2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/writeback.h>
71 #include <linux/buffer_head.h> /* for invalidate_bdev() */
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
77 #include <asm/uaccess.h>
79 static LIST_HEAD(loop_devices
);
80 static DEFINE_MUTEX(loop_devices_mutex
);
83 static int part_shift
;
88 static int transfer_none(struct loop_device
*lo
, int cmd
,
89 struct page
*raw_page
, unsigned raw_off
,
90 struct page
*loop_page
, unsigned loop_off
,
91 int size
, sector_t real_block
)
93 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
94 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
97 memcpy(loop_buf
, raw_buf
, size
);
99 memcpy(raw_buf
, loop_buf
, size
);
101 kunmap_atomic(raw_buf
, KM_USER0
);
102 kunmap_atomic(loop_buf
, KM_USER1
);
107 static int transfer_xor(struct loop_device
*lo
, int cmd
,
108 struct page
*raw_page
, unsigned raw_off
,
109 struct page
*loop_page
, unsigned loop_off
,
110 int size
, sector_t real_block
)
112 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
113 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
114 char *in
, *out
, *key
;
125 key
= lo
->lo_encrypt_key
;
126 keysize
= lo
->lo_encrypt_key_size
;
127 for (i
= 0; i
< size
; i
++)
128 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
130 kunmap_atomic(raw_buf
, KM_USER0
);
131 kunmap_atomic(loop_buf
, KM_USER1
);
136 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
138 if (unlikely(info
->lo_encrypt_key_size
<= 0))
143 static struct loop_func_table none_funcs
= {
144 .number
= LO_CRYPT_NONE
,
145 .transfer
= transfer_none
,
148 static struct loop_func_table xor_funcs
= {
149 .number
= LO_CRYPT_XOR
,
150 .transfer
= transfer_xor
,
154 /* xfer_funcs[0] is special - its release function is never called */
155 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
160 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
162 loff_t size
, offset
, loopsize
;
164 /* Compute loopsize in bytes */
165 size
= i_size_read(file
->f_mapping
->host
);
166 offset
= lo
->lo_offset
;
167 loopsize
= size
- offset
;
168 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
169 loopsize
= lo
->lo_sizelimit
;
172 * Unfortunately, if we want to do I/O on the device,
173 * the number of 512-byte sectors has to fit into a sector_t.
175 return loopsize
>> 9;
179 figure_loop_size(struct loop_device
*lo
)
181 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
182 sector_t x
= (sector_t
)size
;
184 if (unlikely((loff_t
)x
!= size
))
187 set_capacity(lo
->lo_disk
, x
);
192 lo_do_transfer(struct loop_device
*lo
, int cmd
,
193 struct page
*rpage
, unsigned roffs
,
194 struct page
*lpage
, unsigned loffs
,
195 int size
, sector_t rblock
)
197 if (unlikely(!lo
->transfer
))
200 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
204 * do_lo_send_aops - helper for writing data to a loop device
206 * This is the fast version for backing filesystems which implement the address
207 * space operations write_begin and write_end.
209 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
210 loff_t pos
, struct page
*unused
)
212 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
213 struct address_space
*mapping
= file
->f_mapping
;
215 unsigned offset
, bv_offs
;
218 mutex_lock(&mapping
->host
->i_mutex
);
219 index
= pos
>> PAGE_CACHE_SHIFT
;
220 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
221 bv_offs
= bvec
->bv_offset
;
225 unsigned size
, copied
;
230 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
231 size
= PAGE_CACHE_SIZE
- offset
;
235 ret
= pagecache_write_begin(file
, mapping
, pos
, size
, 0,
240 file_update_time(file
);
242 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
243 bvec
->bv_page
, bv_offs
, size
, IV
);
245 if (unlikely(transfer_result
))
248 ret
= pagecache_write_end(file
, mapping
, pos
, size
, copied
,
250 if (ret
< 0 || ret
!= copied
)
253 if (unlikely(transfer_result
))
264 mutex_unlock(&mapping
->host
->i_mutex
);
272 * __do_lo_send_write - helper for writing data to a loop device
274 * This helper just factors out common code between do_lo_send_direct_write()
275 * and do_lo_send_write().
