select dst_cpu via env's CPUs: */
7510 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7511 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
)) {
7512 env
->flags
|= LBF_DST_PINNED
;
7513 env
->new_dst_cpu
= cpu
;
7521 /* Record that we found atleast one task that could run on dst_cpu */
7522 env
->flags
&= ~LBF_ALL_PINNED
;
7524 if (task_running(env
->src_rq
, p
)) {
7525 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7530 * Aggressive migration if:
7531 * 1) destination numa is preferred
7532 * 2) task is cache cold, or
7533 * 3) too many balance attempts have failed.
7535 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7536 if (tsk_cache_hot
== -1)
7537 tsk_cache_hot
= task_hot(p
, env
);
7539 if (tsk_cache_hot
<= 0 ||
7540 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7541 if (tsk_cache_hot
== 1) {
7542 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7543 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7548 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7553 * detach_task() -- detach the task for the migration specified in env
7555 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7557 lockdep_assert_held(&env
->src_rq
->lock
);
7559 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7560 set_task_cpu(p
, env
->dst_cpu
);
7564 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7565 * part of active balancing operations within "domain".
7567 * Returns a task if successful and NULL otherwise.
7569 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7571 struct task_struct
*p
;
7573 lockdep_assert_held(&env
->src_rq
->lock
);
7575 list_for_each_entry_reverse(p
,
7576 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7577 if (!can_migrate_task(p
, env
))
7580 detach_task(p
, env
);
7583 * Right now, this is only the second place where
7584 * lb_gained[env->idle] is updated (other is detach_tasks)
7585 * so we can safely collect stats here rather than
7586 * inside detach_tasks().
7588 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7594 static const unsigned int sched_nr_migrate_break
= 32;
7597 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7598 * busiest_rq, as part of a balancing operation within domain "sd".
7600 * Returns number of detached tasks if successful and 0 otherwise.
7602 static int detach_tasks(struct lb_env
*env
)
7604 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7605 unsigned long util
, load
;
7606 struct task_struct
*p
;
7609 lockdep_assert_held(&env
->src_rq
->lock
);
7611 if (env
->imbalance
<= 0)
7614 while (!list_empty(tasks
)) {
7616 * We don't want to steal all, otherwise we may be treated likewise,
7617 * which could at worst lead to a livelock crash.
7619 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7622 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7625 /* We've more or less seen every task there is, call it quits */
7626 if (env
->loop
> env
->loop_max
)
7629 /* take a breather every nr_migrate tasks */
7630 if (env
->loop
> env
->loop_break
) {
7631 env
->loop_break
+= sched_nr_migrate_break
;
7632 env
->flags
|= LBF_NEED_BREAK
;
7636 if (!can_migrate_task(p
, env
))
7639 switch (env
->migration_type
) {
7641 load
= task_h_load(p
);
7643 if (sched_feat(LB_MIN
) &&
7644 load
< 16 && !env
->sd
->nr_balance_failed
)
7648 * Make sure that we don't migrate too much load.
7649 * Nevertheless, let relax the constraint if
7650 * scheduler fails to find a good waiting task to
7653 if (load
/2 > env
->imbalance
&&
7654 env
->sd
->nr_balance_failed
<= env
->sd
->cache_nice_tries
)
7657 env
->imbalance
-= load
;
7661 util
= task_util_est(p
);
7663 if (util
> env
->imbalance
)
7666 env
->imbalance
-= util
;
7673 case migrate_misfit
:
7674 /* This is not a misfit task */
7675 if (task_fits_capacity(p
, capacity_of(env
->src_cpu
)))
7682 detach_task(p
, env
);
7683 list_add(&p
->se
.group_node
, &env
->tasks
);
7687 #ifdef CONFIG_PREEMPTION
7689 * NEWIDLE balancing is a source of latency, so preemptible
7690 * kernels will stop after the first task is detached to minimize
7691 * the critical section.
7693 if (env
->idle
== CPU_NEWLY_IDLE
)
7698 * We only want to steal up to the prescribed amount of
7701 if (env
->imbalance
<= 0)
7706 list_move(&p
->se
.group_node
, tasks
);
7710 * Right now, this is one of only two places we collect this stat
7711 * so we can safely collect detach_one_task() stats here rather
7712 * than inside detach_one_task().
7714 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7720 * attach_task() -- attach the task detached by detach_task() to its new rq.
7722 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7724 lockdep_assert_held(&rq
->lock
);
7726 BUG_ON(task_rq(p
) != rq
);
7727 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7728 check_preempt_curr(rq
, p
, 0);
7732 * attach_one_task() -- attaches the task returned from detach_one_task() to
7735 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7740 update_rq_clock(rq
);
7746 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7749 static void attach_tasks(struct lb_env
*env
)
7751 struct list_head
*tasks
= &env
->tasks
;
7752 struct task_struct
*p
;
7755 rq_lock(env
->dst_rq
, &rf
);
7756 update_rq_clock(env
->dst_rq
);
7758 while (!list_empty(tasks
)) {
7759 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7760 list_del_init(&p
->se
.group_node
);
7762 attach_task(env
->dst_rq
, p
);
7765 rq_unlock(env
->dst_rq
, &rf
);
7768 #ifdef CONFIG_NO_HZ_COMMON
7769 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
7771 if (cfs_rq
->avg
.load_avg
)
7774 if (cfs_rq
->avg
.util_avg
)
7780 static inline bool others_have_blocked(struct rq
*rq
)
7782 if (READ_ONCE(rq
->avg_rt
.util_avg
))
7785 if (READ_ONCE(rq
->avg_dl
.util_avg
))
7788 if (thermal_load_avg(rq
))
7791 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7792 if (READ_ONCE(rq
->avg_irq
.util_avg
))
7799 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
)
7801 rq
->last_blocked_load_update_tick
= jiffies
;
7804 rq
->has_blocked_load
= 0;
7807 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
) { return false; }
7808 static inline bool others_have_blocked(struct rq
*rq
) { return false; }
7809 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
) {}
7812 static bool __update_blocked_others(struct rq
*rq
, bool *done
)
7814 const struct sched_class
*curr_class
;
7815 u64 now
= rq_clock_pelt(rq
);
7816 unsigned long thermal_pressure
;
7820 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7821 * DL and IRQ signals have been updated before updating CFS.
7823 curr_class
= rq
->curr
->sched_class
;
7825 thermal_pressure
= arch_scale_thermal_pressure(cpu_of(rq
));
7827 decayed
= update_rt_rq_load_avg(now
, rq
, curr_class
== &rt_sched_class
) |
7828 update_dl_rq_load_avg(now
, rq
, curr_class
== &dl_sched_class
) |
7829 update_thermal_load_avg(rq_clock_thermal(rq
), rq
, thermal_pressure
) |
7830 update_irq_load_avg(rq
, 0);
7832 if (others_have_blocked(rq
))
7838 #ifdef CONFIG_FAIR_GROUP_SCHED
7840 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
7842 if (cfs_rq
->load
.weight
)
7845 if (cfs_rq
->avg
.load_sum
)
7848 if (cfs_rq
->avg
.util_sum
)
7851 if (cfs_rq
->avg
.runnable_sum
)
7857 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7859 struct cfs_rq
*cfs_rq
, *pos
;
7860 bool decayed
= false;
7861 int cpu
= cpu_of(rq
);
7864 * Iterates the task_group tree in a bottom up fashion, see
7865 * list_add_leaf_cfs_rq() for details.
7867 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
7868 struct sched_entity
*se
;
7870 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
)) {
7871 update_tg_load_avg(cfs_rq
, 0);
7873 if (cfs_rq
== &rq
->cfs
)
7877 /* Propagate pending load changes to the parent, if any: */
7878 se
= cfs_rq
->tg
->se
[cpu
];
7879 if (se
&& !skip_blocked_update(se
))
7880 update_load_avg(cfs_rq_of(se
), se
, 0);
7883 * There can be a lot of idle CPU cgroups. Don't let fully
7884 * decayed cfs_rqs linger on the list.
7886 if (cfs_rq_is_decayed(cfs_rq
))
7887 list_del_leaf_cfs_rq(cfs_rq
);
7889 /* Don't need periodic decay once load/util_avg are null */
7890 if (cfs_rq_has_blocked(cfs_rq
))
7898 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7899 * This needs to be done in a top-down fashion because the load of a child
7900 * group is a fraction of its parents load.
7902 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7904 struct rq
*rq
= rq_of(cfs_rq
);
7905 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7906 unsigned long now
= jiffies
;
7909 if (cfs_rq
->last_h_load_update
== now
)
7912 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
7913 for_each_sched_entity(se
) {
7914 cfs_rq
= cfs_rq_of(se
);
7915 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
7916 if (cfs_rq
->last_h_load_update
== now
)
7921 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7922 cfs_rq
->last_h_load_update
= now
;
7925 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
7926 load
= cfs_rq
->h_load
;
7927 load
= div64_ul(load
* se
->avg
.load_avg
,
7928 cfs_rq_load_avg(cfs_rq
) + 1);
7929 cfs_rq
= group_cfs_rq(se
);
7930 cfs_rq
->h_load
= load
;
7931 cfs_rq
->last_h_load_update
= now
;
7935 static unsigned long task_h_load(struct task_struct
*p
)
7937 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
7939 update_cfs_rq_h_load(cfs_rq
);
7940 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
7941 cfs_rq_load_avg(cfs_rq
) + 1);
7944 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7946 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7949 decayed
= update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
);
7950 if (cfs_rq_has_blocked(cfs_rq
))
7956 static unsigned long task_h_load(struct task_struct
*p
)
7958 return p
->se
.avg
.load_avg
;
7962 static void update_blocked_averages(int cpu
)
7964 bool decayed
= false, done
= true;
7965 struct rq
*rq
= cpu_rq(cpu
);
7968 rq_lock_irqsave(rq
, &rf
);
7969 update_rq_clock(rq
);
7971 decayed
|= __update_blocked_others(rq
, &done
);
7972 decayed
|= __update_blocked_fair(rq
, &done
);
7974 update_blocked_load_status(rq
, !done
);
7976 cpufreq_update_util(rq
, 0);
7977 rq_unlock_irqrestore(rq
, &rf
);
7980 /********** Helpers for find_busiest_group ************************/
7983 * sg_lb_stats - stats of a sched_group required for load_balancing
7985 struct sg_lb_stats
{
7986 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7987 unsigned long group_load
; /* Total load over the CPUs of the group */
7988 unsigned long group_capacity
;
7989 unsigned long group_util
; /* Total utilization over the CPUs of the group */
7990 unsigned long group_runnable
; /* Total runnable time over the CPUs of the group */
7991 unsigned int sum_nr_running
; /* Nr of tasks running in the group */
7992 unsigned int sum_h_nr_running
; /* Nr of CFS tasks running in the group */
7993 unsigned int idle_cpus
;
7994 unsigned int group_weight
;
7995 enum group_type group_type
;
7996 unsigned int group_asym_packing
; /* Tasks should be moved to preferred CPU */
7997 unsigned long group_misfit_task_load
; /* A CPU has a task too big for its capacity */
7998 #ifdef CONFIG_NUMA_BALANCING
7999 unsigned int nr_numa_running
;
8000 unsigned int nr_preferred_running
;
8005 * sd_lb_stats - Structure to store the statistics of a sched_domain
8006 * during load balancing.
8008 struct sd_lb_stats
{
8009 struct sched_group
*busiest
; /* Busiest group in this sd */
8010 struct sched_group
*local
; /* Local group in this sd */
8011 unsigned long total_load
; /* Total load of all groups in sd */
8012 unsigned long total_capacity
; /* Total capacity of all groups in sd */
8013 unsigned long avg_load
; /* Average load across all groups in sd */
8014 unsigned int prefer_sibling
; /* tasks should go to sibling first */
8016 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
8017 struct sg_lb_stats local_stat
; /* Statistics of the local group */
8020 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
8023 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8024 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8025 * We must however set busiest_stat::group_type and
8026 * busiest_stat::idle_cpus to the worst busiest group because
8027 * update_sd_pick_busiest() reads these before assignment.
