Merge tag 'iio-fixes-for-4.0d' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[linux/fpc-iii.git] / virt / kvm / arm / vgic.c
blobc9f60f52458802f4a66a3912732d8665bc4a3e32
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
29 #include <linux/irqchip/arm-gic.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
36 * How the whole thing works (courtesy of Christoffer Dall):
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - If any of the above state changes, we must recalculate the oracle.
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
63 * - When a level interrupt is moved onto a vcpu, the corresponding
64 * bit in irq_queued is set. As long as this bit is set, the line
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
69 * and clears the corresponding bit in irq_queued. This allows the
70 * interrupt line to be sampled again.
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
78 #include "vgic.h"
80 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
81 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
82 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
83 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
85 static const struct vgic_ops *vgic_ops;
86 static const struct vgic_params *vgic;
88 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
90 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
93 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
95 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
98 int kvm_vgic_map_resources(struct kvm *kvm)
100 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
104 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
105 * extracts u32s out of them.
107 * This does not work on 64-bit BE systems, because the bitmap access
108 * will store two consecutive 32-bit words with the higher-addressed
109 * register's bits at the lower index and the lower-addressed register's
110 * bits at the higher index.
112 * Therefore, swizzle the register index when accessing the 32-bit word
113 * registers to access the right register's value.
115 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
116 #define REG_OFFSET_SWIZZLE 1
117 #else
118 #define REG_OFFSET_SWIZZLE 0
119 #endif
121 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
123 int nr_longs;
125 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
127 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
128 if (!b->private)
129 return -ENOMEM;
131 b->shared = b->private + nr_cpus;
133 return 0;
136 static void vgic_free_bitmap(struct vgic_bitmap *b)
138 kfree(b->private);
139 b->private = NULL;
140 b->shared = NULL;
144 * Call this function to convert a u64 value to an unsigned long * bitmask
145 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
147 * Warning: Calling this function may modify *val.
149 static unsigned long *u64_to_bitmask(u64 *val)
151 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
152 *val = (*val >> 32) | (*val << 32);
153 #endif
154 return (unsigned long *)val;
157 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
159 offset >>= 2;
160 if (!offset)
161 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
162 else
163 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
166 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
167 int cpuid, int irq)
169 if (irq < VGIC_NR_PRIVATE_IRQS)
170 return test_bit(irq, x->private + cpuid);
172 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
175 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
176 int irq, int val)
178 unsigned long *reg;
180 if (irq < VGIC_NR_PRIVATE_IRQS) {
181 reg = x->private + cpuid;
182 } else {
183 reg = x->shared;
184 irq -= VGIC_NR_PRIVATE_IRQS;
187 if (val)
188 set_bit(irq, reg);
189 else
190 clear_bit(irq, reg);
193 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
195 return x->private + cpuid;
198 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
200 return x->shared;
203 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
205 int size;
207 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
208 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
210 x->private = kzalloc(size, GFP_KERNEL);
211 if (!x->private)
212 return -ENOMEM;
214 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
215 return 0;
218 static void vgic_free_bytemap(struct vgic_bytemap *b)
220 kfree(b->private);
221 b->private = NULL;
222 b->shared = NULL;
225 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
227 u32 *reg;
229 if (offset < VGIC_NR_PRIVATE_IRQS) {
230 reg = x->private;
231 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
232 } else {
233 reg = x->shared;
234 offset -= VGIC_NR_PRIVATE_IRQS;
237 return reg + (offset / sizeof(u32));
240 #define VGIC_CFG_LEVEL 0
241 #define VGIC_CFG_EDGE 1
243 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
245 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
246 int irq_val;
248 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
249 return irq_val == VGIC_CFG_EDGE;
252 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
254 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
259 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
261 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
266 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
268 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
273 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
275 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
280 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
282 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
284 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
287 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
289 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
291 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
294 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
296 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
298 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
301 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
303 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
305 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
308 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
310 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
312 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
315 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
317 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
319 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
322 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
324 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
326 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
329 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
331 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
333 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
336 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
338 if (irq < VGIC_NR_PRIVATE_IRQS)
339 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
340 else
341 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
342 vcpu->arch.vgic_cpu.pending_shared);
345 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
