drm/panfrost: Move gpu_{write, read}() macros to panfrost_regs.h
[linux/fpc-iii.git] / drivers / edac / sb_edac.c
blob9353c3fc7c0577a04d07a89bf6461098d1493e13
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
30 #include "edac_module.h"
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
36 * Alter this version for the module when modifications are made
38 #define SBRIDGE_REVISION " Ver: 1.1.2 "
39 #define EDAC_MOD_STR "sb_edac"
42 * Debug macros
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
62 static const u32 ibridge_dram_rule[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
69 static const u32 knl_dram_rule[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
80 static char *show_dram_attr(u32 attr)
82 switch (attr) {
83 case 0:
84 return "DRAM";
85 case 1:
86 return "MMCFG";
87 case 2:
88 return "NXM";
89 default:
90 return "unknown";
94 static const u32 sbridge_interleave_list[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
99 static const u32 ibridge_interleave_list[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
106 static const u32 knl_interleave_list[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
113 #define MAX_INTERLEAVE \
114 (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
115 max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116 ARRAY_SIZE(knl_interleave_list))))
118 struct interleave_pkg {
119 unsigned char start;
120 unsigned char end;
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 { 0, 2 },
125 { 3, 5 },
126 { 8, 10 },
127 { 11, 13 },
128 { 16, 18 },
129 { 19, 21 },
130 { 24, 26 },
131 { 27, 29 },
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 { 0, 3 },
136 { 4, 7 },
137 { 8, 11 },
138 { 12, 15 },
139 { 16, 19 },
140 { 20, 23 },
141 { 24, 27 },
142 { 28, 31 },
145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 int interleave)
148 return GET_BITFIELD(reg, table[interleave].start,
149 table[interleave].end);
152 /* Devices 12 Function 7 */
154 #define TOLM 0x80
155 #define TOHM 0x84
156 #define HASWELL_TOLM 0xd0
157 #define HASWELL_TOHM_0 0xd4
158 #define HASWELL_TOHM_1 0xd8
159 #define KNL_TOLM 0xd0
160 #define KNL_TOHM_0 0xd4
161 #define KNL_TOHM_1 0xd8
163 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
166 /* Device 13 Function 6 */
168 #define SAD_TARGET 0xf0
170 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
172 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
174 #define SAD_CONTROL 0xf4
176 /* Device 14 function 0 */
178 static const u32 tad_dram_rule[] = {
179 0x40, 0x44, 0x48, 0x4c,
180 0x50, 0x54, 0x58, 0x5c,
181 0x60, 0x64, 0x68, 0x6c,
183 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
185 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
188 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
189 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
190 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
191 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
193 /* Device 15, function 0 */
195 #define MCMTR 0x7c
196 #define KNL_MCMTR 0x624
198 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
202 /* Device 15, function 1 */
204 #define RASENABLES 0xac
205 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
207 /* Device 15, functions 2-5 */
209 static const int mtr_regs[] = {
210 0x80, 0x84, 0x88,
213 static const int knl_mtr_reg = 0xb60;
215 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
221 static const u32 tad_ch_nilv_offset[] = {
222 0x90, 0x94, 0x98, 0x9c,
223 0xa0, 0xa4, 0xa8, 0xac,
224 0xb0, 0xb4, 0xb8, 0xbc,
226 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
229 static const u32 rir_way_limit[] = {
230 0x108, 0x10c, 0x110, 0x114, 0x118,
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
234 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
237 #define MAX_RIR_WAY 8
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
253 /* Device 16, functions 2-7 */
256 * FIXME: Implement the error count reads directly
259 static const u32 correrrcnt[] = {
260 0x104, 0x108, 0x10c, 0x110,
263 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
268 static const u32 correrrthrsld[] = {
269 0x11c, 0x120, 0x124, 0x128,
272 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
276 /* Device 17, function 0 */
278 #define SB_RANK_CFG_A 0x0328
280 #define IB_RANK_CFG_A 0x0320
283 * sbridge structs
286 #define NUM_CHANNELS 6 /* Max channels per MC */
287 #define MAX_DIMMS 3 /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
293 enum type {
294 SANDY_BRIDGE,
295 IVY_BRIDGE,
296 HASWELL,
297 BROADWELL,
298 KNIGHTS_LANDING,
301 enum domain {
302 IMC0 = 0,
303 IMC1,
304 SOCK,
307 enum mirroring_mode {
308 NON_MIRRORING,
309 ADDR_RANGE_MIRRORING,
310 FULL_MIRRORING,
313 struct sbridge_pvt;
314 struct sbridge_info {
315 enum type type;
316 u32 mcmtr;
317 u32 rankcfgr;
318 u64 (*get_tolm)(struct sbridge_pvt *pvt);
319 u64 (*get_tohm)(struct sbridge_pvt *pvt);
320 u64 (*rir_limit)(u32 reg);
321 u64 (*sad_limit)(u32 reg);
322 u32 (*interleave_mode)(u32 reg);
323 u32 (*dram_attr)(u32 reg);
324 const u32 *dram_rule;
325 const u32 *interleave_list;
326 const struct interleave_pkg *interleave_pkg;
327 u8 max_sad;
328 u8 (*get_node_id)(struct sbridge_pvt *pvt);
329 u8 (*get_ha)(u8 bank);
330 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
331 enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332 struct pci_dev *pci_vtd;
335 struct sbridge_channel {
336 u32 ranks;
337 u32 dimms;
340 struct pci_id_descr {
341 int dev_id;
342 int optional;
343 enum domain dom;
346 struct pci_id_table {
347 const struct pci_id_descr *descr;
348 int n_devs_per_imc;
349 int n_devs_per_sock;
350 int n_imcs_per_sock;
351 enum type type;
354 struct sbridge_dev {
355 struct list_head list;
356 int seg;
357 u8 bus, mc;
358 u8 node_id, source_id;
359 struct pci_dev **pdev;
360 enum domain dom;
361 int n_devs;
362 int i_devs;
363 struct mem_ctl_info *mci;
366 struct knl_pvt {
367 struct pci_dev *pci_cha[KNL_MAX_CHAS];
368 struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
369 struct pci_dev *pci_mc0;
370 struct pci_dev *pci_mc1;
371 struct pci_dev *pci_mc0_misc;
372 struct pci_dev *pci_mc1_misc;
373 struct pci_dev *pci_mc_info; /* tolm, tohm */
376 struct sbridge_pvt {
377 /* Devices per socket */
378 struct pci_dev *pci_ddrio;
379 struct pci_dev *pci_sad0, *pci_sad1;
380 struct pci_dev *pci_br0, *pci_br1;
381 /* Devices per memory controller */
382 struct pci_dev *pci_ha, *pci_ta, *pci_ras;
383 struct pci_dev *pci_tad[NUM_CHANNELS];
385 struct sbridge_dev *sbridge_dev;
387 struct sbridge_info info;
388 struct sbridge_channel channel[NUM_CHANNELS];
390 /* Memory type detection */
391 bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
392 bool is_chan_hash;
393 enum mirroring_mode mirror_mode;
395 /* Memory description */
396 u64 tolm, tohm;
397 struct knl_pvt knl;
400 #define PCI_DESCR(device_id, opt, domain) \
401 .dev_id = (device_id), \
402 .optional = opt, \
403 .dom = domain
405 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
406 /* Processor Home Agent */
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
409 /* Memory controller */
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
418 /* System Address Decoder */
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
422 /* Broadcast Registers */
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
427 .descr = A, \
428 .n_devs_per_imc = N, \
429 .n_devs_per_sock = ARRAY_SIZE(A), \
430 .n_imcs_per_sock = M, \
431 .type = T \
434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
435 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
436 {0,} /* 0 terminated list. */
439 /* This changes depending if 1HA or 2HA:
440 * 1HA:
441 * 0x0eb8 (17.0) is DDRIO0
442 * 2HA:
443 * 0x0ebc (17.4) is DDRIO0
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
448 /* pci ids */
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
467 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
468 /* Processor Home Agent */
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
472 /* Memory controller */
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
480 /* Optional, mode 2HA */
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
491 /* System Address Decoder */
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
494 /* Broadcast Registers */
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
501 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
502 {0,} /* 0 terminated list. */
505 /* Haswell support */
506 /* EN processor:
507 * - 1 IMC
508 * - 3 DDR3 channels, 2 DPC per channel
509 * EP processor:
510 * - 1 or 2 IMC
511 * - 4 DDR4 channels, 3 DPC per channel
512 * EP 4S processor:
513 * - 2 IMC
514 * - 4 DDR4 channels, 3 DPC per channel
515 * EX processor:
516 * - 2 IMC
517 * - each IMC interfaces with a SMI 2 channel
518 * - each SMI channel interfaces with a scalable memory buffer
519 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell[] = {
545 /* first item must be the HA */
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
550 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
571 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
572 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
573 {0,} /* 0 terminated list. */
576 /* Knight's Landing Support */
578 * KNL's memory channels are swizzled between memory controllers.
579 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
599 * KNL differs from SB, IB, and Haswell in that it has multiple
600 * instances of the same device with the same device ID, so we handle that
601 * by creating as many copies in the table as we expect to find.
602 * (Like device ID must be grouped together.)
605 static const struct pci_id_descr pci_dev_descr_knl[] = {
606 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
607 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
608 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
609 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
610 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
611 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
612 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
615 static const struct pci_id_table pci_dev_descr_knl_table[] = {
616 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
617 {0,}
621 * Broadwell support
623 * DE processor:
624 * - 1 IMC
625 * - 2 DDR3 channels, 2 DPC per channel
626 * EP processor:
627 * - 1 or 2 IMC
628 * - 4 DDR4 channels, 3 DPC per channel
629 * EP 4S processor:
630 * - 2 IMC
631 * - 4 DDR4 channels, 3 DPC per channel
632 * EX processor:
633 * - 2 IMC
634 * - each IMC interfaces with a SMI 2 channel
635 * - each SMI channel interfaces with a scalable memory buffer
636 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
657 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
658 /* first item must be the HA */
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
663 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
676 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
678 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
682 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
683 {0,} /* 0 terminated list. */
687 /****************************************************************************
688 Ancillary status routines
689 ****************************************************************************/
691 static inline int numrank(enum type type, u32 mtr)
693 int ranks = (1 << RANK_CNT_BITS(mtr));
694 int max = 4;
696 if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
697 max = 8;
699 if (ranks > max) {
700 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
702 return -EINVAL;
705 return ranks;
708 static inline int numrow(u32 mtr)
710 int rows = (RANK_WIDTH_BITS(mtr) + 12);
712 if (rows < 13 || rows > 18) {
713 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
715 return -EINVAL;
718 return 1 << rows;
721 static inline int numcol(u32 mtr)
723 int cols = (COL_WIDTH_BITS(mtr) + 10);
725 if (cols > 12) {
726 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
728 return -EINVAL;
731 return 1 << cols;
734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
735 int multi_bus,
736 struct sbridge_dev *prev)
738 struct sbridge_dev *sbridge_dev;
741 * If we have devices scattered across several busses that pertain
742 * to the same memory controller, we'll lump them all together.