8029 *sds
= (struct sd_lb_stats
){
8033 .total_capacity
= 0UL,
8035 .idle_cpus
= UINT_MAX
,
8036 .group_type
= group_has_spare
,
8041 static unsigned long scale_rt_capacity(struct sched_domain
*sd
, int cpu
)
8043 struct rq
*rq
= cpu_rq(cpu
);
8044 unsigned long max
= arch_scale_cpu_capacity(cpu
);
8045 unsigned long used
, free
;
8048 irq
= cpu_util_irq(rq
);
8050 if (unlikely(irq
>= max
))
8054 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8055 * (running and not running) with weights 0 and 1024 respectively.
8056 * avg_thermal.load_avg tracks thermal pressure and the weighted
8057 * average uses the actual delta max capacity(load).
8059 used
= READ_ONCE(rq
->avg_rt
.util_avg
);
8060 used
+= READ_ONCE(rq
->avg_dl
.util_avg
);
8061 used
+= thermal_load_avg(rq
);
8063 if (unlikely(used
>= max
))
8068 return scale_irq_capacity(free
, irq
, max
);
8071 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
8073 unsigned long capacity
= scale_rt_capacity(sd
, cpu
);
8074 struct sched_group
*sdg
= sd
->groups
;
8076 cpu_rq(cpu
)->cpu_capacity_orig
= arch_scale_cpu_capacity(cpu
);
8081 cpu_rq(cpu
)->cpu_capacity
= capacity
;
8082 sdg
->sgc
->capacity
= capacity
;
8083 sdg
->sgc
->min_capacity
= capacity
;
8084 sdg
->sgc
->max_capacity
= capacity
;
8087 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
8089 struct sched_domain
*child
= sd
->child
;
8090 struct sched_group
*group
, *sdg
= sd
->groups
;
8091 unsigned long capacity
, min_capacity
, max_capacity
;
8092 unsigned long interval
;
8094 interval
= msecs_to_jiffies(sd
->balance_interval
);
8095 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8096 sdg
->sgc
->next_update
= jiffies
+ interval
;
8099 update_cpu_capacity(sd
, cpu
);
8104 min_capacity
= ULONG_MAX
;
8107 if (child
->flags
& SD_OVERLAP
) {
8109 * SD_OVERLAP domains cannot assume that child groups
8110 * span the current group.
8113 for_each_cpu(cpu
, sched_group_span(sdg
)) {
8114 unsigned long cpu_cap
= capacity_of(cpu
);
8116 capacity
+= cpu_cap
;
8117 min_capacity
= min(cpu_cap
, min_capacity
);
8118 max_capacity
= max(cpu_cap
, max_capacity
);
8122 * !SD_OVERLAP domains can assume that child groups
8123 * span the current group.
8126 group
= child
->groups
;
8128 struct sched_group_capacity
*sgc
= group
->sgc
;
8130 capacity
+= sgc
->capacity
;
8131 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
8132 max_capacity
= max(sgc
->max_capacity
, max_capacity
);
8133 group
= group
->next
;
8134 } while (group
!= child
->groups
);
8137 sdg
->sgc
->capacity
= capacity
;
8138 sdg
->sgc
->min_capacity
= min_capacity
;
8139 sdg
->sgc
->max_capacity
= max_capacity
;
8143 * Check whether the capacity of the rq has been noticeably reduced by side
8144 * activity. The imbalance_pct is used for the threshold.
8145 * Return true is the capacity is reduced
8148 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
8150 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
8151 (rq
->cpu_capacity_orig
* 100));
8155 * Check whether a rq has a misfit task and if it looks like we can actually
8156 * help that task: we can migrate the task to a CPU of higher capacity, or
8157 * the task's current CPU is heavily pressured.
8159 static inline int check_misfit_status(struct rq
*rq
, struct sched_domain
*sd
)
8161 return rq
->misfit_task_load
&&
8162 (rq
->cpu_capacity_orig
< rq
->rd
->max_cpu_capacity
||
8163 check_cpu_capacity(rq
, sd
));
8167 * Group imbalance indicates (and tries to solve) the problem where balancing
8168 * groups is inadequate due to ->cpus_ptr constraints.
8170 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8171 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8174 * { 0 1 2 3 } { 4 5 6 7 }
8177 * If we were to balance group-wise we'd place two tasks in the first group and
8178 * two tasks in the second group. Clearly this is undesired as it will overload
8179 * cpu 3 and leave one of the CPUs in the second group unused.
8181 * The current solution to this issue is detecting the skew in the first group
8182 * by noticing the lower domain failed to reach balance and had difficulty
8183 * moving tasks due to affinity constraints.
8185 * When this is so detected; this group becomes a candidate for busiest; see
8186 * update_sd_pick_busiest(). And calculate_imbalance() and
8187 * find_busiest_group() avoid some of the usual balance conditions to allow it
8188 * to create an effective group imbalance.
8190 * This is a somewhat tricky proposition since the next run might not find the
8191 * group imbalance and decide the groups need to be balanced again. A most
8192 * subtle and fragile situation.
8195 static inline int sg_imbalanced(struct sched_group
*group
)
8197 return group
->sgc
->imbalance
;
8201 * group_has_capacity returns true if the group has spare capacity that could
8202 * be used by some tasks.
8203 * We consider that a group has spare capacity if the * number of task is
8204 * smaller than the number of CPUs or if the utilization is lower than the
8205 * available capacity for CFS tasks.
8206 * For the latter, we use a threshold to stabilize the state, to take into
8207 * account the variance of the tasks' load and to return true if the available
8208 * capacity in meaningful for the load balancer.
8209 * As an example, an available capacity of 1% can appear but it doesn't make
8210 * any benefit for the load balance.
8213 group_has_capacity(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8215 if (sgs
->sum_nr_running
< sgs
->group_weight
)
8218 if ((sgs
->group_capacity
* imbalance_pct
) <
8219 (sgs
->group_runnable
* 100))
8222 if ((sgs
->group_capacity
* 100) >
8223 (sgs
->group_util
* imbalance_pct
))
8230 * group_is_overloaded returns true if the group has more tasks than it can
8232 * group_is_overloaded is not equals to !group_has_capacity because a group
8233 * with the exact right number of tasks, has no more spare capacity but is not
8234 * overloaded so both group_has_capacity and group_is_overloaded return
8238 group_is_overloaded(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8240 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
8243 if ((sgs
->group_capacity
* 100) <
8244 (sgs
->group_util
* imbalance_pct
))
8247 if ((sgs
->group_capacity
* imbalance_pct
) <
8248 (sgs
->group_runnable
* 100))
8255 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8256 * per-CPU capacity than sched_group ref.
8259 group_smaller_min_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8261 return fits_capacity(sg
->sgc
->min_capacity
, ref
->sgc
->min_capacity
);
8265 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8266 * per-CPU capacity_orig than sched_group ref.
8269 group_smaller_max_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8271 return fits_capacity(sg
->sgc
->max_capacity
, ref
->sgc
->max_capacity
);
8275 group_type
group_classify(unsigned int imbalance_pct
,
8276 struct sched_group
*group
,
8277 struct sg_lb_stats
*sgs
)
8279 if (group_is_overloaded(imbalance_pct
, sgs
))
8280 return group_overloaded
;
8282 if (sg_imbalanced(group
))
8283 return group_imbalanced
;
8285 if (sgs
->group_asym_packing
)
8286 return group_asym_packing
;
8288 if (sgs
->group_misfit_task_load
)
8289 return group_misfit_task
;
8291 if (!group_has_capacity(imbalance_pct
, sgs
))
8292 return group_fully_busy
;
8294 return group_has_spare
;
8297 static bool update_nohz_stats(struct rq
*rq
, bool force
)
8299 #ifdef CONFIG_NO_HZ_COMMON
8300 unsigned int cpu
= rq
->cpu
;
8302 if (!rq
->has_blocked_load
)
8305 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
8308 if (!force
&& !time_after(jiffies
, rq
->last_blocked_load_update_tick
))
8311 update_blocked_averages(cpu
);
8313 return rq
->has_blocked_load
;
8320 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8321 * @env: The load balancing environment.
8322 * @group: sched_group whose statistics are to be updated.
8323 * @sgs: variable to hold the statistics for this group.
8324 * @sg_status: Holds flag indicating the status of the sched_group
8326 static inline void update_sg_lb_stats(struct lb_env
*env
,
8327 struct sched_group
*group
,
8328 struct sg_lb_stats
*sgs
,
8331 int i
, nr_running
, local_group
;
8333 memset(sgs
, 0, sizeof(*sgs
));
8335 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(group
));
8337 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8338 struct rq
*rq
= cpu_rq(i
);
8340 if ((env
->flags
& LBF_NOHZ_STATS
) && update_nohz_stats(rq
, false))
8341 env
->flags
|= LBF_NOHZ_AGAIN
;
8343 sgs
->group_load
+= cpu_load(rq
);
8344 sgs
->group_util
+= cpu_util(i
);
8345 sgs
->group_runnable
+= cpu_runnable(rq
);
8346 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
;
8348 nr_running
= rq
->nr_running
;
8349 sgs
->sum_nr_running
+= nr_running
;
8352 *sg_status
|= SG_OVERLOAD
;
8354 if (cpu_overutilized(i
))
8355 *sg_status
|= SG_OVERUTILIZED
;
8357 #ifdef CONFIG_NUMA_BALANCING
8358 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
8359 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
8362 * No need to call idle_cpu() if nr_running is not 0
8364 if (!nr_running
&& idle_cpu(i
)) {
8366 /* Idle cpu can't have misfit task */
8373 /* Check for a misfit task on the cpu */
8374 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8375 sgs
->group_misfit_task_load
< rq
->misfit_task_load
) {
8376 sgs
->group_misfit_task_load
= rq
->misfit_task_load
;
8377 *sg_status
|= SG_OVERLOAD
;
8381 /* Check if dst CPU is idle and preferred to this group */
8382 if (env
->sd
->flags
& SD_ASYM_PACKING
&&
8383 env
->idle
!= CPU_NOT_IDLE
&&
8384 sgs
->sum_h_nr_running
&&
8385 sched_asym_prefer(env
->dst_cpu
, group
->asym_prefer_cpu
)) {
8386 sgs
->group_asym_packing
= 1;
8389 sgs
->group_capacity
= group
->sgc
->capacity
;
8391 sgs
->group_weight
= group
->group_weight
;
8393 sgs
->group_type
= group_classify(env
->sd
->imbalance_pct
, group
, sgs
);
8395 /* Computing avg_load makes sense only when group is overloaded */
8396 if (sgs
->group_type
== group_overloaded
)
8397 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8398 sgs
->group_capacity
;
8402 * update_sd_pick_busiest - return 1 on busiest group
8403 * @env: The load balancing environment.
8404 * @sds: sched_domain statistics
8405 * @sg: sched_group candidate to be checked for being the busiest
8406 * @sgs: sched_group statistics
8408 * Determine if @sg is a busier group than the previously selected
8411 * Return: %true if @sg is a busier group than the previously selected
8412 * busiest group. %false otherwise.
8414 static bool update_sd_pick_busiest(struct lb_env
*env
,
8415 struct sd_lb_stats
*sds
,
8416 struct sched_group
*sg
,
8417 struct sg_lb_stats
*sgs
)
8419 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
8421 /* Make sure that there is at least one task to pull */
8422 if (!sgs
->sum_h_nr_running
)
8426 * Don't try to pull misfit tasks we can't help.
8427 * We can use max_capacity here as reduction in capacity on some
8428 * CPUs in the group should either be possible to resolve
8429 * internally or be covered by avg_load imbalance (eventually).
