2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 static struct vfsmount
*shm_mnt
;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc
{
102 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
103 pgoff_t start
; /* start of range currently being fallocated */
104 pgoff_t next
; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
,
126 gfp_t gfp
, struct vm_area_struct
*vma
,
127 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
129 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
130 struct page
**pagep
, enum sgp_type sgp
)
132 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
133 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
136 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
138 return sb
->s_fs_info
;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
149 return (flags
& VM_NORESERVE
) ?
150 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
153 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
155 if (!(flags
& VM_NORESERVE
))
156 vm_unacct_memory(VM_ACCT(size
));
159 static inline int shmem_reacct_size(unsigned long flags
,
160 loff_t oldsize
, loff_t newsize
)
162 if (!(flags
& VM_NORESERVE
)) {
163 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
164 return security_vm_enough_memory_mm(current
->mm
,
165 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
166 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
167 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
178 static inline int shmem_acct_block(unsigned long flags
, long pages
)
180 if (!(flags
& VM_NORESERVE
))
183 return security_vm_enough_memory_mm(current
->mm
,
184 pages
* VM_ACCT(PAGE_SIZE
));
187 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
189 if (flags
& VM_NORESERVE
)
190 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
193 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
195 struct shmem_inode_info
*info
= SHMEM_I(inode
);
196 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
198 if (shmem_acct_block(info
->flags
, pages
))
201 if (sbinfo
->max_blocks
) {
202 if (percpu_counter_compare(&sbinfo
->used_blocks
,
203 sbinfo
->max_blocks
- pages
) > 0)
205 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
211 shmem_unacct_blocks(info
->flags
, pages
);
215 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
217 struct shmem_inode_info
*info
= SHMEM_I(inode
);
218 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
)
221 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
222 shmem_unacct_blocks(info
->flags
, pages
);
225 static const struct super_operations shmem_ops
;
226 static const struct address_space_operations shmem_aops
;
227 static const struct file_operations shmem_file_operations
;
228 static const struct inode_operations shmem_inode_operations
;
229 static const struct inode_operations shmem_dir_inode_operations
;
230 static const struct inode_operations shmem_special_inode_operations
;
231 static const struct vm_operations_struct shmem_vm_ops
;
232 static struct file_system_type shmem_fs_type
;
234 bool vma_is_shmem(struct vm_area_struct
*vma
)
236 return vma
->vm_ops
== &shmem_vm_ops
;
239 static LIST_HEAD(shmem_swaplist
);
240 static DEFINE_MUTEX(shmem_swaplist_mutex
);
242 static int shmem_reserve_inode(struct super_block
*sb
)
244 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
245 if (sbinfo
->max_inodes
) {
246 spin_lock(&sbinfo
->stat_lock
);
247 if (!sbinfo
->free_inodes
) {
248 spin_unlock(&sbinfo
->stat_lock
);
251 sbinfo
->free_inodes
--;
252 spin_unlock(&sbinfo
->stat_lock
);
257 static void shmem_free_inode(struct super_block
*sb
)
259 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
260 if (sbinfo
->max_inodes
) {
261 spin_lock(&sbinfo
->stat_lock
);
262 sbinfo
->free_inodes
++;
263 spin_unlock(&sbinfo
->stat_lock
);
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 * It has to be called with the spinlock held.
279 static void shmem_recalc_inode(struct inode
*inode
)
281 struct shmem_inode_info
*info
= SHMEM_I(inode
);
284 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
286 info
->alloced
-= freed
;
287 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
288 shmem_inode_unacct_blocks(inode
, freed
);
292 bool shmem_charge(struct inode
*inode
, long pages
)
294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
297 if (!shmem_inode_acct_block(inode
, pages
))
300 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301 inode
->i_mapping
->nrpages
+= pages
;
303 spin_lock_irqsave(&info
->lock
, flags
);
304 info
->alloced
+= pages
;
305 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
306 shmem_recalc_inode(inode
);
307 spin_unlock_irqrestore(&info
->lock
, flags
);
312 void shmem_uncharge(struct inode
*inode
, long pages
)
314 struct shmem_inode_info
*info
= SHMEM_I(inode
);
317 /* nrpages adjustment done by __delete_from_page_cache() or caller */
319 spin_lock_irqsave(&info
->lock
, flags
);
320 info
->alloced
-= pages
;
321 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
322 shmem_recalc_inode(inode
);
323 spin_unlock_irqrestore(&info
->lock
, flags
);
325 shmem_inode_unacct_blocks(inode
, pages
);
329 * Replace item expected in xarray by a new item, while holding xa_lock.
331 static int shmem_replace_entry(struct address_space
*mapping
,
332 pgoff_t index
, void *expected
, void *replacement
)
334 XA_STATE(xas
, &mapping
->i_pages
, index
);
337 VM_BUG_ON(!expected
);
338 VM_BUG_ON(!replacement
);
339 item
= xas_load(&xas
);
340 if (item
!= expected
)
342 xas_store(&xas
, replacement
);
347 * Sometimes, before we decide whether to proceed or to fail, we must check
348 * that an entry was not already brought back from swap by a racing thread.
350 * Checking page is not enough: by the time a SwapCache page is locked, it
351 * might be reused, and again be SwapCache, using the same swap as before.
353 static bool shmem_confirm_swap(struct address_space
*mapping
,
354 pgoff_t index
, swp_entry_t swap
)
356 return xa_load(&mapping
->i_pages
, index
) == swp_to_radix_entry(swap
);
360 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
363 * disables huge pages for the mount;
365 * enables huge pages for the mount;
366 * SHMEM_HUGE_WITHIN_SIZE:
367 * only allocate huge pages if the page will be fully within i_size,
368 * also respect fadvise()/madvise() hints;
370 * only allocate huge pages if requested with fadvise()/madvise();
373 #define SHMEM_HUGE_NEVER 0
374 #define SHMEM_HUGE_ALWAYS 1
375 #define SHMEM_HUGE_WITHIN_SIZE 2
376 #define SHMEM_HUGE_ADVISE 3
380 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
383 * disables huge on shm_mnt and all mounts, for emergency use;
385 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
388 #define SHMEM_HUGE_DENY (-1)
389 #define SHMEM_HUGE_FORCE (-2)
391 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
392 /* ifdef here to avoid bloating shmem.o when not necessary */
394 static int shmem_huge __read_mostly
;
396 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
397 static int shmem_parse_huge(const char *str
)
399 if (!strcmp(str
, "never"))
400 return SHMEM_HUGE_NEVER
;
401 if (!strcmp(str
, "always"))
402 return SHMEM_HUGE_ALWAYS
;
403 if (!strcmp(str
, "within_size"))
404 return SHMEM_HUGE_WITHIN_SIZE
;
405 if (!strcmp(str
, "advise"))
406 return SHMEM_HUGE_ADVISE
;
407 if (!strcmp(str
, "deny"))
408 return SHMEM_HUGE_DENY
;
409 if (!strcmp(str
, "force"))
410 return SHMEM_HUGE_FORCE
;
414 static const char *shmem_format_huge(int huge
)
417 case SHMEM_HUGE_NEVER
:
419 case SHMEM_HUGE_ALWAYS
:
421 case SHMEM_HUGE_WITHIN_SIZE
:
422 return "within_size";
423 case SHMEM_HUGE_ADVISE
:
425 case SHMEM_HUGE_DENY
:
427 case SHMEM_HUGE_FORCE
:
436 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
437 struct shrink_control
*sc
, unsigned long nr_to_split
)
439 LIST_HEAD(list
), *pos
, *next
;
440 LIST_HEAD(to_remove
);
442 struct shmem_inode_info
*info
;
444 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
445 int removed
= 0, split
= 0;
447 if (list_empty(&sbinfo
->shrinklist
))
450 spin_lock(&sbinfo
->shrinklist_lock
);
451 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
452 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
455 inode
= igrab(&info
->vfs_inode
);
457 /* inode is about to be evicted */
459 list_del_init(&info
->shrinklist
);
464 /* Check if there's anything to gain */
465 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
466 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
467 list_move(&info
->shrinklist
, &to_remove
);
472 list_move(&info
->shrinklist
, &list
);
477 spin_unlock(&sbinfo
->shrinklist_lock
);
479 list_for_each_safe(pos
, next
, &to_remove
) {
480 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
481 inode
= &info
->vfs_inode
;
482 list_del_init(&info
->shrinklist
);
486 list_for_each_safe(pos
, next
, &list
) {
489 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
490 inode
= &info
->vfs_inode
;
492 if (nr_to_split
&& split
>= nr_to_split
)
495 page
= find_get_page(inode
->i_mapping
,
496 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
500 /* No huge page at the end of the file: nothing to split */
501 if (!PageTransHuge(page
)) {
507 * Leave the inode on the list if we failed to lock
508 * the page at this time.
510 * Waiting for the lock may lead to deadlock in the
513 if (!trylock_page(page
)) {
518 ret
= split_huge_page(page
);
522 /* If split failed leave the inode on the list */
528 list_del_init(&info
->shrinklist
);
534 spin_lock(&sbinfo
->shrinklist_lock
);
535 list_splice_tail(&list
, &sbinfo
->shrinklist
);
536 sbinfo
->shrinklist_len
-= removed
;
537 spin_unlock(&sbinfo
->shrinklist_lock
);
542 static long shmem_unused_huge_scan(struct super_block
*sb
,
543 struct shrink_control
*sc
)
545 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
547 if (!READ_ONCE(sbinfo
->shrinklist_len
))
550 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
553 static long shmem_unused_huge_count(struct super_block
*sb
,
554 struct shrink_control
*sc
)
556 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
557 return READ_ONCE(sbinfo
->shrinklist_len
);
559 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
561 #define shmem_huge SHMEM_HUGE_DENY
563 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
564 struct shrink_control
*sc
, unsigned long nr_to_split
)
568 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
570 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
572 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
573 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
574 shmem_huge
!= SHMEM_HUGE_DENY
)
580 * Like add_to_page_cache_locked, but error if expected item has gone.
582 static int shmem_add_to_page_cache(struct page
*page
,
583 struct address_space
*mapping
,
584 pgoff_t index
, void *expected
, gfp_t gfp
)
586 XA_STATE_ORDER(xas
, &mapping
->i_pages
, index
, compound_order(page
));
588 unsigned long nr
= 1UL << compound_order(page
);
590 VM_BUG_ON_PAGE(PageTail(page
), page
);
591 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
592 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
593 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
594 VM_BUG_ON(expected
&& PageTransHuge(page
));
596 page_ref_add(page
, nr
);
597 page
->mapping
= mapping
;
603 entry
= xas_find_conflict(&xas
);
604 if (entry
!= expected
)
605 xas_set_err(&xas
, -EEXIST
);
606 xas_create_range(&xas
);
610 xas_store(&xas
, page
+ i
);
615 if (PageTransHuge(page
)) {
616 count_vm_event(THP_FILE_ALLOC
);
617 __inc_node_page_state(page
, NR_SHMEM_THPS
);
619 mapping
->nrpages
+= nr
;
620 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
621 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
623 xas_unlock_irq(&xas
);
624 } while (xas_nomem(&xas
, gfp
));
626 if (xas_error(&xas
)) {
627 page
->mapping
= NULL
;
628 page_ref_sub(page
, nr
);
629 return xas_error(&xas
);
636 * Like delete_from_page_cache, but substitutes swap for page.