744 if (multi_bus) {
745 return list_first_entry_or_null(&sbridge_edac_list,
746 struct sbridge_dev, list);
749 sbridge_dev = list_entry(prev ? prev->list.next
750 : sbridge_edac_list.next, struct sbridge_dev, list);
752 list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
753 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
754 (dom == SOCK || dom == sbridge_dev->dom))
755 return sbridge_dev;
758 return NULL;
761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
762 const struct pci_id_table *table)
764 struct sbridge_dev *sbridge_dev;
766 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
767 if (!sbridge_dev)
768 return NULL;
770 sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
771 sizeof(*sbridge_dev->pdev),
772 GFP_KERNEL);
773 if (!sbridge_dev->pdev) {
774 kfree(sbridge_dev);
775 return NULL;
778 sbridge_dev->seg = seg;
779 sbridge_dev->bus = bus;
780 sbridge_dev->dom = dom;
781 sbridge_dev->n_devs = table->n_devs_per_imc;
782 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
784 return sbridge_dev;
787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
789 list_del(&sbridge_dev->list);
790 kfree(sbridge_dev->pdev);
791 kfree(sbridge_dev);
794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
796 u32 reg;
798 /* Address range is 32:28 */
799 pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
800 return GET_TOLM(reg);
803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
805 u32 reg;
807 pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
808 return GET_TOHM(reg);
811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
813 u32 reg;
815 pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
817 return GET_TOLM(reg);
820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
822 u32 reg;
824 pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
826 return GET_TOHM(reg);
829 static u64 rir_limit(u32 reg)
831 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
834 static u64 sad_limit(u32 reg)
836 return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
839 static u32 interleave_mode(u32 reg)
841 return GET_BITFIELD(reg, 1, 1);
844 static u32 dram_attr(u32 reg)
846 return GET_BITFIELD(reg, 2, 3);
849 static u64 knl_sad_limit(u32 reg)
851 return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
854 static u32 knl_interleave_mode(u32 reg)
856 return GET_BITFIELD(reg, 1, 2);
859 static const char * const knl_intlv_mode[] = {
860 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
863 static const char *get_intlv_mode_str(u32 reg, enum type t)
865 if (t == KNIGHTS_LANDING)
866 return knl_intlv_mode[knl_interleave_mode(reg)];
867 else
868 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
871 static u32 dram_attr_knl(u32 reg)
873 return GET_BITFIELD(reg, 3, 4);
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
879 u32 reg;
880 enum mem_type mtype;
882 if (pvt->pci_ddrio) {
883 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884 &reg);
885 if (GET_BITFIELD(reg, 11, 11))
886 /* FIXME: Can also be LRDIMM */
887 mtype = MEM_RDDR3;
888 else
889 mtype = MEM_DDR3;
890 } else
891 mtype = MEM_UNKNOWN;
893 return mtype;
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
898 u32 reg;
899 bool registered = false;
900 enum mem_type mtype = MEM_UNKNOWN;
902 if (!pvt->pci_ddrio)
903 goto out;
905 pci_read_config_dword(pvt->pci_ddrio,
906 HASWELL_DDRCRCLKCONTROLS, &reg);
907 /* Is_Rdimm */
908 if (GET_BITFIELD(reg, 16, 16))
909 registered = true;
911 pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912 if (GET_BITFIELD(reg, 14, 14)) {
913 if (registered)
914 mtype = MEM_RDDR4;
915 else
916 mtype = MEM_DDR4;
917 } else {
918 if (registered)
919 mtype = MEM_RDDR3;
920 else
921 mtype = MEM_DDR3;
924 out:
925 return mtype;
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
930 /* for KNL value is fixed */
931 return DEV_X16;
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
936 /* there's no way to figure out */
937 return DEV_UNKNOWN;
940 static enum dev_type __ibridge_get_width(u32 mtr)
942 enum dev_type type;
944 switch (mtr) {
945 case 3:
946 type = DEV_UNKNOWN;
947 break;
948 case 2:
949 type = DEV_X16;
950 break;
951 case 1:
952 type = DEV_X8;
953 break;
954 case 0:
955 type = DEV_X4;
956 break;
959 return type;
962 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
965 * ddr3_width on the documentation but also valid for DDR4 on
966 * Haswell
968 return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
971 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
973 /* ddr3_width on the documentation but also valid for DDR4 */
974 return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
977 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
979 /* DDR4 RDIMMS and LRDIMMS are supported */
980 return MEM_RDDR4;
983 static u8 get_node_id(struct sbridge_pvt *pvt)
985 u32 reg;
986 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
987 return GET_BITFIELD(reg, 0, 2);
990 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
992 u32 reg;
994 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
995 return GET_BITFIELD(reg, 0, 3);
998 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1000 u32 reg;
1002 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003 return GET_BITFIELD(reg, 0, 2);
1007 * Use the reporting bank number to determine which memory
1008 * controller (also known as "ha" for "home agent"). Sandy
1009 * Bridge only has one memory controller per socket, so the
1010 * answer is always zero.
1012 static u8 sbridge_get_ha(u8 bank)
1014 return 0;
1018 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1019 * home agent bank (7, 8), or one of the per-channel memory
1020 * controller banks (9 .. 16).
1022 static u8 ibridge_get_ha(u8 bank)
1024 switch (bank) {
1025 case 7 ... 8:
1026 return bank - 7;
1027 case 9 ... 16:
1028 return (bank - 9) / 4;
1029 default:
1030 return 0xff;
1034 /* Not used, but included for safety/symmetry */
1035 static u8 knl_get_ha(u8 bank)
1037 return 0xff;
1040 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1042 u32 reg;
1044 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1045 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1048 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1050 u64 rc;
1051 u32 reg;
1053 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1054 rc = GET_BITFIELD(reg, 26, 31);
1055 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1056 rc = ((reg << 6) | rc) << 26;
1058 return rc | 0x1ffffff;
1061 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1063 u32 reg;
1065 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1066 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1069 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1071 u64 rc;
1072 u32 reg_lo, reg_hi;
1074 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1075 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1076 rc = ((u64)reg_hi << 32) | reg_lo;
1077 return rc | 0x3ffffff;
1081 static u64 haswell_rir_limit(u32 reg)
1083 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
1086 static inline u8 sad_pkg_socket(u8 pkg)
1088 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1089 return ((pkg >> 3) << 2) | (pkg & 0x3);
1092 static inline u8 sad_pkg_ha(u8 pkg)
1094 return (pkg >> 2) & 0x1;
1097 static int haswell_chan_hash(int idx, u64 addr)
1099 int i;
1102 * XOR even bits from 12:26 to bit0 of idx,
1103 * odd bits from 13:27 to bit1
1105 for (i = 12; i < 28; i += 2)
1106 idx ^= (addr >> i) & 3;
1108 return idx;
1111 /* Low bits of TAD limit, and some metadata. */
1112 static const u32 knl_tad_dram_limit_lo[] = {
1113 0x400, 0x500, 0x600, 0x700,
1114 0x800, 0x900, 0xa00, 0xb00,
1117 /* Low bits of TAD offset. */
1118 static const u32 knl_tad_dram_offset_lo[] = {
1119 0x404, 0x504, 0x604, 0x704,
1120 0x804, 0x904, 0xa04, 0xb04,
1123 /* High 16 bits of TAD limit and offset. */
1124 static const u32 knl_tad_dram_hi[] = {
1125 0x408, 0x508, 0x608, 0x708,
1126 0x808, 0x908, 0xa08, 0xb08,
1129 /* Number of ways a tad entry is interleaved. */
1130 static const u32 knl_tad_ways[] = {
1131 8, 6, 4, 3, 2, 1,
1135 * Retrieve the n'th Target Address Decode table entry
1136 * from the memory controller's TAD table.
1138 * @pvt: driver private data
1139 * @entry: which entry you want to retrieve
1140 * @mc: which memory controller (0 or 1)
1141 * @offset: output tad range offset
1142 * @limit: output address of first byte above tad range
1143 * @ways: output number of interleave ways
1145 * The offset value has curious semantics. It's a sort of running total
1146 * of the sizes of all the memory regions that aren't mapped in this
1147 * tad table.
1149 static int knl_get_tad(const struct sbridge_pvt *pvt,
1150 const int entry,
1151 const int mc,
1152 u64 *offset,
1153 u64 *limit,
1154 int *ways)
1156 u32 reg_limit_lo, reg_offset_lo, reg_hi;
1157 struct pci_dev *pci_mc;
1158 int way_id;
1160 switch (mc) {
1161 case 0:
1162 pci_mc = pvt->knl.pci_mc0;
1163 break;
1164 case 1:
1165 pci_mc = pvt->knl.pci_mc1;
1166 break;
1167 default:
1168 WARN_ON(1);
1169 return -EINVAL;
1172 pci_read_config_dword(pci_mc,
1173 knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1174 pci_read_config_dword(pci_mc,
1175 knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1176 pci_read_config_dword(pci_mc,
1177 knl_tad_dram_hi[entry], &reg_hi);
1179 /* Is this TAD entry enabled? */
1180 if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1181 return -ENODEV;
1183 way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1185 if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1186 *ways = knl_tad_ways[way_id];
1187 } else {
1188 *ways = 0;
1189 sbridge_printk(KERN_ERR,
1190 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1191 way_id);
1192 return -ENODEV;
1196 * The least significant 6 bits of base and limit are truncated.
1197 * For limit, we fill the missing bits with 1s.
1199 *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1200 ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
1201 *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
1202 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1204 return 0;
1207 /* Determine which memory controller is responsible for a given channel. */
1208 static int knl_channel_mc(int channel)
1210 WARN_ON(channel < 0 || channel >= 6);
1212 return channel < 3 ? 1 : 0;
1216 * Get the Nth entry from EDC_ROUTE_TABLE register.
1217 * (This is the per-tile mapping of logical interleave targets to
1218 * physical EDC modules.)
1220 * entry 0: 0:2
1221 * 1: 3:5
1222 * 2: 6:8
1223 * 3: 9:11
1224 * 4: 12:14
1225 * 5: 15:17
1226 * 6: 18:20
1227 * 7: 21:23
1228 * reserved: 24:31
1230 static u32 knl_get_edc_route(int entry, u32 reg)
1232 WARN_ON(entry >= KNL_MAX_EDCS);
1233 return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1237 * Get the Nth entry from MC_ROUTE_TABLE register.
