be2net: Bug fix to avoid disabling bottom half during firmware upgrade.
[linux/fpc-iii.git] / drivers / net / ixgbevf / ixgbevf_main.c
bloba16cff7e54a3ec8daea5f499ca40834c5adb3111
1 /*******************************************************************************
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
29 /******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
48 #include "ixgbevf.h"
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52 "Intel(R) 82599 Virtual Function";
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59 [board_82599_vf] = &ixgbevf_vf_info,
62 /* ixgbevf_pci_tbl - PCI Device ID Table
64 * Wildcard entries (PCI_ANY_ID) should come last
65 * Last entry must be all 0s
67 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68 * Class, Class Mask, private data (not used) }
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72 board_82599_vf},
74 /* required last entry */
75 {0, }
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89 u32 itr_reg);
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92 struct ixgbevf_ring *rx_ring,
93 u32 val)
96 * Force memory writes to complete before letting h/w
97 * know there are new descriptors to fetch. (Only
98 * applicable for weak-ordered memory model archs,
99 * such as IA-64).
101 wmb();
102 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
106 * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107 * @adapter: pointer to adapter struct
108 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109 * @queue: queue to map the corresponding interrupt to
110 * @msix_vector: the vector to map to the corresponding queue
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114 u8 queue, u8 msix_vector)
116 u32 ivar, index;
117 struct ixgbe_hw *hw = &adapter->hw;
118 if (direction == -1) {
119 /* other causes */
120 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122 ivar &= ~0xFF;
123 ivar |= msix_vector;
124 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125 } else {
126 /* tx or rx causes */
127 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128 index = ((16 * (queue & 1)) + (8 * direction));
129 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130 ivar &= ~(0xFF << index);
131 ivar |= (msix_vector << index);
132 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137 struct ixgbevf_tx_buffer
138 *tx_buffer_info)
140 if (tx_buffer_info->dma) {
141 if (tx_buffer_info->mapped_as_page)
142 dma_unmap_page(&adapter->pdev->dev,
143 tx_buffer_info->dma,
144 tx_buffer_info->length,
145 DMA_TO_DEVICE);
146 else
147 dma_unmap_single(&adapter->pdev->dev,
148 tx_buffer_info->dma,
149 tx_buffer_info->length,
150 DMA_TO_DEVICE);
151 tx_buffer_info->dma = 0;
153 if (tx_buffer_info->skb) {
154 dev_kfree_skb_any(tx_buffer_info->skb);
155 tx_buffer_info->skb = NULL;
157 tx_buffer_info->time_stamp = 0;
158 /* tx_buffer_info must be completely set up in the transmit path */
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162 struct ixgbevf_ring *tx_ring,
163 unsigned int eop)
165 struct ixgbe_hw *hw = &adapter->hw;
166 u32 head, tail;
168 /* Detect a transmit hang in hardware, this serializes the
169 * check with the clearing of time_stamp and movement of eop */
170 head = readl(hw->hw_addr + tx_ring->head);
171 tail = readl(hw->hw_addr + tx_ring->tail);
172 adapter->detect_tx_hung = false;
173 if ((head != tail) &&
174 tx_ring->tx_buffer_info[eop].time_stamp &&
175 time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176 /* detected Tx unit hang */
177 union ixgbe_adv_tx_desc *tx_desc;
178 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179 printk(KERN_ERR "Detected Tx Unit Hang\n"
180 " Tx Queue <%d>\n"
181 " TDH, TDT <%x>, <%x>\n"
182 " next_to_use <%x>\n"
183 " next_to_clean <%x>\n"
184 "tx_buffer_info[next_to_clean]\n"
185 " time_stamp <%lx>\n"
186 " jiffies <%lx>\n",
187 tx_ring->queue_index,
188 head, tail,
189 tx_ring->next_to_use, eop,
190 tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191 return true;
194 return false;
197 #define IXGBE_MAX_TXD_PWR 14
198 #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205 MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
213 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214 * @adapter: board private structure
215 * @tx_ring: tx ring to clean
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218 struct ixgbevf_ring *tx_ring)
220 struct net_device *netdev = adapter->netdev;
221 struct ixgbe_hw *hw = &adapter->hw;
222 union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223 struct ixgbevf_tx_buffer *tx_buffer_info;
224 unsigned int i, eop, count = 0;
225 unsigned int total_bytes = 0, total_packets = 0;
227 i = tx_ring->next_to_clean;
228 eop = tx_ring->tx_buffer_info[i].next_to_watch;
229 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
231 while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232 (count < tx_ring->work_limit)) {
233 bool cleaned = false;
234 for ( ; !cleaned; count++) {
235 struct sk_buff *skb;
236 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
237 tx_buffer_info = &tx_ring->tx_buffer_info[i];
238 cleaned = (i == eop);
239 skb = tx_buffer_info->skb;
241 if (cleaned && skb) {
242 unsigned int segs, bytecount;
244 /* gso_segs is currently only valid for tcp */
245 segs = skb_shinfo(skb)->gso_segs ?: 1;
246 /* multiply data chunks by size of headers */
247 bytecount = ((segs - 1) * skb_headlen(skb)) +
248 skb->len;
249 total_packets += segs;
250 total_bytes += bytecount;
253 ixgbevf_unmap_and_free_tx_resource(adapter,
254 tx_buffer_info);
256 tx_desc->wb.status = 0;
258 i++;
259 if (i == tx_ring->count)
260 i = 0;
263 eop = tx_ring->tx_buffer_info[i].next_to_watch;
264 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
267 tx_ring->next_to_clean = i;
269 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
270 if (unlikely(count && netif_carrier_ok(netdev) &&
271 (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
272 /* Make sure that anybody stopping the queue after this
273 * sees the new next_to_clean.
275 smp_mb();
276 #ifdef HAVE_TX_MQ
277 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
278 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279 netif_wake_subqueue(netdev, tx_ring->queue_index);
280 ++adapter->restart_queue;
282 #else
283 if (netif_queue_stopped(netdev) &&
284 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
285 netif_wake_queue(netdev);
286 ++adapter->restart_queue;
288 #endif
291 if (adapter->detect_tx_hung) {
292 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
293 /* schedule immediate reset if we believe we hung */
294 printk(KERN_INFO
295 "tx hang %d detected, resetting adapter\n",
296 adapter->tx_timeout_count + 1);
297 ixgbevf_tx_timeout(adapter->netdev);
301 /* re-arm the interrupt */
302 if ((count >= tx_ring->work_limit) &&
303 (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
304 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
307 tx_ring->total_bytes += total_bytes;
308 tx_ring->total_packets += total_packets;
310 adapter->net_stats.tx_bytes += total_bytes;
311 adapter->net_stats.tx_packets += total_packets;
313 return (count < tx_ring->work_limit);
317 * ixgbevf_receive_skb - Send a completed packet up the stack
318 * @q_vector: structure containing interrupt and ring information
319 * @skb: packet to send up
320 * @status: hardware indication of status of receive
321 * @rx_ring: rx descriptor ring (for a specific queue) to setup
322 * @rx_desc: rx descriptor
324 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
325 struct sk_buff *skb, u8 status,
326 struct ixgbevf_ring *ring,
327 union ixgbe_adv_rx_desc *rx_desc)
329 struct ixgbevf_adapter *adapter = q_vector->adapter;
330 bool is_vlan = (status & IXGBE_RXD_STAT_VP);
331 u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
332 int ret;
334 if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
335 if (adapter->vlgrp && is_vlan)
336 vlan_gro_receive(&q_vector->napi,
337 adapter->vlgrp,
338 tag, skb);
339 else
340 napi_gro_receive(&q_vector->napi, skb);
341 } else {
342 if (adapter->vlgrp && is_vlan)
343 ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
344 else
345 ret = netif_rx(skb);
350 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
351 * @adapter: address of board private structure
352 * @status_err: hardware indication of status of receive
353 * @skb: skb currently being received and modified
355 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
356 u32 status_err, struct sk_buff *skb)
358 skb->ip_summed = CHECKSUM_NONE;
360 /* Rx csum disabled */
361 if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
362 return;
364 /* if IP and error */
365 if ((status_err & IXGBE_RXD_STAT_IPCS) &&
366 (status_err & IXGBE_RXDADV_ERR_IPE)) {
367 adapter->hw_csum_rx_error++;
368 return;
371 if (!(status_err & IXGBE_RXD_STAT_L4CS))
372 return;
374 if (status_err & IXGBE_RXDADV_ERR_TCPE) {
375 adapter->hw_csum_rx_error++;
376 return;
379 /* It must be a TCP or UDP packet with a valid checksum */
380 skb->ip_summed = CHECKSUM_UNNECESSARY;
381 adapter->hw_csum_rx_good++;
385 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
386 * @adapter: address of board private structure
388 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
389 struct ixgbevf_ring *rx_ring,
390 int cleaned_count)
392 struct pci_dev *pdev = adapter->pdev;
393 union ixgbe_adv_rx_desc *rx_desc;
394 struct ixgbevf_rx_buffer *bi;
395 struct sk_buff *skb;
396 unsigned int i;
397 unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
399 i = rx_ring->next_to_use;
400 bi = &rx_ring->rx_buffer_info[i];
402 while (cleaned_count--) {
403 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
405 if (!bi->page_dma &&
406 (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
407 if (!bi->page) {
408 bi->page = netdev_alloc_page(adapter->netdev);
409 if (!bi->page) {
410 adapter->alloc_rx_page_failed++;
411 goto no_buffers;
413 bi->page_offset = 0;
414 } else {
415 /* use a half page if we're re-using */
416 bi->page_offset ^= (PAGE_SIZE / 2);
419 bi->page_dma = dma_map_page(&pdev->dev, bi->page,
420 bi->page_offset,
421 (PAGE_SIZE / 2),
422 DMA_FROM_DEVICE);
425 skb = bi->skb;
426 if (!skb) {
427 skb = netdev_alloc_skb(adapter->netdev,
428 bufsz);
430 if (!skb) {
431 adapter->alloc_rx_buff_failed++;
432 goto no_buffers;
436 * Make buffer alignment 2 beyond a 16 byte boundary
437 * this will result in a 16 byte aligned IP header after
438 * the 14 byte MAC header is removed
440 skb_reserve(skb, NET_IP_ALIGN);
442 bi->skb = skb;
444 if (!bi->dma) {
445 bi->dma = dma_map_single(&pdev->dev, skb->data,
446 rx_ring->rx_buf_len,
447 DMA_FROM_DEVICE);
449 /* Refresh the desc even if buffer_addrs didn't change because