638 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
640 struct address_space
*mapping
= page
->mapping
;
643 VM_BUG_ON_PAGE(PageCompound(page
), page
);
645 xa_lock_irq(&mapping
->i_pages
);
646 error
= shmem_replace_entry(mapping
, page
->index
, page
, radswap
);
647 page
->mapping
= NULL
;
649 __dec_node_page_state(page
, NR_FILE_PAGES
);
650 __dec_node_page_state(page
, NR_SHMEM
);
651 xa_unlock_irq(&mapping
->i_pages
);
657 * Remove swap entry from page cache, free the swap and its page cache.
659 static int shmem_free_swap(struct address_space
*mapping
,
660 pgoff_t index
, void *radswap
)
664 old
= xa_cmpxchg_irq(&mapping
->i_pages
, index
, radswap
, NULL
, 0);
667 free_swap_and_cache(radix_to_swp_entry(radswap
));
672 * Determine (in bytes) how many of the shmem object's pages mapped by the
673 * given offsets are swapped out.
675 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
676 * as long as the inode doesn't go away and racy results are not a problem.
678 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
679 pgoff_t start
, pgoff_t end
)
681 XA_STATE(xas
, &mapping
->i_pages
, start
);
683 unsigned long swapped
= 0;
686 xas_for_each(&xas
, page
, end
- 1) {
687 if (xas_retry(&xas
, page
))
689 if (xa_is_value(page
))
692 if (need_resched()) {
700 return swapped
<< PAGE_SHIFT
;
704 * Determine (in bytes) how many of the shmem object's pages mapped by the
705 * given vma is swapped out.
707 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
708 * as long as the inode doesn't go away and racy results are not a problem.
710 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
712 struct inode
*inode
= file_inode(vma
->vm_file
);
713 struct shmem_inode_info
*info
= SHMEM_I(inode
);
714 struct address_space
*mapping
= inode
->i_mapping
;
715 unsigned long swapped
;
717 /* Be careful as we don't hold info->lock */
718 swapped
= READ_ONCE(info
->swapped
);
721 * The easier cases are when the shmem object has nothing in swap, or
722 * the vma maps it whole. Then we can simply use the stats that we
728 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
729 return swapped
<< PAGE_SHIFT
;
731 /* Here comes the more involved part */
732 return shmem_partial_swap_usage(mapping
,
733 linear_page_index(vma
, vma
->vm_start
),
734 linear_page_index(vma
, vma
->vm_end
));
738 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
740 void shmem_unlock_mapping(struct address_space
*mapping
)
743 pgoff_t indices
[PAGEVEC_SIZE
];
748 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
750 while (!mapping_unevictable(mapping
)) {
752 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
753 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
755 pvec
.nr
= find_get_entries(mapping
, index
,
756 PAGEVEC_SIZE
, pvec
.pages
, indices
);
759 index
= indices
[pvec
.nr
- 1] + 1;
760 pagevec_remove_exceptionals(&pvec
);
761 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
762 pagevec_release(&pvec
);
768 * Remove range of pages and swap entries from page cache, and free them.
769 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
771 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
774 struct address_space
*mapping
= inode
->i_mapping
;
775 struct shmem_inode_info
*info
= SHMEM_I(inode
);
776 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
777 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
778 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
779 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
781 pgoff_t indices
[PAGEVEC_SIZE
];
782 long nr_swaps_freed
= 0;
787 end
= -1; /* unsigned, so actually very big */
791 while (index
< end
) {
792 pvec
.nr
= find_get_entries(mapping
, index
,
793 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
794 pvec
.pages
, indices
);
797 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
798 struct page
*page
= pvec
.pages
[i
];
804 if (xa_is_value(page
)) {
807 nr_swaps_freed
+= !shmem_free_swap(mapping
,
812 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
814 if (!trylock_page(page
))
817 if (PageTransTail(page
)) {
818 /* Middle of THP: zero out the page */
819 clear_highpage(page
);
822 } else if (PageTransHuge(page
)) {
823 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
825 * Range ends in the middle of THP:
828 clear_highpage(page
);
832 index
+= HPAGE_PMD_NR
- 1;
833 i
+= HPAGE_PMD_NR
- 1;
836 if (!unfalloc
|| !PageUptodate(page
)) {
837 VM_BUG_ON_PAGE(PageTail(page
), page
);
838 if (page_mapping(page
) == mapping
) {
839 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
840 truncate_inode_page(mapping
, page
);
845 pagevec_remove_exceptionals(&pvec
);
846 pagevec_release(&pvec
);
852 struct page
*page
= NULL
;
853 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
855 unsigned int top
= PAGE_SIZE
;
860 zero_user_segment(page
, partial_start
, top
);
861 set_page_dirty(page
);
867 struct page
*page
= NULL
;
868 shmem_getpage(inode
, end
, &page
, SGP_READ
);
870 zero_user_segment(page
, 0, partial_end
);
871 set_page_dirty(page
);
880 while (index
< end
) {
883 pvec
.nr
= find_get_entries(mapping
, index
,
884 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
885 pvec
.pages
, indices
);
887 /* If all gone or hole-punch or unfalloc, we're done */
888 if (index
== start
|| end
!= -1)
890 /* But if truncating, restart to make sure all gone */
894 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
895 struct page
*page
= pvec
.pages
[i
];
901 if (xa_is_value(page
)) {
904 if (shmem_free_swap(mapping
, index
, page
)) {
905 /* Swap was replaced by page: retry */
915 if (PageTransTail(page
)) {
916 /* Middle of THP: zero out the page */
917 clear_highpage(page
);
920 * Partial thp truncate due 'start' in middle
921 * of THP: don't need to look on these pages
922 * again on !pvec.nr restart.
924 if (index
!= round_down(end
, HPAGE_PMD_NR
))
927 } else if (PageTransHuge(page
)) {
928 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
930 * Range ends in the middle of THP:
933 clear_highpage(page
);
937 index
+= HPAGE_PMD_NR
- 1;
938 i
+= HPAGE_PMD_NR
- 1;
941 if (!unfalloc
|| !PageUptodate(page
)) {
942 VM_BUG_ON_PAGE(PageTail(page
), page
);
943 if (page_mapping(page
) == mapping
) {
944 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
945 truncate_inode_page(mapping
, page
);
947 /* Page was replaced by swap: retry */
955 pagevec_remove_exceptionals(&pvec
);
956 pagevec_release(&pvec
);
960 spin_lock_irq(&info
->lock
);
961 info
->swapped
-= nr_swaps_freed
;
962 shmem_recalc_inode(inode
);
963 spin_unlock_irq(&info
->lock
);
966 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
968 shmem_undo_range(inode
, lstart
, lend
, false);
969 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
971 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
973 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
974 u32 request_mask
, unsigned int query_flags
)
976 struct inode
*inode
= path
->dentry
->d_inode
;
977 struct shmem_inode_info
*info
= SHMEM_I(inode
);
978 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
980 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
981 spin_lock_irq(&info
->lock
);
982 shmem_recalc_inode(inode
);
983 spin_unlock_irq(&info
->lock
);
985 generic_fillattr(inode
, stat
);
987 if (is_huge_enabled(sb_info
))
988 stat
->blksize
= HPAGE_PMD_SIZE
;
993 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
995 struct inode
*inode
= d_inode(dentry
);
996 struct shmem_inode_info
*info
= SHMEM_I(inode
);
997 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1000 error
= setattr_prepare(dentry
, attr
);
1004 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1005 loff_t oldsize
= inode
->i_size
;
1006 loff_t newsize
= attr
->ia_size
;
1008 /* protected by i_mutex */
1009 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1010 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1013 if (newsize
!= oldsize
) {
1014 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1018 i_size_write(inode
, newsize
);
1019 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1021 if (newsize
<= oldsize
) {
1022 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1023 if (oldsize
> holebegin
)
1024 unmap_mapping_range(inode
->i_mapping
,
1027 shmem_truncate_range(inode
,
1028 newsize
, (loff_t
)-1);
1029 /* unmap again to remove racily COWed private pages */
1030 if (oldsize
> holebegin
)
1031 unmap_mapping_range(inode
->i_mapping
,
1035 * Part of the huge page can be beyond i_size: subject
1036 * to shrink under memory pressure.
1038 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1039 spin_lock(&sbinfo
->shrinklist_lock
);
1041 * _careful to defend against unlocked access to
1042 * ->shrink_list in shmem_unused_huge_shrink()
1044 if (list_empty_careful(&info
->shrinklist
)) {
1045 list_add_tail(&info
->shrinklist
,
1046 &sbinfo
->shrinklist
);
1047 sbinfo
->shrinklist_len
++;
1049 spin_unlock(&sbinfo
->shrinklist_lock
);
1054 setattr_copy(inode
, attr
);
1055 if (attr
->ia_valid
& ATTR_MODE
)
1056 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1060 static void shmem_evict_inode(struct inode
*inode
)
1062 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1063 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1065 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1066 shmem_unacct_size(info
->flags
, inode
->i_size
);
1068 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1069 if (!list_empty(&info
->shrinklist
)) {
1070 spin_lock(&sbinfo
->shrinklist_lock
);
1071 if (!list_empty(&info
->shrinklist
)) {
1072 list_del_init(&info
->shrinklist
);
1073 sbinfo
->shrinklist_len
--;
1075 spin_unlock(&sbinfo
->shrinklist_lock
);
1077 if (!list_empty(&info
->swaplist
)) {
1078 mutex_lock(&shmem_swaplist_mutex
);
1079 list_del_init(&info
->swaplist
);
1080 mutex_unlock(&shmem_swaplist_mutex
);
1084 simple_xattrs_free(&info
->xattrs
);
1085 WARN_ON(inode
->i_blocks
);
1086 shmem_free_inode(inode
->i_sb
);
1090 static unsigned long find_swap_entry(struct xarray
*xa
, void *item
)
1092 XA_STATE(xas
, xa
, 0);
1093 unsigned int checked
= 0;
1097 xas_for_each(&xas
, entry
, ULONG_MAX
) {
1098 if (xas_retry(&xas
, entry
))
1103 if ((checked
% XA_CHECK_SCHED
) != 0)
1110 return entry
? xas
.xa_index
: -1;
1114 * If swap found in inode, free it and move page from swapcache to filecache.
1116 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1117 swp_entry_t swap
, struct page
**pagep
)
1119 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1125 radswap
= swp_to_radix_entry(swap
);
1126 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1128 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1131 * Move _head_ to start search for next from here.
