drm/panfrost: Move gpu_{write, read}() macros to panfrost_regs.h
[linux/fpc-iii.git] / drivers / dma-buf / dma-buf.c
blob6c15deb5d4ad8b60212826ea0487fdac12da9cb9
1 /*
2 * Framework for buffer objects that can be shared across devices/subsystems.
4 * Copyright(C) 2011 Linaro Limited. All rights reserved.
5 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 * Many thanks to linaro-mm-sig list, and specially
8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
10 * refining of this idea.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
21 * You should have received a copy of the GNU General Public License along with
22 * this program. If not, see <http://www.gnu.org/licenses/>.
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/dma-buf.h>
28 #include <linux/dma-fence.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/export.h>
31 #include <linux/debugfs.h>
32 #include <linux/module.h>
33 #include <linux/seq_file.h>
34 #include <linux/poll.h>
35 #include <linux/reservation.h>
36 #include <linux/mm.h>
37 #include <linux/mount.h>
39 #include <uapi/linux/dma-buf.h>
40 #include <uapi/linux/magic.h>
42 static inline int is_dma_buf_file(struct file *);
44 struct dma_buf_list {
45 struct list_head head;
46 struct mutex lock;
49 static struct dma_buf_list db_list;
51 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
53 struct dma_buf *dmabuf;
54 char name[DMA_BUF_NAME_LEN];
55 size_t ret = 0;
57 dmabuf = dentry->d_fsdata;
58 mutex_lock(&dmabuf->lock);
59 if (dmabuf->name)
60 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
61 mutex_unlock(&dmabuf->lock);
63 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
64 dentry->d_name.name, ret > 0 ? name : "");
67 static const struct dentry_operations dma_buf_dentry_ops = {
68 .d_dname = dmabuffs_dname,
71 static struct vfsmount *dma_buf_mnt;
73 static struct dentry *dma_buf_fs_mount(struct file_system_type *fs_type,
74 int flags, const char *name, void *data)
76 return mount_pseudo(fs_type, "dmabuf:", NULL, &dma_buf_dentry_ops,
77 DMA_BUF_MAGIC);
80 static struct file_system_type dma_buf_fs_type = {
81 .name = "dmabuf",
82 .mount = dma_buf_fs_mount,
83 .kill_sb = kill_anon_super,
86 static int dma_buf_release(struct inode *inode, struct file *file)
88 struct dma_buf *dmabuf;
90 if (!is_dma_buf_file(file))
91 return -EINVAL;
93 dmabuf = file->private_data;
95 BUG_ON(dmabuf->vmapping_counter);
98 * Any fences that a dma-buf poll can wait on should be signaled
99 * before releasing dma-buf. This is the responsibility of each
100 * driver that uses the reservation objects.
102 * If you hit this BUG() it means someone dropped their ref to the
103 * dma-buf while still having pending operation to the buffer.
105 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
107 dmabuf->ops->release(dmabuf);
109 mutex_lock(&db_list.lock);
110 list_del(&dmabuf->list_node);
111 mutex_unlock(&db_list.lock);
113 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
114 reservation_object_fini(dmabuf->resv);
116 module_put(dmabuf->owner);
117 kfree(dmabuf);
118 return 0;
121 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
123 struct dma_buf *dmabuf;
125 if (!is_dma_buf_file(file))
126 return -EINVAL;
128 dmabuf = file->private_data;
130 /* check if buffer supports mmap */
131 if (!dmabuf->ops->mmap)
132 return -EINVAL;
134 /* check for overflowing the buffer's size */
135 if (vma->vm_pgoff + vma_pages(vma) >
136 dmabuf->size >> PAGE_SHIFT)
137 return -EINVAL;
139 return dmabuf->ops->mmap(dmabuf, vma);
142 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
144 struct dma_buf *dmabuf;
145 loff_t base;
147 if (!is_dma_buf_file(file))
148 return -EBADF;
150 dmabuf = file->private_data;
152 /* only support discovering the end of the buffer,
153 but also allow SEEK_SET to maintain the idiomatic
154 SEEK_END(0), SEEK_CUR(0) pattern */
155 if (whence == SEEK_END)
156 base = dmabuf->size;
157 else if (whence == SEEK_SET)
158 base = 0;
159 else
160 return -EINVAL;
162 if (offset != 0)
163 return -EINVAL;
165 return base + offset;
169 * DOC: fence polling
171 * To support cross-device and cross-driver synchronization of buffer access
172 * implicit fences (represented internally in the kernel with &struct fence) can
173 * be attached to a &dma_buf. The glue for that and a few related things are
174 * provided in the &reservation_object structure.