347 if (irq < VGIC_NR_PRIVATE_IRQS)
348 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
349 else
350 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
351 vcpu->arch.vgic_cpu.pending_shared);
354 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
356 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
360 * vgic_reg_access - access vgic register
361 * @mmio: pointer to the data describing the mmio access
362 * @reg: pointer to the virtual backing of vgic distributor data
363 * @offset: least significant 2 bits used for word offset
364 * @mode: ACCESS_ mode (see defines above)
366 * Helper to make vgic register access easier using one of the access
367 * modes defined for vgic register access
368 * (read,raz,write-ignored,setbit,clearbit,write)
370 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
371 phys_addr_t offset, int mode)
373 int word_offset = (offset & 3) * 8;
374 u32 mask = (1UL << (mmio->len * 8)) - 1;
375 u32 regval;
378 * Any alignment fault should have been delivered to the guest
379 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
382 if (reg) {
383 regval = *reg;
384 } else {
385 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
386 regval = 0;
389 if (mmio->is_write) {
390 u32 data = mmio_data_read(mmio, mask) << word_offset;
391 switch (ACCESS_WRITE_MASK(mode)) {
392 case ACCESS_WRITE_IGNORED:
393 return;
395 case ACCESS_WRITE_SETBIT:
396 regval |= data;
397 break;
399 case ACCESS_WRITE_CLEARBIT:
400 regval &= ~data;
401 break;
403 case ACCESS_WRITE_VALUE:
404 regval = (regval & ~(mask << word_offset)) | data;
405 break;
407 *reg = regval;
408 } else {
409 switch (ACCESS_READ_MASK(mode)) {
410 case ACCESS_READ_RAZ:
411 regval = 0;
412 /* fall through */
414 case ACCESS_READ_VALUE:
415 mmio_data_write(mmio, mask, regval >> word_offset);
420 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
421 phys_addr_t offset)
423 vgic_reg_access(mmio, NULL, offset,
424 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
425 return false;
428 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
429 phys_addr_t offset, int vcpu_id, int access)
431 u32 *reg;
432 int mode = ACCESS_READ_VALUE | access;
433 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
435 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
436 vgic_reg_access(mmio, reg, offset, mode);
437 if (mmio->is_write) {
438 if (access & ACCESS_WRITE_CLEARBIT) {
439 if (offset < 4) /* Force SGI enabled */
440 *reg |= 0xffff;
441 vgic_retire_disabled_irqs(target_vcpu);
443 vgic_update_state(kvm);
444 return true;
447 return false;
450 bool vgic_handle_set_pending_reg(struct kvm *kvm,
451 struct kvm_exit_mmio *mmio,
452 phys_addr_t offset, int vcpu_id)
454 u32 *reg, orig;
455 u32 level_mask;
456 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
457 struct vgic_dist *dist = &kvm->arch.vgic;
459 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
460 level_mask = (~(*reg));
462 /* Mark both level and edge triggered irqs as pending */
463 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
464 orig = *reg;
465 vgic_reg_access(mmio, reg, offset, mode);
467 if (mmio->is_write) {
468 /* Set the soft-pending flag only for level-triggered irqs */
469 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
470 vcpu_id, offset);
471 vgic_reg_access(mmio, reg, offset, mode);
472 *reg &= level_mask;
474 /* Ignore writes to SGIs */
475 if (offset < 2) {
476 *reg &= ~0xffff;
477 *reg |= orig & 0xffff;
480 vgic_update_state(kvm);
481 return true;
484 return false;
487 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
488 struct kvm_exit_mmio *mmio,
489 phys_addr_t offset, int vcpu_id)
491 u32 *level_active;
492 u32 *reg, orig;
493 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
494 struct vgic_dist *dist = &kvm->arch.vgic;
496 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
497 orig = *reg;
498 vgic_reg_access(mmio, reg, offset, mode);
499 if (mmio->is_write) {
500 /* Re-set level triggered level-active interrupts */
501 level_active = vgic_bitmap_get_reg(&dist->irq_level,
502 vcpu_id, offset);
503 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
504 *reg |= *level_active;
506 /* Ignore writes to SGIs */
507 if (offset < 2) {
508 *reg &= ~0xffff;
509 *reg |= orig & 0xffff;
512 /* Clear soft-pending flags */
513 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
514 vcpu_id, offset);
515 vgic_reg_access(mmio, reg, offset, mode);
517 vgic_update_state(kvm);
518 return true;
520 return false;
523 static u32 vgic_cfg_expand(u16 val)
525 u32 res = 0;
526 int i;
529 * Turn a 16bit value like abcd...mnop into a 32bit word
530 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
532 for (i = 0; i < 16; i++)
533 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
535 return res;
538 static u16 vgic_cfg_compress(u32 val)
540 u16 res = 0;
541 int i;
544 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
545 * abcd...mnop which is what we really care about.
547 for (i = 0; i < 16; i++)
548 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
550 return res;
554 * The distributor uses 2 bits per IRQ for the CFG register, but the
555 * LSB is always 0. As such, we only keep the upper bit, and use the
556 * two above functions to compress/expand the bits
558 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
559 phys_addr_t offset)
561 u32 val;
563 if (offset & 4)
564 val = *reg >> 16;
565 else
566 val = *reg & 0xffff;
568 val = vgic_cfg_expand(val);
569 vgic_reg_access(mmio, &val, offset,
570 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
571 if (mmio->is_write) {
572 if (offset < 8) {
573 *reg = ~0U; /* Force PPIs/SGIs to 1 */
574 return false;
577 val = vgic_cfg_compress(val);
578 if (offset & 4) {
579 *reg &= 0xffff;
580 *reg |= val << 16;
581 } else {
582 *reg &= 0xffff << 16;
583 *reg |= val;
587 return false;
591 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
592 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
594 * Move any pending IRQs that have already been assigned to LRs back to the
595 * emulated distributor state so that the complete emulated state can be read
596 * from the main emulation structures without investigating the LRs.
598 * Note that IRQs in the active state in the LRs get their pending state moved
599 * to the distributor but the active state stays in the LRs, because we don't
600 * track the active state on the distributor side.
602 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
604 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
605 int i;
607 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
608 struct vgic_lr lr = vgic_get_lr(vcpu, i);
611 * There are three options for the state bits:
613 * 01: pending
614 * 10: active
615 * 11: pending and active
617 * If the LR holds only an active interrupt (not pending) then
618 * just leave it alone.
620 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
621 continue;
624 * Reestablish the pending state on the distributor and the
625 * CPU interface. It may have already been pending, but that
626 * is fine, then we are only setting a few bits that were
627 * already set.