450 * each write-back erases this info. */
451 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
452 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
453 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
454 } else {
455 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
458 i++;
459 if (i == rx_ring->count)
460 i = 0;
461 bi = &rx_ring->rx_buffer_info[i];
464 no_buffers:
465 if (rx_ring->next_to_use != i) {
466 rx_ring->next_to_use = i;
467 if (i-- == 0)
468 i = (rx_ring->count - 1);
470 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
474 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
475 u64 qmask)
477 u32 mask;
478 struct ixgbe_hw *hw = &adapter->hw;
480 mask = (qmask & 0xFFFFFFFF);
481 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
484 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
486 return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
489 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
491 return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
494 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
495 struct ixgbevf_ring *rx_ring,
496 int *work_done, int work_to_do)
498 struct ixgbevf_adapter *adapter = q_vector->adapter;
499 struct pci_dev *pdev = adapter->pdev;
500 union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
501 struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
502 struct sk_buff *skb;
503 unsigned int i;
504 u32 len, staterr;
505 u16 hdr_info;
506 bool cleaned = false;
507 int cleaned_count = 0;
508 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
510 i = rx_ring->next_to_clean;
511 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
512 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513 rx_buffer_info = &rx_ring->rx_buffer_info[i];
515 while (staterr & IXGBE_RXD_STAT_DD) {
516 u32 upper_len = 0;
517 if (*work_done >= work_to_do)
518 break;
519 (*work_done)++;
521 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
522 hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
523 len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
524 IXGBE_RXDADV_HDRBUFLEN_SHIFT;
525 if (hdr_info & IXGBE_RXDADV_SPH)
526 adapter->rx_hdr_split++;
527 if (len > IXGBEVF_RX_HDR_SIZE)
528 len = IXGBEVF_RX_HDR_SIZE;
529 upper_len = le16_to_cpu(rx_desc->wb.upper.length);
530 } else {
531 len = le16_to_cpu(rx_desc->wb.upper.length);
533 cleaned = true;
534 skb = rx_buffer_info->skb;
535 prefetch(skb->data - NET_IP_ALIGN);
536 rx_buffer_info->skb = NULL;
538 if (rx_buffer_info->dma) {
539 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
540 rx_ring->rx_buf_len,
541 DMA_FROM_DEVICE);
542 rx_buffer_info->dma = 0;
543 skb_put(skb, len);
546 if (upper_len) {
547 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
548 PAGE_SIZE / 2, DMA_FROM_DEVICE);
549 rx_buffer_info->page_dma = 0;
550 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
551 rx_buffer_info->page,
552 rx_buffer_info->page_offset,
553 upper_len);
555 if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
556 (page_count(rx_buffer_info->page) != 1))
557 rx_buffer_info->page = NULL;
558 else
559 get_page(rx_buffer_info->page);
561 skb->len += upper_len;
562 skb->data_len += upper_len;
563 skb->truesize += upper_len;
566 i++;
567 if (i == rx_ring->count)
568 i = 0;
570 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
571 prefetch(next_rxd);
572 cleaned_count++;
574 next_buffer = &rx_ring->rx_buffer_info[i];
576 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
577 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
578 rx_buffer_info->skb = next_buffer->skb;
579 rx_buffer_info->dma = next_buffer->dma;
580 next_buffer->skb = skb;
581 next_buffer->dma = 0;
582 } else {
583 skb->next = next_buffer->skb;
584 skb->next->prev = skb;
586 adapter->non_eop_descs++;
587 goto next_desc;
590 /* ERR_MASK will only have valid bits if EOP set */
591 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
592 dev_kfree_skb_irq(skb);
593 goto next_desc;
596 ixgbevf_rx_checksum(adapter, staterr, skb);
598 /* probably a little skewed due to removing CRC */
599 total_rx_bytes += skb->len;
600 total_rx_packets++;
603 * Work around issue of some types of VM to VM loop back
604 * packets not getting split correctly
606 if (staterr & IXGBE_RXD_STAT_LB) {
607 u32 header_fixup_len = skb_headlen(skb);
608 if (header_fixup_len < 14)
609 skb_push(skb, header_fixup_len);
611 skb->protocol = eth_type_trans(skb, adapter->netdev);
613 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
615 next_desc:
616 rx_desc->wb.upper.status_error = 0;
618 /* return some buffers to hardware, one at a time is too slow */
619 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
620 ixgbevf_alloc_rx_buffers(adapter, rx_ring,
621 cleaned_count);
622 cleaned_count = 0;
625 /* use prefetched values */
626 rx_desc = next_rxd;
627 rx_buffer_info = &rx_ring->rx_buffer_info[i];
629 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
632 rx_ring->next_to_clean = i;
633 cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
635 if (cleaned_count)
636 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
638 rx_ring->total_packets += total_rx_packets;
639 rx_ring->total_bytes += total_rx_bytes;
640 adapter->net_stats.rx_bytes += total_rx_bytes;
641 adapter->net_stats.rx_packets += total_rx_packets;
643 return cleaned;
647 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
648 * @napi: napi struct with our devices info in it
649 * @budget: amount of work driver is allowed to do this pass, in packets
651 * This function is optimized for cleaning one queue only on a single
652 * q_vector!!!
654 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
656 struct ixgbevf_q_vector *q_vector =
657 container_of(napi, struct ixgbevf_q_vector, napi);
658 struct ixgbevf_adapter *adapter = q_vector->adapter;
659 struct ixgbevf_ring *rx_ring = NULL;
660 int work_done = 0;
661 long r_idx;
663 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664 rx_ring = &(adapter->rx_ring[r_idx]);
666 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
668 /* If all Rx work done, exit the polling mode */
669 if (work_done < budget) {
670 napi_complete(napi);
671 if (adapter->itr_setting & 1)
672 ixgbevf_set_itr_msix(q_vector);
673 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
674 ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
677 return work_done;
681 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
682 * @napi: napi struct with our devices info in it
683 * @budget: amount of work driver is allowed to do this pass, in packets
685 * This function will clean more than one rx queue associated with a
686 * q_vector.
688 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
690 struct ixgbevf_q_vector *q_vector =
691 container_of(napi, struct ixgbevf_q_vector, napi);
692 struct ixgbevf_adapter *adapter = q_vector->adapter;
693 struct ixgbevf_ring *rx_ring = NULL;
694 int work_done = 0, i;
695 long r_idx;
696 u64 enable_mask = 0;
698 /* attempt to distribute budget to each queue fairly, but don't allow
699 * the budget to go below 1 because we'll exit polling */
700 budget /= (q_vector->rxr_count ?: 1);
701 budget = max(budget, 1);
702 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
703 for (i = 0; i < q_vector->rxr_count; i++) {
704 rx_ring = &(adapter->rx_ring[r_idx]);
705 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
706 enable_mask |= rx_ring->v_idx;
707 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
708 r_idx + 1);
711 #ifndef HAVE_NETDEV_NAPI_LIST
712 if (!netif_running(adapter->netdev))
713 work_done = 0;
715 #endif
716 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
717 rx_ring = &(adapter->rx_ring[r_idx]);
719 /* If all Rx work done, exit the polling mode */
720 if (work_done < budget) {
721 napi_complete(napi);
722 if (adapter->itr_setting & 1)
723 ixgbevf_set_itr_msix(q_vector);
724 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
725 ixgbevf_irq_enable_queues(adapter, enable_mask);
728 return work_done;
733 * ixgbevf_configure_msix - Configure MSI-X hardware
734 * @adapter: board private structure
736 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
737 * interrupts.
739 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
741 struct ixgbevf_q_vector *q_vector;
742 struct ixgbe_hw *hw = &adapter->hw;
743 int i, j, q_vectors, v_idx, r_idx;
744 u32 mask;
746 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
749 * Populate the IVAR table and set the ITR values to the
750 * corresponding register.
752 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
753 q_vector = adapter->q_vector[v_idx];
754 /* XXX for_each_set_bit(...) */
755 r_idx = find_first_bit(q_vector->rxr_idx,
756 adapter->num_rx_queues);
758 for (i = 0; i < q_vector->rxr_count; i++) {
759 j = adapter->rx_ring[r_idx].reg_idx;
760 ixgbevf_set_ivar(adapter, 0, j, v_idx);
761 r_idx = find_next_bit(q_vector->rxr_idx,
762 adapter->num_rx_queues,
763 r_idx + 1);
765 r_idx = find_first_bit(q_vector->txr_idx,
766 adapter->num_tx_queues);
768 for (i = 0; i < q_vector->txr_count; i++) {
769 j = adapter->tx_ring[r_idx].reg_idx;
770 ixgbevf_set_ivar(adapter, 1, j, v_idx);
771 r_idx = find_next_bit(q_vector->txr_idx,
772 adapter->num_tx_queues,
773 r_idx + 1);
776 /* if this is a tx only vector halve the interrupt rate */
777 if (q_vector->txr_count && !q_vector->rxr_count)
778 q_vector->eitr = (adapter->eitr_param >> 1);
779 else if (q_vector->rxr_count)
780 /* rx only */
781 q_vector->eitr = adapter->eitr_param;
783 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
786 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
788 /* set up to autoclear timer, and the vectors */
789 mask = IXGBE_EIMS_ENABLE_MASK;
790 mask &= ~IXGBE_EIMS_OTHER;
791 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
794 enum latency_range {
795 lowest_latency = 0,
796 low_latency = 1,
797 bulk_latency = 2,
798 latency_invalid = 255
802 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
803 * @adapter: pointer to adapter
804 * @eitr: eitr setting (ints per sec) to give last timeslice
805 * @itr_setting: current throttle rate in ints/second
806 * @packets: the number of packets during this measurement interval
807 * @bytes: the number of bytes during this measurement interval
809 * Stores a new ITR value based on packets and byte
810 * counts during the last interrupt. The advantage of per interrupt
811 * computation is faster updates and more accurate ITR for the current
812 * traffic pattern. Constants in this function were computed
813 * based on theoretical maximum wire speed and thresholds were set based
814 * on testing data as well as attempting to minimize response time
815 * while increasing bulk throughput.