1238 * (This is the per-tile mapping of logical interleave targets to
1239 * physical DRAM channels modules.)
1241 * entry 0: mc 0:2 channel 18:19
1242 * 1: mc 3:5 channel 20:21
1243 * 2: mc 6:8 channel 22:23
1244 * 3: mc 9:11 channel 24:25
1245 * 4: mc 12:14 channel 26:27
1246 * 5: mc 15:17 channel 28:29
1247 * reserved: 30:31
1249 * Though we have 3 bits to identify the MC, we should only see
1250 * the values 0 or 1.
1253 static u32 knl_get_mc_route(int entry, u32 reg)
1255 int mc, chan;
1257 WARN_ON(entry >= KNL_MAX_CHANNELS);
1259 mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1260 chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1262 return knl_channel_remap(mc, chan);
1266 * Render the EDC_ROUTE register in human-readable form.
1267 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1269 static void knl_show_edc_route(u32 reg, char *s)
1271 int i;
1273 for (i = 0; i < KNL_MAX_EDCS; i++) {
1274 s[i*2] = knl_get_edc_route(i, reg) + '0';
1275 s[i*2+1] = '-';
1278 s[KNL_MAX_EDCS*2 - 1] = '\0';
1282 * Render the MC_ROUTE register in human-readable form.
1283 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1285 static void knl_show_mc_route(u32 reg, char *s)
1287 int i;
1289 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1290 s[i*2] = knl_get_mc_route(i, reg) + '0';
1291 s[i*2+1] = '-';
1294 s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1297 #define KNL_EDC_ROUTE 0xb8
1298 #define KNL_MC_ROUTE 0xb4
1300 /* Is this dram rule backed by regular DRAM in flat mode? */
1301 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1303 /* Is this dram rule cached? */
1304 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1306 /* Is this rule backed by edc ? */
1307 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1309 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1310 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1312 /* Is this rule mod3? */
1313 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1316 * Figure out how big our RAM modules are.
1318 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1319 * have to figure this out from the SAD rules, interleave lists, route tables,
1320 * and TAD rules.
1322 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1323 * inspect the TAD rules to figure out how large the SAD regions really are.
1325 * When we know the real size of a SAD region and how many ways it's
1326 * interleaved, we know the individual contribution of each channel to
1327 * TAD is size/ways.
1329 * Finally, we have to check whether each channel participates in each SAD
1330 * region.
1332 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1333 * much memory the channel uses, we know the DIMM is at least that large.
1334 * (The BIOS might possibly choose not to map all available memory, in which
1335 * case we will underreport the size of the DIMM.)
1337 * In theory, we could try to determine the EDC sizes as well, but that would
1338 * only work in flat mode, not in cache mode.
1340 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1341 * elements)
1343 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1345 u64 sad_base, sad_size, sad_limit = 0;
1346 u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1347 int sad_rule = 0;
1348 int tad_rule = 0;
1349 int intrlv_ways, tad_ways;
1350 u32 first_pkg, pkg;
1351 int i;
1352 u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1353 u32 dram_rule, interleave_reg;
1354 u32 mc_route_reg[KNL_MAX_CHAS];
1355 u32 edc_route_reg[KNL_MAX_CHAS];
1356 int edram_only;
1357 char edc_route_string[KNL_MAX_EDCS*2];
1358 char mc_route_string[KNL_MAX_CHANNELS*2];
1359 int cur_reg_start;
1360 int mc;
1361 int channel;
1362 int participants[KNL_MAX_CHANNELS];
1364 for (i = 0; i < KNL_MAX_CHANNELS; i++)
1365 mc_sizes[i] = 0;
1367 /* Read the EDC route table in each CHA. */
1368 cur_reg_start = 0;
1369 for (i = 0; i < KNL_MAX_CHAS; i++) {
1370 pci_read_config_dword(pvt->knl.pci_cha[i],
1371 KNL_EDC_ROUTE, &edc_route_reg[i]);
1373 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1374 knl_show_edc_route(edc_route_reg[i-1],
1375 edc_route_string);
1376 if (cur_reg_start == i-1)
1377 edac_dbg(0, "edc route table for CHA %d: %s\n",
1378 cur_reg_start, edc_route_string);
1379 else
1380 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1381 cur_reg_start, i-1, edc_route_string);
1382 cur_reg_start = i;
1385 knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1386 if (cur_reg_start == i-1)
1387 edac_dbg(0, "edc route table for CHA %d: %s\n",
1388 cur_reg_start, edc_route_string);
1389 else
1390 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1391 cur_reg_start, i-1, edc_route_string);
1393 /* Read the MC route table in each CHA. */
1394 cur_reg_start = 0;
1395 for (i = 0; i < KNL_MAX_CHAS; i++) {
1396 pci_read_config_dword(pvt->knl.pci_cha[i],
1397 KNL_MC_ROUTE, &mc_route_reg[i]);
1399 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1400 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1401 if (cur_reg_start == i-1)
1402 edac_dbg(0, "mc route table for CHA %d: %s\n",
1403 cur_reg_start, mc_route_string);
1404 else
1405 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1406 cur_reg_start, i-1, mc_route_string);
1407 cur_reg_start = i;
1410 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1411 if (cur_reg_start == i-1)
1412 edac_dbg(0, "mc route table for CHA %d: %s\n",
1413 cur_reg_start, mc_route_string);
1414 else
1415 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1416 cur_reg_start, i-1, mc_route_string);
1418 /* Process DRAM rules */
1419 for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1420 /* previous limit becomes the new base */
1421 sad_base = sad_limit;
1423 pci_read_config_dword(pvt->pci_sad0,
1424 pvt->info.dram_rule[sad_rule], &dram_rule);
1426 if (!DRAM_RULE_ENABLE(dram_rule))
1427 break;
1429 edram_only = KNL_EDRAM_ONLY(dram_rule);
1431 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1432 sad_size = sad_limit - sad_base;
1434 pci_read_config_dword(pvt->pci_sad0,
1435 pvt->info.interleave_list[sad_rule], &interleave_reg);
1438 * Find out how many ways this dram rule is interleaved.
1439 * We stop when we see the first channel again.
1441 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1442 interleave_reg, 0);
1443 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1444 pkg = sad_pkg(pvt->info.interleave_pkg,
1445 interleave_reg, intrlv_ways);
1447 if ((pkg & 0x8) == 0) {
1449 * 0 bit means memory is non-local,
1450 * which KNL doesn't support
1452 edac_dbg(0, "Unexpected interleave target %d\n",
1453 pkg);
1454 return -1;
1457 if (pkg == first_pkg)
1458 break;
1460 if (KNL_MOD3(dram_rule))
1461 intrlv_ways *= 3;
1463 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1464 sad_rule,
1465 sad_base,
1466 sad_limit,
1467 intrlv_ways,
1468 edram_only ? ", EDRAM" : "");
1471 * Find out how big the SAD region really is by iterating
1472 * over TAD tables (SAD regions may contain holes).
1473 * Each memory controller might have a different TAD table, so
1474 * we have to look at both.
1476 * Livespace is the memory that's mapped in this TAD table,
1477 * deadspace is the holes (this could be the MMIO hole, or it
1478 * could be memory that's mapped by the other TAD table but
1479 * not this one).
1481 for (mc = 0; mc < 2; mc++) {
1482 sad_actual_size[mc] = 0;
1483 tad_livespace = 0;
1484 for (tad_rule = 0;
1485 tad_rule < ARRAY_SIZE(
1486 knl_tad_dram_limit_lo);
1487 tad_rule++) {
1488 if (knl_get_tad(pvt,
1489 tad_rule,
1491 &tad_deadspace,
1492 &tad_limit,
1493 &tad_ways))
1494 break;
1496 tad_size = (tad_limit+1) -
1497 (tad_livespace + tad_deadspace);
1498 tad_livespace += tad_size;
1499 tad_base = (tad_limit+1) - tad_size;
1501 if (tad_base < sad_base) {
1502 if (tad_limit > sad_base)
1503 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1504 } else if (tad_base < sad_limit) {
1505 if (tad_limit+1 > sad_limit) {
1506 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1507 } else {
1508 /* TAD region is completely inside SAD region */
1509 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1510 tad_rule, tad_base,
1511 tad_limit, tad_size,
1512 mc);
1513 sad_actual_size[mc] += tad_size;
1516 tad_base = tad_limit+1;
1520 for (mc = 0; mc < 2; mc++) {
1521 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1522 mc, sad_actual_size[mc], sad_actual_size[mc]);
1525 /* Ignore EDRAM rule */
1526 if (edram_only)
1527 continue;
1529 /* Figure out which channels participate in interleave. */
1530 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1531 participants[channel] = 0;
1533 /* For each channel, does at least one CHA have
1534 * this channel mapped to the given target?