277 static int __do_lo_send_write(struct file
*file
,
278 u8
*buf
, const int len
, loff_t pos
)
281 mm_segment_t old_fs
= get_fs();
284 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
286 if (likely(bw
== len
))
288 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
289 (unsigned long long)pos
, len
);
296 * do_lo_send_direct_write - helper for writing data to a loop device
298 * This is the fast, non-transforming version for backing filesystems which do
299 * not implement the address space operations write_begin and write_end.
300 * It uses the write file operation which should be present on all writeable
303 static int do_lo_send_direct_write(struct loop_device
*lo
,
304 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
306 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
307 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
309 kunmap(bvec
->bv_page
);
315 * do_lo_send_write - helper for writing data to a loop device
317 * This is the slow, transforming version for filesystems which do not
318 * implement the address space operations write_begin and write_end. It
319 * uses the write file operation which should be present on all writeable
322 * Using fops->write is slower than using aops->{prepare,commit}_write in the
323 * transforming case because we need to double buffer the data as we cannot do
324 * the transformations in place as we do not have direct access to the
325 * destination pages of the backing file.
327 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
328 loff_t pos
, struct page
*page
)
330 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
331 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
333 return __do_lo_send_write(lo
->lo_backing_file
,
334 page_address(page
), bvec
->bv_len
,
336 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
337 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
343 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
345 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
347 struct bio_vec
*bvec
;
348 struct page
*page
= NULL
;
351 do_lo_send
= do_lo_send_aops
;
352 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
353 do_lo_send
= do_lo_send_direct_write
;
354 if (lo
->transfer
!= transfer_none
) {
355 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
359 do_lo_send
= do_lo_send_write
;
362 bio_for_each_segment(bvec
, bio
, i
) {
363 ret
= do_lo_send(lo
, bvec
, pos
, page
);
375 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
380 struct lo_read_data
{
381 struct loop_device
*lo
;
388 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
389 struct splice_desc
*sd
)
391 struct lo_read_data
*p
= sd
->u
.data
;
392 struct loop_device
*lo
= p
->lo
;
393 struct page
*page
= buf
->page
;
397 ret
= buf
->ops
->confirm(pipe
, buf
);
401 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
407 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
408 printk(KERN_ERR
"loop: transfer error block %ld\n",
413 flush_dcache_page(p
->page
);
422 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
424 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
428 do_lo_receive(struct loop_device
*lo
,
429 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
431 struct lo_read_data cookie
;
432 struct splice_desc sd
;
437 cookie
.page
= bvec
->bv_page
;
438 cookie
.offset
= bvec
->bv_offset
;
439 cookie
.bsize
= bsize
;
442 sd
.total_len
= bvec
->bv_len
;
447 file
= lo
->lo_backing_file
;
448 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
457 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
459 struct bio_vec
*bvec
;
462 bio_for_each_segment(bvec
, bio
, i
) {
463 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
471 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
476 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
478 if (bio_rw(bio
) == WRITE
) {
479 bool barrier
= bio_rw_flagged(bio
, BIO_RW_BARRIER
);
480 struct file
*file
= lo
->lo_backing_file
;
483 if (unlikely(!file
->f_op
->fsync
)) {
488 ret
= vfs_fsync(file
, file
->f_path
.dentry
, 0);
495 ret
= lo_send(lo
, bio
, pos
);
497 if (barrier
&& !ret
) {
498 ret
= vfs_fsync(file
, file
->f_path
.dentry
, 0);
503 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
510 * Add bio to back of pending list
512 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
514 bio_list_add(&lo
->lo_bio_list
, bio
);
518 * Grab first pending buffer
520 static struct bio
*loop_get_bio(struct loop_device
*lo
)
522 return bio_list_pop(&lo
->lo_bio_list
);
525 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
527 struct loop_device
*lo
= q
->queuedata
;
528 int rw
= bio_rw(old_bio
);
533 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
535 spin_lock_irq(&lo
->lo_lock
);
536 if (lo
->lo_state
!= Lo_bound
)
538 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
540 loop_add_bio(lo
, old_bio
);
541 wake_up(&lo
->lo_event
);
542 spin_unlock_irq(&lo
->lo_lock
);
546 spin_unlock_irq(&lo
->lo_lock
);
547 bio_io_error(old_bio
);
552 * kick off io on the underlying address space
554 static void loop_unplug(struct request_queue
*q
)
556 struct loop_device
*lo
= q
->queuedata
;
558 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED
, q
);
559 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
562 struct switch_request
{
564 struct completion wait
;
567 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
569 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
571 if (unlikely(!bio
->bi_bdev
)) {
572 do_loop_switch(lo
, bio
->bi_private
);
575 int ret
= do_bio_filebacked(lo
, bio
);
581 * worker thread that handles reads/writes to file backed loop devices,
582 * to avoid blocking in our make_request_fn. it also does loop decrypting
583 * on reads for block backed loop, as that is too heavy to do from
584 * b_end_io context where irqs may be disabled.