1132 * But be careful: shmem_evict_inode checks list_empty without taking
1133 * mutex, and there's an instant in list_move_tail when info->swaplist
1134 * would appear empty, if it were the only one on shmem_swaplist.
1136 if (shmem_swaplist
.next
!= &info
->swaplist
)
1137 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1139 gfp
= mapping_gfp_mask(mapping
);
1140 if (shmem_should_replace_page(*pagep
, gfp
)) {
1141 mutex_unlock(&shmem_swaplist_mutex
);
1142 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1143 mutex_lock(&shmem_swaplist_mutex
);
1145 * We needed to drop mutex to make that restrictive page
1146 * allocation, but the inode might have been freed while we
1147 * dropped it: although a racing shmem_evict_inode() cannot
1148 * complete without emptying the page cache, our page lock
1149 * on this swapcache page is not enough to prevent that -
1150 * free_swap_and_cache() of our swap entry will only
1151 * trylock_page(), removing swap from page cache whatever.
1153 * We must not proceed to shmem_add_to_page_cache() if the
1154 * inode has been freed, but of course we cannot rely on
1155 * inode or mapping or info to check that. However, we can
1156 * safely check if our swap entry is still in use (and here
1157 * it can't have got reused for another page): if it's still
1158 * in use, then the inode cannot have been freed yet, and we
1159 * can safely proceed (if it's no longer in use, that tells
1160 * nothing about the inode, but we don't need to unuse swap).
1162 if (!page_swapcount(*pagep
))
1167 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169 * beneath us (pagelock doesn't help until the page is in pagecache).
1172 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1174 if (error
!= -ENOMEM
) {
1176 * Truncation and eviction use free_swap_and_cache(), which
1177 * only does trylock page: if we raced, best clean up here.
1179 delete_from_swap_cache(*pagep
);
1180 set_page_dirty(*pagep
);
1182 spin_lock_irq(&info
->lock
);
1184 spin_unlock_irq(&info
->lock
);
1192 * Search through swapped inodes to find and replace swap by page.
1194 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1196 struct list_head
*this, *next
;
1197 struct shmem_inode_info
*info
;
1198 struct mem_cgroup
*memcg
;
1202 * There's a faint possibility that swap page was replaced before
1203 * caller locked it: caller will come back later with the right page.
1205 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1209 * Charge page using GFP_KERNEL while we can wait, before taking
1210 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211 * Charged back to the user (not to caller) when swap account is used.
1213 error
= mem_cgroup_try_charge_delay(page
, current
->mm
, GFP_KERNEL
,
1217 /* No memory allocation: swap entry occupies the slot for the page */
1220 mutex_lock(&shmem_swaplist_mutex
);
1221 list_for_each_safe(this, next
, &shmem_swaplist
) {
1222 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1224 error
= shmem_unuse_inode(info
, swap
, &page
);
1226 list_del_init(&info
->swaplist
);
1228 if (error
!= -EAGAIN
)
1230 /* found nothing in this: move on to search the next */
1232 mutex_unlock(&shmem_swaplist_mutex
);
1235 if (error
!= -ENOMEM
)
1237 mem_cgroup_cancel_charge(page
, memcg
, false);
1239 mem_cgroup_commit_charge(page
, memcg
, true, false);
1247 * Move the page from the page cache to the swap cache.
1249 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1251 struct shmem_inode_info
*info
;
1252 struct address_space
*mapping
;
1253 struct inode
*inode
;
1257 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1258 BUG_ON(!PageLocked(page
));
1259 mapping
= page
->mapping
;
1260 index
= page
->index
;
1261 inode
= mapping
->host
;
1262 info
= SHMEM_I(inode
);
1263 if (info
->flags
& VM_LOCKED
)
1265 if (!total_swap_pages
)
1269 * Our capabilities prevent regular writeback or sync from ever calling
1270 * shmem_writepage; but a stacking filesystem might use ->writepage of
1271 * its underlying filesystem, in which case tmpfs should write out to
1272 * swap only in response to memory pressure, and not for the writeback
1275 if (!wbc
->for_reclaim
) {
1276 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1281 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282 * value into swapfile.c, the only way we can correctly account for a
1283 * fallocated page arriving here is now to initialize it and write it.
1285 * That's okay for a page already fallocated earlier, but if we have
1286 * not yet completed the fallocation, then (a) we want to keep track
1287 * of this page in case we have to undo it, and (b) it may not be a
1288 * good idea to continue anyway, once we're pushing into swap. So
1289 * reactivate the page, and let shmem_fallocate() quit when too many.
1291 if (!PageUptodate(page
)) {
1292 if (inode
->i_private
) {
1293 struct shmem_falloc
*shmem_falloc
;
1294 spin_lock(&inode
->i_lock
);
1295 shmem_falloc
= inode
->i_private
;
1297 !shmem_falloc
->waitq
&&
1298 index
>= shmem_falloc
->start
&&
1299 index
< shmem_falloc
->next
)
1300 shmem_falloc
->nr_unswapped
++;
1302 shmem_falloc
= NULL
;
1303 spin_unlock(&inode
->i_lock
);
1307 clear_highpage(page
);
1308 flush_dcache_page(page
);
1309 SetPageUptodate(page
);
1312 swap
= get_swap_page(page
);
1317 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1318 * if it's not already there. Do it now before the page is
1319 * moved to swap cache, when its pagelock no longer protects
1320 * the inode from eviction. But don't unlock the mutex until
1321 * we've incremented swapped, because shmem_unuse_inode() will
1322 * prune a !swapped inode from the swaplist under this mutex.
1324 mutex_lock(&shmem_swaplist_mutex
);
1325 if (list_empty(&info
->swaplist
))
1326 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1328 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1329 spin_lock_irq(&info
->lock
);
1330 shmem_recalc_inode(inode
);
1332 spin_unlock_irq(&info
->lock
);
1334 swap_shmem_alloc(swap
);
1335 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1337 mutex_unlock(&shmem_swaplist_mutex
);
1338 BUG_ON(page_mapped(page
));
1339 swap_writepage(page
, wbc
);
1343 mutex_unlock(&shmem_swaplist_mutex
);
1344 put_swap_page(page
, swap
);
1346 set_page_dirty(page
);
1347 if (wbc
->for_reclaim
)
1348 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1353 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1354 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1358 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1359 return; /* show nothing */
1361 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1363 seq_printf(seq
, ",mpol=%s", buffer
);
1366 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1368 struct mempolicy
*mpol
= NULL
;
1370 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1371 mpol
= sbinfo
->mpol
;
1373 spin_unlock(&sbinfo
->stat_lock
);
1377 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1378 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1381 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1385 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1387 #define vm_policy vm_private_data
1390 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1391 struct shmem_inode_info
*info
, pgoff_t index
)
1393 /* Create a pseudo vma that just contains the policy */
1394 vma_init(vma
, NULL
);
1395 /* Bias interleave by inode number to distribute better across nodes */
1396 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1397 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1400 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1402 /* Drop reference taken by mpol_shared_policy_lookup() */
1403 mpol_cond_put(vma
->vm_policy
);
1406 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1407 struct shmem_inode_info
*info
, pgoff_t index
)
1409 struct vm_area_struct pvma
;
1411 struct vm_fault vmf
;
1413 shmem_pseudo_vma_init(&pvma
, info
, index
);
1416 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1417 shmem_pseudo_vma_destroy(&pvma
);
1422 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1423 struct shmem_inode_info
*info
, pgoff_t index
)
1425 struct vm_area_struct pvma
;
1426 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1430 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1433 hindex
= round_down(index
, HPAGE_PMD_NR
);
1434 if (xa_find(&mapping
->i_pages
, &hindex
, hindex
+ HPAGE_PMD_NR
- 1,
1438 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1439 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1440 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1441 shmem_pseudo_vma_destroy(&pvma
);
1443 prep_transhuge_page(page
);
1447 static struct page
*shmem_alloc_page(gfp_t gfp
,
1448 struct shmem_inode_info
*info
, pgoff_t index
)
1450 struct vm_area_struct pvma
;
1453 shmem_pseudo_vma_init(&pvma
, info
, index
);
1454 page
= alloc_page_vma(gfp
, &pvma
, 0);
1455 shmem_pseudo_vma_destroy(&pvma
);
1460 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1461 struct inode
*inode
,
1462 pgoff_t index
, bool huge
)
1464 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1469 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1471 nr
= huge
? HPAGE_PMD_NR
: 1;
1473 if (!shmem_inode_acct_block(inode
, nr
))
1477 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1479 page
= shmem_alloc_page(gfp
, info
, index
);
1481 __SetPageLocked(page
);
1482 __SetPageSwapBacked(page
);
1487 shmem_inode_unacct_blocks(inode
, nr
);
1489 return ERR_PTR(err
);
1493 * When a page is moved from swapcache to shmem filecache (either by the
1494 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1495 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1496 * ignorance of the mapping it belongs to. If that mapping has special
1497 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1498 * we may need to copy to a suitable page before moving to filecache.
1500 * In a future release, this may well be extended to respect cpuset and
1501 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1502 * but for now it is a simple matter of zone.
1504 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1506 return page_zonenum(page
) > gfp_zone(gfp
);
1509 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1510 struct shmem_inode_info
*info
, pgoff_t index
)
1512 struct page
*oldpage
, *newpage
;
1513 struct address_space
*swap_mapping
;
1519 entry
.val
= page_private(oldpage
);
1520 swap_index
= swp_offset(entry
);
1521 swap_mapping
= page_mapping(oldpage
);
1524 * We have arrived here because our zones are constrained, so don't
1525 * limit chance of success by further cpuset and node constraints.
1527 gfp
&= ~GFP_CONSTRAINT_MASK
;
1528 newpage
= shmem_alloc_page(gfp
, info
, index
);
1533 copy_highpage(newpage
, oldpage
);
1534 flush_dcache_page(newpage
);
1536 __SetPageLocked(newpage
);
1537 __SetPageSwapBacked(newpage
);
1538 SetPageUptodate(newpage
);
1539 set_page_private(newpage
, entry
.val
);
1540 SetPageSwapCache(newpage
);
1543 * Our caller will very soon move newpage out of swapcache, but it's
1544 * a nice clean interface for us to replace oldpage by newpage there.
1546 xa_lock_irq(&swap_mapping
->i_pages
);
1547 error
= shmem_replace_entry(swap_mapping
, swap_index
, oldpage
, newpage
);
1549 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1550 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1552 xa_unlock_irq(&swap_mapping
->i_pages
);
1554 if (unlikely(error
)) {
1556 * Is this possible? I think not, now that our callers check
1557 * both PageSwapCache and page_private after getting page lock;
1558 * but be defensive. Reverse old to newpage for clear and free.