1536 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1537 int target;
1538 int cha;
1540 for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1541 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1542 if (knl_get_mc_route(target,
1543 mc_route_reg[cha]) == channel
1544 && !participants[channel]) {
1545 participants[channel] = 1;
1546 break;
1552 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1553 mc = knl_channel_mc(channel);
1554 if (participants[channel]) {
1555 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1556 channel,
1557 sad_actual_size[mc]/intrlv_ways,
1558 sad_rule);
1559 mc_sizes[channel] +=
1560 sad_actual_size[mc]/intrlv_ways;
1565 return 0;
1568 static void get_source_id(struct mem_ctl_info *mci)
1570 struct sbridge_pvt *pvt = mci->pvt_info;
1571 u32 reg;
1573 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1574 pvt->info.type == KNIGHTS_LANDING)
1575 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1576 else
1577 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1579 if (pvt->info.type == KNIGHTS_LANDING)
1580 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1581 else
1582 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1585 static int __populate_dimms(struct mem_ctl_info *mci,
1586 u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1587 enum edac_type mode)
1589 struct sbridge_pvt *pvt = mci->pvt_info;
1590 int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1591 : NUM_CHANNELS;
1592 unsigned int i, j, banks, ranks, rows, cols, npages;
1593 struct dimm_info *dimm;
1594 enum mem_type mtype;
1595 u64 size;
1597 mtype = pvt->info.get_memory_type(pvt);
1598 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1599 edac_dbg(0, "Memory is registered\n");
1600 else if (mtype == MEM_UNKNOWN)
1601 edac_dbg(0, "Cannot determine memory type\n");
1602 else
1603 edac_dbg(0, "Memory is unregistered\n");
1605 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1606 banks = 16;
1607 else
1608 banks = 8;
1610 for (i = 0; i < channels; i++) {
1611 u32 mtr;
1613 int max_dimms_per_channel;
1615 if (pvt->info.type == KNIGHTS_LANDING) {
1616 max_dimms_per_channel = 1;
1617 if (!pvt->knl.pci_channel[i])
1618 continue;
1619 } else {
1620 max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1621 if (!pvt->pci_tad[i])
1622 continue;
1625 for (j = 0; j < max_dimms_per_channel; j++) {
1626 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1627 if (pvt->info.type == KNIGHTS_LANDING) {
1628 pci_read_config_dword(pvt->knl.pci_channel[i],
1629 knl_mtr_reg, &mtr);
1630 } else {
1631 pci_read_config_dword(pvt->pci_tad[i],
1632 mtr_regs[j], &mtr);
1634 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
1635 if (IS_DIMM_PRESENT(mtr)) {
1636 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1637 sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1638 pvt->sbridge_dev->source_id,
1639 pvt->sbridge_dev->dom, i);
1640 return -ENODEV;
1642 pvt->channel[i].dimms++;
1644 ranks = numrank(pvt->info.type, mtr);
1646 if (pvt->info.type == KNIGHTS_LANDING) {
1647 /* For DDR4, this is fixed. */
1648 cols = 1 << 10;
1649 rows = knl_mc_sizes[i] /
1650 ((u64) cols * ranks * banks * 8);
1651 } else {
1652 rows = numrow(mtr);
1653 cols = numcol(mtr);
1656 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1657 npages = MiB_TO_PAGES(size);
1659 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1660 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1661 size, npages,
1662 banks, ranks, rows, cols);
1664 dimm->nr_pages = npages;
1665 dimm->grain = 32;
1666 dimm->dtype = pvt->info.get_width(pvt, mtr);
1667 dimm->mtype = mtype;
1668 dimm->edac_mode = mode;
1669 snprintf(dimm->label, sizeof(dimm->label),
1670 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1671 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1676 return 0;
1679 static int get_dimm_config(struct mem_ctl_info *mci)
1681 struct sbridge_pvt *pvt = mci->pvt_info;
1682 u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1683 enum edac_type mode;
1684 u32 reg;
1686 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1687 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1688 pvt->sbridge_dev->mc,
1689 pvt->sbridge_dev->node_id,
1690 pvt->sbridge_dev->source_id);
1692 /* KNL doesn't support mirroring or lockstep,
1693 * and is always closed page
1695 if (pvt->info.type == KNIGHTS_LANDING) {
1696 mode = EDAC_S4ECD4ED;
1697 pvt->mirror_mode = NON_MIRRORING;
1698 pvt->is_cur_addr_mirrored = false;
1700 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1701 return -1;
1702 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1703 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1704 return -ENODEV;
1706 } else {
1707 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1708 if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1709 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1710 return -ENODEV;
1712 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1713 if (GET_BITFIELD(reg, 28, 28)) {
1714 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1715 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1716 goto next;
1719 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1720 edac_dbg(0, "Failed to read RASENABLES register\n");
1721 return -ENODEV;
1723 if (IS_MIRROR_ENABLED(reg)) {
1724 pvt->mirror_mode = FULL_MIRRORING;
1725 edac_dbg(0, "Full memory mirroring is enabled\n");
1726 } else {
1727 pvt->mirror_mode = NON_MIRRORING;
1728 edac_dbg(0, "Memory mirroring is disabled\n");
1731 next:
1732 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1733 edac_dbg(0, "Failed to read MCMTR register\n");
1734 return -ENODEV;
1736 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1737 edac_dbg(0, "Lockstep is enabled\n");
1738 mode = EDAC_S8ECD8ED;
1739 pvt->is_lockstep = true;
1740 } else {
1741 edac_dbg(0, "Lockstep is disabled\n");
1742 mode = EDAC_S4ECD4ED;
1743 pvt->is_lockstep = false;
1745 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1746 edac_dbg(0, "address map is on closed page mode\n");
1747 pvt->is_close_pg = true;
1748 } else {
1749 edac_dbg(0, "address map is on open page mode\n");
1750 pvt->is_close_pg = false;
1754 return __populate_dimms(mci, knl_mc_sizes, mode);
1757 static void get_memory_layout(const struct mem_ctl_info *mci)
1759 struct sbridge_pvt *pvt = mci->pvt_info;
1760 int i, j, k, n_sads, n_tads, sad_interl;
1761 u32 reg;
1762 u64 limit, prv = 0;
1763 u64 tmp_mb;
1764 u32 gb, mb;
1765 u32 rir_way;
1768 * Step 1) Get TOLM/TOHM ranges
1771 pvt->tolm = pvt->info.get_tolm(pvt);
1772 tmp_mb = (1 + pvt->tolm) >> 20;
1774 gb = div_u64_rem(tmp_mb, 1024, &mb);
1775 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1776 gb, (mb*1000)/1024, (u64)pvt->tolm);
1778 /* Address range is already 45:25 */
1779 pvt->tohm = pvt->info.get_tohm(pvt);
1780 tmp_mb = (1 + pvt->tohm) >> 20;
1782 gb = div_u64_rem(tmp_mb, 1024, &mb);
1783 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1784 gb, (mb*1000)/1024, (u64)pvt->tohm);
1787 * Step 2) Get SAD range and SAD Interleave list
1788 * TAD registers contain the interleave wayness. However, it
1789 * seems simpler to just discover it indirectly, with the
1790 * algorithm bellow.
1792 prv = 0;
1793 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1794 /* SAD_LIMIT Address range is 45:26 */
1795 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1796 &reg);
1797 limit = pvt->info.sad_limit(reg);
1799 if (!DRAM_RULE_ENABLE(reg))
1800 continue;
1802 if (limit <= prv)
1803 break;
1805 tmp_mb = (limit + 1) >> 20;
1806 gb = div_u64_rem(tmp_mb, 1024, &mb);
1807 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1808 n_sads,
1809 show_dram_attr(pvt->info.dram_attr(reg)),
1810 gb, (mb*1000)/1024,
1811 ((u64)tmp_mb) << 20L,
1812 get_intlv_mode_str(reg, pvt->info.type),
1813 reg);
1814 prv = limit;
1816 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1817 &reg);
1818 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1819 for (j = 0; j < 8; j++) {
1820 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1821 if (j > 0 && sad_interl == pkg)
1822 break;
1824 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1825 n_sads, j, pkg);
1829 if (pvt->info.type == KNIGHTS_LANDING)
1830 return;
1833 * Step 3) Get TAD range
1835 prv = 0;
1836 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1837 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1838 limit = TAD_LIMIT(reg);
1839 if (limit <= prv)
1840 break;
1841 tmp_mb = (limit + 1) >> 20;
1843 gb = div_u64_rem(tmp_mb, 1024, &mb);
1844 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1845 n_tads, gb, (mb*1000)/1024,
1846 ((u64)tmp_mb) << 20L,
1847 (u32)(1 << TAD_SOCK(reg)),
1848 (u32)TAD_CH(reg) + 1,
1849 (u32)TAD_TGT0(reg),
1850 (u32)TAD_TGT1(reg),
1851 (u32)TAD_TGT2(reg),
1852 (u32)TAD_TGT3(reg),
1853 reg);
1854 prv = limit;
1858 * Step 4) Get TAD offsets, per each channel
1860 for (i = 0; i < NUM_CHANNELS; i++) {
1861 if (!pvt->channel[i].dimms)
1862 continue;
1863 for (j = 0; j < n_tads; j++) {
1864 pci_read_config_dword(pvt->pci_tad[i],
1865 tad_ch_nilv_offset[j],
1866 &reg);
1867 tmp_mb = TAD_OFFSET(reg) >> 20;
1868 gb = div_u64_rem(tmp_mb, 1024, &mb);
1869 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1870 i, j,
1871 gb, (mb*1000)/1024,
1872 ((u64)tmp_mb) << 20L,
1873 reg);
1878 * Step 6) Get RIR Wayness/Limit, per each channel
1880 for (i = 0; i < NUM_CHANNELS; i++) {
1881 if (!pvt->channel[i].dimms)
1882 continue;
1883 for (j = 0; j < MAX_RIR_RANGES; j++) {
1884 pci_read_config_dword(pvt->pci_tad[i],
1885 rir_way_limit[j],
1886 &reg);
1888 if (!IS_RIR_VALID(reg))
1889 continue;
1891 tmp_mb = pvt->info.rir_limit(reg) >> 20;
1892 rir_way = 1 << RIR_WAY(reg);
1893 gb = div_u64_rem(tmp_mb, 1024, &mb);
1894 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1895 i, j,
1896 gb, (mb*1000)/1024,
1897 ((u64)tmp_mb) << 20L,
1898 rir_way,
1899 reg);
1901 for (k = 0; k < rir_way; k++) {
1902 pci_read_config_dword(pvt->pci_tad[i],
1903 rir_offset[j][k],
1904 &reg);
1905 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1907 gb = div_u64_rem(tmp_mb, 1024, &mb);
1908 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1909 i, j, k,
1910 gb, (mb*1000)/1024,
1911 ((u64)tmp_mb) << 20L,
1912 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1913 reg);
1919 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1921 struct sbridge_dev *sbridge_dev;
1923 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1924 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1925 return sbridge_dev->mci;
1927 return NULL;
1930 static int get_memory_error_data(struct mem_ctl_info *mci,
1931 u64 addr,
1932 u8 *socket, u8 *ha,
1933 long *channel_mask,
1934 u8 *rank,
1935 char **area_type, char *msg)
1937 struct mem_ctl_info *new_mci;
1938 struct sbridge_pvt *pvt = mci->pvt_info;
1939 struct pci_dev *pci_ha;
1940 int n_rir, n_sads, n_tads, sad_way, sck_xch;
1941 int sad_interl, idx, base_ch;
1942 int interleave_mode, shiftup = 0;
1943 unsigned int sad_interleave[MAX_INTERLEAVE];
1944 u32 reg, dram_rule;
1945 u8 ch_way, sck_way, pkg, sad_ha = 0;
1946 u32 tad_offset;
1947 u32 rir_way;
1948 u32 mb, gb;
1949 u64 ch_addr, offset, limit = 0, prv = 0;
1953 * Step 0) Check if the address is at special memory ranges
1954 * The check bellow is probably enough to fill all cases where
1955 * the error is not inside a memory, except for the legacy
1956 * range (e. g. VGA addresses). It is unlikely, however, that the
1957 * memory controller would generate an error on that range.