629 vgic_dist_irq_set_pending(vcpu, lr.irq);
630 if (lr.irq < VGIC_NR_SGIS)
631 add_sgi_source(vcpu, lr.irq, lr.source);
632 lr.state &= ~LR_STATE_PENDING;
633 vgic_set_lr(vcpu, i, lr);
636 * If there's no state left on the LR (it could still be
637 * active), then the LR does not hold any useful info and can
638 * be marked as free for other use.
640 if (!(lr.state & LR_STATE_MASK)) {
641 vgic_retire_lr(i, lr.irq, vcpu);
642 vgic_irq_clear_queued(vcpu, lr.irq);
645 /* Finally update the VGIC state. */
646 vgic_update_state(vcpu->kvm);
650 const
651 struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
652 struct kvm_exit_mmio *mmio,
653 phys_addr_t offset)
655 const struct kvm_mmio_range *r = ranges;
657 while (r->len) {
658 if (offset >= r->base &&
659 (offset + mmio->len) <= (r->base + r->len))
660 return r;
661 r++;
664 return NULL;
667 static bool vgic_validate_access(const struct vgic_dist *dist,
668 const struct kvm_mmio_range *range,
669 unsigned long offset)
671 int irq;
673 if (!range->bits_per_irq)
674 return true; /* Not an irq-based access */
676 irq = offset * 8 / range->bits_per_irq;
677 if (irq >= dist->nr_irqs)
678 return false;
680 return true;
684 * Call the respective handler function for the given range.
685 * We split up any 64 bit accesses into two consecutive 32 bit
686 * handler calls and merge the result afterwards.
687 * We do this in a little endian fashion regardless of the host's
688 * or guest's endianness, because the GIC is always LE and the rest of
689 * the code (vgic_reg_access) also puts it in a LE fashion already.
690 * At this point we have already identified the handle function, so
691 * range points to that one entry and offset is relative to this.
693 static bool call_range_handler(struct kvm_vcpu *vcpu,
694 struct kvm_exit_mmio *mmio,
695 unsigned long offset,
696 const struct kvm_mmio_range *range)
698 u32 *data32 = (void *)mmio->data;
699 struct kvm_exit_mmio mmio32;
700 bool ret;
702 if (likely(mmio->len <= 4))
703 return range->handle_mmio(vcpu, mmio, offset);
706 * Any access bigger than 4 bytes (that we currently handle in KVM)
707 * is actually 8 bytes long, caused by a 64-bit access
710 mmio32.len = 4;
711 mmio32.is_write = mmio->is_write;
712 mmio32.private = mmio->private;
714 mmio32.phys_addr = mmio->phys_addr + 4;
715 if (mmio->is_write)
716 *(u32 *)mmio32.data = data32[1];
717 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
718 if (!mmio->is_write)
719 data32[1] = *(u32 *)mmio32.data;
721 mmio32.phys_addr = mmio->phys_addr;
722 if (mmio->is_write)
723 *(u32 *)mmio32.data = data32[0];
724 ret |= range->handle_mmio(vcpu, &mmio32, offset);
725 if (!mmio->is_write)
726 data32[0] = *(u32 *)mmio32.data;
728 return ret;
732 * vgic_handle_mmio_range - handle an in-kernel MMIO access
733 * @vcpu: pointer to the vcpu performing the access
734 * @run: pointer to the kvm_run structure
735 * @mmio: pointer to the data describing the access
736 * @ranges: array of MMIO ranges in a given region
737 * @mmio_base: base address of that region
739 * returns true if the MMIO access could be performed
741 bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
742 struct kvm_exit_mmio *mmio,
743 const struct kvm_mmio_range *ranges,
744 unsigned long mmio_base)
746 const struct kvm_mmio_range *range;
747 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
748 bool updated_state;
749 unsigned long offset;
751 offset = mmio->phys_addr - mmio_base;
752 range = vgic_find_range(ranges, mmio, offset);
753 if (unlikely(!range || !range->handle_mmio)) {
754 pr_warn("Unhandled access %d %08llx %d\n",
755 mmio->is_write, mmio->phys_addr, mmio->len);
756 return false;
759 spin_lock(&vcpu->kvm->arch.vgic.lock);
760 offset -= range->base;
761 if (vgic_validate_access(dist, range, offset)) {
762 updated_state = call_range_handler(vcpu, mmio, offset, range);
763 } else {
764 if (!mmio->is_write)
765 memset(mmio->data, 0, mmio->len);
766 updated_state = false;
768 spin_unlock(&vcpu->kvm->arch.vgic.lock);
769 kvm_prepare_mmio(run, mmio);
770 kvm_handle_mmio_return(vcpu, run);
772 if (updated_state)
773 vgic_kick_vcpus(vcpu->kvm);
775 return true;
779 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
780 * @vcpu: pointer to the vcpu performing the access
781 * @run: pointer to the kvm_run structure
782 * @mmio: pointer to the data describing the access
784 * returns true if the MMIO access has been performed in kernel space,
785 * and false if it needs to be emulated in user space.
786 * Calls the actual handling routine for the selected VGIC model.
788 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
789 struct kvm_exit_mmio *mmio)
791 if (!irqchip_in_kernel(vcpu->kvm))
792 return false;
795 * This will currently call either vgic_v2_handle_mmio() or
796 * vgic_v3_handle_mmio(), which in turn will call
797 * vgic_handle_mmio_range() defined above.