176 * Userspace can query the state of these implicitly tracked fences using poll()
177 * and related system calls:
179 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
180 * most recent write or exclusive fence.
182 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
183 * all attached fences, shared and exclusive ones.
185 * Note that this only signals the completion of the respective fences, i.e. the
186 * DMA transfers are complete. Cache flushing and any other necessary
187 * preparations before CPU access can begin still need to happen.
190 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
192 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
193 unsigned long flags;
195 spin_lock_irqsave(&dcb->poll->lock, flags);
196 wake_up_locked_poll(dcb->poll, dcb->active);
197 dcb->active = 0;
198 spin_unlock_irqrestore(&dcb->poll->lock, flags);
201 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
203 struct dma_buf *dmabuf;
204 struct reservation_object *resv;
205 struct reservation_object_list *fobj;
206 struct dma_fence *fence_excl;
207 __poll_t events;
208 unsigned shared_count, seq;
210 dmabuf = file->private_data;
211 if (!dmabuf || !dmabuf->resv)
212 return EPOLLERR;
214 resv = dmabuf->resv;
216 poll_wait(file, &dmabuf->poll, poll);
218 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
219 if (!events)
220 return 0;
222 retry:
223 seq = read_seqcount_begin(&resv->seq);
224 rcu_read_lock();
226 fobj = rcu_dereference(resv->fence);
227 if (fobj)
228 shared_count = fobj->shared_count;
229 else
230 shared_count = 0;
231 fence_excl = rcu_dereference(resv->fence_excl);
232 if (read_seqcount_retry(&resv->seq, seq)) {
233 rcu_read_unlock();
234 goto retry;
237 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
238 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
239 __poll_t pevents = EPOLLIN;
241 if (shared_count == 0)
242 pevents |= EPOLLOUT;
244 spin_lock_irq(&dmabuf->poll.lock);
245 if (dcb->active) {
246 dcb->active |= pevents;
247 events &= ~pevents;
248 } else
249 dcb->active = pevents;
250 spin_unlock_irq(&dmabuf->poll.lock);
252 if (events & pevents) {
253 if (!dma_fence_get_rcu(fence_excl)) {
254 /* force a recheck */
255 events &= ~pevents;
256 dma_buf_poll_cb(NULL, &dcb->cb);
257 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
258 dma_buf_poll_cb)) {
259 events &= ~pevents;
260 dma_fence_put(fence_excl);
261 } else {
263 * No callback queued, wake up any additional
264 * waiters.
266 dma_fence_put(fence_excl);
267 dma_buf_poll_cb(NULL, &dcb->cb);
272 if ((events & EPOLLOUT) && shared_count > 0) {
273 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
274 int i;
276 /* Only queue a new callback if no event has fired yet */
277 spin_lock_irq(&dmabuf->poll.lock);
278 if (dcb->active)
279 events &= ~EPOLLOUT;
280 else
281 dcb->active = EPOLLOUT;
282 spin_unlock_irq(&dmabuf->poll.lock);
284 if (!(events & EPOLLOUT))
285 goto out;
287 for (i = 0; i < shared_count; ++i) {
288 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
290 if (!dma_fence_get_rcu(fence)) {
292 * fence refcount dropped to zero, this means
293 * that fobj has been freed
295 * call dma_buf_poll_cb and force a recheck!
297 events &= ~EPOLLOUT;
298 dma_buf_poll_cb(NULL, &dcb->cb);
299 break;
301 if (!dma_fence_add_callback(fence, &dcb->cb,
302 dma_buf_poll_cb)) {
303 dma_fence_put(fence);
304 events &= ~EPOLLOUT;
305 break;
307 dma_fence_put(fence);
310 /* No callback queued, wake up any additional waiters. */
311 if (i == shared_count)
312 dma_buf_poll_cb(NULL, &dcb->cb);
315 out:
316 rcu_read_unlock();
317 return events;
321 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
322 * The name of the dma-buf buffer can only be set when the dma-buf is not
323 * attached to any devices. It could theoritically support changing the
324 * name of the dma-buf if the same piece of memory is used for multiple
325 * purpose between different devices.
327 * @dmabuf [in] dmabuf buffer that will be renamed.
328 * @buf: [in] A piece of userspace memory that contains the name of
329 * the dma-buf.
331 * Returns 0 on success. If the dma-buf buffer is already attached to
332 * devices, return -EBUSY.