1959 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1960 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1961 return -EINVAL;
1963 if (addr >= (u64)pvt->tohm) {
1964 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1965 return -EINVAL;
1969 * Step 1) Get socket
1971 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1972 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1973 &reg);
1975 if (!DRAM_RULE_ENABLE(reg))
1976 continue;
1978 limit = pvt->info.sad_limit(reg);
1979 if (limit <= prv) {
1980 sprintf(msg, "Can't discover the memory socket");
1981 return -EINVAL;
1983 if (addr <= limit)
1984 break;
1985 prv = limit;
1987 if (n_sads == pvt->info.max_sad) {
1988 sprintf(msg, "Can't discover the memory socket");
1989 return -EINVAL;
1991 dram_rule = reg;
1992 *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1993 interleave_mode = pvt->info.interleave_mode(dram_rule);
1995 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1996 &reg);
1998 if (pvt->info.type == SANDY_BRIDGE) {
1999 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2000 for (sad_way = 0; sad_way < 8; sad_way++) {
2001 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2002 if (sad_way > 0 && sad_interl == pkg)
2003 break;
2004 sad_interleave[sad_way] = pkg;
2005 edac_dbg(0, "SAD interleave #%d: %d\n",
2006 sad_way, sad_interleave[sad_way]);
2008 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2009 pvt->sbridge_dev->mc,
2010 n_sads,
2011 addr,
2012 limit,
2013 sad_way + 7,
2014 !interleave_mode ? "" : "XOR[18:16]");
2015 if (interleave_mode)
2016 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2017 else
2018 idx = (addr >> 6) & 7;
2019 switch (sad_way) {
2020 case 1:
2021 idx = 0;
2022 break;
2023 case 2:
2024 idx = idx & 1;
2025 break;
2026 case 4:
2027 idx = idx & 3;
2028 break;
2029 case 8:
2030 break;
2031 default:
2032 sprintf(msg, "Can't discover socket interleave");
2033 return -EINVAL;
2035 *socket = sad_interleave[idx];
2036 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2037 idx, sad_way, *socket);
2038 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2039 int bits, a7mode = A7MODE(dram_rule);
2041 if (a7mode) {
2042 /* A7 mode swaps P9 with P6 */
2043 bits = GET_BITFIELD(addr, 7, 8) << 1;
2044 bits |= GET_BITFIELD(addr, 9, 9);
2045 } else
2046 bits = GET_BITFIELD(addr, 6, 8);
2048 if (interleave_mode == 0) {
2049 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2050 idx = GET_BITFIELD(addr, 16, 18);
2051 idx ^= bits;
2052 } else
2053 idx = bits;
2055 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2056 *socket = sad_pkg_socket(pkg);
2057 sad_ha = sad_pkg_ha(pkg);
2059 if (a7mode) {
2060 /* MCChanShiftUpEnable */
2061 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2062 shiftup = GET_BITFIELD(reg, 22, 22);
2065 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2066 idx, *socket, sad_ha, shiftup);
2067 } else {
2068 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2069 idx = (addr >> 6) & 7;
2070 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2071 *socket = sad_pkg_socket(pkg);
2072 sad_ha = sad_pkg_ha(pkg);
2073 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2074 idx, *socket, sad_ha);
2077 *ha = sad_ha;
2080 * Move to the proper node structure, in order to access the
2081 * right PCI registers
2083 new_mci = get_mci_for_node_id(*socket, sad_ha);
2084 if (!new_mci) {
2085 sprintf(msg, "Struct for socket #%u wasn't initialized",
2086 *socket);
2087 return -EINVAL;
2089 mci = new_mci;
2090 pvt = mci->pvt_info;
2093 * Step 2) Get memory channel
2095 prv = 0;
2096 pci_ha = pvt->pci_ha;
2097 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2098 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2099 limit = TAD_LIMIT(reg);
2100 if (limit <= prv) {
2101 sprintf(msg, "Can't discover the memory channel");
2102 return -EINVAL;
2104 if (addr <= limit)
2105 break;
2106 prv = limit;
2108 if (n_tads == MAX_TAD) {
2109 sprintf(msg, "Can't discover the memory channel");
2110 return -EINVAL;
2113 ch_way = TAD_CH(reg) + 1;
2114 sck_way = TAD_SOCK(reg);
2116 if (ch_way == 3)
2117 idx = addr >> 6;
2118 else {
2119 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2120 if (pvt->is_chan_hash)
2121 idx = haswell_chan_hash(idx, addr);
2123 idx = idx % ch_way;
2126 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2128 switch (idx) {
2129 case 0:
2130 base_ch = TAD_TGT0(reg);
2131 break;
2132 case 1:
2133 base_ch = TAD_TGT1(reg);
2134 break;
2135 case 2:
2136 base_ch = TAD_TGT2(reg);
2137 break;
2138 case 3:
2139 base_ch = TAD_TGT3(reg);
2140 break;
2141 default:
2142 sprintf(msg, "Can't discover the TAD target");
2143 return -EINVAL;
2145 *channel_mask = 1 << base_ch;
2147 pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2149 if (pvt->mirror_mode == FULL_MIRRORING ||
2150 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2151 *channel_mask |= 1 << ((base_ch + 2) % 4);
2152 switch(ch_way) {
2153 case 2:
2154 case 4:
2155 sck_xch = (1 << sck_way) * (ch_way >> 1);
2156 break;
2157 default:
2158 sprintf(msg, "Invalid mirror set. Can't decode addr");
2159 return -EINVAL;
2162 pvt->is_cur_addr_mirrored = true;
2163 } else {
2164 sck_xch = (1 << sck_way) * ch_way;
2165 pvt->is_cur_addr_mirrored = false;
2168 if (pvt->is_lockstep)
2169 *channel_mask |= 1 << ((base_ch + 1) % 4);
2171 offset = TAD_OFFSET(tad_offset);
2173 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2174 n_tads,
2175 addr,
2176 limit,
2177 sck_way,
2178 ch_way,
2179 offset,
2180 idx,
2181 base_ch,
2182 *channel_mask);
2184 /* Calculate channel address */
2185 /* Remove the TAD offset */
2187 if (offset > addr) {
2188 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2189 offset, addr);
2190 return -EINVAL;
2193 ch_addr = addr - offset;
2194 ch_addr >>= (6 + shiftup);
2195 ch_addr /= sck_xch;
2196 ch_addr <<= (6 + shiftup);
2197 ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2200 * Step 3) Decode rank
2202 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2203 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2205 if (!IS_RIR_VALID(reg))
2206 continue;
2208 limit = pvt->info.rir_limit(reg);
2209 gb = div_u64_rem(limit >> 20, 1024, &mb);
2210 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2211 n_rir,
2212 gb, (mb*1000)/1024,
2213 limit,
2214 1 << RIR_WAY(reg));
2215 if (ch_addr <= limit)
2216 break;
2218 if (n_rir == MAX_RIR_RANGES) {
2219 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2220 ch_addr);
2221 return -EINVAL;
2223 rir_way = RIR_WAY(reg);
2225 if (pvt->is_close_pg)
2226 idx = (ch_addr >> 6);
2227 else
2228 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
2229 idx %= 1 << rir_way;
2231 pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2232 *rank = RIR_RNK_TGT(pvt->info.type, reg);
2234 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2235 n_rir,
2236 ch_addr,
2237 limit,
2238 rir_way,
2239 idx);
2241 return 0;
2244 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2245 const struct mce *m, u8 *socket,
2246 u8 *ha, long *channel_mask,
2247 char *msg)
2249 u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2250 struct mem_ctl_info *new_mci;
2251 struct sbridge_pvt *pvt;
2252 struct pci_dev *pci_ha;
2253 bool tad0;
2255 if (channel >= NUM_CHANNELS) {
2256 sprintf(msg, "Invalid channel 0x%x", channel);
2257 return -EINVAL;
2260 pvt = mci->pvt_info;
2261 if (!pvt->info.get_ha) {
2262 sprintf(msg, "No get_ha()");
2263 return -EINVAL;
2265 *ha = pvt->info.get_ha(m->bank);
2266 if (*ha != 0 && *ha != 1) {
2267 sprintf(msg, "Impossible bank %d", m->bank);
2268 return -EINVAL;
2271 *socket = m->socketid;
2272 new_mci = get_mci_for_node_id(*socket, *ha);
2273 if (!new_mci) {
2274 strcpy(msg, "mci socket got corrupted!");
2275 return -EINVAL;
2278 pvt = new_mci->pvt_info;
2279 pci_ha = pvt->pci_ha;
2280 pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2281 tad0 = m->addr <= TAD_LIMIT(reg);
2283 *channel_mask = 1 << channel;
2284 if (pvt->mirror_mode == FULL_MIRRORING ||
2285 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2286 *channel_mask |= 1 << ((channel + 2) % 4);
2287 pvt->is_cur_addr_mirrored = true;
2288 } else {
2289 pvt->is_cur_addr_mirrored = false;
2292 if (pvt->is_lockstep)
2293 *channel_mask |= 1 << ((channel + 1) % 4);
2295 return 0;
2298 /****************************************************************************
2299 Device initialization routines: put/get, init/exit
2300 ****************************************************************************/
2303 * sbridge_put_all_devices 'put' all the devices that we have
2304 * reserved via 'get'
2306 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2308 int i;
2310 edac_dbg(0, "\n");
2311 for (i = 0; i < sbridge_dev->n_devs; i++) {
2312 struct pci_dev *pdev = sbridge_dev->pdev[i];
2313 if (!pdev)
2314 continue;
2315 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2316 pdev->bus->number,
2317 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2318 pci_dev_put(pdev);
2322 static void sbridge_put_all_devices(void)
2324 struct sbridge_dev *sbridge_dev, *tmp;
2326 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2327 sbridge_put_devices(sbridge_dev);
2328 free_sbridge_dev(sbridge_dev);
2332 static int sbridge_get_onedevice(struct pci_dev **prev,
2333 u8 *num_mc,
2334 const struct pci_id_table *table,
2335 const unsigned devno,
2336 const int multi_bus)
2338 struct sbridge_dev *sbridge_dev = NULL;
2339 const struct pci_id_descr *dev_descr = &table->descr[devno];
2340 struct pci_dev *pdev = NULL;
2341 int seg = 0;
2342 u8 bus = 0;
2343 int i = 0;
2345 sbridge_printk(KERN_DEBUG,
2346 "Seeking for: PCI ID %04x:%04x\n",
2347 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2349 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2350 dev_descr->dev_id, *prev);
2352 if (!pdev) {
2353 if (*prev) {
2354 *prev = pdev;
2355 return 0;
2358 if (dev_descr->optional)
2359 return 0;
2361 /* if the HA wasn't found */
2362 if (devno == 0)
2363 return -ENODEV;
2365 sbridge_printk(KERN_INFO,
2366 "Device not found: %04x:%04x\n",
2367 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2369 /* End of list, leave */
2370 return -ENODEV;
2372 seg = pci_domain_nr(pdev->bus);
2373 bus = pdev->bus->number;
2375 next_imc:
2376 sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2377 multi_bus, sbridge_dev);
2378 if (!sbridge_dev) {
2379 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2380 if (dev_descr->dom == IMC1 && devno != 1) {
2381 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2382 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2383 pci_dev_put(pdev);
2384 return 0;
2387 if (dev_descr->dom == SOCK)
2388 goto out_imc;
2390 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2391 if (!sbridge_dev) {
2392 pci_dev_put(pdev);
2393 return -ENOMEM;
2395 (*num_mc)++;
2398 if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2399 sbridge_printk(KERN_ERR,
2400 "Duplicated device for %04x:%04x\n",
2401 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2402 pci_dev_put(pdev);
2403 return -ENODEV;
2406 sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2408 /* pdev belongs to more than one IMC, do extra gets */
2409 if (++i > 1)
2410 pci_dev_get(pdev);
2412 if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2413 goto next_imc;
2415 out_imc:
2416 /* Be sure that the device is enabled */
2417 if (unlikely(pci_enable_device(pdev) < 0)) {
2418 sbridge_printk(KERN_ERR,
2419 "Couldn't enable %04x:%04x\n",
2420 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2421 return -ENODEV;
2424 edac_dbg(0, "Detected %04x:%04x\n",
2425 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2428 * As stated on drivers/pci/search.c, the reference count for
2429 * @from is always decremented if it is not %NULL. So, as we need
2430 * to get all devices up to null, we need to do a get for the device
2432 pci_dev_get(pdev);
2434 *prev = pdev;
2436 return 0;
2440 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2441 * devices we want to reference for this driver.