799 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
802 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
804 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
807 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
809 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
810 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
811 unsigned long pending_private, pending_shared;
812 int nr_shared = vgic_nr_shared_irqs(dist);
813 int vcpu_id;
815 vcpu_id = vcpu->vcpu_id;
816 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
817 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
819 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
820 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
821 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
823 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
824 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
825 bitmap_and(pend_shared, pending, enabled, nr_shared);
826 bitmap_and(pend_shared, pend_shared,
827 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
828 nr_shared);
830 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
831 pending_shared = find_first_bit(pend_shared, nr_shared);
832 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
833 pending_shared < vgic_nr_shared_irqs(dist));
837 * Update the interrupt state and determine which CPUs have pending
838 * interrupts. Must be called with distributor lock held.
840 void vgic_update_state(struct kvm *kvm)
842 struct vgic_dist *dist = &kvm->arch.vgic;
843 struct kvm_vcpu *vcpu;
844 int c;
846 if (!dist->enabled) {
847 set_bit(0, dist->irq_pending_on_cpu);
848 return;
851 kvm_for_each_vcpu(c, vcpu, kvm) {
852 if (compute_pending_for_cpu(vcpu)) {
853 pr_debug("CPU%d has pending interrupts\n", c);
854 set_bit(c, dist->irq_pending_on_cpu);
859 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
861 return vgic_ops->get_lr(vcpu, lr);
864 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
865 struct vgic_lr vlr)
867 vgic_ops->set_lr(vcpu, lr, vlr);
870 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
871 struct vgic_lr vlr)
873 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
876 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
878 return vgic_ops->get_elrsr(vcpu);
881 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
883 return vgic_ops->get_eisr(vcpu);
886 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
888 vgic_ops->clear_eisr(vcpu);
891 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
893 return vgic_ops->get_interrupt_status(vcpu);
896 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
898 vgic_ops->enable_underflow(vcpu);
901 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
903 vgic_ops->disable_underflow(vcpu);
906 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
908 vgic_ops->get_vmcr(vcpu, vmcr);
911 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
913 vgic_ops->set_vmcr(vcpu, vmcr);
916 static inline void vgic_enable(struct kvm_vcpu *vcpu)
918 vgic_ops->enable(vcpu);
921 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
923 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
924 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
926 vlr.state = 0;
927 vgic_set_lr(vcpu, lr_nr, vlr);
928 clear_bit(lr_nr, vgic_cpu->lr_used);
929 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
930 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
934 * An interrupt may have been disabled after being made pending on the
935 * CPU interface (the classic case is a timer running while we're
936 * rebooting the guest - the interrupt would kick as soon as the CPU
937 * interface gets enabled, with deadly consequences).
939 * The solution is to examine already active LRs, and check the
940 * interrupt is still enabled. If not, just retire it.
942 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
944 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
945 int lr;
947 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
948 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
950 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
951 vgic_retire_lr(lr, vlr.irq, vcpu);
952 if (vgic_irq_is_queued(vcpu, vlr.irq))
953 vgic_irq_clear_queued(vcpu, vlr.irq);
959 * Queue an interrupt to a CPU virtual interface. Return true on success,
960 * or false if it wasn't possible to queue it.
961 * sgi_source must be zero for any non-SGI interrupts.
963 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
965 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
966 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
967 struct vgic_lr vlr;
968 int lr;
970 /* Sanitize the input... */
971 BUG_ON(sgi_source_id & ~7);
972 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
973 BUG_ON(irq >= dist->nr_irqs);
975 kvm_debug("Queue IRQ%d\n", irq);
977 lr = vgic_cpu->vgic_irq_lr_map[irq];
979 /* Do we have an active interrupt for the same CPUID? */
980 if (lr != LR_EMPTY) {
981 vlr = vgic_get_lr(vcpu, lr);
982 if (vlr.source == sgi_source_id) {
983 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
984 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
985 vlr.state |= LR_STATE_PENDING;
986 vgic_set_lr(vcpu, lr, vlr);
987 vgic_sync_lr_elrsr(vcpu, lr, vlr);
988 return true;
992 /* Try to use another LR for this interrupt */
993 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
994 vgic->nr_lr);
995 if (lr >= vgic->nr_lr)
996 return false;
998 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
999 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1000 set_bit(lr, vgic_cpu->lr_used);
1002 vlr.irq = irq;
1003 vlr.source = sgi_source_id;
1004 vlr.state = LR_STATE_PENDING;
1005 if (!vgic_irq_is_edge(vcpu, irq))
1006 vlr.state |= LR_EOI_INT;
1008 vgic_set_lr(vcpu, lr, vlr);
1009 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1011 return true;
1014 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1016 if (!vgic_can_sample_irq(vcpu, irq))
1017 return true; /* level interrupt, already queued */
1019 if (vgic_queue_irq(vcpu, 0, irq)) {
1020 if (vgic_irq_is_edge(vcpu, irq)) {
1021 vgic_dist_irq_clear_pending(vcpu, irq);
1022 vgic_cpu_irq_clear(vcpu, irq);
1023 } else {
1024 vgic_irq_set_queued(vcpu, irq);
1027 return true;
1030 return false;
1034 * Fill the list registers with pending interrupts before running the
1035 * guest.