1562 mem_cgroup_migrate(oldpage
, newpage
);
1563 lru_cache_add_anon(newpage
);
1567 ClearPageSwapCache(oldpage
);
1568 set_page_private(oldpage
, 0);
1570 unlock_page(oldpage
);
1577 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1579 * If we allocate a new one we do not mark it dirty. That's up to the
1580 * vm. If we swap it in we mark it dirty since we also free the swap
1581 * entry since a page cannot live in both the swap and page cache.
1583 * fault_mm and fault_type are only supplied by shmem_fault:
1584 * otherwise they are NULL.
1586 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1587 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1588 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1589 vm_fault_t
*fault_type
)
1591 struct address_space
*mapping
= inode
->i_mapping
;
1592 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1593 struct shmem_sb_info
*sbinfo
;
1594 struct mm_struct
*charge_mm
;
1595 struct mem_cgroup
*memcg
;
1598 enum sgp_type sgp_huge
= sgp
;
1599 pgoff_t hindex
= index
;
1604 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1606 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1610 page
= find_lock_entry(mapping
, index
);
1611 if (xa_is_value(page
)) {
1612 swap
= radix_to_swp_entry(page
);
1616 if (sgp
<= SGP_CACHE
&&
1617 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1622 if (page
&& sgp
== SGP_WRITE
)
1623 mark_page_accessed(page
);
1625 /* fallocated page? */
1626 if (page
&& !PageUptodate(page
)) {
1627 if (sgp
!= SGP_READ
)
1633 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1639 * Fast cache lookup did not find it:
1640 * bring it back from swap or allocate.
1642 sbinfo
= SHMEM_SB(inode
->i_sb
);
1643 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1646 /* Look it up and read it in.. */
1647 page
= lookup_swap_cache(swap
, NULL
, 0);
1649 /* Or update major stats only when swapin succeeds?? */
1651 *fault_type
|= VM_FAULT_MAJOR
;
1652 count_vm_event(PGMAJFAULT
);
1653 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1655 /* Here we actually start the io */
1656 page
= shmem_swapin(swap
, gfp
, info
, index
);
1663 /* We have to do this with page locked to prevent races */
1665 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1666 !shmem_confirm_swap(mapping
, index
, swap
)) {
1667 error
= -EEXIST
; /* try again */
1670 if (!PageUptodate(page
)) {
1674 wait_on_page_writeback(page
);
1676 if (shmem_should_replace_page(page
, gfp
)) {
1677 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1682 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1685 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1686 swp_to_radix_entry(swap
), gfp
);
1688 * We already confirmed swap under page lock, and make
1689 * no memory allocation here, so usually no possibility
1690 * of error; but free_swap_and_cache() only trylocks a
1691 * page, so it is just possible that the entry has been
1692 * truncated or holepunched since swap was confirmed.
1693 * shmem_undo_range() will have done some of the
1694 * unaccounting, now delete_from_swap_cache() will do
1696 * Reset swap.val? No, leave it so "failed" goes back to
1697 * "repeat": reading a hole and writing should succeed.
1700 mem_cgroup_cancel_charge(page
, memcg
, false);
1701 delete_from_swap_cache(page
);
1707 mem_cgroup_commit_charge(page
, memcg
, true, false);
1709 spin_lock_irq(&info
->lock
);
1711 shmem_recalc_inode(inode
);
1712 spin_unlock_irq(&info
->lock
);
1714 if (sgp
== SGP_WRITE
)
1715 mark_page_accessed(page
);
1717 delete_from_swap_cache(page
);
1718 set_page_dirty(page
);
1722 if (vma
&& userfaultfd_missing(vma
)) {
1723 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1727 /* shmem_symlink() */
1728 if (mapping
->a_ops
!= &shmem_aops
)
1730 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1732 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1734 switch (sbinfo
->huge
) {
1737 case SHMEM_HUGE_NEVER
:
1739 case SHMEM_HUGE_WITHIN_SIZE
:
1740 off
= round_up(index
, HPAGE_PMD_NR
);
1741 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1742 if (i_size
>= HPAGE_PMD_SIZE
&&
1743 i_size
>> PAGE_SHIFT
>= off
)
1746 case SHMEM_HUGE_ADVISE
:
1747 if (sgp_huge
== SGP_HUGE
)
1749 /* TODO: implement fadvise() hints */
1754 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1756 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1761 error
= PTR_ERR(page
);
1763 if (error
!= -ENOSPC
)
1766 * Try to reclaim some spece by splitting a huge page
1767 * beyond i_size on the filesystem.
1771 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1772 if (ret
== SHRINK_STOP
)
1780 if (PageTransHuge(page
))
1781 hindex
= round_down(index
, HPAGE_PMD_NR
);
1785 if (sgp
== SGP_WRITE
)
1786 __SetPageReferenced(page
);
1788 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1789 PageTransHuge(page
));
1792 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1793 NULL
, gfp
& GFP_RECLAIM_MASK
);
1795 mem_cgroup_cancel_charge(page
, memcg
,
1796 PageTransHuge(page
));
1799 mem_cgroup_commit_charge(page
, memcg
, false,
1800 PageTransHuge(page
));
1801 lru_cache_add_anon(page
);
1803 spin_lock_irq(&info
->lock
);
1804 info
->alloced
+= 1 << compound_order(page
);
1805 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1806 shmem_recalc_inode(inode
);
1807 spin_unlock_irq(&info
->lock
);
1810 if (PageTransHuge(page
) &&
1811 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1812 hindex
+ HPAGE_PMD_NR
- 1) {
1814 * Part of the huge page is beyond i_size: subject
1815 * to shrink under memory pressure.
1817 spin_lock(&sbinfo
->shrinklist_lock
);
1819 * _careful to defend against unlocked access to
1820 * ->shrink_list in shmem_unused_huge_shrink()
1822 if (list_empty_careful(&info
->shrinklist
)) {
1823 list_add_tail(&info
->shrinklist
,
1824 &sbinfo
->shrinklist
);
1825 sbinfo
->shrinklist_len
++;
1827 spin_unlock(&sbinfo
->shrinklist_lock
);
1831 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1833 if (sgp
== SGP_FALLOC
)
1837 * Let SGP_WRITE caller clear ends if write does not fill page;
1838 * but SGP_FALLOC on a page fallocated earlier must initialize
1839 * it now, lest undo on failure cancel our earlier guarantee.
1841 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1842 struct page
*head
= compound_head(page
);
1845 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1846 clear_highpage(head
+ i
);
1847 flush_dcache_page(head
+ i
);
1849 SetPageUptodate(head
);
1853 /* Perhaps the file has been truncated since we checked */
1854 if (sgp
<= SGP_CACHE
&&
1855 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1857 ClearPageDirty(page
);
1858 delete_from_page_cache(page
);
1859 spin_lock_irq(&info
->lock
);
1860 shmem_recalc_inode(inode
);
1861 spin_unlock_irq(&info
->lock
);
1866 *pagep
= page
+ index
- hindex
;
1873 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1875 if (PageTransHuge(page
)) {
1881 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1888 if (error
== -ENOSPC
&& !once
++) {
1889 spin_lock_irq(&info
->lock
);
1890 shmem_recalc_inode(inode
);
1891 spin_unlock_irq(&info
->lock
);
1894 if (error
== -EEXIST
)
1900 * This is like autoremove_wake_function, but it removes the wait queue
1901 * entry unconditionally - even if something else had already woken the
1904 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1906 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1907 list_del_init(&wait
->entry
);
1911 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1913 struct vm_area_struct
*vma
= vmf
->vma
;
1914 struct inode
*inode
= file_inode(vma
->vm_file
);
1915 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1918 vm_fault_t ret
= VM_FAULT_LOCKED
;
1921 * Trinity finds that probing a hole which tmpfs is punching can
1922 * prevent the hole-punch from ever completing: which in turn
1923 * locks writers out with its hold on i_mutex. So refrain from
1924 * faulting pages into the hole while it's being punched. Although
1925 * shmem_undo_range() does remove the additions, it may be unable to
1926 * keep up, as each new page needs its own unmap_mapping_range() call,
1927 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1929 * It does not matter if we sometimes reach this check just before the
1930 * hole-punch begins, so that one fault then races with the punch:
1931 * we just need to make racing faults a rare case.
1933 * The implementation below would be much simpler if we just used a
1934 * standard mutex or completion: but we cannot take i_mutex in fault,
1935 * and bloating every shmem inode for this unlikely case would be sad.
1937 if (unlikely(inode
->i_private
)) {
1938 struct shmem_falloc
*shmem_falloc
;
1940 spin_lock(&inode
->i_lock
);
1941 shmem_falloc
= inode
->i_private
;
1943 shmem_falloc
->waitq
&&
1944 vmf
->pgoff
>= shmem_falloc
->start
&&
1945 vmf
->pgoff
< shmem_falloc
->next
) {
1946 wait_queue_head_t
*shmem_falloc_waitq
;
1947 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1949 ret
= VM_FAULT_NOPAGE
;
1950 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1951 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1952 /* It's polite to up mmap_sem if we can */
1953 up_read(&vma
->vm_mm
->mmap_sem
);
1954 ret
= VM_FAULT_RETRY
;
1957 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1958 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1959 TASK_UNINTERRUPTIBLE
);
1960 spin_unlock(&inode
->i_lock
);
1964 * shmem_falloc_waitq points into the shmem_fallocate()
1965 * stack of the hole-punching task: shmem_falloc_waitq
1966 * is usually invalid by the time we reach here, but
1967 * finish_wait() does not dereference it in that case;
1968 * though i_lock needed lest racing with wake_up_all().
1970 spin_lock(&inode
->i_lock
);
1971 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1972 spin_unlock(&inode
->i_lock
);
1975 spin_unlock(&inode
->i_lock
);
1980 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
1981 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
1983 else if (vma
->vm_flags
& VM_HUGEPAGE
)
1986 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1987 gfp
, vma
, vmf
, &ret
);
1989 return vmf_error(err
);
1993 unsigned long shmem_get_unmapped_area(struct file
*file
,
1994 unsigned long uaddr
, unsigned long len
,
1995 unsigned long pgoff
, unsigned long flags
)
1997 unsigned long (*get_area
)(struct file
*,
1998 unsigned long, unsigned long, unsigned long, unsigned long);
2000 unsigned long offset
;
2001 unsigned long inflated_len
;
2002 unsigned long inflated_addr
;
2003 unsigned long inflated_offset
;
2005 if (len
> TASK_SIZE
)
2008 get_area
= current
->mm
->get_unmapped_area
;
2009 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2011 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2013 if (IS_ERR_VALUE(addr
))
2015 if (addr
& ~PAGE_MASK
)
2017 if (addr
> TASK_SIZE
- len
)
2020 if (shmem_huge
== SHMEM_HUGE_DENY
)
2022 if (len
< HPAGE_PMD_SIZE
)
2024 if (flags
& MAP_FIXED
)
2027 * Our priority is to support MAP_SHARED mapped hugely;
2028 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2029 * But if caller specified an address hint, respect that as before.