8431 if (sgs
->group_type
== group_misfit_task
&&
8432 (!group_smaller_max_cpu_capacity(sg
, sds
->local
) ||
8433 sds
->local_stat
.group_type
!= group_has_spare
))
8436 if (sgs
->group_type
> busiest
->group_type
)
8439 if (sgs
->group_type
< busiest
->group_type
)
8443 * The candidate and the current busiest group are the same type of
8444 * group. Let check which one is the busiest according to the type.
8447 switch (sgs
->group_type
) {
8448 case group_overloaded
:
8449 /* Select the overloaded group with highest avg_load. */
8450 if (sgs
->avg_load
<= busiest
->avg_load
)
8454 case group_imbalanced
:
8456 * Select the 1st imbalanced group as we don't have any way to
8457 * choose one more than another.
8461 case group_asym_packing
:
8462 /* Prefer to move from lowest priority CPU's work */
8463 if (sched_asym_prefer(sg
->asym_prefer_cpu
, sds
->busiest
->asym_prefer_cpu
))
8467 case group_misfit_task
:
8469 * If we have more than one misfit sg go with the biggest
8472 if (sgs
->group_misfit_task_load
< busiest
->group_misfit_task_load
)
8476 case group_fully_busy
:
8478 * Select the fully busy group with highest avg_load. In
8479 * theory, there is no need to pull task from such kind of
8480 * group because tasks have all compute capacity that they need
8481 * but we can still improve the overall throughput by reducing
8482 * contention when accessing shared HW resources.
8484 * XXX for now avg_load is not computed and always 0 so we
8485 * select the 1st one.
8487 if (sgs
->avg_load
<= busiest
->avg_load
)
8491 case group_has_spare
:
8493 * Select not overloaded group with lowest number of idle cpus
8494 * and highest number of running tasks. We could also compare
8495 * the spare capacity which is more stable but it can end up
8496 * that the group has less spare capacity but finally more idle
8497 * CPUs which means less opportunity to pull tasks.
8499 if (sgs
->idle_cpus
> busiest
->idle_cpus
)
8501 else if ((sgs
->idle_cpus
== busiest
->idle_cpus
) &&
8502 (sgs
->sum_nr_running
<= busiest
->sum_nr_running
))
8509 * Candidate sg has no more than one task per CPU and has higher
8510 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8511 * throughput. Maximize throughput, power/energy consequences are not
8514 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
8515 (sgs
->group_type
<= group_fully_busy
) &&
8516 (group_smaller_min_cpu_capacity(sds
->local
, sg
)))
8522 #ifdef CONFIG_NUMA_BALANCING
8523 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8525 if (sgs
->sum_h_nr_running
> sgs
->nr_numa_running
)
8527 if (sgs
->sum_h_nr_running
> sgs
->nr_preferred_running
)
8532 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8534 if (rq
->nr_running
> rq
->nr_numa_running
)
8536 if (rq
->nr_running
> rq
->nr_preferred_running
)
8541 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8546 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8550 #endif /* CONFIG_NUMA_BALANCING */
8556 * task_running_on_cpu - return 1 if @p is running on @cpu.
8559 static unsigned int task_running_on_cpu(int cpu
, struct task_struct
*p
)
8561 /* Task has no contribution or is new */
8562 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
8565 if (task_on_rq_queued(p
))
8572 * idle_cpu_without - would a given CPU be idle without p ?
8573 * @cpu: the processor on which idleness is tested.
8574 * @p: task which should be ignored.
8576 * Return: 1 if the CPU would be idle. 0 otherwise.
8578 static int idle_cpu_without(int cpu
, struct task_struct
*p
)
8580 struct rq
*rq
= cpu_rq(cpu
);
8582 if (rq
->curr
!= rq
->idle
&& rq
->curr
!= p
)
8586 * rq->nr_running can't be used but an updated version without the
8587 * impact of p on cpu must be used instead. The updated nr_running
8588 * be computed and tested before calling idle_cpu_without().
8592 if (rq
->ttwu_pending
)
8600 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8601 * @sd: The sched_domain level to look for idlest group.
8602 * @group: sched_group whose statistics are to be updated.
8603 * @sgs: variable to hold the statistics for this group.
8604 * @p: The task for which we look for the idlest group/CPU.
8606 static inline void update_sg_wakeup_stats(struct sched_domain
*sd
,
8607 struct sched_group
*group
,
8608 struct sg_lb_stats
*sgs
,
8609 struct task_struct
*p
)
8613 memset(sgs
, 0, sizeof(*sgs
));
8615 for_each_cpu(i
, sched_group_span(group
)) {
8616 struct rq
*rq
= cpu_rq(i
);
8619 sgs
->group_load
+= cpu_load_without(rq
, p
);
8620 sgs
->group_util
+= cpu_util_without(i
, p
);
8621 sgs
->group_runnable
+= cpu_runnable_without(rq
, p
);
8622 local
= task_running_on_cpu(i
, p
);
8623 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
- local
;
8625 nr_running
= rq
->nr_running
- local
;
8626 sgs
->sum_nr_running
+= nr_running
;
8629 * No need to call idle_cpu_without() if nr_running is not 0
8631 if (!nr_running
&& idle_cpu_without(i
, p
))
8636 /* Check if task fits in the group */
8637 if (sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8638 !task_fits_capacity(p
, group
->sgc
->max_capacity
)) {
8639 sgs
->group_misfit_task_load
= 1;
8642 sgs
->group_capacity
= group
->sgc
->capacity
;
8644 sgs
->group_weight
= group
->group_weight
;
8646 sgs
->group_type
= group_classify(sd
->imbalance_pct
, group
, sgs
);
8649 * Computing avg_load makes sense only when group is fully busy or
8652 if (sgs
->group_type
== group_fully_busy
||
8653 sgs
->group_type
== group_overloaded
)
8654 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8655 sgs
->group_capacity
;
8658 static bool update_pick_idlest(struct sched_group
*idlest
,
8659 struct sg_lb_stats
*idlest_sgs
,
8660 struct sched_group
*group
,
8661 struct sg_lb_stats
*sgs
)
8663 if (sgs
->group_type
< idlest_sgs
->group_type
)
8666 if (sgs
->group_type
> idlest_sgs
->group_type
)
8670 * The candidate and the current idlest group are the same type of
8671 * group. Let check which one is the idlest according to the type.
8674 switch (sgs
->group_type
) {
8675 case group_overloaded
:
8676 case group_fully_busy
:
8677 /* Select the group with lowest avg_load. */
8678 if (idlest_sgs
->avg_load
<= sgs
->avg_load
)
8682 case group_imbalanced
:
8683 case group_asym_packing
:
8684 /* Those types are not used in the slow wakeup path */
8687 case group_misfit_task
:
8688 /* Select group with the highest max capacity */
8689 if (idlest
->sgc
->max_capacity
>= group
->sgc
->max_capacity
)
8693 case group_has_spare
:
8694 /* Select group with most idle CPUs */
8695 if (idlest_sgs
->idle_cpus
>= sgs
->idle_cpus
)
8704 * find_idlest_group() finds and returns the least busy CPU group within the
8707 * Assumes p is allowed on at least one CPU in sd.
8709 static struct sched_group
*
8710 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
8712 struct sched_group
*idlest
= NULL
, *local
= NULL
, *group
= sd
->groups
;
8713 struct sg_lb_stats local_sgs
, tmp_sgs
;
8714 struct sg_lb_stats
*sgs
;
8715 unsigned long imbalance
;
8716 struct sg_lb_stats idlest_sgs
= {
8717 .avg_load
= UINT_MAX
,
8718 .group_type
= group_overloaded
,
8721 imbalance
= scale_load_down(NICE_0_LOAD
) *
8722 (sd
->imbalance_pct
-100) / 100;
8727 /* Skip over this group if it has no CPUs allowed */
8728 if (!cpumask_intersects(sched_group_span(group
),
8732 local_group
= cpumask_test_cpu(this_cpu
,
8733 sched_group_span(group
));
8742 update_sg_wakeup_stats(sd
, group
, sgs
, p
);
8744 if (!local_group
&& update_pick_idlest(idlest
, &idlest_sgs
, group
, sgs
)) {
8749 } while (group
= group
->next
, group
!= sd
->groups
);
8752 /* There is no idlest group to push tasks to */
8756 /* The local group has been skipped because of CPU affinity */
8761 * If the local group is idler than the selected idlest group
8762 * don't try and push the task.
8764 if (local_sgs
.group_type
< idlest_sgs
.group_type
)
8768 * If the local group is busier than the selected idlest group
8769 * try and push the task.
8771 if (local_sgs
.group_type
> idlest_sgs
.group_type
)
8774 switch (local_sgs
.group_type
) {
8775 case group_overloaded
:
8776 case group_fully_busy
:
8778 * When comparing groups across NUMA domains, it's possible for
8779 * the local domain to be very lightly loaded relative to the
8780 * remote domains but "imbalance" skews the comparison making
8781 * remote CPUs look much more favourable. When considering
8782 * cross-domain, add imbalance to the load on the remote node
8783 * and consider staying local.
8786 if ((sd
->flags
& SD_NUMA
) &&
8787 ((idlest_sgs
.avg_load
+ imbalance
) >= local_sgs
.avg_load
))
8791 * If the local group is less loaded than the selected
8792 * idlest group don't try and push any tasks.
8794 if (idlest_sgs
.avg_load
>= (local_sgs
.avg_load
+ imbalance
))
8797 if (100 * local_sgs
.avg_load
<= sd
->imbalance_pct
* idlest_sgs
.avg_load
)
8801 case group_imbalanced
:
8802 case group_asym_packing
:
8803 /* Those type are not used in the slow wakeup path */
8806 case group_misfit_task
:
8807 /* Select group with the highest max capacity */
8808 if (local
->sgc
->max_capacity
>= idlest
->sgc
->max_capacity
)
8812 case group_has_spare
:
8813 if (sd
->flags
& SD_NUMA
) {
8814 #ifdef CONFIG_NUMA_BALANCING
8817 * If there is spare capacity at NUMA, try to select
8818 * the preferred node
8820 if (cpu_to_node(this_cpu
) == p
->numa_preferred_nid
)
8823 idlest_cpu
= cpumask_first(sched_group_span(idlest
));
8824 if (cpu_to_node(idlest_cpu
) == p
->numa_preferred_nid
)
8828 * Otherwise, keep the task on this node to stay close
8829 * its wakeup source and improve locality. If there is
8830 * a real need of migration, periodic load balance will
8833 if (local_sgs
.idle_cpus
)
8838 * Select group with highest number of idle CPUs. We could also
8839 * compare the utilization which is more stable but it can end
8840 * up that the group has less spare capacity but finally more
8841 * idle CPUs which means more opportunity to run task.
8843 if (local_sgs
.idle_cpus
>= idlest_sgs
.idle_cpus
)
8852 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8853 * @env: The load balancing environment.
8854 * @sds: variable to hold the statistics for this sched_domain.