1037 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1039 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1040 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1041 int i, vcpu_id;
1042 int overflow = 0;
1044 vcpu_id = vcpu->vcpu_id;
1047 * We may not have any pending interrupt, or the interrupts
1048 * may have been serviced from another vcpu. In all cases,
1049 * move along.
1051 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1052 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1053 goto epilog;
1056 /* SGIs */
1057 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1058 if (!queue_sgi(vcpu, i))
1059 overflow = 1;
1062 /* PPIs */
1063 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1064 if (!vgic_queue_hwirq(vcpu, i))
1065 overflow = 1;
1068 /* SPIs */
1069 for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1070 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1071 overflow = 1;
1074 epilog:
1075 if (overflow) {
1076 vgic_enable_underflow(vcpu);
1077 } else {
1078 vgic_disable_underflow(vcpu);
1080 * We're about to run this VCPU, and we've consumed
1081 * everything the distributor had in store for
1082 * us. Claim we don't have anything pending. We'll
1083 * adjust that if needed while exiting.
1085 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1089 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1091 u32 status = vgic_get_interrupt_status(vcpu);
1092 bool level_pending = false;
1094 kvm_debug("STATUS = %08x\n", status);
1096 if (status & INT_STATUS_EOI) {
1098 * Some level interrupts have been EOIed. Clear their
1099 * active bit.
1101 u64 eisr = vgic_get_eisr(vcpu);
1102 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1103 int lr;
1105 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1106 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1107 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1109 vgic_irq_clear_queued(vcpu, vlr.irq);
1110 WARN_ON(vlr.state & LR_STATE_MASK);
1111 vlr.state = 0;
1112 vgic_set_lr(vcpu, lr, vlr);
1115 * If the IRQ was EOIed it was also ACKed and we we
1116 * therefore assume we can clear the soft pending
1117 * state (should it had been set) for this interrupt.
1119 * Note: if the IRQ soft pending state was set after
1120 * the IRQ was acked, it actually shouldn't be
1121 * cleared, but we have no way of knowing that unless
1122 * we start trapping ACKs when the soft-pending state
1123 * is set.
1125 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1127 /* Any additional pending interrupt? */
1128 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1129 vgic_cpu_irq_set(vcpu, vlr.irq);
1130 level_pending = true;
1131 } else {
1132 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1133 vgic_cpu_irq_clear(vcpu, vlr.irq);
1137 * Despite being EOIed, the LR may not have
1138 * been marked as empty.
1140 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1144 if (status & INT_STATUS_UNDERFLOW)
1145 vgic_disable_underflow(vcpu);
1148 * In the next iterations of the vcpu loop, if we sync the vgic state
1149 * after flushing it, but before entering the guest (this happens for
1150 * pending signals and vmid rollovers), then make sure we don't pick
1151 * up any old maintenance interrupts here.
1153 vgic_clear_eisr(vcpu);
1155 return level_pending;
1159 * Sync back the VGIC state after a guest run. The distributor lock is
1160 * needed so we don't get preempted in the middle of the state processing.
1162 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1164 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1165 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1166 u64 elrsr;
1167 unsigned long *elrsr_ptr;
1168 int lr, pending;
1169 bool level_pending;
1171 level_pending = vgic_process_maintenance(vcpu);
1172 elrsr = vgic_get_elrsr(vcpu);
1173 elrsr_ptr = u64_to_bitmask(&elrsr);
1175 /* Clear mappings for empty LRs */
1176 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1177 struct vgic_lr vlr;
1179 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1180 continue;
1182 vlr = vgic_get_lr(vcpu, lr);
1184 BUG_ON(vlr.irq >= dist->nr_irqs);
1185 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1188 /* Check if we still have something up our sleeve... */
1189 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1190 if (level_pending || pending < vgic->nr_lr)
1191 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1194 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1196 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1198 if (!irqchip_in_kernel(vcpu->kvm))
1199 return;
1201 spin_lock(&dist->lock);
1202 __kvm_vgic_flush_hwstate(vcpu);
1203 spin_unlock(&dist->lock);
1206 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1208 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1210 if (!irqchip_in_kernel(vcpu->kvm))
1211 return;
1213 spin_lock(&dist->lock);
1214 __kvm_vgic_sync_hwstate(vcpu);
1215 spin_unlock(&dist->lock);
1218 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1220 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1222 if (!irqchip_in_kernel(vcpu->kvm))
1223 return 0;
1225 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1228 void vgic_kick_vcpus(struct kvm *kvm)
1230 struct kvm_vcpu *vcpu;
1231 int c;
1234 * We've injected an interrupt, time to find out who deserves
1235 * a good kick...