817 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
818 u32 eitr, u8 itr_setting,
819 int packets, int bytes)
821 unsigned int retval = itr_setting;
822 u32 timepassed_us;
823 u64 bytes_perint;
825 if (packets == 0)
826 goto update_itr_done;
829 /* simple throttlerate management
830 * 0-20MB/s lowest (100000 ints/s)
831 * 20-100MB/s low (20000 ints/s)
832 * 100-1249MB/s bulk (8000 ints/s)
834 /* what was last interrupt timeslice? */
835 timepassed_us = 1000000/eitr;
836 bytes_perint = bytes / timepassed_us; /* bytes/usec */
838 switch (itr_setting) {
839 case lowest_latency:
840 if (bytes_perint > adapter->eitr_low)
841 retval = low_latency;
842 break;
843 case low_latency:
844 if (bytes_perint > adapter->eitr_high)
845 retval = bulk_latency;
846 else if (bytes_perint <= adapter->eitr_low)
847 retval = lowest_latency;
848 break;
849 case bulk_latency:
850 if (bytes_perint <= adapter->eitr_high)
851 retval = low_latency;
852 break;
855 update_itr_done:
856 return retval;
860 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
861 * @adapter: pointer to adapter struct
862 * @v_idx: vector index into q_vector array
863 * @itr_reg: new value to be written in *register* format, not ints/s
865 * This function is made to be called by ethtool and by the driver
866 * when it needs to update VTEITR registers at runtime. Hardware
867 * specific quirks/differences are taken care of here.
869 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
870 u32 itr_reg)
872 struct ixgbe_hw *hw = &adapter->hw;
874 itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
877 * set the WDIS bit to not clear the timer bits and cause an
878 * immediate assertion of the interrupt
880 itr_reg |= IXGBE_EITR_CNT_WDIS;
882 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
885 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
887 struct ixgbevf_adapter *adapter = q_vector->adapter;
888 u32 new_itr;
889 u8 current_itr, ret_itr;
890 int i, r_idx, v_idx = q_vector->v_idx;
891 struct ixgbevf_ring *rx_ring, *tx_ring;
893 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
894 for (i = 0; i < q_vector->txr_count; i++) {
895 tx_ring = &(adapter->tx_ring[r_idx]);
896 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
897 q_vector->tx_itr,
898 tx_ring->total_packets,
899 tx_ring->total_bytes);
900 /* if the result for this queue would decrease interrupt
901 * rate for this vector then use that result */
902 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
903 q_vector->tx_itr - 1 : ret_itr);
904 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
905 r_idx + 1);
908 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
909 for (i = 0; i < q_vector->rxr_count; i++) {
910 rx_ring = &(adapter->rx_ring[r_idx]);
911 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
912 q_vector->rx_itr,
913 rx_ring->total_packets,
914 rx_ring->total_bytes);
915 /* if the result for this queue would decrease interrupt
916 * rate for this vector then use that result */
917 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
918 q_vector->rx_itr - 1 : ret_itr);
919 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
920 r_idx + 1);
923 current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
925 switch (current_itr) {
926 /* counts and packets in update_itr are dependent on these numbers */
927 case lowest_latency:
928 new_itr = 100000;
929 break;
930 case low_latency:
931 new_itr = 20000; /* aka hwitr = ~200 */
932 break;
933 case bulk_latency:
934 default:
935 new_itr = 8000;
936 break;
939 if (new_itr != q_vector->eitr) {
940 u32 itr_reg;
942 /* save the algorithm value here, not the smoothed one */
943 q_vector->eitr = new_itr;
944 /* do an exponential smoothing */
945 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
946 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
947 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
951 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
953 struct net_device *netdev = data;
954 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
955 struct ixgbe_hw *hw = &adapter->hw;
956 u32 eicr;
957 u32 msg;
959 eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
960 IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
962 if (!hw->mbx.ops.check_for_ack(hw)) {
964 * checking for the ack clears the PFACK bit. Place
965 * it back in the v2p_mailbox cache so that anyone
966 * polling for an ack will not miss it. Also
967 * avoid the read below because the code to read
968 * the mailbox will also clear the ack bit. This was
969 * causing lost acks. Just cache the bit and exit
970 * the IRQ handler.
972 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
973 goto out;
976 /* Not an ack interrupt, go ahead and read the message */
977 hw->mbx.ops.read(hw, &msg, 1);
979 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
980 mod_timer(&adapter->watchdog_timer,
981 round_jiffies(jiffies + 1));
983 out:
984 return IRQ_HANDLED;
987 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
989 struct ixgbevf_q_vector *q_vector = data;
990 struct ixgbevf_adapter *adapter = q_vector->adapter;
991 struct ixgbevf_ring *tx_ring;
992 int i, r_idx;
994 if (!q_vector->txr_count)
995 return IRQ_HANDLED;
997 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
998 for (i = 0; i < q_vector->txr_count; i++) {
999 tx_ring = &(adapter->tx_ring[r_idx]);
1000 tx_ring->total_bytes = 0;
1001 tx_ring->total_packets = 0;
1002 ixgbevf_clean_tx_irq(adapter, tx_ring);
1003 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1004 r_idx + 1);
1007 if (adapter->itr_setting & 1)
1008 ixgbevf_set_itr_msix(q_vector);
1010 return IRQ_HANDLED;
1014 * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1015 * @irq: unused
1016 * @data: pointer to our q_vector struct for this interrupt vector
1018 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1020 struct ixgbevf_q_vector *q_vector = data;
1021 struct ixgbevf_adapter *adapter = q_vector->adapter;
1022 struct ixgbe_hw *hw = &adapter->hw;
1023 struct ixgbevf_ring *rx_ring;
1024 int r_idx;
1025 int i;
1027 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1028 for (i = 0; i < q_vector->rxr_count; i++) {
1029 rx_ring = &(adapter->rx_ring[r_idx]);
1030 rx_ring->total_bytes = 0;
1031 rx_ring->total_packets = 0;
1032 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1033 r_idx + 1);
1036 if (!q_vector->rxr_count)
1037 return IRQ_HANDLED;
1039 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1040 rx_ring = &(adapter->rx_ring[r_idx]);
1041 /* disable interrupts on this vector only */
1042 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1043 napi_schedule(&q_vector->napi);
1046 return IRQ_HANDLED;
1049 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1051 ixgbevf_msix_clean_rx(irq, data);
1052 ixgbevf_msix_clean_tx(irq, data);
1054 return IRQ_HANDLED;
1057 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1058 int r_idx)
1060 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1062 set_bit(r_idx, q_vector->rxr_idx);
1063 q_vector->rxr_count++;
1064 a->rx_ring[r_idx].v_idx = 1 << v_idx;
1067 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1068 int t_idx)
1070 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1072 set_bit(t_idx, q_vector->txr_idx);
1073 q_vector->txr_count++;
1074 a->tx_ring[t_idx].v_idx = 1 << v_idx;
1078 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1079 * @adapter: board private structure to initialize
1081 * This function maps descriptor rings to the queue-specific vectors
1082 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1083 * one vector per ring/queue, but on a constrained vector budget, we
1084 * group the rings as "efficiently" as possible. You would add new
1085 * mapping configurations in here.
1087 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1089 int q_vectors;
1090 int v_start = 0;
1091 int rxr_idx = 0, txr_idx = 0;
1092 int rxr_remaining = adapter->num_rx_queues;
1093 int txr_remaining = adapter->num_tx_queues;
1094 int i, j;
1095 int rqpv, tqpv;
1096 int err = 0;
1098 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1101 * The ideal configuration...
1102 * We have enough vectors to map one per queue.
1104 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1105 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1106 map_vector_to_rxq(adapter, v_start, rxr_idx);
1108 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1109 map_vector_to_txq(adapter, v_start, txr_idx);
1110 goto out;
1114 * If we don't have enough vectors for a 1-to-1
1115 * mapping, we'll have to group them so there are
1116 * multiple queues per vector.
1118 /* Re-adjusting *qpv takes care of the remainder. */
1119 for (i = v_start; i < q_vectors; i++) {
1120 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1121 for (j = 0; j < rqpv; j++) {
1122 map_vector_to_rxq(adapter, i, rxr_idx);
1123 rxr_idx++;
1124 rxr_remaining--;
1127 for (i = v_start; i < q_vectors; i++) {
1128 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1129 for (j = 0; j < tqpv; j++) {
1130 map_vector_to_txq(adapter, i, txr_idx);
1131 txr_idx++;
1132 txr_remaining--;
1136 out:
1137 return err;
1141 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1142 * @adapter: board private structure
1144 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1145 * interrupts from the kernel.