335 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
337 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
338 long ret = 0;
340 if (IS_ERR(name))
341 return PTR_ERR(name);
343 mutex_lock(&dmabuf->lock);
344 if (!list_empty(&dmabuf->attachments)) {
345 ret = -EBUSY;
346 kfree(name);
347 goto out_unlock;
349 kfree(dmabuf->name);
350 dmabuf->name = name;
352 out_unlock:
353 mutex_unlock(&dmabuf->lock);
354 return ret;
357 static long dma_buf_ioctl(struct file *file,
358 unsigned int cmd, unsigned long arg)
360 struct dma_buf *dmabuf;
361 struct dma_buf_sync sync;
362 enum dma_data_direction direction;
363 int ret;
365 dmabuf = file->private_data;
367 switch (cmd) {
368 case DMA_BUF_IOCTL_SYNC:
369 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
370 return -EFAULT;
372 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
373 return -EINVAL;
375 switch (sync.flags & DMA_BUF_SYNC_RW) {
376 case DMA_BUF_SYNC_READ:
377 direction = DMA_FROM_DEVICE;
378 break;
379 case DMA_BUF_SYNC_WRITE:
380 direction = DMA_TO_DEVICE;
381 break;
382 case DMA_BUF_SYNC_RW:
383 direction = DMA_BIDIRECTIONAL;
384 break;
385 default:
386 return -EINVAL;
389 if (sync.flags & DMA_BUF_SYNC_END)
390 ret = dma_buf_end_cpu_access(dmabuf, direction);
391 else
392 ret = dma_buf_begin_cpu_access(dmabuf, direction);
394 return ret;
396 case DMA_BUF_SET_NAME:
397 return dma_buf_set_name(dmabuf, (const char __user *)arg);
399 default:
400 return -ENOTTY;
404 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
406 struct dma_buf *dmabuf = file->private_data;
408 seq_printf(m, "size:\t%zu\n", dmabuf->size);
409 /* Don't count the temporary reference taken inside procfs seq_show */
410 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
411 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
412 mutex_lock(&dmabuf->lock);
413 if (dmabuf->name)
414 seq_printf(m, "name:\t%s\n", dmabuf->name);
415 mutex_unlock(&dmabuf->lock);
418 static const struct file_operations dma_buf_fops = {
419 .release = dma_buf_release,
420 .mmap = dma_buf_mmap_internal,
421 .llseek = dma_buf_llseek,
422 .poll = dma_buf_poll,
423 .unlocked_ioctl = dma_buf_ioctl,
424 #ifdef CONFIG_COMPAT
425 .compat_ioctl = dma_buf_ioctl,
426 #endif
427 .show_fdinfo = dma_buf_show_fdinfo,
431 * is_dma_buf_file - Check if struct file* is associated with dma_buf
433 static inline int is_dma_buf_file(struct file *file)
435 return file->f_op == &dma_buf_fops;
438 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
440 struct file *file;
441 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
443 if (IS_ERR(inode))
444 return ERR_CAST(inode);
446 inode->i_size = dmabuf->size;
447 inode_set_bytes(inode, dmabuf->size);
449 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
450 flags, &dma_buf_fops);
451 if (IS_ERR(file))
452 goto err_alloc_file;
453 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
454 file->private_data = dmabuf;
455 file->f_path.dentry->d_fsdata = dmabuf;
457 return file;
459 err_alloc_file:
460 iput(inode);
461 return file;
465 * DOC: dma buf device access
467 * For device DMA access to a shared DMA buffer the usual sequence of operations
468 * is fairly simple:
470 * 1. The exporter defines his exporter instance using
471 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
472 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
473 * as a file descriptor by calling dma_buf_fd().
475 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
476 * to share with: First the filedescriptor is converted to a &dma_buf using
477 * dma_buf_get(). Then the buffer is attached to the device using
478 * dma_buf_attach().
480 * Up to this stage the exporter is still free to migrate or reallocate the
481 * backing storage.
483 * 3. Once the buffer is attached to all devices userspace can initiate DMA
484 * access to the shared buffer. In the kernel this is done by calling
485 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
487 * 4. Once a driver is done with a shared buffer it needs to call
488 * dma_buf_detach() (after cleaning up any mappings) and then release the
489 * reference acquired with dma_buf_get by calling dma_buf_put().
491 * For the detailed semantics exporters are expected to implement see
492 * &dma_buf_ops.
496 * dma_buf_export - Creates a new dma_buf, and associates an anon file
497 * with this buffer, so it can be exported.
498 * Also connect the allocator specific data and ops to the buffer.
499 * Additionally, provide a name string for exporter; useful in debugging.