1237 kvm_for_each_vcpu(c, vcpu, kvm) {
1238 if (kvm_vgic_vcpu_pending_irq(vcpu))
1239 kvm_vcpu_kick(vcpu);
1243 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1245 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1248 * Only inject an interrupt if:
1249 * - edge triggered and we have a rising edge
1250 * - level triggered and we change level
1252 if (edge_triggered) {
1253 int state = vgic_dist_irq_is_pending(vcpu, irq);
1254 return level > state;
1255 } else {
1256 int state = vgic_dist_irq_get_level(vcpu, irq);
1257 return level != state;
1261 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1262 unsigned int irq_num, bool level)
1264 struct vgic_dist *dist = &kvm->arch.vgic;
1265 struct kvm_vcpu *vcpu;
1266 int edge_triggered, level_triggered;
1267 int enabled;
1268 bool ret = true, can_inject = true;
1270 spin_lock(&dist->lock);
1272 vcpu = kvm_get_vcpu(kvm, cpuid);
1273 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1274 level_triggered = !edge_triggered;
1276 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1277 ret = false;
1278 goto out;
1281 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1282 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1283 if (cpuid == VCPU_NOT_ALLOCATED) {
1284 /* Pretend we use CPU0, and prevent injection */
1285 cpuid = 0;
1286 can_inject = false;
1288 vcpu = kvm_get_vcpu(kvm, cpuid);
1291 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1293 if (level) {
1294 if (level_triggered)
1295 vgic_dist_irq_set_level(vcpu, irq_num);
1296 vgic_dist_irq_set_pending(vcpu, irq_num);
1297 } else {
1298 if (level_triggered) {
1299 vgic_dist_irq_clear_level(vcpu, irq_num);
1300 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1301 vgic_dist_irq_clear_pending(vcpu, irq_num);
1304 ret = false;
1305 goto out;
1308 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1310 if (!enabled || !can_inject) {
1311 ret = false;
1312 goto out;
1315 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1317 * Level interrupt in progress, will be picked up
1318 * when EOId.
1320 ret = false;
1321 goto out;
1324 if (level) {
1325 vgic_cpu_irq_set(vcpu, irq_num);
1326 set_bit(cpuid, dist->irq_pending_on_cpu);
1329 out:
1330 spin_unlock(&dist->lock);
1332 return ret ? cpuid : -EINVAL;
1336 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1337 * @kvm: The VM structure pointer
1338 * @cpuid: The CPU for PPIs
1339 * @irq_num: The IRQ number that is assigned to the device
1340 * @level: Edge-triggered: true: to trigger the interrupt
1341 * false: to ignore the call
1342 * Level-sensitive true: activates an interrupt
1343 * false: deactivates an interrupt
1345 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1346 * level-sensitive interrupts. You can think of the level parameter as 1
1347 * being HIGH and 0 being LOW and all devices being active-HIGH.
1349 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1350 bool level)
1352 int ret = 0;
1353 int vcpu_id;
1355 if (unlikely(!vgic_initialized(kvm))) {
1357 * We only provide the automatic initialization of the VGIC
1358 * for the legacy case of a GICv2. Any other type must
1359 * be explicitly initialized once setup with the respective
1360 * KVM device call.
1362 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1363 ret = -EBUSY;
1364 goto out;
1366 mutex_lock(&kvm->lock);
1367 ret = vgic_init(kvm);
1368 mutex_unlock(&kvm->lock);
1370 if (ret)
1371 goto out;
1374 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1375 if (vcpu_id >= 0) {
1376 /* kick the specified vcpu */
1377 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1380 out:
1381 return ret;
1384 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1387 * We cannot rely on the vgic maintenance interrupt to be
1388 * delivered synchronously. This means we can only use it to
1389 * exit the VM, and we perform the handling of EOIed
1390 * interrupts on the exit path (see vgic_process_maintenance).
1392 return IRQ_HANDLED;
1395 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1397 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1399 kfree(vgic_cpu->pending_shared);
1400 kfree(vgic_cpu->vgic_irq_lr_map);
1401 vgic_cpu->pending_shared = NULL;
1402 vgic_cpu->vgic_irq_lr_map = NULL;
1405 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1407 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1409 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1410 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1411 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1413 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1414 kvm_vgic_vcpu_destroy(vcpu);
1415 return -ENOMEM;
1418 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1421 * Store the number of LRs per vcpu, so we don't have to go
1422 * all the way to the distributor structure to find out. Only
1423 * assembly code should use this one.
1425 vgic_cpu->nr_lr = vgic->nr_lr;
1427 return 0;
1431 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1433 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1434 * can use.
1436 int kvm_vgic_get_max_vcpus(void)
1438 return vgic->max_gic_vcpus;
1441 void kvm_vgic_destroy(struct kvm *kvm)
1443 struct vgic_dist *dist = &kvm->arch.vgic;
1444 struct kvm_vcpu *vcpu;
1445 int i;
1447 kvm_for_each_vcpu(i, vcpu, kvm)
1448 kvm_vgic_vcpu_destroy(vcpu);
1450 vgic_free_bitmap(&dist->irq_enabled);
1451 vgic_free_bitmap(&dist->irq_level);
1452 vgic_free_bitmap(&dist->irq_pending);
1453 vgic_free_bitmap(&dist->irq_soft_pend);
1454 vgic_free_bitmap(&dist->irq_queued);
1455 vgic_free_bitmap(&dist->irq_cfg);
1456 vgic_free_bytemap(&dist->irq_priority);
1457 if (dist->irq_spi_target) {
1458 for (i = 0; i < dist->nr_cpus; i++)
1459 vgic_free_bitmap(&dist->irq_spi_target[i]);
1461 kfree(dist->irq_sgi_sources);
1462 kfree(dist->irq_spi_cpu);
1463 kfree(dist->irq_spi_mpidr);
1464 kfree(dist->irq_spi_target);
1465 kfree(dist->irq_pending_on_cpu);
1466 dist->irq_sgi_sources = NULL;
1467 dist->irq_spi_cpu = NULL;
1468 dist->irq_spi_target = NULL;
1469 dist->irq_pending_on_cpu = NULL;
1470 dist->nr_cpus = 0;
1474 * Allocate and initialize the various data structures. Must be called
1475 * with kvm->lock held!