2442 * @num_mc: pointer to the memory controllers count, to be incremented in case
2443 * of success.
2444 * @table: model specific table
2446 * returns 0 in case of success or error code
2448 static int sbridge_get_all_devices(u8 *num_mc,
2449 const struct pci_id_table *table)
2451 int i, rc;
2452 struct pci_dev *pdev = NULL;
2453 int allow_dups = 0;
2454 int multi_bus = 0;
2456 if (table->type == KNIGHTS_LANDING)
2457 allow_dups = multi_bus = 1;
2458 while (table && table->descr) {
2459 for (i = 0; i < table->n_devs_per_sock; i++) {
2460 if (!allow_dups || i == 0 ||
2461 table->descr[i].dev_id !=
2462 table->descr[i-1].dev_id) {
2463 pdev = NULL;
2465 do {
2466 rc = sbridge_get_onedevice(&pdev, num_mc,
2467 table, i, multi_bus);
2468 if (rc < 0) {
2469 if (i == 0) {
2470 i = table->n_devs_per_sock;
2471 break;
2473 sbridge_put_all_devices();
2474 return -ENODEV;
2476 } while (pdev && !allow_dups);
2478 table++;
2481 return 0;
2485 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2486 * the format: XXXa. So we can convert from a device to the corresponding
2487 * channel like this
2489 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2491 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2492 struct sbridge_dev *sbridge_dev)
2494 struct sbridge_pvt *pvt = mci->pvt_info;
2495 struct pci_dev *pdev;
2496 u8 saw_chan_mask = 0;
2497 int i;
2499 for (i = 0; i < sbridge_dev->n_devs; i++) {
2500 pdev = sbridge_dev->pdev[i];
2501 if (!pdev)
2502 continue;
2504 switch (pdev->device) {
2505 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2506 pvt->pci_sad0 = pdev;
2507 break;
2508 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2509 pvt->pci_sad1 = pdev;
2510 break;
2511 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2512 pvt->pci_br0 = pdev;
2513 break;
2514 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2515 pvt->pci_ha = pdev;
2516 break;
2517 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2518 pvt->pci_ta = pdev;
2519 break;
2520 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2521 pvt->pci_ras = pdev;
2522 break;
2523 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2524 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2525 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2526 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2528 int id = TAD_DEV_TO_CHAN(pdev->device);
2529 pvt->pci_tad[id] = pdev;
2530 saw_chan_mask |= 1 << id;
2532 break;
2533 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2534 pvt->pci_ddrio = pdev;
2535 break;
2536 default:
2537 goto error;
2540 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2541 pdev->vendor, pdev->device,
2542 sbridge_dev->bus,
2543 pdev);
2546 /* Check if everything were registered */
2547 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2548 !pvt->pci_ras || !pvt->pci_ta)
2549 goto enodev;
2551 if (saw_chan_mask != 0x0f)
2552 goto enodev;
2553 return 0;
2555 enodev:
2556 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2557 return -ENODEV;
2559 error:
2560 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2561 PCI_VENDOR_ID_INTEL, pdev->device);
2562 return -EINVAL;
2565 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2566 struct sbridge_dev *sbridge_dev)
2568 struct sbridge_pvt *pvt = mci->pvt_info;
2569 struct pci_dev *pdev;
2570 u8 saw_chan_mask = 0;
2571 int i;
2573 for (i = 0; i < sbridge_dev->n_devs; i++) {
2574 pdev = sbridge_dev->pdev[i];
2575 if (!pdev)
2576 continue;
2578 switch (pdev->device) {
2579 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2580 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2581 pvt->pci_ha = pdev;
2582 break;
2583 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2584 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2585 pvt->pci_ta = pdev;
2586 break;
2587 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2588 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2589 pvt->pci_ras = pdev;
2590 break;
2591 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2592 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2593 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2594 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2595 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2596 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2597 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2598 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2600 int id = TAD_DEV_TO_CHAN(pdev->device);
2601 pvt->pci_tad[id] = pdev;
2602 saw_chan_mask |= 1 << id;
2604 break;
2605 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2606 pvt->pci_ddrio = pdev;
2607 break;
2608 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2609 pvt->pci_ddrio = pdev;
2610 break;
2611 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2612 pvt->pci_sad0 = pdev;
2613 break;
2614 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2615 pvt->pci_br0 = pdev;
2616 break;
2617 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2618 pvt->pci_br1 = pdev;
2619 break;
2620 default:
2621 goto error;
2624 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2625 sbridge_dev->bus,
2626 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2627 pdev);
2630 /* Check if everything were registered */
2631 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2632 !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2633 goto enodev;
2635 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2636 saw_chan_mask != 0x03) /* -EP */
2637 goto enodev;
2638 return 0;
2640 enodev:
2641 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2642 return -ENODEV;
2644 error:
2645 sbridge_printk(KERN_ERR,
2646 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2647 pdev->device);
2648 return -EINVAL;
2651 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2652 struct sbridge_dev *sbridge_dev)
2654 struct sbridge_pvt *pvt = mci->pvt_info;
2655 struct pci_dev *pdev;
2656 u8 saw_chan_mask = 0;
2657 int i;
2659 /* there's only one device per system; not tied to any bus */
2660 if (pvt->info.pci_vtd == NULL)
2661 /* result will be checked later */
2662 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2663 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2664 NULL);
2666 for (i = 0; i < sbridge_dev->n_devs; i++) {
2667 pdev = sbridge_dev->pdev[i];
2668 if (!pdev)
2669 continue;
2671 switch (pdev->device) {
2672 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2673 pvt->pci_sad0 = pdev;
2674 break;
2675 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2676 pvt->pci_sad1 = pdev;
2677 break;
2678 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2679 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2680 pvt->pci_ha = pdev;
2681 break;
2682 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2683 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2684 pvt->pci_ta = pdev;
2685 break;
2686 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2687 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2688 pvt->pci_ras = pdev;
2689 break;
2690 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2691 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2692 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2693 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2694 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2695 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2696 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2697 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2699 int id = TAD_DEV_TO_CHAN(pdev->device);
2700 pvt->pci_tad[id] = pdev;
2701 saw_chan_mask |= 1 << id;
2703 break;
2704 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2705 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2706 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2707 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2708 if (!pvt->pci_ddrio)
2709 pvt->pci_ddrio = pdev;
2710 break;
2711 default:
2712 break;
2715 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2716 sbridge_dev->bus,
2717 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2718 pdev);
2721 /* Check if everything were registered */
2722 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2723 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2724 goto enodev;
2726 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2727 saw_chan_mask != 0x03) /* -EP */
2728 goto enodev;
2729 return 0;
2731 enodev:
2732 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2733 return -ENODEV;
2736 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2737 struct sbridge_dev *sbridge_dev)
2739 struct sbridge_pvt *pvt = mci->pvt_info;
2740 struct pci_dev *pdev;
2741 u8 saw_chan_mask = 0;
2742 int i;
2744 /* there's only one device per system; not tied to any bus */
2745 if (pvt->info.pci_vtd == NULL)
2746 /* result will be checked later */
2747 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2748 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2749 NULL);
2751 for (i = 0; i < sbridge_dev->n_devs; i++) {
2752 pdev = sbridge_dev->pdev[i];
2753 if (!pdev)
2754 continue;
2756 switch (pdev->device) {
2757 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2758 pvt->pci_sad0 = pdev;
2759 break;
2760 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2761 pvt->pci_sad1 = pdev;
2762 break;
2763 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2764 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2765 pvt->pci_ha = pdev;
2766 break;
2767 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2768 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2769 pvt->pci_ta = pdev;
2770 break;
2771 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2772 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2773 pvt->pci_ras = pdev;
2774 break;
2775 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2776 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2777 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2778 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2779 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2780 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2781 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2782 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2784 int id = TAD_DEV_TO_CHAN(pdev->device);
2785 pvt->pci_tad[id] = pdev;
2786 saw_chan_mask |= 1 << id;
2788 break;
2789 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2790 pvt->pci_ddrio = pdev;
2791 break;
2792 default:
2793 break;
2796 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2797 sbridge_dev->bus,
2798 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2799 pdev);
2802 /* Check if everything were registered */
2803 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2804 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2805 goto enodev;
2807 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2808 saw_chan_mask != 0x03) /* -EP */
2809 goto enodev;
2810 return 0;
2812 enodev:
2813 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2814 return -ENODEV;
2817 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2818 struct sbridge_dev *sbridge_dev)
2820 struct sbridge_pvt *pvt = mci->pvt_info;
2821 struct pci_dev *pdev;
2822 int dev, func;
2824 int i;
2825 int devidx;
2827 for (i = 0; i < sbridge_dev->n_devs; i++) {
2828 pdev = sbridge_dev->pdev[i];
2829 if (!pdev)
2830 continue;
2832 /* Extract PCI device and function. */
2833 dev = (pdev->devfn >> 3) & 0x1f;
2834 func = pdev->devfn & 0x7;
2836 switch (pdev->device) {
2837 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2838 if (dev == 8)
2839 pvt->knl.pci_mc0 = pdev;
2840 else if (dev == 9)
2841 pvt->knl.pci_mc1 = pdev;
2842 else {
2843 sbridge_printk(KERN_ERR,
2844 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2845 dev, func);
2846 continue;
2848 break;
2850 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2851 pvt->pci_sad0 = pdev;
2852 break;
2854 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2855 pvt->pci_sad1 = pdev;
2856 break;
2858 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2859 /* There are one of these per tile, and range from
2860 * 1.14.0 to 1.18.5.