1147 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1149 struct net_device *netdev = adapter->netdev;
1150 irqreturn_t (*handler)(int, void *);
1151 int i, vector, q_vectors, err;
1152 int ri = 0, ti = 0;
1154 /* Decrement for Other and TCP Timer vectors */
1155 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1157 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
1158 ? &ixgbevf_msix_clean_many : \
1159 (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
1160 (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
1161 NULL)
1162 for (vector = 0; vector < q_vectors; vector++) {
1163 handler = SET_HANDLER(adapter->q_vector[vector]);
1165 if (handler == &ixgbevf_msix_clean_rx) {
1166 sprintf(adapter->name[vector], "%s-%s-%d",
1167 netdev->name, "rx", ri++);
1168 } else if (handler == &ixgbevf_msix_clean_tx) {
1169 sprintf(adapter->name[vector], "%s-%s-%d",
1170 netdev->name, "tx", ti++);
1171 } else if (handler == &ixgbevf_msix_clean_many) {
1172 sprintf(adapter->name[vector], "%s-%s-%d",
1173 netdev->name, "TxRx", vector);
1174 } else {
1175 /* skip this unused q_vector */
1176 continue;
1178 err = request_irq(adapter->msix_entries[vector].vector,
1179 handler, 0, adapter->name[vector],
1180 adapter->q_vector[vector]);
1181 if (err) {
1182 hw_dbg(&adapter->hw,
1183 "request_irq failed for MSIX interrupt "
1184 "Error: %d\n", err);
1185 goto free_queue_irqs;
1189 sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1190 err = request_irq(adapter->msix_entries[vector].vector,
1191 &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1192 if (err) {
1193 hw_dbg(&adapter->hw,
1194 "request_irq for msix_mbx failed: %d\n", err);
1195 goto free_queue_irqs;
1198 return 0;
1200 free_queue_irqs:
1201 for (i = vector - 1; i >= 0; i--)
1202 free_irq(adapter->msix_entries[--vector].vector,
1203 &(adapter->q_vector[i]));
1204 pci_disable_msix(adapter->pdev);
1205 kfree(adapter->msix_entries);
1206 adapter->msix_entries = NULL;
1207 return err;
1210 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1212 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1214 for (i = 0; i < q_vectors; i++) {
1215 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1216 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1217 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1218 q_vector->rxr_count = 0;
1219 q_vector->txr_count = 0;
1220 q_vector->eitr = adapter->eitr_param;
1225 * ixgbevf_request_irq - initialize interrupts
1226 * @adapter: board private structure
1228 * Attempts to configure interrupts using the best available
1229 * capabilities of the hardware and kernel.
1231 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1233 int err = 0;
1235 err = ixgbevf_request_msix_irqs(adapter);
1237 if (err)
1238 hw_dbg(&adapter->hw,
1239 "request_irq failed, Error %d\n", err);
1241 return err;
1244 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1246 struct net_device *netdev = adapter->netdev;
1247 int i, q_vectors;
1249 q_vectors = adapter->num_msix_vectors;
1251 i = q_vectors - 1;
1253 free_irq(adapter->msix_entries[i].vector, netdev);
1254 i--;
1256 for (; i >= 0; i--) {
1257 free_irq(adapter->msix_entries[i].vector,
1258 adapter->q_vector[i]);
1261 ixgbevf_reset_q_vectors(adapter);
1265 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1266 * @adapter: board private structure
1268 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1270 int i;
1271 struct ixgbe_hw *hw = &adapter->hw;
1273 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1275 IXGBE_WRITE_FLUSH(hw);
1277 for (i = 0; i < adapter->num_msix_vectors; i++)
1278 synchronize_irq(adapter->msix_entries[i].vector);
1282 * ixgbevf_irq_enable - Enable default interrupt generation settings
1283 * @adapter: board private structure
1285 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1286 bool queues, bool flush)
1288 struct ixgbe_hw *hw = &adapter->hw;
1289 u32 mask;
1290 u64 qmask;
1292 mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1293 qmask = ~0;
1295 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1297 if (queues)
1298 ixgbevf_irq_enable_queues(adapter, qmask);
1300 if (flush)
1301 IXGBE_WRITE_FLUSH(hw);
1305 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1306 * @adapter: board private structure
1308 * Configure the Tx unit of the MAC after a reset.
1310 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1312 u64 tdba;
1313 struct ixgbe_hw *hw = &adapter->hw;
1314 u32 i, j, tdlen, txctrl;
1316 /* Setup the HW Tx Head and Tail descriptor pointers */
1317 for (i = 0; i < adapter->num_tx_queues; i++) {
1318 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1319 j = ring->reg_idx;
1320 tdba = ring->dma;
1321 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1322 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1323 (tdba & DMA_BIT_MASK(32)));
1324 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1325 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1326 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1327 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1328 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1329 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1330 /* Disable Tx Head Writeback RO bit, since this hoses
1331 * bookkeeping if things aren't delivered in order.
1333 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1334 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1335 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1339 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1341 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1343 struct ixgbevf_ring *rx_ring;
1344 struct ixgbe_hw *hw = &adapter->hw;
1345 u32 srrctl;
1347 rx_ring = &adapter->rx_ring[index];
1349 srrctl = IXGBE_SRRCTL_DROP_EN;
1351 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1352 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1353 /* grow the amount we can receive on large page machines */
1354 if (bufsz < (PAGE_SIZE / 2))
1355 bufsz = (PAGE_SIZE / 2);
1356 /* cap the bufsz at our largest descriptor size */
1357 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1359 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1360 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1361 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1362 IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1363 IXGBE_SRRCTL_BSIZEHDR_MASK);
1364 } else {
1365 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1367 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1368 srrctl |= IXGBEVF_RXBUFFER_2048 >>
1369 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1370 else
1371 srrctl |= rx_ring->rx_buf_len >>
1372 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1374 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1378 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1379 * @adapter: board private structure
1381 * Configure the Rx unit of the MAC after a reset.
1383 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1385 u64 rdba;
1386 struct ixgbe_hw *hw = &adapter->hw;
1387 struct net_device *netdev = adapter->netdev;
1388 int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1389 int i, j;
1390 u32 rdlen;
1391 int rx_buf_len;
1393 /* Decide whether to use packet split mode or not */
1394 if (netdev->mtu > ETH_DATA_LEN) {
1395 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1396 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1397 else
1398 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1399 } else {
1400 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1401 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1402 else
1403 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1406 /* Set the RX buffer length according to the mode */
1407 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1408 /* PSRTYPE must be initialized in 82599 */
1409 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1410 IXGBE_PSRTYPE_UDPHDR |
1411 IXGBE_PSRTYPE_IPV4HDR |
1412 IXGBE_PSRTYPE_IPV6HDR |
1413 IXGBE_PSRTYPE_L2HDR;
1414 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1415 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1416 } else {
1417 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1418 if (netdev->mtu <= ETH_DATA_LEN)
1419 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1420 else
1421 rx_buf_len = ALIGN(max_frame, 1024);
1424 rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1425 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1426 * the Base and Length of the Rx Descriptor Ring */
1427 for (i = 0; i < adapter->num_rx_queues; i++) {
1428 rdba = adapter->rx_ring[i].dma;
1429 j = adapter->rx_ring[i].reg_idx;
1430 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1431 (rdba & DMA_BIT_MASK(32)));
1432 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1433 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1434 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1435 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1436 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1437 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1438 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1440 ixgbevf_configure_srrctl(adapter, j);
1444 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1445 struct vlan_group *grp)
1447 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1448 struct ixgbe_hw *hw = &adapter->hw;
1449 int i, j;
1450 u32 ctrl;
1452 adapter->vlgrp = grp;
1454 for (i = 0; i < adapter->num_rx_queues; i++) {
1455 j = adapter->rx_ring[i].reg_idx;
1456 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1457 ctrl |= IXGBE_RXDCTL_VME;
1458 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1462 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1464 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1465 struct ixgbe_hw *hw = &adapter->hw;
1466 struct net_device *v_netdev;
1468 /* add VID to filter table */
1469 if (hw->mac.ops.set_vfta)
1470 hw->mac.ops.set_vfta(hw, vid, 0, true);
1472 * Copy feature flags from netdev to the vlan netdev for this vid.
1473 * This allows things like TSO to bubble down to our vlan device.
1475 v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
1476 v_netdev->features |= adapter->netdev->features;
1477 vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
1480 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1482 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1483 struct ixgbe_hw *hw = &adapter->hw;
1485 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1486 ixgbevf_irq_disable(adapter);
1488 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1490 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1491 ixgbevf_irq_enable(adapter, true, true);
1493 /* remove VID from filter table */
1494 if (hw->mac.ops.set_vfta)
1495 hw->mac.ops.set_vfta(hw, vid, 0, false);
1498 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1500 ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1502 if (adapter->vlgrp) {
1503 u16 vid;
1504 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1505 if (!vlan_group_get_device(adapter->vlgrp, vid))
1506 continue;
1507 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1513 * ixgbevf_set_rx_mode - Multicast set
1514 * @netdev: network interface device structure
1516 * The set_rx_method entry point is called whenever the multicast address
1517 * list or the network interface flags are updated. This routine is
1518 * responsible for configuring the hardware for proper multicast mode.