1477 int vgic_init(struct kvm *kvm)
1479 struct vgic_dist *dist = &kvm->arch.vgic;
1480 struct kvm_vcpu *vcpu;
1481 int nr_cpus, nr_irqs;
1482 int ret, i, vcpu_id;
1484 if (vgic_initialized(kvm))
1485 return 0;
1487 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1488 if (!nr_cpus) /* No vcpus? Can't be good... */
1489 return -ENODEV;
1492 * If nobody configured the number of interrupts, use the
1493 * legacy one.
1495 if (!dist->nr_irqs)
1496 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1498 nr_irqs = dist->nr_irqs;
1500 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1501 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1502 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1503 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1504 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1505 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1506 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1508 if (ret)
1509 goto out;
1511 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1512 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1513 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1514 GFP_KERNEL);
1515 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1516 GFP_KERNEL);
1517 if (!dist->irq_sgi_sources ||
1518 !dist->irq_spi_cpu ||
1519 !dist->irq_spi_target ||
1520 !dist->irq_pending_on_cpu) {
1521 ret = -ENOMEM;
1522 goto out;
1525 for (i = 0; i < nr_cpus; i++)
1526 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1527 nr_cpus, nr_irqs);
1529 if (ret)
1530 goto out;
1532 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1533 if (ret)
1534 goto out;
1536 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1537 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1538 if (ret) {
1539 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1540 break;
1543 for (i = 0; i < dist->nr_irqs; i++) {
1544 if (i < VGIC_NR_PPIS)
1545 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1546 vcpu->vcpu_id, i, 1);
1547 if (i < VGIC_NR_PRIVATE_IRQS)
1548 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1549 vcpu->vcpu_id, i,
1550 VGIC_CFG_EDGE);
1553 vgic_enable(vcpu);
1556 out:
1557 if (ret)
1558 kvm_vgic_destroy(kvm);
1560 return ret;
1563 static int init_vgic_model(struct kvm *kvm, int type)
1565 switch (type) {
1566 case KVM_DEV_TYPE_ARM_VGIC_V2:
1567 vgic_v2_init_emulation(kvm);
1568 break;
1569 #ifdef CONFIG_ARM_GIC_V3
1570 case KVM_DEV_TYPE_ARM_VGIC_V3:
1571 vgic_v3_init_emulation(kvm);
1572 break;
1573 #endif
1574 default:
1575 return -ENODEV;
1578 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1579 return -E2BIG;
1581 return 0;
1584 int kvm_vgic_create(struct kvm *kvm, u32 type)
1586 int i, vcpu_lock_idx = -1, ret;
1587 struct kvm_vcpu *vcpu;
1589 mutex_lock(&kvm->lock);
1591 if (irqchip_in_kernel(kvm)) {
1592 ret = -EEXIST;
1593 goto out;
1597 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1598 * which had no chance yet to check the availability of the GICv2
1599 * emulation. So check this here again. KVM_CREATE_DEVICE does
1600 * the proper checks already.
1602 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1603 ret = -ENODEV;
1604 goto out;
1608 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1609 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1610 * that no other VCPUs are run while we create the vgic.
1612 ret = -EBUSY;
1613 kvm_for_each_vcpu(i, vcpu, kvm) {
1614 if (!mutex_trylock(&vcpu->mutex))
1615 goto out_unlock;
1616 vcpu_lock_idx = i;
1619 kvm_for_each_vcpu(i, vcpu, kvm) {
1620 if (vcpu->arch.has_run_once)
1621 goto out_unlock;
1623 ret = 0;
1625 ret = init_vgic_model(kvm, type);
1626 if (ret)
1627 goto out_unlock;
1629 spin_lock_init(&kvm->arch.vgic.lock);
1630 kvm->arch.vgic.in_kernel = true;
1631 kvm->arch.vgic.vgic_model = type;
1632 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1633 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1634 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1635 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1637 out_unlock:
1638 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1639 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1640 mutex_unlock(&vcpu->mutex);
1643 out:
1644 mutex_unlock(&kvm->lock);
1645 return ret;
1648 static int vgic_ioaddr_overlap(struct kvm *kvm)
1650 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1651 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1653 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1654 return 0;
1655 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1656 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1657 return -EBUSY;
1658 return 0;
1661 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1662 phys_addr_t addr, phys_addr_t size)
1664 int ret;
1666 if (addr & ~KVM_PHYS_MASK)
1667 return -E2BIG;
1669 if (addr & (SZ_4K - 1))
1670 return -EINVAL;
1672 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1673 return -EEXIST;
1674 if (addr + size < addr)
1675 return -EINVAL;
1677 *ioaddr = addr;
1678 ret = vgic_ioaddr_overlap(kvm);
1679 if (ret)
1680 *ioaddr = VGIC_ADDR_UNDEF;
1682 return ret;
1686 * kvm_vgic_addr - set or get vgic VM base addresses
1687 * @kvm: pointer to the vm struct
1688 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1689 * @addr: pointer to address value
1690 * @write: if true set the address in the VM address space, if false read the
1691 * address
1693 * Set or get the vgic base addresses for the distributor and the virtual CPU
1694 * interface in the VM physical address space. These addresses are properties
1695 * of the emulated core/SoC and therefore user space initially knows this
1696 * information.