2034 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2035 struct super_block
*sb
;
2038 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2039 sb
= file_inode(file
)->i_sb
;
2042 * Called directly from mm/mmap.c, or drivers/char/mem.c
2043 * for "/dev/zero", to create a shared anonymous object.
2045 if (IS_ERR(shm_mnt
))
2047 sb
= shm_mnt
->mnt_sb
;
2049 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2053 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2054 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2056 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2059 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2060 if (inflated_len
> TASK_SIZE
)
2062 if (inflated_len
< len
)
2065 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2066 if (IS_ERR_VALUE(inflated_addr
))
2068 if (inflated_addr
& ~PAGE_MASK
)
2071 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2072 inflated_addr
+= offset
- inflated_offset
;
2073 if (inflated_offset
> offset
)
2074 inflated_addr
+= HPAGE_PMD_SIZE
;
2076 if (inflated_addr
> TASK_SIZE
- len
)
2078 return inflated_addr
;
2082 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2084 struct inode
*inode
= file_inode(vma
->vm_file
);
2085 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2088 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2091 struct inode
*inode
= file_inode(vma
->vm_file
);
2094 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2095 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2099 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2101 struct inode
*inode
= file_inode(file
);
2102 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2103 int retval
= -ENOMEM
;
2105 spin_lock_irq(&info
->lock
);
2106 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2107 if (!user_shm_lock(inode
->i_size
, user
))
2109 info
->flags
|= VM_LOCKED
;
2110 mapping_set_unevictable(file
->f_mapping
);
2112 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2113 user_shm_unlock(inode
->i_size
, user
);
2114 info
->flags
&= ~VM_LOCKED
;
2115 mapping_clear_unevictable(file
->f_mapping
);
2120 spin_unlock_irq(&info
->lock
);
2124 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2126 file_accessed(file
);
2127 vma
->vm_ops
= &shmem_vm_ops
;
2128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2129 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2130 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2131 khugepaged_enter(vma
, vma
->vm_flags
);
2136 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2137 umode_t mode
, dev_t dev
, unsigned long flags
)
2139 struct inode
*inode
;
2140 struct shmem_inode_info
*info
;
2141 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2143 if (shmem_reserve_inode(sb
))
2146 inode
= new_inode(sb
);
2148 inode
->i_ino
= get_next_ino();
2149 inode_init_owner(inode
, dir
, mode
);
2150 inode
->i_blocks
= 0;
2151 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2152 inode
->i_generation
= prandom_u32();
2153 info
= SHMEM_I(inode
);
2154 memset(info
, 0, (char *)inode
- (char *)info
);
2155 spin_lock_init(&info
->lock
);
2156 info
->seals
= F_SEAL_SEAL
;
2157 info
->flags
= flags
& VM_NORESERVE
;
2158 INIT_LIST_HEAD(&info
->shrinklist
);
2159 INIT_LIST_HEAD(&info
->swaplist
);
2160 simple_xattrs_init(&info
->xattrs
);
2161 cache_no_acl(inode
);
2163 switch (mode
& S_IFMT
) {
2165 inode
->i_op
= &shmem_special_inode_operations
;
2166 init_special_inode(inode
, mode
, dev
);
2169 inode
->i_mapping
->a_ops
= &shmem_aops
;
2170 inode
->i_op
= &shmem_inode_operations
;
2171 inode
->i_fop
= &shmem_file_operations
;
2172 mpol_shared_policy_init(&info
->policy
,
2173 shmem_get_sbmpol(sbinfo
));
2177 /* Some things misbehave if size == 0 on a directory */
2178 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2179 inode
->i_op
= &shmem_dir_inode_operations
;
2180 inode
->i_fop
= &simple_dir_operations
;
2184 * Must not load anything in the rbtree,
2185 * mpol_free_shared_policy will not be called.
2187 mpol_shared_policy_init(&info
->policy
, NULL
);
2191 lockdep_annotate_inode_mutex_key(inode
);
2193 shmem_free_inode(sb
);
2197 bool shmem_mapping(struct address_space
*mapping
)
2199 return mapping
->a_ops
== &shmem_aops
;
2202 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2204 struct vm_area_struct
*dst_vma
,
2205 unsigned long dst_addr
,
2206 unsigned long src_addr
,
2208 struct page
**pagep
)
2210 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2211 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2212 struct address_space
*mapping
= inode
->i_mapping
;
2213 gfp_t gfp
= mapping_gfp_mask(mapping
);
2214 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2215 struct mem_cgroup
*memcg
;
2219 pte_t _dst_pte
, *dst_pte
;
2221 pgoff_t offset
, max_off
;
2224 if (!shmem_inode_acct_block(inode
, 1))
2228 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2230 goto out_unacct_blocks
;
2232 if (!zeropage
) { /* mcopy_atomic */
2233 page_kaddr
= kmap_atomic(page
);
2234 ret
= copy_from_user(page_kaddr
,
2235 (const void __user
*)src_addr
,
2237 kunmap_atomic(page_kaddr
);
2239 /* fallback to copy_from_user outside mmap_sem */
2240 if (unlikely(ret
)) {
2242 shmem_inode_unacct_blocks(inode
, 1);
2243 /* don't free the page */
2246 } else { /* mfill_zeropage_atomic */
2247 clear_highpage(page
);
2254 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2255 __SetPageLocked(page
);
2256 __SetPageSwapBacked(page
);
2257 __SetPageUptodate(page
);
2260 offset
= linear_page_index(dst_vma
, dst_addr
);
2261 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2262 if (unlikely(offset
>= max_off
))
2265 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2269 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
,
2270 gfp
& GFP_RECLAIM_MASK
);
2272 goto out_release_uncharge
;
2274 mem_cgroup_commit_charge(page
, memcg
, false, false);
2276 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2277 if (dst_vma
->vm_flags
& VM_WRITE
)
2278 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2281 * We don't set the pte dirty if the vma has no
2282 * VM_WRITE permission, so mark the page dirty or it
2283 * could be freed from under us. We could do it
2284 * unconditionally before unlock_page(), but doing it
2285 * only if VM_WRITE is not set is faster.
2287 set_page_dirty(page
);
2290 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2293 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2294 if (unlikely(offset
>= max_off
))
2295 goto out_release_uncharge_unlock
;
2298 if (!pte_none(*dst_pte
))
2299 goto out_release_uncharge_unlock
;
2301 lru_cache_add_anon(page
);
2303 spin_lock(&info
->lock
);
2305 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2306 shmem_recalc_inode(inode
);
2307 spin_unlock(&info
->lock
);
2309 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2310 page_add_file_rmap(page
, false);
2311 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2313 /* No need to invalidate - it was non-present before */
2314 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2315 pte_unmap_unlock(dst_pte
, ptl
);
2320 out_release_uncharge_unlock
:
2321 pte_unmap_unlock(dst_pte
, ptl
);
2322 ClearPageDirty(page
);
2323 delete_from_page_cache(page
);
2324 out_release_uncharge
:
2325 mem_cgroup_cancel_charge(page
, memcg
, false);
2330 shmem_inode_unacct_blocks(inode
, 1);
2334 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2336 struct vm_area_struct
*dst_vma
,
2337 unsigned long dst_addr
,
2338 unsigned long src_addr
,
2339 struct page
**pagep
)
2341 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2342 dst_addr
, src_addr
, false, pagep
);
2345 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2347 struct vm_area_struct
*dst_vma
,
2348 unsigned long dst_addr
)
2350 struct page
*page
= NULL
;
2352 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2353 dst_addr
, 0, true, &page
);
2357 static const struct inode_operations shmem_symlink_inode_operations
;
2358 static const struct inode_operations shmem_short_symlink_operations
;
2360 #ifdef CONFIG_TMPFS_XATTR
2361 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2363 #define shmem_initxattrs NULL
2367 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2368 loff_t pos
, unsigned len
, unsigned flags
,
2369 struct page
**pagep
, void **fsdata
)
2371 struct inode
*inode
= mapping
->host
;
2372 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2373 pgoff_t index
= pos
>> PAGE_SHIFT
;
2375 /* i_mutex is held by caller */
2376 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2377 if (info
->seals
& F_SEAL_WRITE
)
2379 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2383 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2387 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2388 loff_t pos
, unsigned len
, unsigned copied
,
2389 struct page
*page
, void *fsdata
)
2391 struct inode
*inode
= mapping
->host
;
2393 if (pos
+ copied
> inode
->i_size
)
2394 i_size_write(inode
, pos
+ copied
);
2396 if (!PageUptodate(page
)) {
2397 struct page
*head
= compound_head(page
);
2398 if (PageTransCompound(page
)) {
2401 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2402 if (head
+ i
== page
)
2404 clear_highpage(head
+ i
);
2405 flush_dcache_page(head
+ i
);
2408 if (copied
< PAGE_SIZE
) {
2409 unsigned from
= pos
& (PAGE_SIZE
- 1);
2410 zero_user_segments(page
, 0, from
,
2411 from
+ copied
, PAGE_SIZE
);
2413 SetPageUptodate(head
);
2415 set_page_dirty(page
);
2422 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2424 struct file
*file
= iocb
->ki_filp
;
2425 struct inode
*inode
= file_inode(file
);
2426 struct address_space
*mapping
= inode
->i_mapping
;
2428 unsigned long offset
;
2429 enum sgp_type sgp
= SGP_READ
;
2432 loff_t
*ppos
= &iocb
->ki_pos
;
2435 * Might this read be for a stacking filesystem? Then when reading
2436 * holes of a sparse file, we actually need to allocate those pages,
2437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2439 if (!iter_is_iovec(to
))
2442 index
= *ppos
>> PAGE_SHIFT
;
2443 offset
= *ppos
& ~PAGE_MASK
;
2446 struct page
*page
= NULL
;
2448 unsigned long nr
, ret
;
2449 loff_t i_size
= i_size_read(inode
);
2451 end_index
= i_size
>> PAGE_SHIFT
;
2452 if (index
> end_index
)
2454 if (index
== end_index
) {
2455 nr
= i_size
& ~PAGE_MASK
;
2460 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2462 if (error
== -EINVAL
)
2467 if (sgp
== SGP_CACHE
)
2468 set_page_dirty(page
);
2473 * We must evaluate after, since reads (unlike writes)
2474 * are called without i_mutex protection against truncate
2477 i_size
= i_size_read(inode
);
2478 end_index
= i_size
>> PAGE_SHIFT
;
2479 if (index
== end_index
) {
2480 nr
= i_size
& ~PAGE_MASK
;
2491 * If users can be writing to this page using arbitrary
2492 * virtual addresses, take care about potential aliasing
2493 * before reading the page on the kernel side.
2495 if (mapping_writably_mapped(mapping
))
2496 flush_dcache_page(page
);
2498 * Mark the page accessed if we read the beginning.