501 * @exp_info: [in] holds all the export related information provided
502 * by the exporter. see &struct dma_buf_export_info
503 * for further details.
505 * Returns, on success, a newly created dma_buf object, which wraps the
506 * supplied private data and operations for dma_buf_ops. On either missing
507 * ops, or error in allocating struct dma_buf, will return negative error.
509 * For most cases the easiest way to create @exp_info is through the
510 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
512 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
514 struct dma_buf *dmabuf;
515 struct reservation_object *resv = exp_info->resv;
516 struct file *file;
517 size_t alloc_size = sizeof(struct dma_buf);
518 int ret;
520 if (!exp_info->resv)
521 alloc_size += sizeof(struct reservation_object);
522 else
523 /* prevent &dma_buf[1] == dma_buf->resv */
524 alloc_size += 1;
526 if (WARN_ON(!exp_info->priv
527 || !exp_info->ops
528 || !exp_info->ops->map_dma_buf
529 || !exp_info->ops->unmap_dma_buf
530 || !exp_info->ops->release)) {
531 return ERR_PTR(-EINVAL);
534 if (!try_module_get(exp_info->owner))
535 return ERR_PTR(-ENOENT);
537 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
538 if (!dmabuf) {
539 ret = -ENOMEM;
540 goto err_module;
543 dmabuf->priv = exp_info->priv;
544 dmabuf->ops = exp_info->ops;
545 dmabuf->size = exp_info->size;
546 dmabuf->exp_name = exp_info->exp_name;
547 dmabuf->owner = exp_info->owner;
548 init_waitqueue_head(&dmabuf->poll);
549 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
550 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
552 if (!resv) {
553 resv = (struct reservation_object *)&dmabuf[1];
554 reservation_object_init(resv);
556 dmabuf->resv = resv;
558 file = dma_buf_getfile(dmabuf, exp_info->flags);
559 if (IS_ERR(file)) {
560 ret = PTR_ERR(file);
561 goto err_dmabuf;
564 file->f_mode |= FMODE_LSEEK;
565 dmabuf->file = file;
567 mutex_init(&dmabuf->lock);
568 INIT_LIST_HEAD(&dmabuf->attachments);
570 mutex_lock(&db_list.lock);
571 list_add(&dmabuf->list_node, &db_list.head);
572 mutex_unlock(&db_list.lock);
574 return dmabuf;
576 err_dmabuf:
577 kfree(dmabuf);
578 err_module:
579 module_put(exp_info->owner);
580 return ERR_PTR(ret);
582 EXPORT_SYMBOL_GPL(dma_buf_export);
585 * dma_buf_fd - returns a file descriptor for the given dma_buf
586 * @dmabuf: [in] pointer to dma_buf for which fd is required.
587 * @flags: [in] flags to give to fd
589 * On success, returns an associated 'fd'. Else, returns error.
591 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
593 int fd;
595 if (!dmabuf || !dmabuf->file)
596 return -EINVAL;
598 fd = get_unused_fd_flags(flags);
599 if (fd < 0)
600 return fd;
602 fd_install(fd, dmabuf->file);
604 return fd;
606 EXPORT_SYMBOL_GPL(dma_buf_fd);
609 * dma_buf_get - returns the dma_buf structure related to an fd
610 * @fd: [in] fd associated with the dma_buf to be returned
612 * On success, returns the dma_buf structure associated with an fd; uses
613 * file's refcounting done by fget to increase refcount. returns ERR_PTR
614 * otherwise.
616 struct dma_buf *dma_buf_get(int fd)
618 struct file *file;
620 file = fget(fd);
622 if (!file)
623 return ERR_PTR(-EBADF);
625 if (!is_dma_buf_file(file)) {
626 fput(file);
627 return ERR_PTR(-EINVAL);
630 return file->private_data;
632 EXPORT_SYMBOL_GPL(dma_buf_get);
635 * dma_buf_put - decreases refcount of the buffer
636 * @dmabuf: [in] buffer to reduce refcount of
638 * Uses file's refcounting done implicitly by fput().
640 * If, as a result of this call, the refcount becomes 0, the 'release' file
641 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
642 * in turn, and frees the memory allocated for dmabuf when exported.
644 void dma_buf_put(struct dma_buf *dmabuf)
646 if (WARN_ON(!dmabuf || !dmabuf->file))
647 return;
649 fput(dmabuf->file);
651 EXPORT_SYMBOL_GPL(dma_buf_put);
654 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
655 * calls attach() of dma_buf_ops to allow device-specific attach functionality
656 * @dmabuf: [in] buffer to attach device to.
