3 * Copyright (c) 2009, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/kernel.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
34 #include "hyperv_vmbus.h"
36 #define VMBUS_PKT_TRAILER 8
39 * When we write to the ring buffer, check if the host needs to
40 * be signaled. Here is the details of this protocol:
42 * 1. The host guarantees that while it is draining the
43 * ring buffer, it will set the interrupt_mask to
44 * indicate it does not need to be interrupted when
47 * 2. The host guarantees that it will completely drain
48 * the ring buffer before exiting the read loop. Further,
49 * once the ring buffer is empty, it will clear the
50 * interrupt_mask and re-check to see if new data has
54 * It looks like Windows hosts have logic to deal with DOS attacks that
55 * can be triggered if it receives interrupts when it is not expecting
56 * the interrupt. The host expects interrupts only when the ring
57 * transitions from empty to non-empty (or full to non full on the guest
59 * So, base the signaling decision solely on the ring state until the
60 * host logic is fixed.
63 static void hv_signal_on_write(u32 old_write
, struct vmbus_channel
*channel
)
65 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
68 if (READ_ONCE(rbi
->ring_buffer
->interrupt_mask
))
71 /* check interrupt_mask before read_index */
74 * This is the only case we need to signal when the
75 * ring transitions from being empty to non-empty.
77 if (old_write
== READ_ONCE(rbi
->ring_buffer
->read_index
)) {
78 ++channel
->intr_out_empty
;
79 vmbus_setevent(channel
);
83 /* Get the next write location for the specified ring buffer. */
85 hv_get_next_write_location(struct hv_ring_buffer_info
*ring_info
)
87 u32 next
= ring_info
->ring_buffer
->write_index
;
92 /* Set the next write location for the specified ring buffer. */
94 hv_set_next_write_location(struct hv_ring_buffer_info
*ring_info
,
95 u32 next_write_location
)
97 ring_info
->ring_buffer
->write_index
= next_write_location
;
100 /* Set the next read location for the specified ring buffer. */
102 hv_set_next_read_location(struct hv_ring_buffer_info
*ring_info
,
103 u32 next_read_location
)
105 ring_info
->ring_buffer
->read_index
= next_read_location
;
106 ring_info
->priv_read_index
= next_read_location
;
109 /* Get the size of the ring buffer. */
111 hv_get_ring_buffersize(const struct hv_ring_buffer_info
*ring_info
)
113 return ring_info
->ring_datasize
;
116 /* Get the read and write indices as u64 of the specified ring buffer. */
118 hv_get_ring_bufferindices(struct hv_ring_buffer_info
*ring_info
)
120 return (u64
)ring_info
->ring_buffer
->write_index
<< 32;
124 * Helper routine to copy from source to ring buffer.
125 * Assume there is enough room. Handles wrap-around in dest case only!!
127 static u32
hv_copyto_ringbuffer(
128 struct hv_ring_buffer_info
*ring_info
,
129 u32 start_write_offset
,
133 void *ring_buffer
= hv_get_ring_buffer(ring_info
);
134 u32 ring_buffer_size
= hv_get_ring_buffersize(ring_info
);
136 memcpy(ring_buffer
+ start_write_offset
, src
, srclen
);
138 start_write_offset
+= srclen
;
139 if (start_write_offset
>= ring_buffer_size
)
140 start_write_offset
-= ring_buffer_size
;
142 return start_write_offset
;
147 * hv_get_ringbuffer_availbytes()
149 * Get number of bytes available to read and to write to
150 * for the specified ring buffer
153 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info
*rbi
,
154 u32
*read
, u32
*write
)
156 u32 read_loc
, write_loc
, dsize
;
158 /* Capture the read/write indices before they changed */
159 read_loc
= READ_ONCE(rbi
->ring_buffer