586 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
587 * calling kthread_stop(). Therefore once kthread_should_stop() is
588 * true, make_request will not place any more requests. Therefore
589 * once kthread_should_stop() is true and lo_bio is NULL, we are
590 * done with the loop.
592 static int loop_thread(void *data
)
594 struct loop_device
*lo
= data
;
597 set_user_nice(current
, -20);
599 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
601 wait_event_interruptible(lo
->lo_event
,
602 !bio_list_empty(&lo
->lo_bio_list
) ||
603 kthread_should_stop());
605 if (bio_list_empty(&lo
->lo_bio_list
))
607 spin_lock_irq(&lo
->lo_lock
);
608 bio
= loop_get_bio(lo
);
609 spin_unlock_irq(&lo
->lo_lock
);
612 loop_handle_bio(lo
, bio
);
619 * loop_switch performs the hard work of switching a backing store.
620 * First it needs to flush existing IO, it does this by sending a magic
621 * BIO down the pipe. The completion of this BIO does the actual switch.
623 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
625 struct switch_request w
;
626 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
629 init_completion(&w
.wait
);
631 bio
->bi_private
= &w
;
633 loop_make_request(lo
->lo_queue
, bio
);
634 wait_for_completion(&w
.wait
);
639 * Helper to flush the IOs in loop, but keeping loop thread running
641 static int loop_flush(struct loop_device
*lo
)
643 /* loop not yet configured, no running thread, nothing to flush */
647 return loop_switch(lo
, NULL
);
651 * Do the actual switch; called from the BIO completion routine
653 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
655 struct file
*file
= p
->file
;
656 struct file
*old_file
= lo
->lo_backing_file
;
657 struct address_space
*mapping
;
659 /* if no new file, only flush of queued bios requested */
663 mapping
= file
->f_mapping
;
664 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
665 lo
->lo_backing_file
= file
;
666 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
667 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
668 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
669 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
676 * loop_change_fd switched the backing store of a loopback device to
677 * a new file. This is useful for operating system installers to free up
678 * the original file and in High Availability environments to switch to
679 * an alternative location for the content in case of server meltdown.
680 * This can only work if the loop device is used read-only, and if the
681 * new backing store is the same size and type as the old backing store.