1520 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1522 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1523 struct ixgbe_hw *hw = &adapter->hw;
1525 /* reprogram multicast list */
1526 if (hw->mac.ops.update_mc_addr_list)
1527 hw->mac.ops.update_mc_addr_list(hw, netdev);
1530 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1532 int q_idx;
1533 struct ixgbevf_q_vector *q_vector;
1534 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1536 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1537 struct napi_struct *napi;
1538 q_vector = adapter->q_vector[q_idx];
1539 if (!q_vector->rxr_count)
1540 continue;
1541 napi = &q_vector->napi;
1542 if (q_vector->rxr_count > 1)
1543 napi->poll = &ixgbevf_clean_rxonly_many;
1545 napi_enable(napi);
1549 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1551 int q_idx;
1552 struct ixgbevf_q_vector *q_vector;
1553 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1555 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1556 q_vector = adapter->q_vector[q_idx];
1557 if (!q_vector->rxr_count)
1558 continue;
1559 napi_disable(&q_vector->napi);
1563 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1565 struct net_device *netdev = adapter->netdev;
1566 int i;
1568 ixgbevf_set_rx_mode(netdev);
1570 ixgbevf_restore_vlan(adapter);
1572 ixgbevf_configure_tx(adapter);
1573 ixgbevf_configure_rx(adapter);
1574 for (i = 0; i < adapter->num_rx_queues; i++) {
1575 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1576 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1577 ring->next_to_use = ring->count - 1;
1578 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1582 #define IXGBE_MAX_RX_DESC_POLL 10
1583 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1584 int rxr)
1586 struct ixgbe_hw *hw = &adapter->hw;
1587 int j = adapter->rx_ring[rxr].reg_idx;
1588 int k;
1590 for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1591 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1592 break;
1593 else
1594 msleep(1);
1596 if (k >= IXGBE_MAX_RX_DESC_POLL) {
1597 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1598 "not set within the polling period\n", rxr);
1601 ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1602 (adapter->rx_ring[rxr].count - 1));
1605 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1607 /* Only save pre-reset stats if there are some */
1608 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1609 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1610 adapter->stats.base_vfgprc;
1611 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1612 adapter->stats.base_vfgptc;
1613 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1614 adapter->stats.base_vfgorc;
1615 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1616 adapter->stats.base_vfgotc;
1617 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1618 adapter->stats.base_vfmprc;
1622 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1624 struct ixgbe_hw *hw = &adapter->hw;
1626 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1627 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1628 adapter->stats.last_vfgorc |=
1629 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1630 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1631 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1632 adapter->stats.last_vfgotc |=
1633 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1634 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1636 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1637 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1638 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1639 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1640 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1643 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1645 struct net_device *netdev = adapter->netdev;
1646 struct ixgbe_hw *hw = &adapter->hw;
1647 int i, j = 0;
1648 int num_rx_rings = adapter->num_rx_queues;
1649 u32 txdctl, rxdctl;
1651 for (i = 0; i < adapter->num_tx_queues; i++) {
1652 j = adapter->tx_ring[i].reg_idx;
1653 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1654 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1655 txdctl |= (8 << 16);
1656 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1659 for (i = 0; i < adapter->num_tx_queues; i++) {
1660 j = adapter->tx_ring[i].reg_idx;
1661 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1662 txdctl |= IXGBE_TXDCTL_ENABLE;
1663 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1666 for (i = 0; i < num_rx_rings; i++) {
1667 j = adapter->rx_ring[i].reg_idx;
1668 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1669 rxdctl |= IXGBE_RXDCTL_ENABLE;
1670 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1671 ixgbevf_rx_desc_queue_enable(adapter, i);
1674 ixgbevf_configure_msix(adapter);
1676 if (hw->mac.ops.set_rar) {
1677 if (is_valid_ether_addr(hw->mac.addr))
1678 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1679 else
1680 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1683 clear_bit(__IXGBEVF_DOWN, &adapter->state);
1684 ixgbevf_napi_enable_all(adapter);
1686 /* enable transmits */
1687 netif_tx_start_all_queues(netdev);
1689 ixgbevf_save_reset_stats(adapter);
1690 ixgbevf_init_last_counter_stats(adapter);
1692 /* bring the link up in the watchdog, this could race with our first
1693 * link up interrupt but shouldn't be a problem */
1694 adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1695 adapter->link_check_timeout = jiffies;
1696 mod_timer(&adapter->watchdog_timer, jiffies);
1697 return 0;
1700 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1702 int err;
1703 struct ixgbe_hw *hw = &adapter->hw;
1705 ixgbevf_configure(adapter);
1707 err = ixgbevf_up_complete(adapter);
1709 /* clear any pending interrupts, may auto mask */
1710 IXGBE_READ_REG(hw, IXGBE_VTEICR);
1712 ixgbevf_irq_enable(adapter, true, true);
1714 return err;
1718 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1719 * @adapter: board private structure
1720 * @rx_ring: ring to free buffers from
1722 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1723 struct ixgbevf_ring *rx_ring)
1725 struct pci_dev *pdev = adapter->pdev;
1726 unsigned long size;
1727 unsigned int i;
1729 if (!rx_ring->rx_buffer_info)
1730 return;
1732 /* Free all the Rx ring sk_buffs */
1733 for (i = 0; i < rx_ring->count; i++) {
1734 struct ixgbevf_rx_buffer *rx_buffer_info;
1736 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1737 if (rx_buffer_info->dma) {
1738 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1739 rx_ring->rx_buf_len,
1740 DMA_FROM_DEVICE);
1741 rx_buffer_info->dma = 0;
1743 if (rx_buffer_info->skb) {
1744 struct sk_buff *skb = rx_buffer_info->skb;
1745 rx_buffer_info->skb = NULL;
1746 do {
1747 struct sk_buff *this = skb;
1748 skb = skb->prev;
1749 dev_kfree_skb(this);
1750 } while (skb);
1752 if (!rx_buffer_info->page)
1753 continue;
1754 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1755 PAGE_SIZE / 2, DMA_FROM_DEVICE);
1756 rx_buffer_info->page_dma = 0;
1757 put_page(rx_buffer_info->page);
1758 rx_buffer_info->page = NULL;
1759 rx_buffer_info->page_offset = 0;
1762 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1763 memset(rx_ring->rx_buffer_info, 0, size);
1765 /* Zero out the descriptor ring */
1766 memset(rx_ring->desc, 0, rx_ring->size);
1768 rx_ring->next_to_clean = 0;
1769 rx_ring->next_to_use = 0;
1771 if (rx_ring->head)
1772 writel(0, adapter->hw.hw_addr + rx_ring->head);
1773 if (rx_ring->tail)
1774 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1778 * ixgbevf_clean_tx_ring - Free Tx Buffers
1779 * @adapter: board private structure
1780 * @tx_ring: ring to be cleaned
1782 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1783 struct ixgbevf_ring *tx_ring)
1785 struct ixgbevf_tx_buffer *tx_buffer_info;
1786 unsigned long size;
1787 unsigned int i;
1789 if (!tx_ring->tx_buffer_info)
1790 return;
1792 /* Free all the Tx ring sk_buffs */
1794 for (i = 0; i < tx_ring->count; i++) {
1795 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1796 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1799 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1800 memset(tx_ring->tx_buffer_info, 0, size);
1802 memset(tx_ring->desc, 0, tx_ring->size);
1804 tx_ring->next_to_use = 0;
1805 tx_ring->next_to_clean = 0;
1807 if (tx_ring->head)
1808 writel(0, adapter->hw.hw_addr + tx_ring->head);
1809 if (tx_ring->tail)
1810 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1814 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1815 * @adapter: board private structure
1817 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1819 int i;
1821 for (i = 0; i < adapter->num_rx_queues; i++)
1822 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1826 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1827 * @adapter: board private structure
1829 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1831 int i;
1833 for (i = 0; i < adapter->num_tx_queues; i++)
1834 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1837 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1839 struct net_device *netdev = adapter->netdev;
1840 struct ixgbe_hw *hw = &adapter->hw;
1841 u32 txdctl;
1842 int i, j;
1844 /* signal that we are down to the interrupt handler */
1845 set_bit(__IXGBEVF_DOWN, &adapter->state);
1846 /* disable receives */
1848 netif_tx_disable(netdev);
1850 msleep(10);
1852 netif_tx_stop_all_queues(netdev);
1854 ixgbevf_irq_disable(adapter);
1856 ixgbevf_napi_disable_all(adapter);
1858 del_timer_sync(&adapter->watchdog_timer);
1859 /* can't call flush scheduled work here because it can deadlock
1860 * if linkwatch_event tries to acquire the rtnl_lock which we are
1861 * holding */
1862 while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1863 msleep(1);
1865 /* disable transmits in the hardware now that interrupts are off */
1866 for (i = 0; i < adapter->num_tx_queues; i++) {
1867 j = adapter->tx_ring[i].reg_idx;
1868 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1869 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1870 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1873 netif_carrier_off(netdev);
1875 if (!pci_channel_offline(adapter->pdev))
1876 ixgbevf_reset(adapter);
1878 ixgbevf_clean_all_tx_rings(adapter);
1879 ixgbevf_clean_all_rx_rings(adapter);
1882 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1884 struct ixgbe_hw *hw = &adapter->hw;
1886 WARN_ON(in_interrupt());
1888 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1889 msleep(1);
1892 * Check if PF is up before re-init. If not then skip until
1893 * later when the PF is up and ready to service requests from
1894 * the VF via mailbox. If the VF is up and running then the
1895 * watchdog task will continue to schedule reset tasks until
1896 * the PF is up and running.
1898 if (!hw->mac.ops.reset_hw(hw)) {
1899 ixgbevf_down(adapter);
1900 ixgbevf_up(adapter);
1903 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1906 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1908 struct ixgbe_hw *hw = &adapter->hw;
1909 struct net_device *netdev = adapter->netdev;
1911 if (hw->mac.ops.reset_hw(hw))
1912 hw_dbg(hw, "PF still resetting\n");
1913 else
1914 hw->mac.ops.init_hw(hw);
1916 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1917 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1918 netdev->addr_len);
1919 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1920 netdev->addr_len);
1924 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1925 int vectors)
1927 int err, vector_threshold;
1929 /* We'll want at least 3 (vector_threshold):
1930 * 1) TxQ[0] Cleanup
1931 * 2) RxQ[0] Cleanup
1932 * 3) Other (Link Status Change, etc.)
1934 vector_threshold = MIN_MSIX_COUNT;
1936 /* The more we get, the more we will assign to Tx/Rx Cleanup
1937 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1938 * Right now, we simply care about how many we'll get; we'll
1939 * set them up later while requesting irq's.
1941 while (vectors >= vector_threshold) {
1942 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1943 vectors);
1944 if (!err) /* Success in acquiring all requested vectors. */
1945 break;
1946 else if (err < 0)
1947 vectors = 0; /* Nasty failure, quit now */
1948 else /* err == number of vectors we should try again with */
1949 vectors = err;
1952 if (vectors < vector_threshold) {
1953 /* Can't allocate enough MSI-X interrupts? Oh well.
1954 * This just means we'll go with either a single MSI
1955 * vector or fall back to legacy interrupts.
1957 hw_dbg(&adapter->hw,
1958 "Unable to allocate MSI-X interrupts\n");
1959 kfree(adapter->msix_entries);
1960 adapter->msix_entries = NULL;
1961 } else {
1963 * Adjust for only the vectors we'll use, which is minimum
1964 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1965 * vectors we were allocated.
1967 adapter->num_msix_vectors = vectors;
1972 * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1973 * @adapter: board private structure to initialize
1975 * This is the top level queue allocation routine. The order here is very
1976 * important, starting with the "most" number of features turned on at once,
1977 * and ending with the smallest set of features. This way large combinations
1978 * can be allocated if they're turned on, and smaller combinations are the
1979 * fallthrough conditions.
1982 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1984 /* Start with base case */
1985 adapter->num_rx_queues = 1;
1986 adapter->num_tx_queues = 1;
1987 adapter->num_rx_pools = adapter->num_rx_queues;
1988 adapter->num_rx_queues_per_pool = 1;
1992 * ixgbevf_alloc_queues - Allocate memory for all rings
1993 * @adapter: board private structure to initialize
1995 * We allocate one ring per queue at run-time since we don't know the
1996 * number of queues at compile-time. The polling_netdev array is
1997 * intended for Multiqueue, but should work fine with a single queue.