2862 devidx = ((dev-14)*8)+func;
2864 if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2865 sbridge_printk(KERN_ERR,
2866 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2867 dev, func);
2868 continue;
2871 WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2873 pvt->knl.pci_cha[devidx] = pdev;
2874 break;
2876 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2877 devidx = -1;
2880 * MC0 channels 0-2 are device 9 function 2-4,
2881 * MC1 channels 3-5 are device 8 function 2-4.
2884 if (dev == 9)
2885 devidx = func-2;
2886 else if (dev == 8)
2887 devidx = 3 + (func-2);
2889 if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2890 sbridge_printk(KERN_ERR,
2891 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2892 dev, func);
2893 continue;
2896 WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2897 pvt->knl.pci_channel[devidx] = pdev;
2898 break;
2900 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2901 pvt->knl.pci_mc_info = pdev;
2902 break;
2904 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2905 pvt->pci_ta = pdev;
2906 break;
2908 default:
2909 sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2910 pdev->device);
2911 break;
2915 if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
2916 !pvt->pci_sad0 || !pvt->pci_sad1 ||
2917 !pvt->pci_ta) {
2918 goto enodev;
2921 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2922 if (!pvt->knl.pci_channel[i]) {
2923 sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2924 goto enodev;
2928 for (i = 0; i < KNL_MAX_CHAS; i++) {
2929 if (!pvt->knl.pci_cha[i]) {
2930 sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2931 goto enodev;
2935 return 0;
2937 enodev:
2938 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2939 return -ENODEV;
2942 /****************************************************************************
2943 Error check routines
2944 ****************************************************************************/
2947 * While Sandy Bridge has error count registers, SMI BIOS read values from
2948 * and resets the counters. So, they are not reliable for the OS to read
2949 * from them. So, we have no option but to just trust on whatever MCE is
2950 * telling us about the errors.
2952 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2953 const struct mce *m)
2955 struct mem_ctl_info *new_mci;
2956 struct sbridge_pvt *pvt = mci->pvt_info;
2957 enum hw_event_mc_err_type tp_event;
2958 char *type, *optype, msg[256];
2959 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2960 bool overflow = GET_BITFIELD(m->status, 62, 62);
2961 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2962 bool recoverable;
2963 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2964 u32 mscod = GET_BITFIELD(m->status, 16, 31);
2965 u32 errcode = GET_BITFIELD(m->status, 0, 15);
2966 u32 channel = GET_BITFIELD(m->status, 0, 3);
2967 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2969 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2970 * A value 6 is for cache line aligned address, a value 12 is for page
2971 * aligned address reported by patrol scrubber.
2973 u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2974 long channel_mask, first_channel;
2975 u8 rank = 0xff, socket, ha;
2976 int rc, dimm;
2977 char *area_type = "DRAM";
2979 if (pvt->info.type != SANDY_BRIDGE)
2980 recoverable = true;
2981 else
2982 recoverable = GET_BITFIELD(m->status, 56, 56);
2984 if (uncorrected_error) {
2985 core_err_cnt = 1;
2986 if (ripv) {
2987 type = "FATAL";
2988 tp_event = HW_EVENT_ERR_FATAL;
2989 } else {
2990 type = "NON_FATAL";
2991 tp_event = HW_EVENT_ERR_UNCORRECTED;
2993 } else {
2994 type = "CORRECTED";
2995 tp_event = HW_EVENT_ERR_CORRECTED;
2999 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3000 * memory errors should fit in this mask:
3001 * 000f 0000 1mmm cccc (binary)
3002 * where:
3003 * f = Correction Report Filtering Bit. If 1, subsequent errors
3004 * won't be shown
3005 * mmm = error type
3006 * cccc = channel
3007 * If the mask doesn't match, report an error to the parsing logic
3009 switch (optypenum) {
3010 case 0:
3011 optype = "generic undef request error";
3012 break;
3013 case 1:
3014 optype = "memory read error";
3015 break;
3016 case 2:
3017 optype = "memory write error";
3018 break;
3019 case 3:
3020 optype = "addr/cmd error";
3021 break;
3022 case 4:
3023 optype = "memory scrubbing error";
3024 break;
3025 default:
3026 optype = "reserved";
3027 break;
3030 if (pvt->info.type == KNIGHTS_LANDING) {
3031 if (channel == 14) {
3032 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3033 overflow ? " OVERFLOW" : "",
3034 (uncorrected_error && recoverable)
3035 ? " recoverable" : "",
3036 mscod, errcode,
3037 m->bank);
3038 } else {
3039 char A = *("A");
3042 * Reported channel is in range 0-2, so we can't map it
3043 * back to mc. To figure out mc we check machine check
3044 * bank register that reported this error.
3045 * bank15 means mc0 and bank16 means mc1.
3047 channel = knl_channel_remap(m->bank == 16, channel);
3048 channel_mask = 1 << channel;
3050 snprintf(msg, sizeof(msg),
3051 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3052 overflow ? " OVERFLOW" : "",
3053 (uncorrected_error && recoverable)
3054 ? " recoverable" : " ",
3055 mscod, errcode, channel, A + channel);
3056 edac_mc_handle_error(tp_event, mci, core_err_cnt,
3057 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3058 channel, 0, -1,
3059 optype, msg);
3061 return;
3062 } else if (lsb < 12) {
3063 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3064 &channel_mask, &rank,
3065 &area_type, msg);
3066 } else {
3067 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3068 &channel_mask, msg);
3071 if (rc < 0)
3072 goto err_parsing;
3073 new_mci = get_mci_for_node_id(socket, ha);
3074 if (!new_mci) {
3075 strcpy(msg, "Error: socket got corrupted!");
3076 goto err_parsing;
3078 mci = new_mci;
3079 pvt = mci->pvt_info;
3081 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3083 if (rank == 0xff)
3084 dimm = -1;
3085 else if (rank < 4)
3086 dimm = 0;
3087 else if (rank < 8)
3088 dimm = 1;
3089 else
3090 dimm = 2;
3093 * FIXME: On some memory configurations (mirror, lockstep), the
3094 * Memory Controller can't point the error to a single DIMM. The
3095 * EDAC core should be handling the channel mask, in order to point
3096 * to the group of dimm's where the error may be happening.
3098 if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3099 channel = first_channel;
3101 snprintf(msg, sizeof(msg),
3102 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3103 overflow ? " OVERFLOW" : "",
3104 (uncorrected_error && recoverable) ? " recoverable" : "",
3105 area_type,
3106 mscod, errcode,
3107 socket, ha,
3108 channel_mask,
3109 rank);
3111 edac_dbg(0, "%s\n", msg);
3113 /* FIXME: need support for channel mask */
3115 if (channel == CHANNEL_UNSPECIFIED)
3116 channel = -1;
3118 /* Call the helper to output message */
3119 edac_mc_handle_error(tp_event, mci, core_err_cnt,
3120 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3121 channel, dimm, -1,
3122 optype, msg);
3123 return;
3124 err_parsing:
3125 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3126 -1, -1, -1,
3127 msg, "");
3132 * Check that logging is enabled and that this is the right type
3133 * of error for us to handle.
3135 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3136 void *data)
3138 struct mce *mce = (struct mce *)data;
3139 struct mem_ctl_info *mci;
3140 char *type;
3142 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3143 return NOTIFY_DONE;
3146 * Just let mcelog handle it if the error is
3147 * outside the memory controller. A memory error
3148 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3149 * bit 12 has an special meaning.
3151 if ((mce->status & 0xefff) >> 7 != 1)
3152 return NOTIFY_DONE;
3154 /* Check ADDRV bit in STATUS */
3155 if (!GET_BITFIELD(mce->status, 58, 58))
3156 return NOTIFY_DONE;
3158 /* Check MISCV bit in STATUS */
3159 if (!GET_BITFIELD(mce->status, 59, 59))
3160 return NOTIFY_DONE;
3162 /* Check address type in MISC (physical address only) */
3163 if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3164 return NOTIFY_DONE;
3166 mci = get_mci_for_node_id(mce->socketid, IMC0);
3167 if (!mci)
3168 return NOTIFY_DONE;
3170 if (mce->mcgstatus & MCG_STATUS_MCIP)
3171 type = "Exception";
3172 else
3173 type = "Event";
3175 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3177 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3178 "Bank %d: %016Lx\n", mce->extcpu, type,
3179 mce->mcgstatus, mce->bank, mce->status);
3180 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3181 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3182 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3184 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3185 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3186 mce->time, mce->socketid, mce->apicid);
3188 sbridge_mce_output_error(mci, mce);
3190 /* Advice mcelog that the error were handled */
3191 return NOTIFY_STOP;
3194 static struct notifier_block sbridge_mce_dec = {
3195 .notifier_call = sbridge_mce_check_error,
3196 .priority = MCE_PRIO_EDAC,
3199 /****************************************************************************
3200 EDAC register/unregister logic
3201 ****************************************************************************/
3203 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3205 struct mem_ctl_info *mci = sbridge_dev->mci;
3206 struct sbridge_pvt *pvt;
3208 if (unlikely(!mci || !mci->pvt_info)) {
3209 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3211 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3212 return;
3215 pvt = mci->pvt_info;
3217 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3218 mci, &sbridge_dev->pdev[0]->dev);
3220 /* Remove MC sysfs nodes */
3221 edac_mc_del_mc(mci->pdev);
3223 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3224 kfree(mci->ctl_name);
3225 edac_mc_free(mci);
3226 sbridge_dev->mci = NULL;
3229 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3231 struct mem_ctl_info *mci;
3232 struct edac_mc_layer layers[2];
3233 struct sbridge_pvt *pvt;
3234 struct pci_dev *pdev = sbridge_dev->pdev[0];
3235 int rc;
3237 /* allocate a new MC control structure */
3238 layers[0].type = EDAC_MC_LAYER_CHANNEL;
3239 layers[0].size = type == KNIGHTS_LANDING ?