2501 mark_page_accessed(page
);
2503 page
= ZERO_PAGE(0);
2508 * Ok, we have the page, and it's up-to-date, so
2509 * now we can copy it to user space...
2511 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2514 index
+= offset
>> PAGE_SHIFT
;
2515 offset
&= ~PAGE_MASK
;
2518 if (!iov_iter_count(to
))
2527 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2528 file_accessed(file
);
2529 return retval
? retval
: error
;
2533 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2535 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2536 pgoff_t index
, pgoff_t end
, int whence
)
2539 struct pagevec pvec
;
2540 pgoff_t indices
[PAGEVEC_SIZE
];
2544 pagevec_init(&pvec
);
2545 pvec
.nr
= 1; /* start small: we may be there already */
2547 pvec
.nr
= find_get_entries(mapping
, index
,
2548 pvec
.nr
, pvec
.pages
, indices
);
2550 if (whence
== SEEK_DATA
)
2554 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2555 if (index
< indices
[i
]) {
2556 if (whence
== SEEK_HOLE
) {
2562 page
= pvec
.pages
[i
];
2563 if (page
&& !xa_is_value(page
)) {
2564 if (!PageUptodate(page
))
2568 (page
&& whence
== SEEK_DATA
) ||
2569 (!page
&& whence
== SEEK_HOLE
)) {
2574 pagevec_remove_exceptionals(&pvec
);
2575 pagevec_release(&pvec
);
2576 pvec
.nr
= PAGEVEC_SIZE
;
2582 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2584 struct address_space
*mapping
= file
->f_mapping
;
2585 struct inode
*inode
= mapping
->host
;
2589 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2590 return generic_file_llseek_size(file
, offset
, whence
,
2591 MAX_LFS_FILESIZE
, i_size_read(inode
));
2593 /* We're holding i_mutex so we can access i_size directly */
2595 if (offset
< 0 || offset
>= inode
->i_size
)
2598 start
= offset
>> PAGE_SHIFT
;
2599 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2600 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2601 new_offset
<<= PAGE_SHIFT
;
2602 if (new_offset
> offset
) {
2603 if (new_offset
< inode
->i_size
)
2604 offset
= new_offset
;
2605 else if (whence
== SEEK_DATA
)
2608 offset
= inode
->i_size
;
2613 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2614 inode_unlock(inode
);
2618 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2621 struct inode
*inode
= file_inode(file
);
2622 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2623 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2624 struct shmem_falloc shmem_falloc
;
2625 pgoff_t start
, index
, end
;
2628 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2633 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2634 struct address_space
*mapping
= file
->f_mapping
;
2635 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2636 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2637 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2639 /* protected by i_mutex */
2640 if (info
->seals
& F_SEAL_WRITE
) {
2645 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2646 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2647 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2648 spin_lock(&inode
->i_lock
);
2649 inode
->i_private
= &shmem_falloc
;
2650 spin_unlock(&inode
->i_lock
);
2652 if ((u64
)unmap_end
> (u64
)unmap_start
)
2653 unmap_mapping_range(mapping
, unmap_start
,
2654 1 + unmap_end
- unmap_start
, 0);
2655 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2656 /* No need to unmap again: hole-punching leaves COWed pages */
2658 spin_lock(&inode
->i_lock
);
2659 inode
->i_private
= NULL
;
2660 wake_up_all(&shmem_falloc_waitq
);
2661 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2662 spin_unlock(&inode
->i_lock
);
2667 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2668 error
= inode_newsize_ok(inode
, offset
+ len
);
2672 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2677 start
= offset
>> PAGE_SHIFT
;
2678 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2679 /* Try to avoid a swapstorm if len is impossible to satisfy */
2680 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2685 shmem_falloc
.waitq
= NULL
;
2686 shmem_falloc
.start
= start
;
2687 shmem_falloc
.next
= start
;
2688 shmem_falloc
.nr_falloced
= 0;
2689 shmem_falloc
.nr_unswapped
= 0;
2690 spin_lock(&inode
->i_lock
);
2691 inode
->i_private
= &shmem_falloc
;
2692 spin_unlock(&inode
->i_lock
);
2694 for (index
= start
; index
< end
; index
++) {
2698 * Good, the fallocate(2) manpage permits EINTR: we may have
2699 * been interrupted because we are using up too much memory.
2701 if (signal_pending(current
))
2703 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2706 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2708 /* Remove the !PageUptodate pages we added */
2709 if (index
> start
) {
2710 shmem_undo_range(inode
,
2711 (loff_t
)start
<< PAGE_SHIFT
,
2712 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2718 * Inform shmem_writepage() how far we have reached.
2719 * No need for lock or barrier: we have the page lock.
2721 shmem_falloc
.next
++;
2722 if (!PageUptodate(page
))
2723 shmem_falloc
.nr_falloced
++;
2726 * If !PageUptodate, leave it that way so that freeable pages
2727 * can be recognized if we need to rollback on error later.
2728 * But set_page_dirty so that memory pressure will swap rather
2729 * than free the pages we are allocating (and SGP_CACHE pages
2730 * might still be clean: we now need to mark those dirty too).
2732 set_page_dirty(page
);
2738 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2739 i_size_write(inode
, offset
+ len
);
2740 inode
->i_ctime
= current_time(inode
);
2742 spin_lock(&inode
->i_lock
);
2743 inode
->i_private
= NULL
;
2744 spin_unlock(&inode
->i_lock
);
2746 inode_unlock(inode
);
2750 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2752 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2754 buf
->f_type
= TMPFS_MAGIC
;
2755 buf
->f_bsize
= PAGE_SIZE
;
2756 buf
->f_namelen
= NAME_MAX
;
2757 if (sbinfo
->max_blocks
) {
2758 buf
->f_blocks
= sbinfo
->max_blocks
;
2760 buf
->f_bfree
= sbinfo
->max_blocks
-
2761 percpu_counter_sum(&sbinfo
->used_blocks
);
2763 if (sbinfo
->max_inodes
) {
2764 buf
->f_files
= sbinfo
->max_inodes
;
2765 buf
->f_ffree
= sbinfo
->free_inodes
;
2767 /* else leave those fields 0 like simple_statfs */
2772 * File creation. Allocate an inode, and we're done..
2775 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2777 struct inode
*inode
;
2778 int error
= -ENOSPC
;
2780 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2782 error
= simple_acl_create(dir
, inode
);
2785 error
= security_inode_init_security(inode
, dir
,
2787 shmem_initxattrs
, NULL
);
2788 if (error
&& error
!= -EOPNOTSUPP
)
2792 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2793 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2794 d_instantiate(dentry
, inode
);
2795 dget(dentry
); /* Extra count - pin the dentry in core */
2804 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2806 struct inode
*inode
;
2807 int error
= -ENOSPC
;
2809 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2811 error
= security_inode_init_security(inode
, dir
,
2813 shmem_initxattrs
, NULL
);
2814 if (error
&& error
!= -EOPNOTSUPP
)
2816 error
= simple_acl_create(dir
, inode
);
2819 d_tmpfile(dentry
, inode
);
2827 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2831 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2837 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2840 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2846 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2848 struct inode
*inode
= d_inode(old_dentry
);
2852 * No ordinary (disk based) filesystem counts links as inodes;
2853 * but each new link needs a new dentry, pinning lowmem, and
2854 * tmpfs dentries cannot be pruned until they are unlinked.
2856 ret
= shmem_reserve_inode(inode
->i_sb
);
2860 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2861 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2863 ihold(inode
); /* New dentry reference */
2864 dget(dentry
); /* Extra pinning count for the created dentry */
2865 d_instantiate(dentry
, inode
);
2870 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2872 struct inode
*inode
= d_inode(dentry
);
2874 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2875 shmem_free_inode(inode
->i_sb
);
2877 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2878 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2880 dput(dentry
); /* Undo the count from "create" - this does all the work */
2884 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2886 if (!simple_empty(dentry
))
2889 drop_nlink(d_inode(dentry
));
2891 return shmem_unlink(dir
, dentry
);
2894 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2896 bool old_is_dir
= d_is_dir(old_dentry
);
2897 bool new_is_dir
= d_is_dir(new_dentry
);
2899 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2901 drop_nlink(old_dir
);
2904 drop_nlink(new_dir
);
2908 old_dir
->i_ctime
= old_dir
->i_mtime
=
2909 new_dir
->i_ctime
= new_dir
->i_mtime
=
2910 d_inode(old_dentry
)->i_ctime
=
2911 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2916 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2918 struct dentry
*whiteout
;
2921 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2925 error
= shmem_mknod(old_dir
, whiteout
,
2926 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2932 * Cheat and hash the whiteout while the old dentry is still in
2933 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2935 * d_lookup() will consistently find one of them at this point,
2936 * not sure which one, but that isn't even important.
2943 * The VFS layer already does all the dentry stuff for rename,
2944 * we just have to decrement the usage count for the target if
2945 * it exists so that the VFS layer correctly free's it when it
2948 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2950 struct inode
*inode
= d_inode(old_dentry
);
2951 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2953 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2956 if (flags
& RENAME_EXCHANGE
)
2957 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2959 if (!simple_empty(new_dentry
))
2962 if (flags
& RENAME_WHITEOUT
) {
2965 error
= shmem_whiteout(old_dir
, old_dentry
);
2970 if (d_really_is_positive(new_dentry
)) {
2971 (void) shmem_unlink(new_dir
, new_dentry
);
2972 if (they_are_dirs
) {
2973 drop_nlink(d_inode(new_dentry
));
2974 drop_nlink(old_dir
);
2976 } else if (they_are_dirs
) {
2977 drop_nlink(old_dir
);
2981 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2982 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2983 old_dir
->i_ctime
= old_dir
->i_mtime
=
2984 new_dir
->i_ctime
= new_dir
->i_mtime
=
2985 inode
->i_ctime
= current_time(old_dir
);
2989 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2993 struct inode
*inode
;
2996 len
= strlen(symname
) + 1;
2997 if (len
> PAGE_SIZE
)
2998 return -ENAMETOOLONG
;
3000 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3005 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3006 shmem_initxattrs
, NULL
);
3008 if (error
!= -EOPNOTSUPP
) {
3015 inode
->i_size
= len
-1;
3016 if (len
<= SHORT_SYMLINK_LEN
) {
3017 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3018 if (!inode
->i_link
) {
3022 inode
->i_op
= &shmem_short_symlink_operations
;
3024 inode_nohighmem(inode
);
3025 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3030 inode
->i_mapping
->a_ops
= &shmem_aops
;
3031 inode
->i_op
= &shmem_symlink_inode_operations
;
3032 memcpy(page_address(page
), symname
, len
);
3033 SetPageUptodate(page
);
3034 set_page_dirty(page
);
3038 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3039 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3040 d_instantiate(dentry
, inode
);
3045 static void shmem_put_link(void *arg
)
3047 mark_page_accessed(arg
);
3051 static const char *shmem_get_link(struct dentry
*dentry
,
3052 struct inode
*inode
,
3053 struct delayed_call
*done
)
3055 struct page
*page
= NULL
;
3058 page
= find_get_page(inode
->i_mapping
, 0);
3060 return ERR_PTR(-ECHILD
);
3061 if (!PageUptodate(page
)) {
3063 return ERR_PTR(-ECHILD
);
3066 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3068 return ERR_PTR(error
);
3071 set_delayed_call(done
, shmem_put_link
, page
);
3072 return page_address(page
);
3075 #ifdef CONFIG_TMPFS_XATTR
3077 * Superblocks without xattr inode operations may get some security.* xattr
3078 * support from the LSM "for free". As soon as we have any other xattrs
3079 * like ACLs, we also need to implement the security.* handlers at
3080 * filesystem level, though.