->read_index
);
160 write_loc
= READ_ONCE(rbi
->ring_buffer
->write_index
);
161 dsize
= rbi
->ring_datasize
;
163 *write
= write_loc
>= read_loc
? dsize
- (write_loc
- read_loc
) :
164 read_loc
- write_loc
;
165 *read
= dsize
- *write
;
168 /* Get various debug metrics for the specified ring buffer. */
169 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info
*ring_info
,
170 struct hv_ring_buffer_debug_info
*debug_info
)
172 u32 bytes_avail_towrite
;
173 u32 bytes_avail_toread
;
175 mutex_lock(&ring_info
->ring_buffer_mutex
);
177 if (!ring_info
->ring_buffer
) {
178 mutex_unlock(&ring_info
->ring_buffer_mutex
);
182 hv_get_ringbuffer_availbytes(ring_info
,
184 &bytes_avail_towrite
);
185 debug_info
->bytes_avail_toread
= bytes_avail_toread
;
186 debug_info
->bytes_avail_towrite
= bytes_avail_towrite
;
187 debug_info
->current_read_index
= ring_info
->ring_buffer
->read_index
;
188 debug_info
->current_write_index
= ring_info
->ring_buffer
->write_index
;
189 debug_info
->current_interrupt_mask
190 = ring_info
->ring_buffer
->interrupt_mask
;
191 mutex_unlock(&ring_info
->ring_buffer_mutex
);
195 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo
);
197 /* Initialize a channel's ring buffer info mutex locks */
198 void hv_ringbuffer_pre_init(struct vmbus_channel
*channel
)
200 mutex_init(&channel
->inbound
.ring_buffer_mutex
);
201 mutex_init(&channel
->outbound
.ring_buffer_mutex
);
204 /* Initialize the ring buffer. */
205 int hv_ringbuffer_init(struct hv_ring_buffer_info
*ring_info
,
206 struct page
*pages
, u32 page_cnt
)
209 struct page
**pages_wraparound
;
211 BUILD_BUG_ON((sizeof(struct hv_ring_buffer
) != PAGE_SIZE
));
214 * First page holds struct hv_ring_buffer, do wraparound mapping for
217 pages_wraparound
= kcalloc(page_cnt
* 2 - 1, sizeof(struct page
*),
219 if (!pages_wraparound
)
222 pages_wraparound
[0] = pages
;
223 for (i
= 0; i
< 2 * (page_cnt
- 1); i
++)
224 pages_wraparound
[i
+ 1] = &pages
[i
% (page_cnt
- 1) + 1];
226 ring_info
->ring_buffer
= (struct hv_ring_buffer
*)
227 vmap(pages_wraparound
, page_cnt
* 2 - 1, VM_MAP
, PAGE_KERNEL
);
229 kfree(pages_wraparound
);
232 if (!ring_info
->ring_buffer
)
235 ring_info
->ring_buffer
->read_index
=
236 ring_info
->ring_buffer
->write_index
= 0;
238 /* Set the feature bit for enabling flow control. */
239 ring_info
->ring_buffer
->feature_bits
.value
= 1;
241 ring_info
->ring_size
= page_cnt
<< PAGE_SHIFT
;
242 ring_info
->ring_size_div10_reciprocal
=
243 reciprocal_value(ring_info
->ring_size
/ 10);
244 ring_info
->ring_datasize
= ring_info
->ring_size
-
245 sizeof(struct hv_ring_buffer
);
246 ring_info
->priv_read_index
= 0;
248 spin_lock_init(&ring_info
->ring_lock
);
253 /* Cleanup the ring buffer. */
254 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info
*ring_info
)
256 mutex_lock(&ring_info
->ring_buffer_mutex
);
257 vunmap(ring_info
->ring_buffer
);
258 ring_info
->ring_buffer
= NULL
;
259 mutex_unlock(&ring_info
->ring_buffer_mutex
);
262 /* Write to the ring buffer. */
263 int hv_ringbuffer_write(struct vmbus_channel
*channel
,
264 const struct kvec
*kv_list
, u32 kv_count
)
267 u32 bytes_avail_towrite
;
268 u32 totalbytes_towrite
= sizeof(u64
);
269 u32 next_write_location
;
273 struct hv_ring_buffer_info
*outring_info
= &channel
->outbound
;
275 if (channel
->rescind
)
278 for (i
= 0; i
< kv_count
; i
++)
279 totalbytes_towrite
+= kv_list
[i
].iov_len
;
281 spin_lock_irqsave(&outring_info
->ring_lock
, flags
);
283 bytes_avail_towrite
= hv_get_bytes_to_write(outring_info
);
286 * If there is only room for the packet, assume it is full.