8857 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8859 struct sched_domain
*child
= env
->sd
->child
;
8860 struct sched_group
*sg
= env
->sd
->groups
;
8861 struct sg_lb_stats
*local
= &sds
->local_stat
;
8862 struct sg_lb_stats tmp_sgs
;
8865 #ifdef CONFIG_NO_HZ_COMMON
8866 if (env
->idle
== CPU_NEWLY_IDLE
&& READ_ONCE(nohz
.has_blocked
))
8867 env
->flags
|= LBF_NOHZ_STATS
;
8871 struct sg_lb_stats
*sgs
= &tmp_sgs
;
8874 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
8879 if (env
->idle
!= CPU_NEWLY_IDLE
||
8880 time_after_eq(jiffies
, sg
->sgc
->next_update
))
8881 update_group_capacity(env
->sd
, env
->dst_cpu
);
8884 update_sg_lb_stats(env
, sg
, sgs
, &sg_status
);
8890 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
8892 sds
->busiest_stat
= *sgs
;
8896 /* Now, start updating sd_lb_stats */
8897 sds
->total_load
+= sgs
->group_load
;
8898 sds
->total_capacity
+= sgs
->group_capacity
;
8901 } while (sg
!= env
->sd
->groups
);
8903 /* Tag domain that child domain prefers tasks go to siblings first */
8904 sds
->prefer_sibling
= child
&& child
->flags
& SD_PREFER_SIBLING
;
8906 #ifdef CONFIG_NO_HZ_COMMON
8907 if ((env
->flags
& LBF_NOHZ_AGAIN
) &&
8908 cpumask_subset(nohz
.idle_cpus_mask
, sched_domain_span(env
->sd
))) {
8910 WRITE_ONCE(nohz
.next_blocked
,
8911 jiffies
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
8915 if (env
->sd
->flags
& SD_NUMA
)
8916 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
8918 if (!env
->sd
->parent
) {
8919 struct root_domain
*rd
= env
->dst_rq
->rd
;
8921 /* update overload indicator if we are at root domain */
8922 WRITE_ONCE(rd
->overload
, sg_status
& SG_OVERLOAD
);
8924 /* Update over-utilization (tipping point, U >= 0) indicator */
8925 WRITE_ONCE(rd
->overutilized
, sg_status
& SG_OVERUTILIZED
);
8926 trace_sched_overutilized_tp(rd
, sg_status
& SG_OVERUTILIZED
);
8927 } else if (sg_status
& SG_OVERUTILIZED
) {
8928 struct root_domain
*rd
= env
->dst_rq
->rd
;
8930 WRITE_ONCE(rd
->overutilized
, SG_OVERUTILIZED
);
8931 trace_sched_overutilized_tp(rd
, SG_OVERUTILIZED
);
8935 static inline long adjust_numa_imbalance(int imbalance
, int src_nr_running
)
8937 unsigned int imbalance_min
;
8940 * Allow a small imbalance based on a simple pair of communicating
8941 * tasks that remain local when the source domain is almost idle.
8944 if (src_nr_running
<= imbalance_min
)
8951 * calculate_imbalance - Calculate the amount of imbalance present within the
8952 * groups of a given sched_domain during load balance.
8953 * @env: load balance environment
8954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8956 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8958 struct sg_lb_stats
*local
, *busiest
;
8960 local
= &sds
->local_stat
;
8961 busiest
= &sds
->busiest_stat
;
8963 if (busiest
->group_type
== group_misfit_task
) {
8964 /* Set imbalance to allow misfit tasks to be balanced. */
8965 env
->migration_type
= migrate_misfit
;
8970 if (busiest
->group_type
== group_asym_packing
) {
8972 * In case of asym capacity, we will try to migrate all load to
8973 * the preferred CPU.
8975 env
->migration_type
= migrate_task
;
8976 env
->imbalance
= busiest
->sum_h_nr_running
;
8980 if (busiest
->group_type
== group_imbalanced
) {
8982 * In the group_imb case we cannot rely on group-wide averages
8983 * to ensure CPU-load equilibrium, try to move any task to fix
8984 * the imbalance. The next load balance will take care of
8985 * balancing back the system.
8987 env
->migration_type
= migrate_task
;
8993 * Try to use spare capacity of local group without overloading it or
8996 if (local
->group_type
== group_has_spare
) {
8997 if (busiest
->group_type
> group_fully_busy
) {
8999 * If busiest is overloaded, try to fill spare
9000 * capacity. This might end up creating spare capacity
9001 * in busiest or busiest still being overloaded but
9002 * there is no simple way to directly compute the
9003 * amount of load to migrate in order to balance the
9006 env
->migration_type
= migrate_util
;
9007 env
->imbalance
= max(local
->group_capacity
, local
->group_util
) -
9011 * In some cases, the group's utilization is max or even
9012 * higher than capacity because of migrations but the
9013 * local CPU is (newly) idle. There is at least one
9014 * waiting task in this overloaded busiest group. Let's
9017 if (env
->idle
!= CPU_NOT_IDLE
&& env
->imbalance
== 0) {
9018 env
->migration_type
= migrate_task
;
9025 if (busiest
->group_weight
== 1 || sds
->prefer_sibling
) {
9026 unsigned int nr_diff
= busiest
->sum_nr_running
;
9028 * When prefer sibling, evenly spread running tasks on
9031 env
->migration_type
= migrate_task
;
9032 lsub_positive(&nr_diff
, local
->sum_nr_running
);
9033 env
->imbalance
= nr_diff
>> 1;
9037 * If there is no overload, we just want to even the number of
9040 env
->migration_type
= migrate_task
;
9041 env
->imbalance
= max_t(long, 0, (local
->idle_cpus
-
9042 busiest
->idle_cpus
) >> 1);
9045 /* Consider allowing a small imbalance between NUMA groups */
9046 if (env
->sd
->flags
& SD_NUMA
)
9047 env
->imbalance
= adjust_numa_imbalance(env
->imbalance
,
9048 busiest
->sum_nr_running
);
9054 * Local is fully busy but has to take more load to relieve the
9057 if (local
->group_type
< group_overloaded
) {
9059 * Local will become overloaded so the avg_load metrics are
9063 local
->avg_load
= (local
->group_load
* SCHED_CAPACITY_SCALE
) /
9064 local
->group_capacity
;
9066 sds
->avg_load
= (sds
->total_load
* SCHED_CAPACITY_SCALE
) /
9067 sds
->total_capacity
;
9069 * If the local group is more loaded than the selected
9070 * busiest group don't try to pull any tasks.
9072 if (local
->avg_load
>= busiest
->avg_load
) {
9079 * Both group are or will become overloaded and we're trying to get all
9080 * the CPUs to the average_load, so we don't want to push ourselves
9081 * above the average load, nor do we wish to reduce the max loaded CPU
9082 * below the average load. At the same time, we also don't want to
9083 * reduce the group load below the group capacity. Thus we look for
9084 * the minimum possible imbalance.
9086 env
->migration_type
= migrate_load
;
9087 env
->imbalance
= min(
9088 (busiest
->avg_load
- sds
->avg_load
) * busiest
->group_capacity
,
9089 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
9090 ) / SCHED_CAPACITY_SCALE
;
9093 /******* find_busiest_group() helpers end here *********************/
9096 * Decision matrix according to the local and busiest group type:
9098 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9099 * has_spare nr_idle balanced N/A N/A balanced balanced
9100 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9101 * misfit_task force N/A N/A N/A force force
9102 * asym_packing force force N/A N/A force force
9103 * imbalanced force force N/A N/A force force
9104 * overloaded force force N/A N/A force avg_load
9106 * N/A : Not Applicable because already filtered while updating
9108 * balanced : The system is balanced for these 2 groups.
9109 * force : Calculate the imbalance as load migration is probably needed.
9110 * avg_load : Only if imbalance is significant enough.
9111 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9112 * different in groups.
9116 * find_busiest_group - Returns the busiest group within the sched_domain
9117 * if there is an imbalance.
9119 * Also calculates the amount of runnable load which should be moved
9120 * to restore balance.
9122 * @env: The load balancing environment.
9124 * Return: - The busiest group if imbalance exists.
9126 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
9128 struct sg_lb_stats
*local
, *busiest
;
9129 struct sd_lb_stats sds
;
9131 init_sd_lb_stats(&sds
);
9134 * Compute the various statistics relevant for load balancing at
9137 update_sd_lb_stats(env
, &sds
);
9139 if (sched_energy_enabled()) {
9140 struct root_domain
*rd
= env
->dst_rq
->rd
;
9142 if (rcu_dereference(rd
->pd
) && !READ_ONCE(rd
->overutilized
))
9146 local
= &sds
.local_stat
;
9147 busiest
= &sds
.busiest_stat
;
9149 /* There is no busy sibling group to pull tasks from */
9153 /* Misfit tasks should be dealt with regardless of the avg load */
9154 if (busiest
->group_type
== group_misfit_task
)
9157 /* ASYM feature bypasses nice load balance check */
9158 if (busiest
->group_type
== group_asym_packing
)
9162 * If the busiest group is imbalanced the below checks don't
9163 * work because they assume all things are equal, which typically
9164 * isn't true due to cpus_ptr constraints and the like.
9166 if (busiest
->group_type
== group_imbalanced
)
9170 * If the local group is busier than the selected busiest group
9171 * don't try and pull any tasks.
9173 if (local
->group_type
> busiest
->group_type
)
9177 * When groups are overloaded, use the avg_load to ensure fairness
9180 if (local
->group_type
== group_overloaded
) {
9182 * If the local group is more loaded than the selected
9183 * busiest group don't try to pull any tasks.
9185 if (local
->avg_load
>= busiest
->avg_load
)
9188 /* XXX broken for overlapping NUMA groups */
9189 sds
.avg_load
= (sds
.total_load
* SCHED_CAPACITY_SCALE
) /
9193 * Don't pull any tasks if this group is already above the
9194 * domain average load.
9196 if (local
->avg_load
>= sds
.avg_load
)
9200 * If the busiest group is more loaded, use imbalance_pct to be
9203 if (100 * busiest
->avg_load
<=
9204 env
->sd
->imbalance_pct
* local
->avg_load
)
9208 /* Try to move all excess tasks to child's sibling domain */
9209 if (sds
.prefer_sibling
&& local
->group_type
== group_has_spare
&&
9210 busiest
->sum_nr_running
> local
->sum_nr_running
+ 1)
9213 if (busiest
->group_type
!= group_overloaded
) {
9214 if (env
->idle
== CPU_NOT_IDLE
)
9216 * If the busiest group is not overloaded (and as a
9217 * result the local one too) but this CPU is already
9218 * busy, let another idle CPU try to pull task.
9222 if (busiest
->group_weight
> 1 &&
9223 local
->idle_cpus
<= (busiest
->idle_cpus
+ 1))
9225 * If the busiest group is not overloaded
9226 * and there is no imbalance between this and busiest
9227 * group wrt idle CPUs, it is balanced. The imbalance
9228 * becomes significant if the diff is greater than 1
9229 * otherwise we might end up to just move the imbalance
9230 * on another group. Of course this applies only if
9231 * there is more than 1 CPU per group.
9235 if (busiest
->sum_h_nr_running
== 1)
9237 * busiest doesn't have any tasks waiting to run
9243 /* Looks like there is an imbalance. Compute it */
9244 calculate_imbalance(env
, &sds
);
9245 return env
->imbalance
? sds
.busiest
: NULL
;
9253 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9255 static struct rq
*find_busiest_queue(struct lb_env
*env
,
9256 struct sched_group
*group
)
9258 struct rq
*busiest
= NULL
, *rq
;
9259 unsigned long busiest_util
= 0, busiest_load
= 0, busiest_capacity
= 1;
9260 unsigned int busiest_nr
= 0;
9263 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
9264 unsigned long capacity
, load
, util
;
9265 unsigned int nr_running
;
9269 rt
= fbq_classify_rq(rq
);
9272 * We classify groups/runqueues into three groups:
9273 * - regular: there are !numa tasks
9274 * - remote: there are numa tasks that run on the 'wrong' node
9275 * - all: there is no distinction
9277 * In order to avoid migrating ideally placed numa tasks,
9278 * ignore those when there's better options.
9280 * If we ignore the actual busiest queue to migrate another
9281 * task, the next balance pass can still reduce the busiest
9282 * queue by moving tasks around inside the node.
9284 * If we cannot move enough load due to this classification
9285 * the next pass will adjust the group classification and
9286 * allow migration of more tasks.
9288 * Both cases only affect the total convergence complexity.
9290 if (rt
> env
->fbq_type
)
9293 capacity
= capacity_of(i
);
9294 nr_running
= rq
->cfs
.h_nr_running
;
9297 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9298 * eventually lead to active_balancing high->low capacity.