3084 * Callback for security_inode_init_security() for acquiring xattrs.
3086 static int shmem_initxattrs(struct inode
*inode
,
3087 const struct xattr
*xattr_array
,
3090 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3091 const struct xattr
*xattr
;
3092 struct simple_xattr
*new_xattr
;
3095 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3096 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3100 len
= strlen(xattr
->name
) + 1;
3101 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3103 if (!new_xattr
->name
) {
3108 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3109 XATTR_SECURITY_PREFIX_LEN
);
3110 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3113 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3119 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3120 struct dentry
*unused
, struct inode
*inode
,
3121 const char *name
, void *buffer
, size_t size
)
3123 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3125 name
= xattr_full_name(handler
, name
);
3126 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3129 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3130 struct dentry
*unused
, struct inode
*inode
,
3131 const char *name
, const void *value
,
3132 size_t size
, int flags
)
3134 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3136 name
= xattr_full_name(handler
, name
);
3137 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3140 static const struct xattr_handler shmem_security_xattr_handler
= {
3141 .prefix
= XATTR_SECURITY_PREFIX
,
3142 .get
= shmem_xattr_handler_get
,
3143 .set
= shmem_xattr_handler_set
,
3146 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3147 .prefix
= XATTR_TRUSTED_PREFIX
,
3148 .get
= shmem_xattr_handler_get
,
3149 .set
= shmem_xattr_handler_set
,
3152 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3153 #ifdef CONFIG_TMPFS_POSIX_ACL
3154 &posix_acl_access_xattr_handler
,
3155 &posix_acl_default_xattr_handler
,
3157 &shmem_security_xattr_handler
,
3158 &shmem_trusted_xattr_handler
,
3162 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3164 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3165 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3167 #endif /* CONFIG_TMPFS_XATTR */
3169 static const struct inode_operations shmem_short_symlink_operations
= {
3170 .get_link
= simple_get_link
,
3171 #ifdef CONFIG_TMPFS_XATTR
3172 .listxattr
= shmem_listxattr
,
3176 static const struct inode_operations shmem_symlink_inode_operations
= {
3177 .get_link
= shmem_get_link
,
3178 #ifdef CONFIG_TMPFS_XATTR
3179 .listxattr
= shmem_listxattr
,
3183 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3185 return ERR_PTR(-ESTALE
);
3188 static int shmem_match(struct inode
*ino
, void *vfh
)
3192 inum
= (inum
<< 32) | fh
[1];
3193 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3196 /* Find any alias of inode, but prefer a hashed alias */
3197 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3199 struct dentry
*alias
= d_find_alias(inode
);
3201 return alias
?: d_find_any_alias(inode
);
3205 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3206 struct fid
*fid
, int fh_len
, int fh_type
)
3208 struct inode
*inode
;
3209 struct dentry
*dentry
= NULL
;
3216 inum
= (inum
<< 32) | fid
->raw
[1];
3218 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3219 shmem_match
, fid
->raw
);
3221 dentry
= shmem_find_alias(inode
);
3228 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3229 struct inode
*parent
)
3233 return FILEID_INVALID
;
3236 if (inode_unhashed(inode
)) {
3237 /* Unfortunately insert_inode_hash is not idempotent,
3238 * so as we hash inodes here rather than at creation
3239 * time, we need a lock to ensure we only try
3242 static DEFINE_SPINLOCK(lock
);
3244 if (inode_unhashed(inode
))
3245 __insert_inode_hash(inode
,
3246 inode
->i_ino
+ inode
->i_generation
);
3250 fh
[0] = inode
->i_generation
;
3251 fh
[1] = inode
->i_ino
;
3252 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3258 static const struct export_operations shmem_export_ops
= {
3259 .get_parent
= shmem_get_parent
,
3260 .encode_fh
= shmem_encode_fh
,
3261 .fh_to_dentry
= shmem_fh_to_dentry
,
3264 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3267 char *this_char
, *value
, *rest
;
3268 struct mempolicy
*mpol
= NULL
;
3272 while (options
!= NULL
) {
3273 this_char
= options
;
3276 * NUL-terminate this option: unfortunately,
3277 * mount options form a comma-separated list,
3278 * but mpol's nodelist may also contain commas.
3280 options
= strchr(options
, ',');
3281 if (options
== NULL
)
3284 if (!isdigit(*options
)) {
3291 if ((value
= strchr(this_char
,'=')) != NULL
) {
3294 pr_err("tmpfs: No value for mount option '%s'\n",
3299 if (!strcmp(this_char
,"size")) {
3300 unsigned long long size
;
3301 size
= memparse(value
,&rest
);
3303 size
<<= PAGE_SHIFT
;
3304 size
*= totalram_pages
;
3310 sbinfo
->max_blocks
=
3311 DIV_ROUND_UP(size
, PAGE_SIZE
);
3312 } else if (!strcmp(this_char
,"nr_blocks")) {
3313 sbinfo
->max_blocks
= memparse(value
, &rest
);
3316 } else if (!strcmp(this_char
,"nr_inodes")) {
3317 sbinfo
->max_inodes
= memparse(value
, &rest
);
3320 } else if (!strcmp(this_char
,"mode")) {
3323 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3326 } else if (!strcmp(this_char
,"uid")) {
3329 uid
= simple_strtoul(value
, &rest
, 0);
3332 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3333 if (!uid_valid(sbinfo
->uid
))
3335 } else if (!strcmp(this_char
,"gid")) {
3338 gid
= simple_strtoul(value
, &rest
, 0);
3341 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3342 if (!gid_valid(sbinfo
->gid
))
3344 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3345 } else if (!strcmp(this_char
, "huge")) {
3347 huge
= shmem_parse_huge(value
);
3350 if (!has_transparent_hugepage() &&
3351 huge
!= SHMEM_HUGE_NEVER
)
3353 sbinfo
->huge
= huge
;
3356 } else if (!strcmp(this_char
,"mpol")) {
3359 if (mpol_parse_str(value
, &mpol
))
3363 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3367 sbinfo
->mpol
= mpol
;
3371 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3379 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3381 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3382 struct shmem_sb_info config
= *sbinfo
;
3383 unsigned long inodes
;
3384 int error
= -EINVAL
;
3387 if (shmem_parse_options(data
, &config
, true))
3390 spin_lock(&sbinfo
->stat_lock
);
3391 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3392 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3394 if (config
.max_inodes
< inodes
)
3397 * Those tests disallow limited->unlimited while any are in use;
3398 * but we must separately disallow unlimited->limited, because
3399 * in that case we have no record of how much is already in use.
3401 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3403 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3407 sbinfo
->huge
= config
.huge
;
3408 sbinfo
->max_blocks
= config
.max_blocks
;
3409 sbinfo
->max_inodes
= config
.max_inodes
;
3410 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3413 * Preserve previous mempolicy unless mpol remount option was specified.
3416 mpol_put(sbinfo
->mpol
);
3417 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3420 spin_unlock(&sbinfo
->stat_lock
);
3424 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3426 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3428 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3429 seq_printf(seq
, ",size=%luk",
3430 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3431 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3432 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3433 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3434 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3435 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3436 seq_printf(seq
, ",uid=%u",
3437 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3438 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3439 seq_printf(seq
, ",gid=%u",
3440 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3441 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3442 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3444 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3446 shmem_show_mpol(seq
, sbinfo
->mpol
);
3450 #endif /* CONFIG_TMPFS */
3452 static void shmem_put_super(struct super_block
*sb
)
3454 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3456 percpu_counter_destroy(&sbinfo
->used_blocks
);
3457 mpol_put(sbinfo
->mpol
);
3459 sb
->s_fs_info
= NULL
;
3462 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3464 struct inode
*inode
;
3465 struct shmem_sb_info
*sbinfo
;
3468 /* Round up to L1_CACHE_BYTES to resist false sharing */
3469 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3470 L1_CACHE_BYTES
), GFP_KERNEL
);
3474 sbinfo
->mode
= 0777 | S_ISVTX
;
3475 sbinfo
->uid
= current_fsuid();
3476 sbinfo
->gid
= current_fsgid();
3477 sb
->s_fs_info
= sbinfo
;
3481 * Per default we only allow half of the physical ram per
3482 * tmpfs instance, limiting inodes to one per page of lowmem;
3483 * but the internal instance is left unlimited.