683 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
686 struct file
*file
, *old_file
;
691 if (lo
->lo_state
!= Lo_bound
)
694 /* the loop device has to be read-only */
696 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
704 inode
= file
->f_mapping
->host
;
705 old_file
= lo
->lo_backing_file
;
709 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
712 /* size of the new backing store needs to be the same */
713 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
717 error
= loop_switch(lo
, file
);
723 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
732 static inline int is_loop_device(struct file
*file
)
734 struct inode
*i
= file
->f_mapping
->host
;
736 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
739 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
740 struct block_device
*bdev
, unsigned int arg
)
742 struct file
*file
, *f
;
744 struct address_space
*mapping
;
745 unsigned lo_blocksize
;
750 /* This is safe, since we have a reference from open(). */
751 __module_get(THIS_MODULE
);
759 if (lo
->lo_state
!= Lo_unbound
)
762 /* Avoid recursion */
764 while (is_loop_device(f
)) {
765 struct loop_device
*l
;
767 if (f
->f_mapping
->host
->i_bdev
== bdev
)
770 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
771 if (l
->lo_state
== Lo_unbound
) {
775 f
= l
->lo_backing_file
;
778 mapping
= file
->f_mapping
;
779 inode
= mapping
->host
;
781 if (!(file
->f_mode
& FMODE_WRITE
))
782 lo_flags
|= LO_FLAGS_READ_ONLY
;
785 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
786 const struct address_space_operations
*aops
= mapping
->a_ops
;
788 if (aops
->write_begin
)
789 lo_flags
|= LO_FLAGS_USE_AOPS
;
790 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
791 lo_flags
|= LO_FLAGS_READ_ONLY
;
793 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
794 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
801 size
= get_loop_size(lo
, file
);
803 if ((loff_t
)(sector_t
)size
!= size
) {
808 if (!(mode
& FMODE_WRITE
))
809 lo_flags
|= LO_FLAGS_READ_ONLY
;
811 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
813 lo
->lo_blocksize
= lo_blocksize
;
814 lo
->lo_device
= bdev
;
815 lo
->lo_flags
= lo_flags
;
816 lo
->lo_backing_file
= file
;
817 lo
->transfer
= transfer_none
;
819 lo
->lo_sizelimit
= 0;
820 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
821 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
823 bio_list_init(&lo
->lo_bio_list
);
826 * set queue make_request_fn, and add limits based on lower level
829 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
830 lo
->lo_queue
->queuedata
= lo
;
831 lo
->lo_queue
->unplug_fn
= loop_unplug
;
833 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
834 blk_queue_ordered(lo
->lo_queue
, QUEUE_ORDERED_DRAIN
, NULL
);
836 set_capacity(lo
->lo_disk
, size
);
837 bd_set_size(bdev
, size
<< 9);
839 set_blocksize(bdev
, lo_blocksize
);
841 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
843 if (IS_ERR(lo
->lo_thread
)) {
844 error
= PTR_ERR(lo
->lo_thread
);
847 lo
->lo_state
= Lo_bound
;
848 wake_up_process(lo
->lo_thread
);
850 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
854 lo
->lo_thread
= NULL
;
855 lo
->lo_device
= NULL
;
856 lo
->lo_backing_file
= NULL
;
858 set_capacity(lo
->lo_disk
, 0);
859 invalidate_bdev(bdev
);
860 bd_set_size(bdev
, 0);
861 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
862 lo
->lo_state
= Lo_unbound
;
866 /* This is safe: open() is still holding a reference. */
867 module_put(THIS_MODULE
);
872 loop_release_xfer(struct loop_device
*lo
)
875 struct loop_func_table
*xfer
= lo
->lo_encryption
;
879 err
= xfer
->release(lo
);
881 lo
->lo_encryption
= NULL
;
882 module_put(xfer
->owner
);
888 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
889 const struct loop_info64
*i
)
894 struct module
*owner
= xfer
->owner
;
896 if (!try_module_get(owner
))
899 err
= xfer
->init(lo
, i
);
903 lo
->lo_encryption
= xfer
;
908 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
910 struct file
*filp
= lo
->lo_backing_file
;
911 gfp_t gfp
= lo
->old_gfp_mask
;
913 if (lo
->lo_state
!= Lo_bound
)
916 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
922 spin_lock_irq(&lo
->lo_lock
);
923 lo
->lo_state
= Lo_rundown
;
924 spin_unlock_irq(&lo
->lo_lock
);
926 kthread_stop(lo
->lo_thread
);
928 lo
->lo_queue
->unplug_fn
= NULL
;
929 lo
->lo_backing_file
= NULL
;
931 loop_release_xfer(lo
);
934 lo
->lo_device
= NULL
;
935 lo
->lo_encryption
= NULL
;
937 lo
->lo_sizelimit
= 0;
938 lo
->lo_encrypt_key_size
= 0;
940 lo
->lo_thread
= NULL
;
941 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
942 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
943 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
945 invalidate_bdev(bdev
);
946 set_capacity(lo
->lo_disk
, 0);
948 bd_set_size(bdev
, 0);
949 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
950 lo
->lo_state
= Lo_unbound
;
951 /* This is safe: open() is still holding a reference. */
952 module_put(THIS_MODULE
);
953 if (max_part
> 0 && bdev
)
954 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
955 mutex_unlock(&lo
->lo_ctl_mutex
);
957 * Need not hold lo_ctl_mutex to fput backing file.