9299 * Higher per-CPU capacity is considered better than balancing
9302 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
9303 capacity_of(env
->dst_cpu
) < capacity
&&
9307 switch (env
->migration_type
) {
9310 * When comparing with load imbalance, use cpu_load()
9311 * which is not scaled with the CPU capacity.
9313 load
= cpu_load(rq
);
9315 if (nr_running
== 1 && load
> env
->imbalance
&&
9316 !check_cpu_capacity(rq
, env
->sd
))
9320 * For the load comparisons with the other CPUs,
9321 * consider the cpu_load() scaled with the CPU
9322 * capacity, so that the load can be moved away
9323 * from the CPU that is potentially running at a
9326 * Thus we're looking for max(load_i / capacity_i),
9327 * crosswise multiplication to rid ourselves of the
9328 * division works out to:
9329 * load_i * capacity_j > load_j * capacity_i;
9330 * where j is our previous maximum.
9332 if (load
* busiest_capacity
> busiest_load
* capacity
) {
9333 busiest_load
= load
;
9334 busiest_capacity
= capacity
;
9340 util
= cpu_util(cpu_of(rq
));
9343 * Don't try to pull utilization from a CPU with one
9344 * running task. Whatever its utilization, we will fail
9347 if (nr_running
<= 1)
9350 if (busiest_util
< util
) {
9351 busiest_util
= util
;
9357 if (busiest_nr
< nr_running
) {
9358 busiest_nr
= nr_running
;
9363 case migrate_misfit
:
9365 * For ASYM_CPUCAPACITY domains with misfit tasks we
9366 * simply seek the "biggest" misfit task.
9368 if (rq
->misfit_task_load
> busiest_load
) {
9369 busiest_load
= rq
->misfit_task_load
;
9382 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9383 * so long as it is large enough.
9385 #define MAX_PINNED_INTERVAL 512
9388 asym_active_balance(struct lb_env
*env
)
9391 * ASYM_PACKING needs to force migrate tasks from busy but
9392 * lower priority CPUs in order to pack all tasks in the
9393 * highest priority CPUs.
9395 return env
->idle
!= CPU_NOT_IDLE
&& (env
->sd
->flags
& SD_ASYM_PACKING
) &&
9396 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
);
9400 voluntary_active_balance(struct lb_env
*env
)
9402 struct sched_domain
*sd
= env
->sd
;
9404 if (asym_active_balance(env
))
9408 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9409 * It's worth migrating the task if the src_cpu's capacity is reduced
9410 * because of other sched_class or IRQs if more capacity stays
9411 * available on dst_cpu.
9413 if ((env
->idle
!= CPU_NOT_IDLE
) &&
9414 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
9415 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
9416 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
9420 if (env
->migration_type
== migrate_misfit
)
9426 static int need_active_balance(struct lb_env
*env
)
9428 struct sched_domain
*sd
= env
->sd
;
9430 if (voluntary_active_balance(env
))
9433 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
9436 static int active_load_balance_cpu_stop(void *data
);
9438 static int should_we_balance(struct lb_env
*env
)
9440 struct sched_group
*sg
= env
->sd
->groups
;
9444 * Ensure the balancing environment is consistent; can happen
9445 * when the softirq triggers 'during' hotplug.
9447 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
9451 * In the newly idle case, we will allow all the CPUs
9452 * to do the newly idle load balance.
9454 if (env
->idle
== CPU_NEWLY_IDLE
)
9457 /* Try to find first idle CPU */
9458 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
9462 /* Are we the first idle CPU? */
9463 return cpu
== env
->dst_cpu
;
9466 /* Are we the first CPU of this group ? */
9467 return group_balance_cpu(sg
) == env
->dst_cpu
;
9471 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9472 * tasks if there is an imbalance.
9474 static int load_balance(int this_cpu
, struct rq
*this_rq
,
9475 struct sched_domain
*sd
, enum cpu_idle_type idle
,
9476 int *continue_balancing
)
9478 int ld_moved
, cur_ld_moved
, active_balance
= 0;
9479 struct sched_domain
*sd_parent
= sd
->parent
;
9480 struct sched_group
*group
;
9483 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
9485 struct lb_env env
= {
9487 .dst_cpu
= this_cpu
,
9489 .dst_grpmask
= sched_group_span(sd
->groups
),
9491 .loop_break
= sched_nr_migrate_break
,
9494 .tasks
= LIST_HEAD_INIT(env
.tasks
),
9497 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
9499 schedstat_inc(sd
->lb_count
[idle
]);
9502 if (!should_we_balance(&env
)) {
9503 *continue_balancing
= 0;
9507 group
= find_busiest_group(&env
);
9509 schedstat_inc(sd
->lb_nobusyg
[idle
]);
9513 busiest
= find_busiest_queue(&env
, group
);
9515 schedstat_inc(sd
->lb_nobusyq
[idle
]);
9519 BUG_ON(busiest
== env
.dst_rq
);
9521 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
9523 env
.src_cpu
= busiest
->cpu
;
9524 env
.src_rq
= busiest
;
9527 if (busiest
->nr_running
> 1) {
9529 * Attempt to move tasks. If find_busiest_group has found
9530 * an imbalance but busiest->nr_running <= 1, the group is
9531 * still unbalanced. ld_moved simply stays zero, so it is
9532 * correctly treated as an imbalance.
9534 env
.flags
|= LBF_ALL_PINNED
;
9535 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
9538 rq_lock_irqsave(busiest
, &rf
);
9539 update_rq_clock(busiest
);
9542 * cur_ld_moved - load moved in current iteration
9543 * ld_moved - cumulative load moved across iterations
9545 cur_ld_moved
= detach_tasks(&env
);
9548 * We've detached some tasks from busiest_rq. Every
9549 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9550 * unlock busiest->lock, and we are able to be sure
9551 * that nobody can manipulate the tasks in parallel.
9552 * See task_rq_lock() family for the details.
9555 rq_unlock(busiest
, &rf
);
9559 ld_moved
+= cur_ld_moved
;
9562 local_irq_restore(rf
.flags
);
9564 if (env
.flags
& LBF_NEED_BREAK
) {
9565 env
.flags
&= ~LBF_NEED_BREAK
;
9570 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9571 * us and move them to an alternate dst_cpu in our sched_group
9572 * where they can run. The upper limit on how many times we
9573 * iterate on same src_cpu is dependent on number of CPUs in our
9576 * This changes load balance semantics a bit on who can move
9577 * load to a given_cpu. In addition to the given_cpu itself
9578 * (or a ilb_cpu acting on its behalf where given_cpu is
9579 * nohz-idle), we now have balance_cpu in a position to move
9580 * load to given_cpu. In rare situations, this may cause
9581 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9582 * _independently_ and at _same_ time to move some load to
9583 * given_cpu) causing exceess load to be moved to given_cpu.
9584 * This however should not happen so much in practice and
9585 * moreover subsequent load balance cycles should correct the
9586 * excess load moved.
9588 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
9590 /* Prevent to re-select dst_cpu via env's CPUs */
9591 __cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
9593 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
9594 env
.dst_cpu
= env
.new_dst_cpu
;
9595 env
.flags
&= ~LBF_DST_PINNED
;
9597 env
.loop_break
= sched_nr_migrate_break
;
9600 * Go back to "more_balance" rather than "redo" since we
9601 * need to continue with same src_cpu.
9607 * We failed to reach balance because of affinity.
9610 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9612 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
9613 *group_imbalance
= 1;
9616 /* All tasks on this runqueue were pinned by CPU affinity */
9617 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
9618 __cpumask_clear_cpu(cpu_of(busiest
), cpus
);
9620 * Attempting to continue load balancing at the current
9621 * sched_domain level only makes sense if there are
9622 * active CPUs remaining as possible busiest CPUs to
9623 * pull load from which are not contained within the
9624 * destination group that is receiving any migrated
9627 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
9629 env
.loop_break
= sched_nr_migrate_break
;
9632 goto out_all_pinned
;
9637 schedstat_inc(sd
->lb_failed
[idle
]);
9639 * Increment the failure counter only on periodic balance.
9640 * We do not want newidle balance, which can be very
9641 * frequent, pollute the failure counter causing
9642 * excessive cache_hot migrations and active balances.
9644 if (idle
!= CPU_NEWLY_IDLE
)
9645 sd
->nr_balance_failed
++;
9647 if (need_active_balance(&env
)) {
9648 unsigned long flags
;
9650 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
9653 * Don't kick the active_load_balance_cpu_stop,
9654 * if the curr task on busiest CPU can't be
9655 * moved to this_cpu:
9657 if (!cpumask_test_cpu(this_cpu
, busiest
->curr
->cpus_ptr
)) {
9658 raw_spin_unlock_irqrestore(&busiest
->lock
,
9660 env
.flags
|= LBF_ALL_PINNED
;
9661 goto out_one_pinned
;
9665 * ->active_balance synchronizes accesses to
9666 * ->active_balance_work. Once set, it's cleared
9667 * only after active load balance is finished.
9669 if (!busiest
->active_balance
) {
9670 busiest
->active_balance
= 1;
9671 busiest
->push_cpu
= this_cpu
;
9674 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
9676 if (active_balance
) {
9677 stop_one_cpu_nowait(cpu_of(busiest
),
9678 active_load_balance_cpu_stop
, busiest
,
9679 &busiest
->active_balance_work
);
9682 /* We've kicked active balancing, force task migration. */
9683 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
9686 sd
->nr_balance_failed
= 0;
9688 if (likely(!active_balance
) || voluntary_active_balance(&env
)) {
9689 /* We were unbalanced, so reset the balancing interval */
9690 sd
->balance_interval
= sd
->min_interval
;
9693 * If we've begun active balancing, start to back off. This
9694 * case may not be covered by the all_pinned logic if there
9695 * is only 1 task on the busy runqueue (because we don't call
9698 if (sd
->balance_interval
< sd
->max_interval
)
9699 sd
->balance_interval
*= 2;
9706 * We reach balance although we may have faced some affinity
9707 * constraints. Clear the imbalance flag only if other tasks got
9708 * a chance to move and fix the imbalance.
9710 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
9711 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9713 if (*group_imbalance
)
9714 *group_imbalance
= 0;
9719 * We reach balance because all tasks are pinned at this level so
9720 * we can't migrate them. Let the imbalance flag set so parent level
9721 * can try to migrate them.
9723 schedstat_inc(sd
->lb_balanced
[idle
]);
9725 sd
->nr_balance_failed
= 0;
9731 * newidle_balance() disregards balance intervals, so we could
9732 * repeatedly reach this code, which would lead to balance_interval
9733 * skyrocketting in a short amount of time. Skip the balance_interval
9734 * increase logic to avoid that.
9736 if (env
.idle
== CPU_NEWLY_IDLE
)
9739 /* tune up the balancing interval */
9740 if ((env
.flags
& LBF_ALL_PINNED
&&
9741 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
9742 sd
->balance_interval
< sd
->max_interval
)
9743 sd
->balance_interval
*= 2;
9748 static inline unsigned long
9749 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
9751 unsigned long interval
= sd
->balance_interval
;
9754 interval
*= sd
->busy_factor
;
9756 /* scale ms to jiffies */
9757 interval
= msecs_to_jiffies(interval
);
9758 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
9764 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
9766 unsigned long interval
, next
;
9768 /* used by idle balance, so cpu_busy = 0 */
9769 interval
= get_sd_balance_interval(sd
, 0);
9770 next
= sd
->last_balance
+ interval
;
9772 if (time_after(*next_balance
, next
))
9773 *next_balance
= next
;
9777 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9778 * running tasks off the busiest CPU onto idle CPUs. It requires at
9779 * least 1 task to be running on each physical CPU where possible, and
9780 * avoids physical / logical imbalances.