1698 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1700 int r = 0;
1701 struct vgic_dist *vgic = &kvm->arch.vgic;
1702 int type_needed;
1703 phys_addr_t *addr_ptr, block_size;
1704 phys_addr_t alignment;
1706 mutex_lock(&kvm->lock);
1707 switch (type) {
1708 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1709 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1710 addr_ptr = &vgic->vgic_dist_base;
1711 block_size = KVM_VGIC_V2_DIST_SIZE;
1712 alignment = SZ_4K;
1713 break;
1714 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1715 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1716 addr_ptr = &vgic->vgic_cpu_base;
1717 block_size = KVM_VGIC_V2_CPU_SIZE;
1718 alignment = SZ_4K;
1719 break;
1720 #ifdef CONFIG_ARM_GIC_V3
1721 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1722 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1723 addr_ptr = &vgic->vgic_dist_base;
1724 block_size = KVM_VGIC_V3_DIST_SIZE;
1725 alignment = SZ_64K;
1726 break;
1727 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1728 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1729 addr_ptr = &vgic->vgic_redist_base;
1730 block_size = KVM_VGIC_V3_REDIST_SIZE;
1731 alignment = SZ_64K;
1732 break;
1733 #endif
1734 default:
1735 r = -ENODEV;
1736 goto out;
1739 if (vgic->vgic_model != type_needed) {
1740 r = -ENODEV;
1741 goto out;
1744 if (write) {
1745 if (!IS_ALIGNED(*addr, alignment))
1746 r = -EINVAL;
1747 else
1748 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1749 block_size);
1750 } else {
1751 *addr = *addr_ptr;
1754 out:
1755 mutex_unlock(&kvm->lock);
1756 return r;
1759 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1761 int r;
1763 switch (attr->group) {
1764 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1765 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1766 u64 addr;
1767 unsigned long type = (unsigned long)attr->attr;
1769 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1770 return -EFAULT;
1772 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1773 return (r == -ENODEV) ? -ENXIO : r;
1775 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1776 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1777 u32 val;
1778 int ret = 0;
1780 if (get_user(val, uaddr))
1781 return -EFAULT;
1784 * We require:
1785 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1786 * - at most 1024 interrupts
1787 * - a multiple of 32 interrupts
1789 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1790 val > VGIC_MAX_IRQS ||
1791 (val & 31))
1792 return -EINVAL;
1794 mutex_lock(&dev->kvm->lock);
1796 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
1797 ret = -EBUSY;
1798 else
1799 dev->kvm->arch.vgic.nr_irqs = val;
1801 mutex_unlock(&dev->kvm->lock);
1803 return ret;
1805 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
1806 switch (attr->attr) {
1807 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1808 r = vgic_init(dev->kvm);
1809 return r;
1811 break;
1815 return -ENXIO;
1818 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1820 int r = -ENXIO;
1822 switch (attr->group) {
1823 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1824 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1825 u64 addr;
1826 unsigned long type = (unsigned long)attr->attr;
1828 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1829 if (r)
1830 return (r == -ENODEV) ? -ENXIO : r;
1832 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1833 return -EFAULT;
1834 break;
1836 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1837 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1839 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
1840 break;
1845 return r;
1848 int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
1850 struct kvm_exit_mmio dev_attr_mmio;
1852 dev_attr_mmio.len = 4;
1853 if (vgic_find_range(ranges, &dev_attr_mmio, offset))
1854 return 0;
1855 else
1856 return -ENXIO;
1859 static void vgic_init_maintenance_interrupt(void *info)
1861 enable_percpu_irq(vgic->maint_irq, 0);
1864 static int vgic_cpu_notify(struct notifier_block *self,
1865 unsigned long action, void *cpu)
1867 switch (action) {
1868 case CPU_STARTING:
1869 case CPU_STARTING_FROZEN:
1870 vgic_init_maintenance_interrupt(NULL);
1871 break;
1872 case CPU_DYING:
1873 case CPU_DYING_FROZEN:
1874 disable_percpu_irq(vgic->maint_irq);
1875 break;
1878 return NOTIFY_OK;
1881 static struct notifier_block vgic_cpu_nb = {
1882 .notifier_call = vgic_cpu_notify,
1885 static const struct of_device_id vgic_ids[] = {
1886 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
1887 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
1891 int kvm_vgic_hyp_init(void)
1893 const struct of_device_id *matched_id;
1894 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
1895 const struct vgic_params **);
1896 struct device_node *vgic_node;
1897 int ret;
1899 vgic_node = of_find_matching_node_and_match(NULL,
1900 vgic_ids, &matched_id);
1901 if (!vgic_node) {
1902 kvm_err("error: no compatible GIC node found\n");
1903 return -ENODEV;
1906 vgic_probe = matched_id->data;
1907 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
1908 if (ret)
1909 return ret;
1911 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
1912 "vgic", kvm_get_running_vcpus());
1913 if (ret) {
1914 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
1915 return ret;
1918 ret = __register_cpu_notifier(&vgic_cpu_nb);
1919 if (ret) {
1920 kvm_err("Cannot register vgic CPU notifier\n");
1921 goto out_free_irq;
1924 /* Callback into for arch code for setup */
1925 vgic_arch_setup(vgic);
1927 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1929 return 0;
1931 out_free_irq:
1932 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
1933 return ret;