958 * Calling fput holding lo_ctl_mutex triggers a circular
959 * lock dependency possibility warning as fput can take
960 * bd_mutex which is usually taken before lo_ctl_mutex.
967 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
970 struct loop_func_table
*xfer
;
971 uid_t uid
= current_uid();
973 if (lo
->lo_encrypt_key_size
&&
974 lo
->lo_key_owner
!= uid
&&
975 !capable(CAP_SYS_ADMIN
))
977 if (lo
->lo_state
!= Lo_bound
)
979 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
982 err
= loop_release_xfer(lo
);
986 if (info
->lo_encrypt_type
) {
987 unsigned int type
= info
->lo_encrypt_type
;
989 if (type
>= MAX_LO_CRYPT
)
991 xfer
= xfer_funcs
[type
];
997 err
= loop_init_xfer(lo
, xfer
, info
);
1001 if (lo
->lo_offset
!= info
->lo_offset
||
1002 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1003 lo
->lo_offset
= info
->lo_offset
;
1004 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1005 if (figure_loop_size(lo
))
1009 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1010 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1011 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1012 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1016 lo
->transfer
= xfer
->transfer
;
1017 lo
->ioctl
= xfer
->ioctl
;
1019 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1020 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1021 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1023 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1024 lo
->lo_init
[0] = info
->lo_init
[0];
1025 lo
->lo_init
[1] = info
->lo_init
[1];
1026 if (info
->lo_encrypt_key_size
) {
1027 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1028 info
->lo_encrypt_key_size
);
1029 lo
->lo_key_owner
= uid
;
1036 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1038 struct file
*file
= lo
->lo_backing_file
;
1042 if (lo
->lo_state
!= Lo_bound
)
1044 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1047 memset(info
, 0, sizeof(*info
));
1048 info
->lo_number
= lo
->lo_number
;
1049 info
->lo_device
= huge_encode_dev(stat
.dev
);
1050 info
->lo_inode
= stat
.ino
;
1051 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1052 info
->lo_offset
= lo
->lo_offset
;
1053 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1054 info
->lo_flags
= lo
->lo_flags
;
1055 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1056 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1057 info
->lo_encrypt_type
=
1058 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1059 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1060 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1061 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1062 lo
->lo_encrypt_key_size
);
1068 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1070 memset(info64
, 0, sizeof(*info64
));
1071 info64
->lo_number
= info
->lo_number
;
1072 info64
->lo_device
= info
->lo_device
;
1073 info64
->lo_inode
= info
->lo_inode
;
1074 info64
->lo_rdevice
= info
->lo_rdevice
;
1075 info64
->lo_offset
= info
->lo_offset
;
1076 info64
->lo_sizelimit
= 0;
1077 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1078 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1079 info64
->lo_flags
= info
->lo_flags
;
1080 info64
->lo_init
[0] = info
->lo_init
[0];
1081 info64
->lo_init
[1] = info
->lo_init
[1];
1082 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1083 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1085 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1086 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1090 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1092 memset(info
, 0, sizeof(*info
));
1093 info
->lo_number
= info64
->lo_number
;
1094 info
->lo_device
= info64
->lo_device
;
1095 info
->lo_inode
= info64
->lo_inode
;
1096 info
->lo_rdevice
= info64
->lo_rdevice
;
1097 info
->lo_offset
= info64
->lo_offset
;
1098 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1099 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1100 info
->lo_flags
= info64