657 * @dev: [in] device to be attached.
659 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
660 * must be cleaned up by calling dma_buf_detach().
662 * Returns:
664 * A pointer to newly created &dma_buf_attachment on success, or a negative
665 * error code wrapped into a pointer on failure.
667 * Note that this can fail if the backing storage of @dmabuf is in a place not
668 * accessible to @dev, and cannot be moved to a more suitable place. This is
669 * indicated with the error code -EBUSY.
671 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
672 struct device *dev)
674 struct dma_buf_attachment *attach;
675 int ret;
677 if (WARN_ON(!dmabuf || !dev))
678 return ERR_PTR(-EINVAL);
680 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
681 if (!attach)
682 return ERR_PTR(-ENOMEM);
684 attach->dev = dev;
685 attach->dmabuf = dmabuf;
687 mutex_lock(&dmabuf->lock);
689 if (dmabuf->ops->attach) {
690 ret = dmabuf->ops->attach(dmabuf, attach);
691 if (ret)
692 goto err_attach;
694 list_add(&attach->node, &dmabuf->attachments);
696 mutex_unlock(&dmabuf->lock);
698 return attach;
700 err_attach:
701 kfree(attach);
702 mutex_unlock(&dmabuf->lock);
703 return ERR_PTR(ret);
705 EXPORT_SYMBOL_GPL(dma_buf_attach);
708 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
709 * optionally calls detach() of dma_buf_ops for device-specific detach
710 * @dmabuf: [in] buffer to detach from.
711 * @attach: [in] attachment to be detached; is free'd after this call.
713 * Clean up a device attachment obtained by calling dma_buf_attach().
715 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
717 if (WARN_ON(!dmabuf || !attach))
718 return;
720 if (attach->sgt)
721 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
723 mutex_lock(&dmabuf->lock);
724 list_del(&attach->node);
725 if (dmabuf->ops->detach)
726 dmabuf->ops->detach(dmabuf, attach);
728 mutex_unlock(&dmabuf->lock);
729 kfree(attach);
731 EXPORT_SYMBOL_GPL(dma_buf_detach);
734 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
735 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
736 * dma_buf_ops.
737 * @attach: [in] attachment whose scatterlist is to be returned
738 * @direction: [in] direction of DMA transfer
740 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
741 * on error. May return -EINTR if it is interrupted by a signal.
743 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
744 * the underlying backing storage is pinned for as long as a mapping exists,
745 * therefore users/importers should not hold onto a mapping for undue amounts of
746 * time.
748 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
749 enum dma_data_direction direction)
751 struct sg_table *sg_table;
753 might_sleep();
755 if (WARN_ON(!attach || !attach->dmabuf))
756 return ERR_PTR(-EINVAL);
758 if (attach->sgt) {
760 * Two mappings with different directions for the same
761 * attachment are not allowed.
763 if (attach->dir != direction &&
764 attach->dir != DMA_BIDIRECTIONAL)
765 return ERR_PTR(-EBUSY);
767 return attach->sgt;
770 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
771 if (!sg_table)
772 sg_table = ERR_PTR(-ENOMEM);
774 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
775 attach->sgt = sg_table;
776 attach->dir = direction;
779 return sg_table;
781 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
784 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
785 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
786 * dma_buf_ops.
787 * @attach: [in] attachment to unmap buffer from
788 * @sg_table: [in] scatterlist info of the buffer to unmap
789 * @direction: [in] direction of DMA transfer
791 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
793 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
794 struct sg_table *sg_table,
795 enum dma_data_direction direction)
797 might_sleep();
799 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
800 return;
802 if (attach->sgt == sg_table)
803 return;
805 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
807 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
810 * DOC: cpu access
812 * There are mutliple reasons for supporting CPU access to a dma buffer object:
814 * - Fallback operations in the kernel, for example when a device is connected
815 * over USB and the kernel needs to shuffle the data around first before
816 * sending it away. Cache coherency is handled by braketing any transactions
817 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
818 * access.
820 * To support dma_buf objects residing in highmem cpu access is page-based
821 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
822 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
823 * returns a pointer in kernel virtual address space. Afterwards the chunk
824 * needs to be unmapped again. There is no limit on how often a given chunk
825 * can be mapped and unmapped, i.e. the importer does not need to call
826 * begin_cpu_access again before mapping the same chunk again.
828 * Interfaces::
829 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
830 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
832 * Implementing the functions is optional for exporters and for importers all
833 * the restrictions of using kmap apply.