9782 static int active_load_balance_cpu_stop(void *data
)
9784 struct rq
*busiest_rq
= data
;
9785 int busiest_cpu
= cpu_of(busiest_rq
);
9786 int target_cpu
= busiest_rq
->push_cpu
;
9787 struct rq
*target_rq
= cpu_rq(target_cpu
);
9788 struct sched_domain
*sd
;
9789 struct task_struct
*p
= NULL
;
9792 rq_lock_irq(busiest_rq
, &rf
);
9794 * Between queueing the stop-work and running it is a hole in which
9795 * CPUs can become inactive. We should not move tasks from or to
9798 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
9801 /* Make sure the requested CPU hasn't gone down in the meantime: */
9802 if (unlikely(busiest_cpu
!= smp_processor_id() ||
9803 !busiest_rq
->active_balance
))
9806 /* Is there any task to move? */
9807 if (busiest_rq
->nr_running
<= 1)
9811 * This condition is "impossible", if it occurs
9812 * we need to fix it. Originally reported by
9813 * Bjorn Helgaas on a 128-CPU setup.
9815 BUG_ON(busiest_rq
== target_rq
);
9817 /* Search for an sd spanning us and the target CPU. */
9819 for_each_domain(target_cpu
, sd
) {
9820 if (cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
9825 struct lb_env env
= {
9827 .dst_cpu
= target_cpu
,
9828 .dst_rq
= target_rq
,
9829 .src_cpu
= busiest_rq
->cpu
,
9830 .src_rq
= busiest_rq
,
9833 * can_migrate_task() doesn't need to compute new_dst_cpu
9834 * for active balancing. Since we have CPU_IDLE, but no
9835 * @dst_grpmask we need to make that test go away with lying
9838 .flags
= LBF_DST_PINNED
,
9841 schedstat_inc(sd
->alb_count
);
9842 update_rq_clock(busiest_rq
);
9844 p
= detach_one_task(&env
);
9846 schedstat_inc(sd
->alb_pushed
);
9847 /* Active balancing done, reset the failure counter. */
9848 sd
->nr_balance_failed
= 0;
9850 schedstat_inc(sd
->alb_failed
);
9855 busiest_rq
->active_balance
= 0;
9856 rq_unlock(busiest_rq
, &rf
);
9859 attach_one_task(target_rq
, p
);
9866 static DEFINE_SPINLOCK(balancing
);
9869 * Scale the max load_balance interval with the number of CPUs in the system.
9870 * This trades load-balance latency on larger machines for less cross talk.
9872 void update_max_interval(void)
9874 max_load_balance_interval
= HZ
*num_online_cpus()/10;
9878 * It checks each scheduling domain to see if it is due to be balanced,
9879 * and initiates a balancing operation if so.
9881 * Balancing parameters are set up in init_sched_domains.
9883 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
9885 int continue_balancing
= 1;
9887 int busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9888 unsigned long interval
;
9889 struct sched_domain
*sd
;
9890 /* Earliest time when we have to do rebalance again */
9891 unsigned long next_balance
= jiffies
+ 60*HZ
;
9892 int update_next_balance
= 0;
9893 int need_serialize
, need_decay
= 0;
9897 for_each_domain(cpu
, sd
) {
9899 * Decay the newidle max times here because this is a regular
9900 * visit to all the domains. Decay ~1% per second.
9902 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
9903 sd
->max_newidle_lb_cost
=
9904 (sd
->max_newidle_lb_cost
* 253) / 256;
9905 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
9908 max_cost
+= sd
->max_newidle_lb_cost
;
9911 * Stop the load balance at this level. There is another
9912 * CPU in our sched group which is doing load balancing more
9915 if (!continue_balancing
) {
9921 interval
= get_sd_balance_interval(sd
, busy
);
9923 need_serialize
= sd
->flags
& SD_SERIALIZE
;
9924 if (need_serialize
) {
9925 if (!spin_trylock(&balancing
))
9929 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
9930 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
9932 * The LBF_DST_PINNED logic could have changed
9933 * env->dst_cpu, so we can't know our idle
9934 * state even if we migrated tasks. Update it.
9936 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
9937 busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9939 sd
->last_balance
= jiffies
;
9940 interval
= get_sd_balance_interval(sd
, busy
);
9943 spin_unlock(&balancing
);
9945 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
9946 next_balance
= sd
->last_balance
+ interval
;
9947 update_next_balance
= 1;
9952 * Ensure the rq-wide value also decays but keep it at a
9953 * reasonable floor to avoid funnies with rq->avg_idle.
9955 rq
->max_idle_balance_cost
=
9956 max((u64
)sysctl_sched_migration_cost
, max_cost
);
9961 * next_balance will be updated only when there is a need.
9962 * When the cpu is attached to null domain for ex, it will not be
9965 if (likely(update_next_balance
)) {
9966 rq
->next_balance
= next_balance
;
9968 #ifdef CONFIG_NO_HZ_COMMON
9970 * If this CPU has been elected to perform the nohz idle
9971 * balance. Other idle CPUs have already rebalanced with
9972 * nohz_idle_balance() and nohz.next_balance has been
9973 * updated accordingly. This CPU is now running the idle load
9974 * balance for itself and we need to update the
9975 * nohz.next_balance accordingly.
9977 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
9978 nohz
.next_balance
= rq
->next_balance
;
9983 static inline int on_null_domain(struct rq
*rq
)
9985 return unlikely(!rcu_dereference_sched(rq
->sd
));
9988 #ifdef CONFIG_NO_HZ_COMMON
9990 * idle load balancing details
9991 * - When one of the busy CPUs notice that there may be an idle rebalancing
9992 * needed, they will kick the idle load balancer, which then does idle
9993 * load balancing for all the idle CPUs.
9994 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9998 static inline int find_new_ilb(void)
10002 for_each_cpu_and(ilb
, nohz
.idle_cpus_mask
,
10003 housekeeping_cpumask(HK_FLAG_MISC
)) {
10012 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10013 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10015 static void kick_ilb(unsigned int flags
)
10019 nohz
.next_balance
++;
10021 ilb_cpu
= find_new_ilb();
10023 if (ilb_cpu
>= nr_cpu_ids
)
10027 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10028 * the first flag owns it; cleared by nohz_csd_func().
10030 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
10031 if (flags
& NOHZ_KICK_MASK
)
10035 * This way we generate an IPI on the target CPU which
10036 * is idle. And the softirq performing nohz idle load balance
10037 * will be run before returning from the IPI.
10039 smp_call_function_single_async(ilb_cpu
, &cpu_rq(ilb_cpu
)->nohz_csd
);
10043 * Current decision point for kicking the idle load balancer in the presence
10044 * of idle CPUs in the system.
10046 static void nohz_balancer_kick(struct rq
*rq
)
10048 unsigned long now
= jiffies
;
10049 struct sched_domain_shared
*sds
;
10050 struct sched_domain
*sd
;
10051 int nr_busy
, i
, cpu
= rq
->cpu
;
10052 unsigned int flags
= 0;
10054 if (unlikely(rq
->idle_balance
))
10058 * We may be recently in ticked or tickless idle mode. At the first
10059 * busy tick after returning from idle, we will update the busy stats.
10061 nohz_balance_exit_idle(rq
);
10064 * None are in tickless mode and hence no need for NOHZ idle load
10067 if (likely(!atomic_read(&nohz
.nr_cpus
)))
10070 if (READ_ONCE(nohz
.has_blocked
) &&
10071 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
10072 flags
= NOHZ_STATS_KICK
;
10074 if (time_before(now
, nohz
.next_balance
))
10077 if (rq
->nr_running
>= 2) {
10078 flags
= NOHZ_KICK_MASK
;
10084 sd
= rcu_dereference(rq
->sd
);
10087 * If there's a CFS task and the current CPU has reduced
10088 * capacity; kick the ILB to see if there's a better CPU to run
10091 if (rq
->cfs
.h_nr_running
>= 1 && check_cpu_capacity(rq
, sd
)) {
10092 flags
= NOHZ_KICK_MASK
;
10097 sd
= rcu_dereference(per_cpu(sd_asym_packing
, cpu
));
10100 * When ASYM_PACKING; see if there's a more preferred CPU
10101 * currently idle; in which case, kick the ILB to move tasks
10104 for_each_cpu_and(i
, sched_domain_span(sd
), nohz
.idle_cpus_mask
) {
10105 if (sched_asym_prefer(i
, cpu
)) {
10106 flags
= NOHZ_KICK_MASK
;
10112 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, cpu
));
10115 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10116 * to run the misfit task on.
10118 if (check_misfit_status(rq
, sd
)) {
10119 flags
= NOHZ_KICK_MASK
;
10124 * For asymmetric systems, we do not want to nicely balance
10125 * cache use, instead we want to embrace asymmetry and only
10126 * ensure tasks have enough CPU capacity.
10128 * Skip the LLC logic because it's not relevant in that case.
10133 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
10136 * If there is an imbalance between LLC domains (IOW we could
10137 * increase the overall cache use), we need some less-loaded LLC
10138 * domain to pull some load. Likewise, we may need to spread
10139 * load within the current LLC domain (e.g. packed SMT cores but
10140 * other CPUs are idle). We can't really know from here how busy
10141 * the others are - so just get a nohz balance going if it looks
10142 * like this LLC domain has tasks we could move.
10144 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
10146 flags
= NOHZ_KICK_MASK
;
10157 static void set_cpu_sd_state_busy(int cpu
)
10159 struct sched_domain
*sd
;
10162 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10164 if (!sd
|| !sd
->nohz_idle
)
10168 atomic_inc(&sd
->shared
->nr_busy_cpus
);
10173 void nohz_balance_exit_idle(struct rq
*rq
)
10175 SCHED_WARN_ON(rq
!= this_rq());
10177 if (likely(!rq
->nohz_tick_stopped
))
10180 rq
->nohz_tick_stopped
= 0;
10181 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
10182 atomic_dec(&nohz
.nr_cpus
);
10184 set_cpu_sd_state_busy(rq
->cpu
);
10187 static void set_cpu_sd_state_idle(int cpu
)
10189 struct sched_domain
*sd
;
10192 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10194 if (!sd
|| sd
->nohz_idle
)
10198 atomic_dec(&sd
->shared
->nr_busy_cpus
);
10204 * This routine will record that the CPU is going idle with tick stopped.
10205 * This info will be used in performing idle load balancing in the future.
10207 void nohz_balance_enter_idle(int cpu
)
10209 struct rq
*rq
= cpu_rq(cpu
);
10211 SCHED_WARN_ON(cpu
!= smp_processor_id());
10213 /* If this CPU is going down, then nothing needs to be done: */
10214 if (!cpu_active(cpu
))
10217 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10218 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
10222 * Can be set safely without rq->lock held
10223 * If a clear happens, it will have evaluated last additions because
10224 * rq->lock is held during the check and the clear
10226 rq
->has_blocked_load
= 1;
10229 * The tick is still stopped but load could have been added in the
10230 * meantime. We set the nohz.has_blocked flag to trig a check of the
10231 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10232 * of nohz.has_blocked can only happen after checking the new load
10234 if (rq
->nohz_tick_stopped
)
10237 /* If we're a completely isolated CPU, we don't play: */
10238 if (on_null_domain(rq
))
10241 rq
->nohz_tick_stopped
= 1;
10243 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
10244 atomic_inc(&nohz
.nr_cpus
);
10247 * Ensures that if nohz_idle_balance() fails to observe our
10248 * @idle_cpus_mask store, it must observe the @has_blocked
10251 smp_mb__after_atomic();
10253 set_cpu_sd_state_idle(cpu
);
10257 * Each time a cpu enter idle, we assume that it has blocked load and
10258 * enable the periodic update of the load of idle cpus
10260 WRITE_ONCE(nohz
.has_blocked
, 1);
10264 * Internal function that runs load balance for all idle cpus. The load balance
10265 * can be a simple update of blocked load or a complete load balance with
10266 * tasks movement depending of flags.
10267 * The function returns false if the loop has stopped before running
10268 * through all idle CPUs.