->lo_flags
;
1101 info
->lo_init
[0] = info64
->lo_init
[0];
1102 info
->lo_init
[1] = info64
->lo_init
[1];
1103 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1104 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1106 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1107 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1109 /* error in case values were truncated */
1110 if (info
->lo_device
!= info64
->lo_device
||
1111 info
->lo_rdevice
!= info64
->lo_rdevice
||
1112 info
->lo_inode
!= info64
->lo_inode
||
1113 info
->lo_offset
!= info64
->lo_offset
)
1120 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1122 struct loop_info info
;
1123 struct loop_info64 info64
;
1125 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1127 loop_info64_from_old(&info
, &info64
);
1128 return loop_set_status(lo
, &info64
);
1132 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1134 struct loop_info64 info64
;
1136 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1138 return loop_set_status(lo
, &info64
);
1142 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1143 struct loop_info info
;
1144 struct loop_info64 info64
;
1150 err
= loop_get_status(lo
, &info64
);
1152 err
= loop_info64_to_old(&info64
, &info
);
1153 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1160 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1161 struct loop_info64 info64
;
1167 err
= loop_get_status(lo
, &info64
);
1168 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1174 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1181 if (unlikely(lo
->lo_state
!= Lo_bound
))
1183 err
= figure_loop_size(lo
);
1186 sec
= get_capacity(lo
->lo_disk
);
1187 /* the width of sector_t may be narrow for bit-shift */
1190 mutex_lock(&bdev
->bd_mutex
);
1191 bd_set_size(bdev
, sz
);
1192 mutex_unlock(&bdev
->bd_mutex
);
1198 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1199 unsigned int cmd
, unsigned long arg
)
1201 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1204 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1207 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1209 case LOOP_CHANGE_FD
:
1210 err
= loop_change_fd(lo
, bdev
, arg
);
1213 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1214 err
= loop_clr_fd(lo
, bdev
);
1218 case LOOP_SET_STATUS
:
1219 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1221 case LOOP_GET_STATUS
:
1222 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1224 case LOOP_SET_STATUS64
:
1225 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1227 case LOOP_GET_STATUS64
:
1228 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1230 case LOOP_SET_CAPACITY
:
1232 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1233 err
= loop_set_capacity(lo
, bdev
);
1236 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1238 mutex_unlock(&lo
->lo_ctl_mutex
);
1244 #ifdef CONFIG_COMPAT
1245 struct compat_loop_info
{
1246 compat_int_t lo_number
; /* ioctl r/o */
1247 compat_dev_t lo_device
; /* ioctl r/o */
1248 compat_ulong_t lo_inode
; /* ioctl r/o */
1249 compat_dev_t lo_rdevice
; /* ioctl r/o */
1250 compat_int_t lo_offset
;
1251 compat_int_t lo_encrypt_type
;
1252 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1253 compat_int_t lo_flags
; /* ioctl r/o */
1254 char lo_name
[LO_NAME_SIZE
];
1255 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1256 compat_ulong_t lo_init
[2];
1261 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1262 * - noinlined to reduce stack space usage in main part of driver
1265 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1266 struct loop_info64
*info64
)
1268 struct compat_loop_info info
;
1270 if (copy_from_user(&info
, arg
, sizeof(info
)))
1273 memset(info64
, 0, sizeof(*info64
));
1274 info64
->lo_number
= info
.lo_number
;
1275 info64
->lo_device
= info
.lo_device
;
1276 info64
->lo_inode
= info
.lo_inode
;
1277 info64
->lo_rdevice
= info
.lo_rdevice
;
1278 info64
->lo_offset
= info
.lo_offset
;
1279 info64
->lo_sizelimit
= 0;