835 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
836 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
837 * the partial chunks at the beginning and end but may return stale or bogus
838 * data outside of the range (in these partial chunks).
840 * For some cases the overhead of kmap can be too high, a vmap interface
841 * is introduced. This interface should be used very carefully, as vmalloc
842 * space is a limited resources on many architectures.
844 * Interfaces::
845 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
846 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
848 * The vmap call can fail if there is no vmap support in the exporter, or if
849 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
850 * that the dma-buf layer keeps a reference count for all vmap access and
851 * calls down into the exporter's vmap function only when no vmapping exists,
852 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
853 * provided by taking the dma_buf->lock mutex.
855 * - For full compatibility on the importer side with existing userspace
856 * interfaces, which might already support mmap'ing buffers. This is needed in
857 * many processing pipelines (e.g. feeding a software rendered image into a
858 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
859 * framework already supported this and for DMA buffer file descriptors to
860 * replace ION buffers mmap support was needed.
862 * There is no special interfaces, userspace simply calls mmap on the dma-buf
863 * fd. But like for CPU access there's a need to braket the actual access,
864 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
865 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
866 * be restarted.
868 * Some systems might need some sort of cache coherency management e.g. when
869 * CPU and GPU domains are being accessed through dma-buf at the same time.
870 * To circumvent this problem there are begin/end coherency markers, that
871 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
872 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
873 * sequence would be used like following:
875 * - mmap dma-buf fd
876 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
877 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
878 * want (with the new data being consumed by say the GPU or the scanout
879 * device)
880 * - munmap once you don't need the buffer any more
882 * For correctness and optimal performance, it is always required to use
883 * SYNC_START and SYNC_END before and after, respectively, when accessing the
884 * mapped address. Userspace cannot rely on coherent access, even when there
885 * are systems where it just works without calling these ioctls.
887 * - And as a CPU fallback in userspace processing pipelines.
889 * Similar to the motivation for kernel cpu access it is again important that
890 * the userspace code of a given importing subsystem can use the same
891 * interfaces with a imported dma-buf buffer object as with a native buffer
892 * object. This is especially important for drm where the userspace part of
893 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
894 * use a different way to mmap a buffer rather invasive.
896 * The assumption in the current dma-buf interfaces is that redirecting the
897 * initial mmap is all that's needed. A survey of some of the existing
898 * subsystems shows that no driver seems to do any nefarious thing like
899 * syncing up with outstanding asynchronous processing on the device or
900 * allocating special resources at fault time. So hopefully this is good
901 * enough, since adding interfaces to intercept pagefaults and allow pte
902 * shootdowns would increase the complexity quite a bit.
904 * Interface::
905 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
906 * unsigned long);
908 * If the importing subsystem simply provides a special-purpose mmap call to
909 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
910 * equally achieve that for a dma-buf object.
913 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
914 enum dma_data_direction direction)
916 bool write = (direction == DMA_BIDIRECTIONAL ||
917 direction == DMA_TO_DEVICE);
918 struct reservation_object *resv = dmabuf->resv;
919 long ret;
921 /* Wait on any implicit rendering fences */
922 ret = reservation_object_wait_timeout_rcu(resv, write, true,
923 MAX_SCHEDULE_TIMEOUT);
924 if (ret < 0)
925 return ret;
927 return 0;
931 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
932 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
933 * preparations. Coherency is only guaranteed in the specified range for the
934 * specified access direction.
935 * @dmabuf: [in] buffer to prepare cpu access for.
936 * @direction: [in] length of range for cpu access.
938 * After the cpu access is complete the caller should call
939 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
940 * it guaranteed to be coherent with other DMA access.
942 * Can return negative error values, returns 0 on success.
944 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
945 enum dma_data_direction direction)
947 int ret = 0;
949 if (WARN_ON(!dmabuf))
950 return -EINVAL;
952 if (dmabuf->ops->begin_cpu_access)
953 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
955 /* Ensure that all fences are waited upon - but we first allow
956 * the native handler the chance to do so more efficiently if it
957 * chooses. A double invocation here will be reasonably cheap no-op.
959 if (ret == 0)
960 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
962 return ret;
964 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
967 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
968 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
969 * actions. Coherency is only guaranteed in the specified range for the
970 * specified access direction.
971 * @dmabuf: [in] buffer to complete cpu access for.
972 * @direction: [in] length of range for cpu access.
974 * This terminates CPU access started with dma_buf_begin_cpu_access().
976 * Can return negative error values, returns 0 on success.