3240 KNL_MAX_CHANNELS : NUM_CHANNELS;
3241 layers[0].is_virt_csrow = false;
3242 layers[1].type = EDAC_MC_LAYER_SLOT;
3243 layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3244 layers[1].is_virt_csrow = true;
3245 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3246 sizeof(*pvt));
3248 if (unlikely(!mci))
3249 return -ENOMEM;
3251 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3252 mci, &pdev->dev);
3254 pvt = mci->pvt_info;
3255 memset(pvt, 0, sizeof(*pvt));
3257 /* Associate sbridge_dev and mci for future usage */
3258 pvt->sbridge_dev = sbridge_dev;
3259 sbridge_dev->mci = mci;
3261 mci->mtype_cap = type == KNIGHTS_LANDING ?
3262 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3263 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3264 mci->edac_cap = EDAC_FLAG_NONE;
3265 mci->mod_name = EDAC_MOD_STR;
3266 mci->dev_name = pci_name(pdev);
3267 mci->ctl_page_to_phys = NULL;
3269 pvt->info.type = type;
3270 switch (type) {
3271 case IVY_BRIDGE:
3272 pvt->info.rankcfgr = IB_RANK_CFG_A;
3273 pvt->info.get_tolm = ibridge_get_tolm;
3274 pvt->info.get_tohm = ibridge_get_tohm;
3275 pvt->info.dram_rule = ibridge_dram_rule;
3276 pvt->info.get_memory_type = get_memory_type;
3277 pvt->info.get_node_id = get_node_id;
3278 pvt->info.get_ha = ibridge_get_ha;
3279 pvt->info.rir_limit = rir_limit;
3280 pvt->info.sad_limit = sad_limit;
3281 pvt->info.interleave_mode = interleave_mode;
3282 pvt->info.dram_attr = dram_attr;
3283 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3284 pvt->info.interleave_list = ibridge_interleave_list;
3285 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3286 pvt->info.get_width = ibridge_get_width;
3288 /* Store pci devices at mci for faster access */
3289 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3290 if (unlikely(rc < 0))
3291 goto fail0;
3292 get_source_id(mci);
3293 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3294 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3295 break;
3296 case SANDY_BRIDGE:
3297 pvt->info.rankcfgr = SB_RANK_CFG_A;
3298 pvt->info.get_tolm = sbridge_get_tolm;
3299 pvt->info.get_tohm = sbridge_get_tohm;
3300 pvt->info.dram_rule = sbridge_dram_rule;
3301 pvt->info.get_memory_type = get_memory_type;
3302 pvt->info.get_node_id = get_node_id;
3303 pvt->info.get_ha = sbridge_get_ha;
3304 pvt->info.rir_limit = rir_limit;
3305 pvt->info.sad_limit = sad_limit;
3306 pvt->info.interleave_mode = interleave_mode;
3307 pvt->info.dram_attr = dram_attr;
3308 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3309 pvt->info.interleave_list = sbridge_interleave_list;
3310 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3311 pvt->info.get_width = sbridge_get_width;
3313 /* Store pci devices at mci for faster access */
3314 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3315 if (unlikely(rc < 0))
3316 goto fail0;
3317 get_source_id(mci);
3318 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3319 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3320 break;
3321 case HASWELL:
3322 /* rankcfgr isn't used */
3323 pvt->info.get_tolm = haswell_get_tolm;
3324 pvt->info.get_tohm = haswell_get_tohm;
3325 pvt->info.dram_rule = ibridge_dram_rule;
3326 pvt->info.get_memory_type = haswell_get_memory_type;
3327 pvt->info.get_node_id = haswell_get_node_id;
3328 pvt->info.get_ha = ibridge_get_ha;
3329 pvt->info.rir_limit = haswell_rir_limit;
3330 pvt->info.sad_limit = sad_limit;
3331 pvt->info.interleave_mode = interleave_mode;
3332 pvt->info.dram_attr = dram_attr;
3333 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3334 pvt->info.interleave_list = ibridge_interleave_list;
3335 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3336 pvt->info.get_width = ibridge_get_width;
3338 /* Store pci devices at mci for faster access */
3339 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3340 if (unlikely(rc < 0))
3341 goto fail0;
3342 get_source_id(mci);
3343 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3344 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3345 break;
3346 case BROADWELL:
3347 /* rankcfgr isn't used */
3348 pvt->info.get_tolm = haswell_get_tolm;
3349 pvt->info.get_tohm = haswell_get_tohm;
3350 pvt->info.dram_rule = ibridge_dram_rule;
3351 pvt->info.get_memory_type = haswell_get_memory_type;
3352 pvt->info.get_node_id = haswell_get_node_id;
3353 pvt->info.get_ha = ibridge_get_ha;
3354 pvt->info.rir_limit = haswell_rir_limit;
3355 pvt->info.sad_limit = sad_limit;
3356 pvt->info.interleave_mode = interleave_mode;
3357 pvt->info.dram_attr = dram_attr;
3358 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3359 pvt->info.interleave_list = ibridge_interleave_list;
3360 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3361 pvt->info.get_width = broadwell_get_width;
3363 /* Store pci devices at mci for faster access */
3364 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3365 if (unlikely(rc < 0))
3366 goto fail0;
3367 get_source_id(mci);
3368 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3369 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3370 break;
3371 case KNIGHTS_LANDING:
3372 /* pvt->info.rankcfgr == ??? */
3373 pvt->info.get_tolm = knl_get_tolm;
3374 pvt->info.get_tohm = knl_get_tohm;
3375 pvt->info.dram_rule = knl_dram_rule;
3376 pvt->info.get_memory_type = knl_get_memory_type;
3377 pvt->info.get_node_id = knl_get_node_id;
3378 pvt->info.get_ha = knl_get_ha;
3379 pvt->info.rir_limit = NULL;
3380 pvt->info.sad_limit = knl_sad_limit;
3381 pvt->info.interleave_mode = knl_interleave_mode;
3382 pvt->info.dram_attr = dram_attr_knl;
3383 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3384 pvt->info.interleave_list = knl_interleave_list;
3385 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3386 pvt->info.get_width = knl_get_width;
3388 rc = knl_mci_bind_devs(mci, sbridge_dev);
3389 if (unlikely(rc < 0))
3390 goto fail0;
3391 get_source_id(mci);
3392 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3393 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3394 break;
3397 if (!mci->ctl_name) {
3398 rc = -ENOMEM;
3399 goto fail0;
3402 /* Get dimm basic config and the memory layout */
3403 rc = get_dimm_config(mci);
3404 if (rc < 0) {
3405 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3406 goto fail;
3408 get_memory_layout(mci);
3410 /* record ptr to the generic device */
3411 mci->pdev = &pdev->dev;
3413 /* add this new MC control structure to EDAC's list of MCs */
3414 if (unlikely(edac_mc_add_mc(mci))) {
3415 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3416 rc = -EINVAL;
3417 goto fail;
3420 return 0;
3422 fail:
3423 kfree(mci->ctl_name);
3424 fail0:
3425 edac_mc_free(mci);
3426 sbridge_dev->mci = NULL;
3427 return rc;
3430 static const struct x86_cpu_id sbridge_cpuids[] = {
3431 INTEL_CPU_FAM6(SANDYBRIDGE_X, pci_dev_descr_sbridge_table),
3432 INTEL_CPU_FAM6(IVYBRIDGE_X, pci_dev_descr_ibridge_table),
3433 INTEL_CPU_FAM6(HASWELL_X, pci_dev_descr_haswell_table),
3434 INTEL_CPU_FAM6(BROADWELL_X, pci_dev_descr_broadwell_table),
3435 INTEL_CPU_FAM6(BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3436 INTEL_CPU_FAM6(XEON_PHI_KNL, pci_dev_descr_knl_table),
3437 INTEL_CPU_FAM6(XEON_PHI_KNM, pci_dev_descr_knl_table),
3440 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3443 * sbridge_probe Get all devices and register memory controllers
3444 * present.
3445 * return:
3446 * 0 for FOUND a device
3447 * < 0 for error code
3450 static int sbridge_probe(const struct x86_cpu_id *id)
3452 int rc = -ENODEV;
3453 u8 mc, num_mc = 0;
3454 struct sbridge_dev *sbridge_dev;
3455 struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3457 /* get the pci devices we want to reserve for our use */
3458 rc = sbridge_get_all_devices(&num_mc, ptable);
3460 if (unlikely(rc < 0)) {
3461 edac_dbg(0, "couldn't get all devices\n");
3462 goto fail0;
3465 mc = 0;
3467 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3468 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3469 mc, mc + 1, num_mc);
3471 sbridge_dev->mc = mc++;
3472 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3473 if (unlikely(rc < 0))
3474 goto fail1;
3477 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3479 return 0;
3481 fail1:
3482 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3483 sbridge_unregister_mci(sbridge_dev);
3485 sbridge_put_all_devices();
3486 fail0:
3487 return rc;
3491 * sbridge_remove cleanup
3494 static void sbridge_remove(void)
3496 struct sbridge_dev *sbridge_dev;
3498 edac_dbg(0, "\n");
3500 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3501 sbridge_unregister_mci(sbridge_dev);
3503 /* Release PCI resources */
3504 sbridge_put_all_devices();
3508 * sbridge_init Module entry function
3509 * Try to initialize this module for its devices
3511 static int __init sbridge_init(void)
3513 const struct x86_cpu_id *id;
3514 const char *owner;
3515 int rc;
3517 edac_dbg(2, "\n");
3519 owner = edac_get_owner();
3520 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3521 return -EBUSY;
3523 id = x86_match_cpu(sbridge_cpuids);
3524 if (!id)
3525 return -ENODEV;
3527 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3528 opstate_init();
3530 rc = sbridge_probe(id);
3532 if (rc >= 0) {
3533 mce_register_decode_chain(&sbridge_mce_dec);
3534 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3535 sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3536 return 0;
3539 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3540 rc);
3542 return rc;
3546 * sbridge_exit() Module exit function
3547 * Unregister the driver
3549 static void __exit sbridge_exit(void)
3551 edac_dbg(2, "\n");
3552 sbridge_remove();
3553 mce_unregister_decode_chain(&sbridge_mce_dec);
3556 module_init(sbridge_init);
3557 module_exit(sbridge_exit);
3559 module_param(edac_op_state, int, 0444);
3560 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3562 MODULE_LICENSE("GPL");
3563 MODULE_AUTHOR("Mauro Carvalho Chehab");
3564 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3565 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3566 SBRIDGE_REVISION);