1280 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1281 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1282 info64
->lo_flags
= info
.lo_flags
;
1283 info64
->lo_init
[0] = info
.lo_init
[0];
1284 info64
->lo_init
[1] = info
.lo_init
[1];
1285 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1286 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1288 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1289 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1294 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1295 * - noinlined to reduce stack space usage in main part of driver
1298 loop_info64_to_compat(const struct loop_info64
*info64
,
1299 struct compat_loop_info __user
*arg
)
1301 struct compat_loop_info info
;
1303 memset(&info
, 0, sizeof(info
));
1304 info
.lo_number
= info64
->lo_number
;
1305 info
.lo_device
= info64
->lo_device
;
1306 info
.lo_inode
= info64
->lo_inode
;
1307 info
.lo_rdevice
= info64
->lo_rdevice
;
1308 info
.lo_offset
= info64
->lo_offset
;
1309 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1310 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1311 info
.lo_flags
= info64
->lo_flags
;
1312 info
.lo_init
[0] = info64
->lo_init
[0];
1313 info
.lo_init
[1] = info64
->lo_init
[1];
1314 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1315 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1317 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1318 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1320 /* error in case values were truncated */
1321 if (info
.lo_device
!= info64
->lo_device
||
1322 info
.lo_rdevice
!= info64
->lo_rdevice
||
1323 info
.lo_inode
!= info64
->lo_inode
||
1324 info
.lo_offset
!= info64
->lo_offset
||
1325 info
.lo_init
[0] != info64
->lo_init
[0] ||
1326 info
.lo_init
[1] != info64
->lo_init
[1])
1329 if (copy_to_user(arg
, &info
, sizeof(info
)))
1335 loop_set_status_compat(struct loop_device
*lo
,
1336 const struct compat_loop_info __user
*arg
)
1338 struct loop_info64 info64
;
1341 ret
= loop_info64_from_compat(arg
, &info64
);
1344 return loop_set_status(lo
, &info64
);
1348 loop_get_status_compat(struct loop_device
*lo
,
1349 struct compat_loop_info __user
*arg
)
1351 struct loop_info64 info64
;
1357 err
= loop_get_status(lo
, &info64
);
1359 err
= loop_info64_to_compat(&info64
, arg
);
1363 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1364 unsigned int cmd
, unsigned long arg
)
1366 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1370 case LOOP_SET_STATUS
:
1371 mutex_lock(&lo
->lo_ctl_mutex
);
1372 err
= loop_set_status_compat(
1373 lo
, (const struct compat_loop_info __user
*) arg
);
1374 mutex_unlock(&lo
->lo_ctl_mutex
);
1376 case LOOP_GET_STATUS
:
1377 mutex_lock(&lo
->lo_ctl_mutex
);
1378 err
= loop_get_status_compat(
1379 lo
, (struct compat_loop_info __user
*) arg
);
1380 mutex_unlock(&lo
->lo_ctl_mutex
);
1382 case LOOP_SET_CAPACITY
:
1384 case LOOP_GET_STATUS64
:
1385 case LOOP_SET_STATUS64
:
1386 arg
= (unsigned long) compat_ptr(arg
);
1388 case LOOP_CHANGE_FD
:
1389 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1399 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1401 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1403 mutex_lock(&lo
->lo_ctl_mutex
);
1405 mutex_unlock(&lo
->lo_ctl_mutex
);
1410 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1412 struct loop_device
*lo
= disk
->private_data
;
1415 mutex_lock(&lo
->lo_ctl_mutex
);
1417 if (--lo
->lo_refcnt
)
1420 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1422 * In autoclear mode, stop the loop thread
1423 * and remove configuration after last close.
1425 err
= loop_clr_fd(lo
, NULL
);
1430 * Otherwise keep thread (if running) and config,
1431 * but flush possible ongoing bios in thread.
1437 mutex_unlock(&lo
->lo_ctl_mutex
);
1442 static const struct block_device_operations lo_fops
= {
1443 .owner
= THIS_MODULE
,
1445 .release
= lo_release
,
1447 #ifdef CONFIG_COMPAT
1448 .compat_ioctl
= lo_compat_ioctl
,
1453 * And now the modules code and kernel interface.