978 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
979 enum dma_data_direction direction)
981 int ret = 0;
983 WARN_ON(!dmabuf);
985 if (dmabuf->ops->end_cpu_access)
986 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
988 return ret;
990 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
993 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
994 * same restrictions as for kmap and friends apply.
995 * @dmabuf: [in] buffer to map page from.
996 * @page_num: [in] page in PAGE_SIZE units to map.
998 * This call must always succeed, any necessary preparations that might fail
999 * need to be done in begin_cpu_access.
1001 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
1003 WARN_ON(!dmabuf);
1005 if (!dmabuf->ops->map)
1006 return NULL;
1007 return dmabuf->ops->map(dmabuf, page_num);
1009 EXPORT_SYMBOL_GPL(dma_buf_kmap);
1012 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1013 * @dmabuf: [in] buffer to unmap page from.
1014 * @page_num: [in] page in PAGE_SIZE units to unmap.
1015 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
1017 * This call must always succeed.
1019 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1020 void *vaddr)
1022 WARN_ON(!dmabuf);
1024 if (dmabuf->ops->unmap)
1025 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1027 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1031 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1032 * @dmabuf: [in] buffer that should back the vma
1033 * @vma: [in] vma for the mmap
1034 * @pgoff: [in] offset in pages where this mmap should start within the
1035 * dma-buf buffer.
1037 * This function adjusts the passed in vma so that it points at the file of the
1038 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1039 * checking on the size of the vma. Then it calls the exporters mmap function to
1040 * set up the mapping.
1042 * Can return negative error values, returns 0 on success.
1044 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1045 unsigned long pgoff)
1047 struct file *oldfile;
1048 int ret;
1050 if (WARN_ON(!dmabuf || !vma))
1051 return -EINVAL;
1053 /* check if buffer supports mmap */
1054 if (!dmabuf->ops->mmap)
1055 return -EINVAL;
1057 /* check for offset overflow */
1058 if (pgoff + vma_pages(vma) < pgoff)
1059 return -EOVERFLOW;
1061 /* check for overflowing the buffer's size */
1062 if (pgoff + vma_pages(vma) >
1063 dmabuf->size >> PAGE_SHIFT)
1064 return -EINVAL;
1066 /* readjust the vma */
1067 get_file(dmabuf->file);
1068 oldfile = vma->vm_file;
1069 vma->vm_file = dmabuf->file;
1070 vma->vm_pgoff = pgoff;
1072 ret = dmabuf->ops->mmap(dmabuf, vma);
1073 if (ret) {
1074 /* restore old parameters on failure */
1075 vma->vm_file = oldfile;
1076 fput(dmabuf->file);
1077 } else {
1078 if (oldfile)
1079 fput(oldfile);
1081 return ret;
1084 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1087 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1088 * address space. Same restrictions as for vmap and friends apply.
1089 * @dmabuf: [in] buffer to vmap
1091 * This call may fail due to lack of virtual mapping address space.
1092 * These calls are optional in drivers. The intended use for them
1093 * is for mapping objects linear in kernel space for high use objects.
1094 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1096 * Returns NULL on error.
1098 void *dma_buf_vmap(struct dma_buf *dmabuf)
1100 void *ptr;
1102 if (WARN_ON(!dmabuf))
1103 return NULL;
1105 if (!dmabuf->ops->vmap)
1106 return NULL;
1108 mutex_lock(&dmabuf->lock);
1109 if (dmabuf->vmapping_counter) {
1110 dmabuf->vmapping_counter++;
1111 BUG_ON(!dmabuf->vmap_ptr);
1112 ptr = dmabuf->vmap_ptr;
1113 goto out_unlock;
1116 BUG_ON(dmabuf->vmap_ptr);
1118 ptr = dmabuf->ops->vmap(dmabuf);
1119 if (WARN_ON_ONCE(IS_ERR(ptr)))
1120 ptr = NULL;
1121 if (!ptr)
1122 goto out_unlock;
1124 dmabuf->vmap_ptr = ptr;
1125 dmabuf->vmapping_counter = 1;
1127 out_unlock:
1128 mutex_unlock(&dmabuf->lock);
1129 return ptr;
1131 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1134 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1135 * @dmabuf: [in] buffer to vunmap
1136 * @vaddr: [in] vmap to vunmap