1999 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2001 int i;
2003 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
2004 sizeof(struct ixgbevf_ring), GFP_KERNEL);
2005 if (!adapter->tx_ring)
2006 goto err_tx_ring_allocation;
2008 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2009 sizeof(struct ixgbevf_ring), GFP_KERNEL);
2010 if (!adapter->rx_ring)
2011 goto err_rx_ring_allocation;
2013 for (i = 0; i < adapter->num_tx_queues; i++) {
2014 adapter->tx_ring[i].count = adapter->tx_ring_count;
2015 adapter->tx_ring[i].queue_index = i;
2016 adapter->tx_ring[i].reg_idx = i;
2019 for (i = 0; i < adapter->num_rx_queues; i++) {
2020 adapter->rx_ring[i].count = adapter->rx_ring_count;
2021 adapter->rx_ring[i].queue_index = i;
2022 adapter->rx_ring[i].reg_idx = i;
2025 return 0;
2027 err_rx_ring_allocation:
2028 kfree(adapter->tx_ring);
2029 err_tx_ring_allocation:
2030 return -ENOMEM;
2034 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2035 * @adapter: board private structure to initialize
2037 * Attempt to configure the interrupts using the best available
2038 * capabilities of the hardware and the kernel.
2040 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2042 int err = 0;
2043 int vector, v_budget;
2046 * It's easy to be greedy for MSI-X vectors, but it really
2047 * doesn't do us much good if we have a lot more vectors
2048 * than CPU's. So let's be conservative and only ask for
2049 * (roughly) twice the number of vectors as there are CPU's.
2051 v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2052 (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2054 /* A failure in MSI-X entry allocation isn't fatal, but it does
2055 * mean we disable MSI-X capabilities of the adapter. */
2056 adapter->msix_entries = kcalloc(v_budget,
2057 sizeof(struct msix_entry), GFP_KERNEL);
2058 if (!adapter->msix_entries) {
2059 err = -ENOMEM;
2060 goto out;
2063 for (vector = 0; vector < v_budget; vector++)
2064 adapter->msix_entries[vector].entry = vector;
2066 ixgbevf_acquire_msix_vectors(adapter, v_budget);
2068 out:
2069 return err;
2073 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2074 * @adapter: board private structure to initialize
2076 * We allocate one q_vector per queue interrupt. If allocation fails we
2077 * return -ENOMEM.
2079 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2081 int q_idx, num_q_vectors;
2082 struct ixgbevf_q_vector *q_vector;
2083 int napi_vectors;
2084 int (*poll)(struct napi_struct *, int);
2086 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2087 napi_vectors = adapter->num_rx_queues;
2088 poll = &ixgbevf_clean_rxonly;
2090 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2091 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2092 if (!q_vector)
2093 goto err_out;
2094 q_vector->adapter = adapter;
2095 q_vector->v_idx = q_idx;
2096 q_vector->eitr = adapter->eitr_param;
2097 if (q_idx < napi_vectors)
2098 netif_napi_add(adapter->netdev, &q_vector->napi,
2099 (*poll), 64);
2100 adapter->q_vector[q_idx] = q_vector;
2103 return 0;
2105 err_out:
2106 while (q_idx) {
2107 q_idx--;
2108 q_vector = adapter->q_vector[q_idx];
2109 netif_napi_del(&q_vector->napi);
2110 kfree(q_vector);
2111 adapter->q_vector[q_idx] = NULL;
2113 return -ENOMEM;
2117 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2118 * @adapter: board private structure to initialize
2120 * This function frees the memory allocated to the q_vectors. In addition if
2121 * NAPI is enabled it will delete any references to the NAPI struct prior
2122 * to freeing the q_vector.
2124 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2126 int q_idx, num_q_vectors;
2127 int napi_vectors;
2129 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2130 napi_vectors = adapter->num_rx_queues;
2132 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2133 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2135 adapter->q_vector[q_idx] = NULL;
2136 if (q_idx < napi_vectors)
2137 netif_napi_del(&q_vector->napi);
2138 kfree(q_vector);
2143 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2144 * @adapter: board private structure
2147 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2149 pci_disable_msix(adapter->pdev);
2150 kfree(adapter->msix_entries);
2151 adapter->msix_entries = NULL;
2155 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2156 * @adapter: board private structure to initialize
2159 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2161 int err;
2163 /* Number of supported queues */
2164 ixgbevf_set_num_queues(adapter);
2166 err = ixgbevf_set_interrupt_capability(adapter);
2167 if (err) {
2168 hw_dbg(&adapter->hw,
2169 "Unable to setup interrupt capabilities\n");
2170 goto err_set_interrupt;
2173 err = ixgbevf_alloc_q_vectors(adapter);
2174 if (err) {
2175 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2176 "vectors\n");
2177 goto err_alloc_q_vectors;
2180 err = ixgbevf_alloc_queues(adapter);
2181 if (err) {
2182 printk(KERN_ERR "Unable to allocate memory for queues\n");
2183 goto err_alloc_queues;
2186 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2187 "Tx Queue count = %u\n",
2188 (adapter->num_rx_queues > 1) ? "Enabled" :
2189 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2191 set_bit(__IXGBEVF_DOWN, &adapter->state);
2193 return 0;
2194 err_alloc_queues:
2195 ixgbevf_free_q_vectors(adapter);
2196 err_alloc_q_vectors:
2197 ixgbevf_reset_interrupt_capability(adapter);
2198 err_set_interrupt:
2199 return err;
2203 * ixgbevf_sw_init - Initialize general software structures
2204 * (struct ixgbevf_adapter)
2205 * @adapter: board private structure to initialize
2207 * ixgbevf_sw_init initializes the Adapter private data structure.
2208 * Fields are initialized based on PCI device information and
2209 * OS network device settings (MTU size).
2211 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2213 struct ixgbe_hw *hw = &adapter->hw;
2214 struct pci_dev *pdev = adapter->pdev;
2215 int err;
2217 /* PCI config space info */
2219 hw->vendor_id = pdev->vendor;
2220 hw->device_id = pdev->device;
2221 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2222 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2223 hw->subsystem_device_id = pdev->subsystem_device;
2225 hw->mbx.ops.init_params(hw);
2226 hw->mac.max_tx_queues = MAX_TX_QUEUES;
2227 hw->mac.max_rx_queues = MAX_RX_QUEUES;
2228 err = hw->mac.ops.reset_hw(hw);
2229 if (err) {
2230 dev_info(&pdev->dev,
2231 "PF still in reset state, assigning new address\n");
2232 random_ether_addr(hw->mac.addr);
2233 } else {
2234 err = hw->mac.ops.init_hw(hw);
2235 if (err) {
2236 printk(KERN_ERR "init_shared_code failed: %d\n", err);
2237 goto out;
2241 /* Enable dynamic interrupt throttling rates */
2242 adapter->eitr_param = 20000;
2243 adapter->itr_setting = 1;
2245 /* set defaults for eitr in MegaBytes */
2246 adapter->eitr_low = 10;
2247 adapter->eitr_high = 20;
2249 /* set default ring sizes */
2250 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2251 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2253 /* enable rx csum by default */
2254 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2256 set_bit(__IXGBEVF_DOWN, &adapter->state);
2258 out:
2259 return err;
2262 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2264 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2265 if (current_counter < last_counter) \
2266 counter += 0x100000000LL; \
2267 last_counter = current_counter; \
2268 counter &= 0xFFFFFFFF00000000LL; \
2269 counter |= current_counter; \
2272 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2274 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2275 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2276 u64 current_counter = (current_counter_msb << 32) | \
2277 current_counter_lsb; \
2278 if (current_counter < last_counter) \
2279 counter += 0x1000000000LL; \
2280 last_counter = current_counter; \
2281 counter &= 0xFFFFFFF000000000LL; \
2282 counter |= current_counter; \
2285 * ixgbevf_update_stats - Update the board statistics counters.