287 * Otherwise, the next time around, we think the ring buffer
288 * is empty since the read index == write index.
290 if (bytes_avail_towrite
<= totalbytes_towrite
) {
291 ++channel
->out_full_total
;
293 if (!channel
->out_full_flag
) {
294 ++channel
->out_full_first
;
295 channel
->out_full_flag
= true;
298 spin_unlock_irqrestore(&outring_info
->ring_lock
, flags
);
302 channel
->out_full_flag
= false;
304 /* Write to the ring buffer */
305 next_write_location
= hv_get_next_write_location(outring_info
);
307 old_write
= next_write_location
;
309 for (i
= 0; i
< kv_count
; i
++) {
310 next_write_location
= hv_copyto_ringbuffer(outring_info
,
316 /* Set previous packet start */
317 prev_indices
= hv_get_ring_bufferindices(outring_info
);
319 next_write_location
= hv_copyto_ringbuffer(outring_info
,
324 /* Issue a full memory barrier before updating the write index */
327 /* Now, update the write location */
328 hv_set_next_write_location(outring_info
, next_write_location
);
331 spin_unlock_irqrestore(&outring_info
->ring_lock
, flags
);
333 hv_signal_on_write(old_write
, channel
);
335 if (channel
->rescind
)
341 int hv_ringbuffer_read(struct vmbus_channel
*channel
,
342 void *buffer
, u32 buflen
, u32
*buffer_actual_len
,
343 u64
*requestid
, bool raw
)
345 struct vmpacket_descriptor
*desc
;
346 u32 packetlen
, offset
;
348 if (unlikely(buflen
== 0))
351 *buffer_actual_len
= 0;
354 /* Make sure there is something to read */
355 desc
= hv_pkt_iter_first(channel
);
358 * No error is set when there is even no header, drivers are
359 * supposed to analyze buffer_actual_len.
364 offset
= raw
? 0 : (desc
->offset8
<< 3);
365 packetlen
= (desc
->len8
<< 3) - offset
;
366 *buffer_actual_len
= packetlen
;
367 *requestid
= desc
->trans_id
;
369 if (unlikely(packetlen
> buflen
))
372 /* since ring is double mapped, only one copy is necessary */
373 memcpy(buffer
, (const char *)desc
+ offset
, packetlen
);
375 /* Advance ring index to next packet descriptor */
376 __hv_pkt_iter_next(channel
, desc
);
378 /* Notify host of update */
379 hv_pkt_iter_close(channel
);
385 * Determine number of bytes available in ring buffer after
386 * the current iterator (priv_read_index) location.
388 * This is similar to hv_get_bytes_to_read but with private
389 * read index instead.
391 static u32
hv_pkt_iter_avail(const struct hv_ring_buffer_info
*rbi
)
393 u32 priv_read_loc
= rbi
->priv_read_index
;
394 u32 write_loc
= READ_ONCE(rbi
->ring_buffer
->write_index
);
396 if (write_loc
>= priv_read_loc
)
397 return write_loc
- priv_read_loc
;
399 return (rbi
->ring_datasize
- priv_read_loc
) + write_loc
;
403 * Get first vmbus packet from ring buffer after read_index
405 * If ring buffer is empty, returns NULL and no other action needed.
407 struct vmpacket_descriptor
*hv_pkt_iter_first(struct vmbus_channel
*channel
)
409 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
410 struct vmpacket_descriptor
*desc
;
412 if (hv_pkt_iter_avail(rbi
) < sizeof(struct vmpacket_descriptor
))
415 desc
= hv_get_ring_buffer(rbi
) + rbi
->priv_read_index
;
417 prefetch((char *)desc
+ (desc
->len8
<< 3));
421 EXPORT_SYMBOL_GPL(hv_pkt_iter_first
);
424 * Get next vmbus packet from ring buffer.
426 * Advances the current location (priv_read_index) and checks for more
427 * data. If the end of the ring buffer is reached, then return NULL.