3485 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3486 sbinfo
->max_blocks
= shmem_default_max_blocks();
3487 sbinfo
->max_inodes
= shmem_default_max_inodes();
3488 if (shmem_parse_options(data
, sbinfo
, false)) {
3493 sb
->s_flags
|= SB_NOUSER
;
3495 sb
->s_export_op
= &shmem_export_ops
;
3496 sb
->s_flags
|= SB_NOSEC
;
3498 sb
->s_flags
|= SB_NOUSER
;
3501 spin_lock_init(&sbinfo
->stat_lock
);
3502 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3504 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3505 spin_lock_init(&sbinfo
->shrinklist_lock
);
3506 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3508 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3509 sb
->s_blocksize
= PAGE_SIZE
;
3510 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3511 sb
->s_magic
= TMPFS_MAGIC
;
3512 sb
->s_op
= &shmem_ops
;
3513 sb
->s_time_gran
= 1;
3514 #ifdef CONFIG_TMPFS_XATTR
3515 sb
->s_xattr
= shmem_xattr_handlers
;
3517 #ifdef CONFIG_TMPFS_POSIX_ACL
3518 sb
->s_flags
|= SB_POSIXACL
;
3520 uuid_gen(&sb
->s_uuid
);
3522 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3525 inode
->i_uid
= sbinfo
->uid
;
3526 inode
->i_gid
= sbinfo
->gid
;
3527 sb
->s_root
= d_make_root(inode
);
3533 shmem_put_super(sb
);
3537 static struct kmem_cache
*shmem_inode_cachep
;
3539 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3541 struct shmem_inode_info
*info
;
3542 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3545 return &info
->vfs_inode
;
3548 static void shmem_destroy_callback(struct rcu_head
*head
)
3550 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3551 if (S_ISLNK(inode
->i_mode
))
3552 kfree(inode
->i_link
);
3553 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3556 static void shmem_destroy_inode(struct inode
*inode
)
3558 if (S_ISREG(inode
->i_mode
))
3559 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3560 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3563 static void shmem_init_inode(void *foo
)
3565 struct shmem_inode_info
*info
= foo
;
3566 inode_init_once(&info
->vfs_inode
);
3569 static void shmem_init_inodecache(void)
3571 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3572 sizeof(struct shmem_inode_info
),
3573 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3576 static void shmem_destroy_inodecache(void)
3578 kmem_cache_destroy(shmem_inode_cachep
);
3581 static const struct address_space_operations shmem_aops
= {
3582 .writepage
= shmem_writepage
,
3583 .set_page_dirty
= __set_page_dirty_no_writeback
,
3585 .write_begin
= shmem_write_begin
,
3586 .write_end
= shmem_write_end
,
3588 #ifdef CONFIG_MIGRATION
3589 .migratepage
= migrate_page
,
3591 .error_remove_page
= generic_error_remove_page
,
3594 static const struct file_operations shmem_file_operations
= {
3596 .get_unmapped_area
= shmem_get_unmapped_area
,
3598 .llseek
= shmem_file_llseek
,
3599 .read_iter
= shmem_file_read_iter
,
3600 .write_iter
= generic_file_write_iter
,
3601 .fsync
= noop_fsync
,
3602 .splice_read
= generic_file_splice_read
,
3603 .splice_write
= iter_file_splice_write
,
3604 .fallocate
= shmem_fallocate
,
3608 static const struct inode_operations shmem_inode_operations
= {
3609 .getattr
= shmem_getattr
,
3610 .setattr
= shmem_setattr
,
3611 #ifdef CONFIG_TMPFS_XATTR
3612 .listxattr
= shmem_listxattr
,
3613 .set_acl
= simple_set_acl
,
3617 static const struct inode_operations shmem_dir_inode_operations
= {
3619 .create
= shmem_create
,
3620 .lookup
= simple_lookup
,
3622 .unlink
= shmem_unlink
,
3623 .symlink
= shmem_symlink
,
3624 .mkdir
= shmem_mkdir
,
3625 .rmdir
= shmem_rmdir
,
3626 .mknod
= shmem_mknod
,
3627 .rename
= shmem_rename2
,
3628 .tmpfile
= shmem_tmpfile
,
3630 #ifdef CONFIG_TMPFS_XATTR
3631 .listxattr
= shmem_listxattr
,
3633 #ifdef CONFIG_TMPFS_POSIX_ACL
3634 .setattr
= shmem_setattr
,
3635 .set_acl
= simple_set_acl
,
3639 static const struct inode_operations shmem_special_inode_operations
= {
3640 #ifdef CONFIG_TMPFS_XATTR
3641 .listxattr
= shmem_listxattr
,
3643 #ifdef CONFIG_TMPFS_POSIX_ACL
3644 .setattr
= shmem_setattr
,
3645 .set_acl
= simple_set_acl
,
3649 static const struct super_operations shmem_ops
= {
3650 .alloc_inode
= shmem_alloc_inode
,
3651 .destroy_inode
= shmem_destroy_inode
,
3653 .statfs
= shmem_statfs
,
3654 .remount_fs
= shmem_remount_fs
,
3655 .show_options
= shmem_show_options
,
3657 .evict_inode
= shmem_evict_inode
,
3658 .drop_inode
= generic_delete_inode
,
3659 .put_super
= shmem_put_super
,
3660 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3661 .nr_cached_objects
= shmem_unused_huge_count
,
3662 .free_cached_objects
= shmem_unused_huge_scan
,
3666 static const struct vm_operations_struct shmem_vm_ops
= {
3667 .fault
= shmem_fault
,
3668 .map_pages
= filemap_map_pages
,
3670 .set_policy
= shmem_set_policy
,
3671 .get_policy
= shmem_get_policy
,
3675 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3676 int flags
, const char *dev_name
, void *data
)
3678 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3681 static struct file_system_type shmem_fs_type
= {
3682 .owner
= THIS_MODULE
,
3684 .mount
= shmem_mount
,
3685 .kill_sb
= kill_litter_super
,
3686 .fs_flags
= FS_USERNS_MOUNT
,
3689 int __init
shmem_init(void)
3693 /* If rootfs called this, don't re-init */
3694 if (shmem_inode_cachep
)
3697 shmem_init_inodecache();
3699 error
= register_filesystem(&shmem_fs_type
);
3701 pr_err("Could not register tmpfs\n");
3705 shm_mnt
= kern_mount(&shmem_fs_type
);
3706 if (IS_ERR(shm_mnt
)) {
3707 error
= PTR_ERR(shm_mnt
);
3708 pr_err("Could not kern_mount tmpfs\n");
3712 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3713 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3714 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3716 shmem_huge
= 0; /* just in case it was patched */
3721 unregister_filesystem(&shmem_fs_type
);
3723 shmem_destroy_inodecache();
3724 shm_mnt
= ERR_PTR(error
);
3728 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3729 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3730 struct kobj_attribute
*attr
, char *buf
)
3734 SHMEM_HUGE_WITHIN_SIZE
,
3742 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3743 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3745 count
+= sprintf(buf
+ count
, fmt
,
3746 shmem_format_huge(values
[i
]));
3748 buf
[count
- 1] = '\n';
3752 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3753 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3758 if (count
+ 1 > sizeof(tmp
))
3760 memcpy(tmp
, buf
, count
);
3762 if (count
&& tmp
[count
- 1] == '\n')
3763 tmp
[count
- 1] = '\0';
3765 huge
= shmem_parse_huge(tmp
);
3766 if (huge
== -EINVAL
)
3768 if (!has_transparent_hugepage() &&
3769 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3773 if (shmem_huge
> SHMEM_HUGE_DENY
)
3774 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3778 struct kobj_attribute shmem_enabled_attr
=
3779 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3780 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3782 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3783 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3785 struct inode
*inode
= file_inode(vma
->vm_file
);
3786 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3790 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3792 if (shmem_huge
== SHMEM_HUGE_DENY
)
3794 switch (sbinfo
->huge
) {
3795 case SHMEM_HUGE_NEVER
:
3797 case SHMEM_HUGE_ALWAYS
:
3799 case SHMEM_HUGE_WITHIN_SIZE
:
3800 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3801 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3802 if (i_size
>= HPAGE_PMD_SIZE
&&
3803 i_size
>> PAGE_SHIFT
>= off
)
3806 case SHMEM_HUGE_ADVISE
:
3807 /* TODO: implement fadvise() hints */
3808 return (vma
->vm_flags
& VM_HUGEPAGE
);
3814 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3816 #else /* !CONFIG_SHMEM */
3819 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3821 * This is intended for small system where the benefits of the full
3822 * shmem code (swap-backed and resource-limited) are outweighed by
3823 * their complexity. On systems without swap this code should be
3824 * effectively equivalent, but much lighter weight.
3827 static struct file_system_type shmem_fs_type
= {
3829 .mount
= ramfs_mount
,
3830 .kill_sb
= kill_litter_super
,
3831 .fs_flags
= FS_USERNS_MOUNT
,
3834 int __init
shmem_init(void)
3836 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3838 shm_mnt
= kern_mount(&shmem_fs_type
);
3839 BUG_ON(IS_ERR(shm_mnt
));
3844 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3849 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3854 void shmem_unlock_mapping(struct address_space
*mapping
)
3859 unsigned long shmem_get_unmapped_area(struct file
*file
,
3860 unsigned long addr
, unsigned long len
,
3861 unsigned long pgoff
, unsigned long flags
)
3863 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3867 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3869 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3871 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3873 #define shmem_vm_ops generic_file_vm_ops
3874 #define shmem_file_operations ramfs_file_operations
3875 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3876 #define shmem_acct_size(flags, size) 0
3877 #define shmem_unacct_size(flags, size) do {} while (0)
3879 #endif /* CONFIG_SHMEM */
3883 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3884 unsigned long flags
, unsigned int i_flags
)
3886 struct inode
*inode
;
3890 return ERR_CAST(mnt
);
3892 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3893 return ERR_PTR(-EINVAL
);
3895 if (shmem_acct_size(flags
, size
))
3896 return ERR_PTR(-ENOMEM
);
3898 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3900 if (unlikely(!inode
)) {
3901 shmem_unacct_size(flags
, size
);
3902 return ERR_PTR(-ENOSPC
);
3904 inode
->i_flags
|= i_flags
;
3905 inode
->i_size
= size
;
3906 clear_nlink(inode
); /* It is unlinked */
3907 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3909 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3910 &shmem_file_operations
);
3917 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3918 * kernel internal. There will be NO LSM permission checks against the
3919 * underlying inode. So users of this interface must do LSM checks at a
3920 * higher layer. The users are the big_key and shm implementations. LSM
3921 * checks are provided at the key or shm level rather than the inode.
3922 * @name: name for dentry (to be seen in /proc/<pid>/maps
3923 * @size: size to be set for the file
3924 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3926 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3928 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
3932 * shmem_file_setup - get an unlinked file living in tmpfs
3933 * @name: name for dentry (to be seen in /proc/<pid>/maps
3934 * @size: size to be set for the file
3935 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3937 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3939 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
3941 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3944 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3945 * @mnt: the tmpfs mount where the file will be created
3946 * @name: name for dentry (to be seen in /proc/<pid>/maps
3947 * @size: size to be set for the file
3948 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3950 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
3951 loff_t size
, unsigned long flags
)
3953 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
3955 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
3958 * shmem_zero_setup - setup a shared anonymous mapping
3959 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3961 int shmem_zero_setup(struct vm_area_struct
*vma
)
3964 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3967 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3968 * between XFS directory reading and selinux: since this file is only
3969 * accessible to the user through its mapping, use S_PRIVATE flag to
3970 * bypass file security, in the same way as shmem_kernel_file_setup().
3972 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
3974 return PTR_ERR(file
);
3978 vma
->vm_file
= file
;
3979 vma
->vm_ops
= &shmem_vm_ops
;
3981 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
3982 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
3983 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
3984 khugepaged_enter(vma
, vma
->vm_flags
);
3991 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3992 * @mapping: the page's address_space
3993 * @index: the page index
3994 * @gfp: the page allocator flags to use if allocating
3996 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3997 * with any new page allocations done using the specified allocation flags.
3998 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3999 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4000 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4002 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4003 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4005 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4006 pgoff_t index
, gfp_t gfp
)
4009 struct inode
*inode
= mapping
->host
;
4013 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4014 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4015 gfp
, NULL
, NULL
, NULL
);
4017 page
= ERR_PTR(error
);
4023 * The tiny !SHMEM case uses ramfs without swap
4025 return read_cache_page_gfp(mapping
, index
, gfp
);
4028 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);