2286 * @adapter: board private structure
2288 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2290 struct ixgbe_hw *hw = &adapter->hw;
2292 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2293 adapter->stats.vfgprc);
2294 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2295 adapter->stats.vfgptc);
2296 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2297 adapter->stats.last_vfgorc,
2298 adapter->stats.vfgorc);
2299 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2300 adapter->stats.last_vfgotc,
2301 adapter->stats.vfgotc);
2302 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2303 adapter->stats.vfmprc);
2305 /* Fill out the OS statistics structure */
2306 adapter->net_stats.multicast = adapter->stats.vfmprc -
2307 adapter->stats.base_vfmprc;
2311 * ixgbevf_watchdog - Timer Call-back
2312 * @data: pointer to adapter cast into an unsigned long
2314 static void ixgbevf_watchdog(unsigned long data)
2316 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2317 struct ixgbe_hw *hw = &adapter->hw;
2318 u64 eics = 0;
2319 int i;
2322 * Do the watchdog outside of interrupt context due to the lovely
2323 * delays that some of the newer hardware requires
2326 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2327 goto watchdog_short_circuit;
2329 /* get one bit for every active tx/rx interrupt vector */
2330 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2331 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2332 if (qv->rxr_count || qv->txr_count)
2333 eics |= (1 << i);
2336 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2338 watchdog_short_circuit:
2339 schedule_work(&adapter->watchdog_task);
2343 * ixgbevf_tx_timeout - Respond to a Tx Hang
2344 * @netdev: network interface device structure
2346 static void ixgbevf_tx_timeout(struct net_device *netdev)
2348 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2350 /* Do the reset outside of interrupt context */
2351 schedule_work(&adapter->reset_task);
2354 static void ixgbevf_reset_task(struct work_struct *work)
2356 struct ixgbevf_adapter *adapter;
2357 adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2359 /* If we're already down or resetting, just bail */
2360 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2361 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2362 return;
2364 adapter->tx_timeout_count++;
2366 ixgbevf_reinit_locked(adapter);
2370 * ixgbevf_watchdog_task - worker thread to bring link up
2371 * @work: pointer to work_struct containing our data
2373 static void ixgbevf_watchdog_task(struct work_struct *work)
2375 struct ixgbevf_adapter *adapter = container_of(work,
2376 struct ixgbevf_adapter,
2377 watchdog_task);
2378 struct net_device *netdev = adapter->netdev;
2379 struct ixgbe_hw *hw = &adapter->hw;
2380 u32 link_speed = adapter->link_speed;
2381 bool link_up = adapter->link_up;
2383 adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2386 * Always check the link on the watchdog because we have
2387 * no LSC interrupt
2389 if (hw->mac.ops.check_link) {
2390 if ((hw->mac.ops.check_link(hw, &link_speed,
2391 &link_up, false)) != 0) {
2392 adapter->link_up = link_up;
2393 adapter->link_speed = link_speed;
2394 netif_carrier_off(netdev);
2395 netif_tx_stop_all_queues(netdev);
2396 schedule_work(&adapter->reset_task);
2397 goto pf_has_reset;
2399 } else {
2400 /* always assume link is up, if no check link
2401 * function */
2402 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2403 link_up = true;
2405 adapter->link_up = link_up;
2406 adapter->link_speed = link_speed;
2408 if (link_up) {
2409 if (!netif_carrier_ok(netdev)) {
2410 hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2411 (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2412 10 : 1);
2413 netif_carrier_on(netdev);
2414 netif_tx_wake_all_queues(netdev);
2415 } else {
2416 /* Force detection of hung controller */
2417 adapter->detect_tx_hung = true;
2419 } else {
2420 adapter->link_up = false;
2421 adapter->link_speed = 0;
2422 if (netif_carrier_ok(netdev)) {
2423 hw_dbg(&adapter->hw, "NIC Link is Down\n");
2424 netif_carrier_off(netdev);
2425 netif_tx_stop_all_queues(netdev);
2429 ixgbevf_update_stats(adapter);
2431 pf_has_reset:
2432 /* Force detection of hung controller every watchdog period */
2433 adapter->detect_tx_hung = true;
2435 /* Reset the timer */
2436 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2437 mod_timer(&adapter->watchdog_timer,
2438 round_jiffies(jiffies + (2 * HZ)));
2440 adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2444 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2445 * @adapter: board private structure
2446 * @tx_ring: Tx descriptor ring for a specific queue
2448 * Free all transmit software resources
2450 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2451 struct ixgbevf_ring *tx_ring)
2453 struct pci_dev *pdev = adapter->pdev;
2455 ixgbevf_clean_tx_ring(adapter, tx_ring);
2457 vfree(tx_ring->tx_buffer_info);
2458 tx_ring->tx_buffer_info = NULL;
2460 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2461 tx_ring->dma);
2463 tx_ring->desc = NULL;
2467 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2468 * @adapter: board private structure
2470 * Free all transmit software resources
2472 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2474 int i;
2476 for (i = 0; i < adapter->num_tx_queues; i++)
2477 if (adapter->tx_ring[i].desc)
2478 ixgbevf_free_tx_resources(adapter,
2479 &adapter->tx_ring[i]);
2484 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2485 * @adapter: board private structure
2486 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2488 * Return 0 on success, negative on failure
2490 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2491 struct ixgbevf_ring *tx_ring)
2493 struct pci_dev *pdev = adapter->pdev;
2494 int size;
2496 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2497 tx_ring->tx_buffer_info = vmalloc(size);
2498 if (!tx_ring->tx_buffer_info)
2499 goto err;
2500 memset(tx_ring->tx_buffer_info, 0, size);
2502 /* round up to nearest 4K */
2503 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2504 tx_ring->size = ALIGN(tx_ring->size, 4096);
2506 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2507 &tx_ring->dma, GFP_KERNEL);
2508 if (!tx_ring->desc)
2509 goto err;
2511 tx_ring->next_to_use = 0;
2512 tx_ring->next_to_clean = 0;
2513 tx_ring->work_limit = tx_ring->count;
2514 return 0;
2516 err:
2517 vfree(tx_ring->tx_buffer_info);
2518 tx_ring->tx_buffer_info = NULL;
2519 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2520 "descriptor ring\n");
2521 return -ENOMEM;
2525 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2526 * @adapter: board private structure
2528 * If this function returns with an error, then it's possible one or
2529 * more of the rings is populated (while the rest are not). It is the
2530 * callers duty to clean those orphaned rings.
2532 * Return 0 on success, negative on failure
2534 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2536 int i, err = 0;
2538 for (i = 0; i < adapter->num_tx_queues; i++) {
2539 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2540 if (!err)
2541 continue;
2542 hw_dbg(&adapter->hw,
2543 "Allocation for Tx Queue %u failed\n", i);
2544 break;
2547 return err;
2551 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2552 * @adapter: board private structure
2553 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2555 * Returns 0 on success, negative on failure
2557 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2558 struct ixgbevf_ring *rx_ring)
2560 struct pci_dev *pdev = adapter->pdev;
2561 int size;
2563 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2564 rx_ring->rx_buffer_info = vmalloc(size);
2565 if (!rx_ring->rx_buffer_info) {
2566 hw_dbg(&adapter->hw,
2567 "Unable to vmalloc buffer memory for "
2568 "the receive descriptor ring\n");
2569 goto alloc_failed;
2571 memset(rx_ring->rx_buffer_info, 0, size);
2573 /* Round up to nearest 4K */
2574 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2575 rx_ring->size = ALIGN(rx_ring->size, 4096);
2577 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2578 &rx_ring->dma, GFP_KERNEL);
2580 if (!rx_ring->desc) {
2581 hw_dbg(&adapter->hw,
2582 "Unable to allocate memory for "
2583 "the receive descriptor ring\n");
2584 vfree(rx_ring->rx_buffer_info);
2585 rx_ring->rx_buffer_info = NULL;
2586 goto alloc_failed;
2589 rx_ring->next_to_clean = 0;
2590 rx_ring->next_to_use = 0;
2592 return 0;
2593 alloc_failed:
2594 return -ENOMEM;
2598 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2599 * @adapter: board private structure
2601 * If this function returns with an error, then it's possible one or
2602 * more of the rings is populated (while the rest are not). It is the
2603 * callers duty to clean those orphaned rings.
2605 * Return 0 on success, negative on failure
2607 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2609 int i, err = 0;
2611 for (i = 0; i < adapter->num_rx_queues; i++) {
2612 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2613 if (!err)
2614 continue;
2615 hw_dbg(&adapter->hw,
2616 "Allocation for Rx Queue %u failed\n", i);
2617 break;
2619 return err;
2623 * ixgbevf_free_rx_resources - Free Rx Resources
2624 * @adapter: board private structure
2625 * @rx_ring: ring to clean the resources from
2627 * Free all receive software resources
2629 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2630 struct ixgbevf_ring *rx_ring)
2632 struct pci_dev *pdev = adapter->pdev;
2634 ixgbevf_clean_rx_ring(adapter, rx_ring);
2636 vfree(rx_ring->rx_buffer_info);
2637 rx_ring->rx_buffer_info = NULL;
2639 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2640 rx_ring->dma);
2642 rx_ring->desc = NULL;
2646 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2647 * @adapter: board private structure
2649 * Free all receive software resources
2651 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2653 int i;
2655 for (i = 0; i < adapter->num_rx_queues; i++)
2656 if (adapter->rx_ring[i].desc)
2657 ixgbevf_free_rx_resources(adapter,
2658 &adapter->rx_ring[i]);
2662 * ixgbevf_open - Called when a network interface is made active
2663 * @netdev: network interface device structure
2665 * Returns 0 on success, negative value on failure
2667 * The open entry point is called when a network interface is made
2668 * active by the system (IFF_UP). At this point all resources needed
2669 * for transmit and receive operations are allocated, the interrupt
2670 * handler is registered with the OS, the watchdog timer is started,
2671 * and the stack is notified that the interface is ready.
2673 static int ixgbevf_open(struct net_device *netdev)
2675 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2676 struct ixgbe_hw *hw = &adapter->hw;
2677 int err;
2679 /* disallow open during test */
2680 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2681 return -EBUSY;
2683 if (hw->adapter_stopped) {
2684 ixgbevf_reset(adapter);
2685 /* if adapter is still stopped then PF isn't up and
2686 * the vf can't start. */
2687 if (hw->adapter_stopped) {
2688 err = IXGBE_ERR_MBX;
2689 printk(KERN_ERR "Unable to start - perhaps the PF"
2690 " Driver isn't up yet\n");
2691 goto err_setup_reset;
2695 /* allocate transmit descriptors */
2696 err = ixgbevf_setup_all_tx_resources(adapter);
2697 if (err)
2698 goto err_setup_tx;
2700 /* allocate receive descriptors */
2701 err = ixgbevf_setup_all_rx_resources(adapter);
2702 if (err)
2703 goto err_setup_rx;
2705 ixgbevf_configure(adapter);
2708 * Map the Tx/Rx rings to the vectors we were allotted.
2709 * if request_irq will be called in this function map_rings
2710 * must be called *before* up_complete
2712 ixgbevf_map_rings_to_vectors(adapter);
2714 err = ixgbevf_up_complete(adapter);
2715 if (err)
2716 goto err_up;
2718 /* clear any pending interrupts, may auto mask */
2719 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2720 err = ixgbevf_request_irq(adapter);
2721 if (err)
2722 goto err_req_irq;
2724 ixgbevf_irq_enable(adapter, true, true);
2726 return 0;
2728 err_req_irq:
2729 ixgbevf_down(adapter);
2730 err_up:
2731 ixgbevf_free_irq(adapter);
2732 err_setup_rx:
2733 ixgbevf_free_all_rx_resources(adapter);
2734 err_setup_tx:
2735 ixgbevf_free_all_tx_resources(adapter);
2736 ixgbevf_reset(adapter);
2738 err_setup_reset:
2740 return err;
2744 * ixgbevf_close - Disables a network interface
2745 * @netdev: network interface device structure
2747 * Returns 0, this is not allowed to fail
2749 * The close entry point is called when an interface is de-activated
2750 * by the OS. The hardware is still under the drivers control, but
2751 * needs to be disabled. A global MAC reset is issued to stop the
2752 * hardware, and all transmit and receive resources are freed.