429 struct vmpacket_descriptor
*
430 __hv_pkt_iter_next(struct vmbus_channel
*channel
,
431 const struct vmpacket_descriptor
*desc
)
433 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
434 u32 packetlen
= desc
->len8
<< 3;
435 u32 dsize
= rbi
->ring_datasize
;
437 /* bump offset to next potential packet */
438 rbi
->priv_read_index
+= packetlen
+ VMBUS_PKT_TRAILER
;
439 if (rbi
->priv_read_index
>= dsize
)
440 rbi
->priv_read_index
-= dsize
;
443 return hv_pkt_iter_first(channel
);
445 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next
);
447 /* How many bytes were read in this iterator cycle */
448 static u32
hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info
*rbi
,
449 u32 start_read_index
)
451 if (rbi
->priv_read_index
>= start_read_index
)
452 return rbi
->priv_read_index
- start_read_index
;
454 return rbi
->ring_datasize
- start_read_index
+
455 rbi
->priv_read_index
;
459 * Update host ring buffer after iterating over packets. If the host has
460 * stopped queuing new entries because it found the ring buffer full, and
461 * sufficient space is being freed up, signal the host. But be careful to
462 * only signal the host when necessary, both for performance reasons and
463 * because Hyper-V protects itself by throttling guests that signal
466 * Determining when to signal is tricky. There are three key data inputs
467 * that must be handled in this order to avoid race conditions:
469 * 1. Update the read_index
470 * 2. Read the pending_send_sz
471 * 3. Read the current write_index
473 * The interrupt_mask is not used to determine when to signal. The
474 * interrupt_mask is used only on the guest->host ring buffer when
475 * sending requests to the host. The host does not use it on the host->
476 * guest ring buffer to indicate whether it should be signaled.
478 void hv_pkt_iter_close(struct vmbus_channel
*channel
)
480 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
481 u32 curr_write_sz
, pending_sz
, bytes_read
, start_read_index
;
484 * Make sure all reads are done before we update the read index since
485 * the writer may start writing to the read area once the read index
489 start_read_index
= rbi
->ring_buffer
->read_index
;
490 rbi
->ring_buffer
->read_index
= rbi
->priv_read_index
;
493 * Older versions of Hyper-V (before WS2102 and Win8) do not
494 * implement pending_send_sz and simply poll if the host->guest
495 * ring buffer is full. No signaling is needed or expected.
497 if (!rbi
->ring_buffer
->feature_bits
.feat_pending_send_sz
)
501 * Issue a full memory barrier before making the signaling decision.
502 * If reading pending_send_sz were to be reordered and happen
503 * before we commit the new read_index, a race could occur. If the
504 * host were to set the pending_send_sz after we have sampled
505 * pending_send_sz, and the ring buffer blocks before we commit the
506 * read index, we could miss sending the interrupt. Issue a full
507 * memory barrier to address this.
512 * If the pending_send_sz is zero, then the ring buffer is not
513 * blocked and there is no need to signal. This is far by the
514 * most common case, so exit quickly for best performance.
516 pending_sz
= READ_ONCE(rbi
->ring_buffer
->pending_send_sz
);
521 * Ensure the read of write_index in hv_get_bytes_to_write()
522 * happens after the read of pending_send_sz.
525 curr_write_sz
= hv_get_bytes_to_write(rbi
);
526 bytes_read
= hv_pkt_iter_bytes_read(rbi
, start_read_index
);
529 * We want to signal the host only if we're transitioning
530 * from a "not enough free space" state to a "enough free
531 * space" state. For example, it's possible that this function
532 * could run and free up enough space to signal the host, and then
533 * run again and free up additional space before the host has a
534 * chance to clear the pending_send_sz. The 2nd invocation would
535 * be a null transition from "enough free space" to "enough free
536 * space", which doesn't warrant a signal.
538 * Exactly filling the ring buffer is treated as "not enough
539 * space". The ring buffer always must have at least one byte
540 * empty so the empty and full conditions are distinguishable.
541 * hv_get_bytes_to_write() doesn't fully tell the truth in
544 * So first check if we were in the "enough free space" state
545 * before we began the iteration. If so, the host was not
546 * blocked, and there's no need to signal.
548 if (curr_write_sz
- bytes_read
> pending_sz
)
552 * Similarly, if the new state is "not enough space", then
553 * there's no need to signal.
555 if (curr_write_sz
<= pending_sz
)
558 ++channel
->intr_in_full
;
559 vmbus_setevent(channel
);
561 EXPORT_SYMBOL_GPL(hv_pkt_iter_close
);