1138 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1140 if (WARN_ON(!dmabuf))
1141 return;
1143 BUG_ON(!dmabuf->vmap_ptr);
1144 BUG_ON(dmabuf->vmapping_counter == 0);
1145 BUG_ON(dmabuf->vmap_ptr != vaddr);
1147 mutex_lock(&dmabuf->lock);
1148 if (--dmabuf->vmapping_counter == 0) {
1149 if (dmabuf->ops->vunmap)
1150 dmabuf->ops->vunmap(dmabuf, vaddr);
1151 dmabuf->vmap_ptr = NULL;
1153 mutex_unlock(&dmabuf->lock);
1155 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1157 #ifdef CONFIG_DEBUG_FS
1158 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1160 int ret;
1161 struct dma_buf *buf_obj;
1162 struct dma_buf_attachment *attach_obj;
1163 struct reservation_object *robj;
1164 struct reservation_object_list *fobj;
1165 struct dma_fence *fence;
1166 unsigned seq;
1167 int count = 0, attach_count, shared_count, i;
1168 size_t size = 0;
1170 ret = mutex_lock_interruptible(&db_list.lock);
1172 if (ret)
1173 return ret;
1175 seq_puts(s, "\nDma-buf Objects:\n");
1176 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1177 "size", "flags", "mode", "count", "ino");
1179 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1180 ret = mutex_lock_interruptible(&buf_obj->lock);
1182 if (ret) {
1183 seq_puts(s,
1184 "\tERROR locking buffer object: skipping\n");
1185 continue;
1188 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1189 buf_obj->size,
1190 buf_obj->file->f_flags, buf_obj->file->f_mode,
1191 file_count(buf_obj->file),
1192 buf_obj->exp_name,
1193 file_inode(buf_obj->file)->i_ino,
1194 buf_obj->name ?: "");
1196 robj = buf_obj->resv;
1197 while (true) {
1198 seq = read_seqcount_begin(&robj->seq);
1199 rcu_read_lock();
1200 fobj = rcu_dereference(robj->fence);
1201 shared_count = fobj ? fobj->shared_count : 0;
1202 fence = rcu_dereference(robj->fence_excl);
1203 if (!read_seqcount_retry(&robj->seq, seq))
1204 break;
1205 rcu_read_unlock();
1208 if (fence)
1209 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1210 fence->ops->get_driver_name(fence),
1211 fence->ops->get_timeline_name(fence),
1212 dma_fence_is_signaled(fence) ? "" : "un");
1213 for (i = 0; i < shared_count; i++) {
1214 fence = rcu_dereference(fobj->shared[i]);
1215 if (!dma_fence_get_rcu(fence))
1216 continue;
1217 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1218 fence->ops->get_driver_name(fence),
1219 fence->ops->get_timeline_name(fence),
1220 dma_fence_is_signaled(fence) ? "" : "un");
1221 dma_fence_put(fence);
1223 rcu_read_unlock();
1225 seq_puts(s, "\tAttached Devices:\n");
1226 attach_count = 0;
1228 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1229 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1230 attach_count++;
1233 seq_printf(s, "Total %d devices attached\n\n",
1234 attach_count);
1236 count++;
1237 size += buf_obj->size;
1238 mutex_unlock(&buf_obj->lock);
1241 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1243 mutex_unlock(&db_list.lock);
1244 return 0;
1247 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1249 static struct dentry *dma_buf_debugfs_dir;
1251 static int dma_buf_init_debugfs(void)
1253 struct dentry *d;
1254 int err = 0;
1256 d = debugfs_create_dir("dma_buf", NULL);
1257 if (IS_ERR(d))
1258 return PTR_ERR(d);
1260 dma_buf_debugfs_dir = d;
1262 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1263 NULL, &dma_buf_debug_fops);
1264 if (IS_ERR(d)) {
1265 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1266 debugfs_remove_recursive(dma_buf_debugfs_dir);
1267 dma_buf_debugfs_dir = NULL;
1268 err = PTR_ERR(d);
1271 return err;
1274 static void dma_buf_uninit_debugfs(void)
1276 debugfs_remove_recursive(dma_buf_debugfs_dir);
1278 #else
1279 static inline int dma_buf_init_debugfs(void)
1281 return 0;
1283 static inline void dma_buf_uninit_debugfs(void)
1286 #endif
1288 static int __init dma_buf_init(void)
1290 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1291 if (IS_ERR(dma_buf_mnt))
1292 return PTR_ERR(dma_buf_mnt);
1294 mutex_init(&db_list.lock);
1295 INIT_LIST_HEAD(&db_list.head);
1296 dma_buf_init_debugfs();
1297 return 0;
1299 subsys_initcall(dma_buf_init);
1301 static void __exit dma_buf_deinit(void)
1303 dma_buf_uninit_debugfs();
1304 kern_unmount(dma_buf_mnt);
1306 __exitcall(dma_buf_deinit);