10270 static bool _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
,
10271 enum cpu_idle_type idle
)
10273 /* Earliest time when we have to do rebalance again */
10274 unsigned long now
= jiffies
;
10275 unsigned long next_balance
= now
+ 60*HZ
;
10276 bool has_blocked_load
= false;
10277 int update_next_balance
= 0;
10278 int this_cpu
= this_rq
->cpu
;
10283 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
10286 * We assume there will be no idle load after this update and clear
10287 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10288 * set the has_blocked flag and trig another update of idle load.
10289 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10290 * setting the flag, we are sure to not clear the state and not
10291 * check the load of an idle cpu.
10293 WRITE_ONCE(nohz
.has_blocked
, 0);
10296 * Ensures that if we miss the CPU, we must see the has_blocked
10297 * store from nohz_balance_enter_idle().
10301 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
10302 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
10306 * If this CPU gets work to do, stop the load balancing
10307 * work being done for other CPUs. Next load
10308 * balancing owner will pick it up.
10310 if (need_resched()) {
10311 has_blocked_load
= true;
10315 rq
= cpu_rq(balance_cpu
);
10317 has_blocked_load
|= update_nohz_stats(rq
, true);
10320 * If time for next balance is due,
10323 if (time_after_eq(jiffies
, rq
->next_balance
)) {
10324 struct rq_flags rf
;
10326 rq_lock_irqsave(rq
, &rf
);
10327 update_rq_clock(rq
);
10328 rq_unlock_irqrestore(rq
, &rf
);
10330 if (flags
& NOHZ_BALANCE_KICK
)
10331 rebalance_domains(rq
, CPU_IDLE
);
10334 if (time_after(next_balance
, rq
->next_balance
)) {
10335 next_balance
= rq
->next_balance
;
10336 update_next_balance
= 1;
10340 /* Newly idle CPU doesn't need an update */
10341 if (idle
!= CPU_NEWLY_IDLE
) {
10342 update_blocked_averages(this_cpu
);
10343 has_blocked_load
|= this_rq
->has_blocked_load
;
10346 if (flags
& NOHZ_BALANCE_KICK
)
10347 rebalance_domains(this_rq
, CPU_IDLE
);
10349 WRITE_ONCE(nohz
.next_blocked
,
10350 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
10352 /* The full idle balance loop has been done */
10356 /* There is still blocked load, enable periodic update */
10357 if (has_blocked_load
)
10358 WRITE_ONCE(nohz
.has_blocked
, 1);
10361 * next_balance will be updated only when there is a need.
10362 * When the CPU is attached to null domain for ex, it will not be
10365 if (likely(update_next_balance
))
10366 nohz
.next_balance
= next_balance
;
10372 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10373 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10375 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10377 unsigned int flags
= this_rq
->nohz_idle_balance
;
10382 this_rq
->nohz_idle_balance
= 0;
10384 if (idle
!= CPU_IDLE
)
10387 _nohz_idle_balance(this_rq
, flags
, idle
);
10392 static void nohz_newidle_balance(struct rq
*this_rq
)
10394 int this_cpu
= this_rq
->cpu
;
10397 * This CPU doesn't want to be disturbed by scheduler
10400 if (!housekeeping_cpu(this_cpu
, HK_FLAG_SCHED
))
10403 /* Will wake up very soon. No time for doing anything else*/
10404 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
10407 /* Don't need to update blocked load of idle CPUs*/
10408 if (!READ_ONCE(nohz
.has_blocked
) ||
10409 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
10412 raw_spin_unlock(&this_rq
->lock
);
10414 * This CPU is going to be idle and blocked load of idle CPUs
10415 * need to be updated. Run the ilb locally as it is a good
10416 * candidate for ilb instead of waking up another idle CPU.
10417 * Kick an normal ilb if we failed to do the update.
10419 if (!_nohz_idle_balance(this_rq
, NOHZ_STATS_KICK
, CPU_NEWLY_IDLE
))
10420 kick_ilb(NOHZ_STATS_KICK
);
10421 raw_spin_lock(&this_rq
->lock
);
10424 #else /* !CONFIG_NO_HZ_COMMON */
10425 static inline void nohz_balancer_kick(struct rq
*rq
) { }
10427 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10432 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
10433 #endif /* CONFIG_NO_HZ_COMMON */
10436 * idle_balance is called by schedule() if this_cpu is about to become
10437 * idle. Attempts to pull tasks from other CPUs.
10440 * < 0 - we released the lock and there are !fair tasks present
10441 * 0 - failed, no new tasks
10442 * > 0 - success, new (fair) tasks present
10444 static int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
10446 unsigned long next_balance
= jiffies
+ HZ
;
10447 int this_cpu
= this_rq
->cpu
;
10448 struct sched_domain
*sd
;
10449 int pulled_task
= 0;
10452 update_misfit_status(NULL
, this_rq
);
10454 * We must set idle_stamp _before_ calling idle_balance(), such that we
10455 * measure the duration of idle_balance() as idle time.
10457 this_rq
->idle_stamp
= rq_clock(this_rq
);
10460 * Do not pull tasks towards !active CPUs...
10462 if (!cpu_active(this_cpu
))
10466 * This is OK, because current is on_cpu, which avoids it being picked
10467 * for load-balance and preemption/IRQs are still disabled avoiding
10468 * further scheduler activity on it and we're being very careful to
10469 * re-start the picking loop.
10471 rq_unpin_lock(this_rq
, rf
);
10473 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
10474 !READ_ONCE(this_rq
->rd
->overload
)) {
10477 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
10479 update_next_balance(sd
, &next_balance
);
10482 nohz_newidle_balance(this_rq
);
10487 raw_spin_unlock(&this_rq
->lock
);
10489 update_blocked_averages(this_cpu
);
10491 for_each_domain(this_cpu
, sd
) {
10492 int continue_balancing
= 1;
10493 u64 t0
, domain_cost
;
10495 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
10496 update_next_balance(sd
, &next_balance
);
10500 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
10501 t0
= sched_clock_cpu(this_cpu
);
10503 pulled_task
= load_balance(this_cpu
, this_rq
,
10504 sd
, CPU_NEWLY_IDLE
,
10505 &continue_balancing
);
10507 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
10508 if (domain_cost
> sd
->max_newidle_lb_cost
)
10509 sd
->max_newidle_lb_cost
= domain_cost
;
10511 curr_cost
+= domain_cost
;
10514 update_next_balance(sd
, &next_balance
);
10517 * Stop searching for tasks to pull if there are
10518 * now runnable tasks on this rq.
10520 if (pulled_task
|| this_rq
->nr_running
> 0)
10525 raw_spin_lock(&this_rq
->lock
);
10527 if (curr_cost
> this_rq
->max_idle_balance_cost
)
10528 this_rq
->max_idle_balance_cost
= curr_cost
;
10532 * While browsing the domains, we released the rq lock, a task could
10533 * have been enqueued in the meantime. Since we're not going idle,
10534 * pretend we pulled a task.
10536 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
10539 /* Move the next balance forward */
10540 if (time_after(this_rq
->next_balance
, next_balance
))
10541 this_rq
->next_balance
= next_balance
;
10543 /* Is there a task of a high priority class? */
10544 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
10548 this_rq
->idle_stamp
= 0;
10550 rq_repin_lock(this_rq
, rf
);
10552 return pulled_task
;
10556 * run_rebalance_domains is triggered when needed from the scheduler tick.
10557 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10559 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
10561 struct rq
*this_rq
= this_rq();
10562 enum cpu_idle_type idle
= this_rq
->idle_balance
?
10563 CPU_IDLE
: CPU_NOT_IDLE
;
10566 * If this CPU has a pending nohz_balance_kick, then do the
10567 * balancing on behalf of the other idle CPUs whose ticks are
10568 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10569 * give the idle CPUs a chance to load balance. Else we may
10570 * load balance only within the local sched_domain hierarchy
10571 * and abort nohz_idle_balance altogether if we pull some load.
10573 if (nohz_idle_balance(this_rq
, idle
))
10576 /* normal load balance */
10577 update_blocked_averages(this_rq
->cpu
);
10578 rebalance_domains(this_rq
, idle
);
10582 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10584 void trigger_load_balance(struct rq
*rq
)
10586 /* Don't need to rebalance while attached to NULL domain */
10587 if (unlikely(on_null_domain(rq
)))
10590 if (time_after_eq(jiffies
, rq
->next_balance
))
10591 raise_softirq(SCHED_SOFTIRQ
);
10593 nohz_balancer_kick(rq
);
10596 static void rq_online_fair(struct rq
*rq
)
10600 update_runtime_enabled(rq
);
10603 static void rq_offline_fair(struct rq
*rq
)
10607 /* Ensure any throttled groups are reachable by pick_next_task */
10608 unthrottle_offline_cfs_rqs(rq
);
10611 #endif /* CONFIG_SMP */
10614 * scheduler tick hitting a task of our scheduling class.
10616 * NOTE: This function can be called remotely by the tick offload that
10617 * goes along full dynticks. Therefore no local assumption can be made
10618 * and everything must be accessed through the @rq and @curr passed in
10621 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
10623 struct cfs_rq
*cfs_rq
;
10624 struct sched_entity
*se
= &curr
->se
;
10626 for_each_sched_entity(se
) {
10627 cfs_rq
= cfs_rq_of(se
);
10628 entity_tick(cfs_rq
, se
, queued
);
10631 if (static_branch_unlikely(&sched_numa_balancing
))
10632 task_tick_numa(rq
, curr
);
10634 update_misfit_status(curr
, rq
);
10635 update_overutilized_status(task_rq(curr
));
10639 * called on fork with the child task as argument from the parent's context
10640 * - child not yet on the tasklist
10641 * - preemption disabled
10643 static void task_fork_fair(struct task_struct
*p
)
10645 struct cfs_rq
*cfs_rq
;
10646 struct sched_entity
*se
= &p
->se
, *curr
;
10647 struct rq
*rq
= this_rq();
10648 struct rq_flags rf
;
10651 update_rq_clock(rq
);
10653 cfs_rq
= task_cfs_rq(current
);
10654 curr
= cfs_rq
->curr
;
10656 update_curr(cfs_rq
);
10657 se
->vruntime
= curr
->vruntime
;
10659 place_entity(cfs_rq
, se
, 1);
10661 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
10663 * Upon rescheduling, sched_class::put_prev_task() will place
10664 * 'current' within the tree based on its new key value.
10666 swap(curr
->vruntime
, se
->vruntime
);
10670 se
->vruntime
-= cfs_rq
->min_vruntime
;
10671 rq_unlock(rq
, &rf
);
10675 * Priority of the task has changed. Check to see if we preempt
10676 * the current task.
10679 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
10681 if (!task_on_rq_queued(p
))
10684 if (rq
->cfs
.nr_running
== 1)
10688 * Reschedule if we are currently running on this runqueue and
10689 * our priority decreased, or if we are not currently running on
10690 * this runqueue and our priority is higher than the current's
10692 if (rq
->curr
== p
) {
10693 if (p
->prio
> oldprio
)
10696 check_preempt_curr(rq
, p
, 0);
10699 static inline bool vruntime_normalized(struct task_struct
*p
)
10701 struct sched_entity
*se
= &p
->se
;
10704 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10705 * the dequeue_entity(.flags=0) will already have normalized the
10712 * When !on_rq, vruntime of the task has usually NOT been normalized.
10713 * But there are some cases where it has already been normalized:
10715 * - A forked child which is waiting for being woken up by
10716 * wake_up_new_task().
10717 * - A task which has been woken up by try_to_wake_up() and
10718 * waiting for actually being woken up by sched_ttwu_pending().