1455 static int max_loop
;
1456 module_param(max_loop
, int, 0);
1457 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1458 module_param(max_part
, int, 0);
1459 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1460 MODULE_LICENSE("GPL");
1461 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1463 int loop_register_transfer(struct loop_func_table
*funcs
)
1465 unsigned int n
= funcs
->number
;
1467 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1469 xfer_funcs
[n
] = funcs
;
1473 int loop_unregister_transfer(int number
)
1475 unsigned int n
= number
;
1476 struct loop_device
*lo
;
1477 struct loop_func_table
*xfer
;
1479 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1482 xfer_funcs
[n
] = NULL
;
1484 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1485 mutex_lock(&lo
->lo_ctl_mutex
);
1487 if (lo
->lo_encryption
== xfer
)
1488 loop_release_xfer(lo
);
1490 mutex_unlock(&lo
->lo_ctl_mutex
);
1496 EXPORT_SYMBOL(loop_register_transfer
);
1497 EXPORT_SYMBOL(loop_unregister_transfer
);
1499 static struct loop_device
*loop_alloc(int i
)
1501 struct loop_device
*lo
;
1502 struct gendisk
*disk
;
1504 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1508 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1512 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1514 goto out_free_queue
;
1516 mutex_init(&lo
->lo_ctl_mutex
);
1518 lo
->lo_thread
= NULL
;
1519 init_waitqueue_head(&lo
->lo_event
);
1520 spin_lock_init(&lo
->lo_lock
);
1521 disk
->major
= LOOP_MAJOR
;
1522 disk
->first_minor
= i
<< part_shift
;
1523 disk
->fops
= &lo_fops
;
1524 disk
->private_data
= lo
;
1525 disk
->queue
= lo
->lo_queue
;
1526 sprintf(disk
->disk_name
, "loop%d", i
);
1530 blk_cleanup_queue(lo
->lo_queue
);
1537 static void loop_free(struct loop_device
*lo
)
1539 blk_cleanup_queue(lo
->lo_queue
);
1540 put_disk(lo
->lo_disk
);
1541 list_del(&lo
->lo_list
);
1545 static struct loop_device
*loop_init_one(int i
)
1547 struct loop_device
*lo
;
1549 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1550 if (lo
->lo_number
== i
)
1556 add_disk(lo
->lo_disk
);
1557 list_add_tail(&lo
->lo_list
, &loop_devices
);
1562 static void loop_del_one(struct loop_device
*lo
)
1564 del_gendisk(lo
->lo_disk
);
1568 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1570 struct loop_device
*lo
;
1571 struct kobject
*kobj
;
1573 mutex_lock(&loop_devices_mutex
);
1574 lo
= loop_init_one(dev
& MINORMASK
);
1575 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1576 mutex_unlock(&loop_devices_mutex
);
1582 static int __init
loop_init(void)
1585 unsigned long range
;
1586 struct loop_device
*lo
, *next
;
1589 * loop module now has a feature to instantiate underlying device
1590 * structure on-demand, provided that there is an access dev node.
1591 * However, this will not work well with user space tool that doesn't
1592 * know about such "feature". In order to not break any existing
1593 * tool, we do the following:
1595 * (1) if max_loop is specified, create that many upfront, and this
1596 * also becomes a hard limit.
1597 * (2) if max_loop is not specified, create 8 loop device on module
1598 * load, user can further extend loop device by create dev node
1599 * themselves and have kernel automatically instantiate actual
1605 part_shift
= fls(max_part
);
1607 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1615 range
= 1UL << (MINORBITS
- part_shift
);
1618 if (register_blkdev(LOOP_MAJOR
, "loop"))
1621 for (i
= 0; i
< nr
; i
++) {
1625 list_add_tail(&lo
->lo_list
, &loop_devices
);
1628 /* point of no return */
1630 list_for_each_entry(lo
, &loop_devices
, lo_list
)
1631 add_disk(lo
->lo_disk
);
1633 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1634 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1636 printk(KERN_INFO
"loop: module loaded\n");
1640 printk(KERN_INFO
"loop: out of memory\n");
1642 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1645 unregister_blkdev(LOOP_MAJOR
, "loop");
1649 static void __exit
loop_exit(void)
1651 unsigned long range
;
1652 struct loop_device
*lo
, *next
;
1654 range
= max_loop
? max_loop
: 1UL << (MINORBITS
- part_shift
);
1656 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1659 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1660 unregister_blkdev(LOOP_MAJOR
, "loop");
1663 module_init(loop_init
);
1664 module_exit(loop_exit
);
1667 static int __init
max_loop_setup(char *str
)
1669 max_loop
= simple_strtol(str
, NULL
, 0);
1673 __setup("max_loop=", max_loop_setup
);