10720 if (!se
->sum_exec_runtime
||
10721 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
10727 #ifdef CONFIG_FAIR_GROUP_SCHED
10729 * Propagate the changes of the sched_entity across the tg tree to make it
10730 * visible to the root
10732 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
10734 struct cfs_rq
*cfs_rq
;
10736 /* Start to propagate at parent */
10739 for_each_sched_entity(se
) {
10740 cfs_rq
= cfs_rq_of(se
);
10742 if (cfs_rq_throttled(cfs_rq
))
10745 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
10749 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
10752 static void detach_entity_cfs_rq(struct sched_entity
*se
)
10754 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10756 /* Catch up with the cfs_rq and remove our load when we leave */
10757 update_load_avg(cfs_rq
, se
, 0);
10758 detach_entity_load_avg(cfs_rq
, se
);
10759 update_tg_load_avg(cfs_rq
, false);
10760 propagate_entity_cfs_rq(se
);
10763 static void attach_entity_cfs_rq(struct sched_entity
*se
)
10765 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10767 #ifdef CONFIG_FAIR_GROUP_SCHED
10769 * Since the real-depth could have been changed (only FAIR
10770 * class maintain depth value), reset depth properly.
10772 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10775 /* Synchronize entity with its cfs_rq */
10776 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
10777 attach_entity_load_avg(cfs_rq
, se
);
10778 update_tg_load_avg(cfs_rq
, false);
10779 propagate_entity_cfs_rq(se
);
10782 static void detach_task_cfs_rq(struct task_struct
*p
)
10784 struct sched_entity
*se
= &p
->se
;
10785 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10787 if (!vruntime_normalized(p
)) {
10789 * Fix up our vruntime so that the current sleep doesn't
10790 * cause 'unlimited' sleep bonus.
10792 place_entity(cfs_rq
, se
, 0);
10793 se
->vruntime
-= cfs_rq
->min_vruntime
;
10796 detach_entity_cfs_rq(se
);
10799 static void attach_task_cfs_rq(struct task_struct
*p
)
10801 struct sched_entity
*se
= &p
->se
;
10802 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10804 attach_entity_cfs_rq(se
);
10806 if (!vruntime_normalized(p
))
10807 se
->vruntime
+= cfs_rq
->min_vruntime
;
10810 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
10812 detach_task_cfs_rq(p
);
10815 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
10817 attach_task_cfs_rq(p
);
10819 if (task_on_rq_queued(p
)) {
10821 * We were most likely switched from sched_rt, so
10822 * kick off the schedule if running, otherwise just see
10823 * if we can still preempt the current task.
10828 check_preempt_curr(rq
, p
, 0);
10832 /* Account for a task changing its policy or group.
10834 * This routine is mostly called to set cfs_rq->curr field when a task
10835 * migrates between groups/classes.
10837 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
10839 struct sched_entity
*se
= &p
->se
;
10842 if (task_on_rq_queued(p
)) {
10844 * Move the next running task to the front of the list, so our
10845 * cfs_tasks list becomes MRU one.
10847 list_move(&se
->group_node
, &rq
->cfs_tasks
);
10851 for_each_sched_entity(se
) {
10852 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10854 set_next_entity(cfs_rq
, se
);
10855 /* ensure bandwidth has been allocated on our new cfs_rq */
10856 account_cfs_rq_runtime(cfs_rq
, 0);
10860 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
10862 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
10863 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
10864 #ifndef CONFIG_64BIT
10865 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
10868 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
10872 #ifdef CONFIG_FAIR_GROUP_SCHED
10873 static void task_set_group_fair(struct task_struct
*p
)
10875 struct sched_entity
*se
= &p
->se
;
10877 set_task_rq(p
, task_cpu(p
));
10878 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10881 static void task_move_group_fair(struct task_struct
*p
)
10883 detach_task_cfs_rq(p
);
10884 set_task_rq(p
, task_cpu(p
));
10887 /* Tell se's cfs_rq has been changed -- migrated */
10888 p
->se
.avg
.last_update_time
= 0;
10890 attach_task_cfs_rq(p
);
10893 static void task_change_group_fair(struct task_struct
*p
, int type
)
10896 case TASK_SET_GROUP
:
10897 task_set_group_fair(p
);
10900 case TASK_MOVE_GROUP
:
10901 task_move_group_fair(p
);
10906 void free_fair_sched_group(struct task_group
*tg
)
10910 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10912 for_each_possible_cpu(i
) {
10914 kfree(tg
->cfs_rq
[i
]);
10923 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10925 struct sched_entity
*se
;
10926 struct cfs_rq
*cfs_rq
;
10929 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
10932 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
10936 tg
->shares
= NICE_0_LOAD
;
10938 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10940 for_each_possible_cpu(i
) {
10941 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
10942 GFP_KERNEL
, cpu_to_node(i
));
10946 se
= kzalloc_node(sizeof(struct sched_entity
),
10947 GFP_KERNEL
, cpu_to_node(i
));
10951 init_cfs_rq(cfs_rq
);
10952 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
10953 init_entity_runnable_average(se
);
10964 void online_fair_sched_group(struct task_group
*tg
)
10966 struct sched_entity
*se
;
10967 struct rq_flags rf
;
10971 for_each_possible_cpu(i
) {
10974 rq_lock_irq(rq
, &rf
);
10975 update_rq_clock(rq
);
10976 attach_entity_cfs_rq(se
);
10977 sync_throttle(tg
, i
);
10978 rq_unlock_irq(rq
, &rf
);
10982 void unregister_fair_sched_group(struct task_group
*tg
)
10984 unsigned long flags
;
10988 for_each_possible_cpu(cpu
) {
10990 remove_entity_load_avg(tg
->se
[cpu
]);
10993 * Only empty task groups can be destroyed; so we can speculatively
10994 * check on_list without danger of it being re-added.
10996 if (!tg
->cfs_rq
[cpu
]->on_list
)
11001 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11002 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
11003 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11007 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
11008 struct sched_entity
*se
, int cpu
,
11009 struct sched_entity
*parent
)
11011 struct rq
*rq
= cpu_rq(cpu
);
11015 init_cfs_rq_runtime(cfs_rq
);
11017 tg
->cfs_rq
[cpu
] = cfs_rq
;
11020 /* se could be NULL for root_task_group */
11025 se
->cfs_rq
= &rq
->cfs
;
11028 se
->cfs_rq
= parent
->my_q
;
11029 se
->depth
= parent
->depth
+ 1;
11033 /* guarantee group entities always have weight */
11034 update_load_set(&se
->load
, NICE_0_LOAD
);
11035 se
->parent
= parent
;
11038 static DEFINE_MUTEX(shares_mutex
);
11040 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
11045 * We can't change the weight of the root cgroup.
11050 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
11052 mutex_lock(&shares_mutex
);
11053 if (tg
->shares
== shares
)
11056 tg
->shares
= shares
;
11057 for_each_possible_cpu(i
) {
11058 struct rq
*rq
= cpu_rq(i
);
11059 struct sched_entity
*se
= tg
->se
[i
];
11060 struct rq_flags rf
;
11062 /* Propagate contribution to hierarchy */
11063 rq_lock_irqsave(rq
, &rf
);
11064 update_rq_clock(rq
);
11065 for_each_sched_entity(se
) {
11066 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
11067 update_cfs_group(se
);
11069 rq_unlock_irqrestore(rq
, &rf
);
11073 mutex_unlock(&shares_mutex
);
11076 #else /* CONFIG_FAIR_GROUP_SCHED */
11078 void free_fair_sched_group(struct task_group
*tg
) { }
11080 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
11085 void online_fair_sched_group(struct task_group
*tg
) { }
11087 void unregister_fair_sched_group(struct task_group
*tg
) { }
11089 #endif /* CONFIG_FAIR_GROUP_SCHED */
11092 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
11094 struct sched_entity
*se
= &task
->se
;
11095 unsigned int rr_interval
= 0;
11098 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11101 if (rq
->cfs
.load
.weight
)
11102 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
11104 return rr_interval
;
11108 * All the scheduling class methods:
11110 const struct sched_class fair_sched_class
= {
11111 .next
= &idle_sched_class
,
11112 .enqueue_task
= enqueue_task_fair
,
11113 .dequeue_task
= dequeue_task_fair
,
11114 .yield_task
= yield_task_fair
,
11115 .yield_to_task
= yield_to_task_fair
,
11117 .check_preempt_curr
= check_preempt_wakeup
,
11119 .pick_next_task
= __pick_next_task_fair
,
11120 .put_prev_task
= put_prev_task_fair
,
11121 .set_next_task
= set_next_task_fair
,
11124 .balance
= balance_fair
,
11125 .select_task_rq
= select_task_rq_fair
,
11126 .migrate_task_rq
= migrate_task_rq_fair
,
11128 .rq_online
= rq_online_fair
,
11129 .rq_offline
= rq_offline_fair
,
11131 .task_dead
= task_dead_fair
,
11132 .set_cpus_allowed
= set_cpus_allowed_common
,
11135 .task_tick
= task_tick_fair
,
11136 .task_fork
= task_fork_fair
,
11138 .prio_changed
= prio_changed_fair
,
11139 .switched_from
= switched_from_fair
,
11140 .switched_to
= switched_to_fair
,
11142 .get_rr_interval
= get_rr_interval_fair
,
11144 .update_curr
= update_curr_fair
,
11146 #ifdef CONFIG_FAIR_GROUP_SCHED
11147 .task_change_group
= task_change_group_fair
,
11150 #ifdef CONFIG_UCLAMP_TASK
11151 .uclamp_enabled
= 1,
11155 #ifdef CONFIG_SCHED_DEBUG
11156 void print_cfs_stats(struct seq_file
*m
, int cpu
)
11158 struct cfs_rq
*cfs_rq
, *pos
;
11161 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
11162 print_cfs_rq(m
, cpu
, cfs_rq
);
11166 #ifdef CONFIG_NUMA_BALANCING
11167 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
11170 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
11171 struct numa_group
*ng
;
11174 ng
= rcu_dereference(p
->numa_group
);
11175 for_each_online_node(node
) {
11176 if (p
->numa_faults
) {
11177 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
11178 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11181 gsf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
11182 gpf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11184 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
11188 #endif /* CONFIG_NUMA_BALANCING */
11189 #endif /* CONFIG_SCHED_DEBUG */
11191 __init
void init_sched_fair_class(void)
11194 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
11196 #ifdef CONFIG_NO_HZ_COMMON
11197 nohz
.next_balance
= jiffies
;
11198 nohz
.next_blocked
= jiffies
;
11199 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
11206 * Helper functions to facilitate extracting info from tracepoints.
11209 const struct sched_avg
*sched_trace_cfs_rq_avg(struct cfs_rq
*cfs_rq
)
11212 return cfs_rq
? &cfs_rq
->avg
: NULL
;
11217 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg
);
11219 char *sched_trace_cfs_rq_path(struct cfs_rq
*cfs_rq
, char *str
, int len
)
11223 strlcpy(str
, "(null)", len
);
11228 cfs_rq_tg_path(cfs_rq
, str
, len
);
11231 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path
);
11233 int sched_trace_cfs_rq_cpu(struct cfs_rq
*cfs_rq
)
11235 return cfs_rq
? cpu_of(rq_of(cfs_rq
)) : -1;
11237 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu
);
11239 const struct sched_avg
*sched_trace_rq_avg_rt(struct rq
*rq
)
11242 return rq
? &rq
->avg_rt
: NULL
;
11247 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt
);
11249 const struct sched_avg
*sched_trace_rq_avg_dl(struct rq
*rq
)
11252 return rq
? &rq
->avg_dl
: NULL
;
11257 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl
);
11259 const struct sched_avg
*sched_trace_rq_avg_irq(struct rq
*rq
)
11261 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11262 return rq
? &rq
->avg_irq
: NULL
;
11267 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq
);
11269 int sched_trace_rq_cpu(struct rq
*rq
)
11271 return rq
? cpu_of(rq
) : -1;
11273 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu
);
11275 const struct cpumask
*sched_trace_rd_span(struct root_domain
*rd
)
11278 return rd
? rd
->span
: NULL
;
11283 EXPORT_SYMBOL_GPL(sched_trace_rd_span
);