2754 static int ixgbevf_close(struct net_device *netdev)
2756 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2758 ixgbevf_down(adapter);
2759 ixgbevf_free_irq(adapter);
2761 ixgbevf_free_all_tx_resources(adapter);
2762 ixgbevf_free_all_rx_resources(adapter);
2764 return 0;
2767 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2768 struct ixgbevf_ring *tx_ring,
2769 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2771 struct ixgbe_adv_tx_context_desc *context_desc;
2772 unsigned int i;
2773 int err;
2774 struct ixgbevf_tx_buffer *tx_buffer_info;
2775 u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2776 u32 mss_l4len_idx, l4len;
2778 if (skb_is_gso(skb)) {
2779 if (skb_header_cloned(skb)) {
2780 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2781 if (err)
2782 return err;
2784 l4len = tcp_hdrlen(skb);
2785 *hdr_len += l4len;
2787 if (skb->protocol == htons(ETH_P_IP)) {
2788 struct iphdr *iph = ip_hdr(skb);
2789 iph->tot_len = 0;
2790 iph->check = 0;
2791 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2792 iph->daddr, 0,
2793 IPPROTO_TCP,
2795 adapter->hw_tso_ctxt++;
2796 } else if (skb_is_gso_v6(skb)) {
2797 ipv6_hdr(skb)->payload_len = 0;
2798 tcp_hdr(skb)->check =
2799 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2800 &ipv6_hdr(skb)->daddr,
2801 0, IPPROTO_TCP, 0);
2802 adapter->hw_tso6_ctxt++;
2805 i = tx_ring->next_to_use;
2807 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2808 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2810 /* VLAN MACLEN IPLEN */
2811 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2812 vlan_macip_lens |=
2813 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2814 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2815 IXGBE_ADVTXD_MACLEN_SHIFT);
2816 *hdr_len += skb_network_offset(skb);
2817 vlan_macip_lens |=
2818 (skb_transport_header(skb) - skb_network_header(skb));
2819 *hdr_len +=
2820 (skb_transport_header(skb) - skb_network_header(skb));
2821 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2822 context_desc->seqnum_seed = 0;
2824 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2825 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2826 IXGBE_ADVTXD_DTYP_CTXT);
2828 if (skb->protocol == htons(ETH_P_IP))
2829 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2830 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2831 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2833 /* MSS L4LEN IDX */
2834 mss_l4len_idx =
2835 (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2836 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2837 /* use index 1 for TSO */
2838 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2839 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2841 tx_buffer_info->time_stamp = jiffies;
2842 tx_buffer_info->next_to_watch = i;
2844 i++;
2845 if (i == tx_ring->count)
2846 i = 0;
2847 tx_ring->next_to_use = i;
2849 return true;
2852 return false;
2855 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2856 struct ixgbevf_ring *tx_ring,
2857 struct sk_buff *skb, u32 tx_flags)
2859 struct ixgbe_adv_tx_context_desc *context_desc;
2860 unsigned int i;
2861 struct ixgbevf_tx_buffer *tx_buffer_info;
2862 u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2864 if (skb->ip_summed == CHECKSUM_PARTIAL ||
2865 (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2866 i = tx_ring->next_to_use;
2867 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2868 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2870 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2871 vlan_macip_lens |= (tx_flags &
2872 IXGBE_TX_FLAGS_VLAN_MASK);
2873 vlan_macip_lens |= (skb_network_offset(skb) <<
2874 IXGBE_ADVTXD_MACLEN_SHIFT);
2875 if (skb->ip_summed == CHECKSUM_PARTIAL)
2876 vlan_macip_lens |= (skb_transport_header(skb) -
2877 skb_network_header(skb));
2879 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2880 context_desc->seqnum_seed = 0;
2882 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2883 IXGBE_ADVTXD_DTYP_CTXT);
2885 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2886 switch (skb->protocol) {
2887 case __constant_htons(ETH_P_IP):
2888 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2889 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2890 type_tucmd_mlhl |=
2891 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2892 break;
2893 case __constant_htons(ETH_P_IPV6):
2894 /* XXX what about other V6 headers?? */
2895 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2896 type_tucmd_mlhl |=
2897 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2898 break;
2899 default:
2900 if (unlikely(net_ratelimit())) {
2901 printk(KERN_WARNING
2902 "partial checksum but "
2903 "proto=%x!\n",
2904 skb->protocol);
2906 break;
2910 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2911 /* use index zero for tx checksum offload */
2912 context_desc->mss_l4len_idx = 0;
2914 tx_buffer_info->time_stamp = jiffies;
2915 tx_buffer_info->next_to_watch = i;
2917 adapter->hw_csum_tx_good++;
2918 i++;
2919 if (i == tx_ring->count)
2920 i = 0;
2921 tx_ring->next_to_use = i;
2923 return true;
2926 return false;
2929 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2930 struct ixgbevf_ring *tx_ring,
2931 struct sk_buff *skb, u32 tx_flags,
2932 unsigned int first)
2934 struct pci_dev *pdev = adapter->pdev;
2935 struct ixgbevf_tx_buffer *tx_buffer_info;
2936 unsigned int len;
2937 unsigned int total = skb->len;
2938 unsigned int offset = 0, size, count = 0;
2939 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2940 unsigned int f;
2941 int i;
2943 i = tx_ring->next_to_use;
2945 len = min(skb_headlen(skb), total);
2946 while (len) {
2947 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2948 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2950 tx_buffer_info->length = size;
2951 tx_buffer_info->mapped_as_page = false;
2952 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2953 skb->data + offset,
2954 size, DMA_TO_DEVICE);
2955 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2956 goto dma_error;
2957 tx_buffer_info->time_stamp = jiffies;
2958 tx_buffer_info->next_to_watch = i;
2960 len -= size;
2961 total -= size;
2962 offset += size;
2963 count++;
2964 i++;
2965 if (i == tx_ring->count)
2966 i = 0;
2969 for (f = 0; f < nr_frags; f++) {
2970 struct skb_frag_struct *frag;
2972 frag = &skb_shinfo(skb)->frags[f];
2973 len = min((unsigned int)frag->size, total);
2974 offset = frag->page_offset;
2976 while (len) {
2977 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2978 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2980 tx_buffer_info->length = size;
2981 tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2982 frag->page,
2983 offset,
2984 size,
2985 DMA_TO_DEVICE);
2986 tx_buffer_info->mapped_as_page = true;
2987 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2988 goto dma_error;
2989 tx_buffer_info->time_stamp = jiffies;
2990 tx_buffer_info->next_to_watch = i;
2992 len -= size;
2993 total -= size;
2994 offset += size;
2995 count++;
2996 i++;
2997 if (i == tx_ring->count)
2998 i = 0;
3000 if (total == 0)
3001 break;
3004 if (i == 0)
3005 i = tx_ring->count - 1;
3006 else
3007 i = i - 1;
3008 tx_ring->tx_buffer_info[i].skb = skb;
3009 tx_ring->tx_buffer_info[first].next_to_watch = i;
3011 return count;
3013 dma_error:
3014 dev_err(&pdev->dev, "TX DMA map failed\n");
3016 /* clear timestamp and dma mappings for failed tx_buffer_info map */
3017 tx_buffer_info->dma = 0;
3018 tx_buffer_info->time_stamp = 0;
3019 tx_buffer_info->next_to_watch = 0;
3020 count--;
3022 /* clear timestamp and dma mappings for remaining portion of packet */
3023 while (count >= 0) {
3024 count--;
3025 i--;
3026 if (i < 0)
3027 i += tx_ring->count;
3028 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3029 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3032 return count;
3035 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3036 struct ixgbevf_ring *tx_ring, int tx_flags,
3037 int count, u32 paylen, u8 hdr_len)
3039 union ixgbe_adv_tx_desc *tx_desc = NULL;
3040 struct ixgbevf_tx_buffer *tx_buffer_info;
3041 u32 olinfo_status = 0, cmd_type_len = 0;
3042 unsigned int i;
3044 u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3046 cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3048 cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3050 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3051 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3053 if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3054 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3056 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3057 IXGBE_ADVTXD_POPTS_SHIFT;
3059 /* use index 1 context for tso */
3060 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3061 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3062 olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3063 IXGBE_ADVTXD_POPTS_SHIFT;
3065 } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3066 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3067 IXGBE_ADVTXD_POPTS_SHIFT;
3069 olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3071 i = tx_ring->next_to_use;
3072 while (count--) {
3073 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3074 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3075 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3076 tx_desc->read.cmd_type_len =
3077 cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3078 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3079 i++;
3080 if (i == tx_ring->count)
3081 i = 0;
3084 tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3087 * Force memory writes to complete before letting h/w
3088 * know there are new descriptors to fetch. (Only
3089 * applicable for weak-ordered memory model archs,
3090 * such as IA-64).
3092 wmb();
3094 tx_ring->next_to_use = i;
3095 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3098 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3099 struct ixgbevf_ring *tx_ring, int size)
3101 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3103 netif_stop_subqueue(netdev, tx_ring->queue_index);
3104 /* Herbert's original patch had:
3105 * smp_mb__after_netif_stop_queue();
3106 * but since that doesn't exist yet, just open code it. */
3107 smp_mb();
3109 /* We need to check again in a case another CPU has just
3110 * made room available. */
3111 if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3112 return -EBUSY;
3114 /* A reprieve! - use start_queue because it doesn't call schedule */
3115 netif_start_subqueue(netdev, tx_ring->queue_index);
3116 ++adapter->restart_queue;
3117 return 0;
3120 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3121 struct ixgbevf_ring *tx_ring, int size)
3123 if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3124 return 0;
3125 return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3128 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3130 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3131 struct ixgbevf_ring *tx_ring;
3132 unsigned int first;
3133 unsigned int tx_flags = 0;
3134 u8 hdr_len = 0;
3135 int r_idx = 0, tso;
3136 int count = 0;
3138 unsigned int f;
3140 tx_ring = &adapter->tx_ring[r_idx];
3142 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3143 tx_flags |= vlan_tx_tag_get(skb);
3144 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3145 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3148 /* four things can cause us to need a context descriptor */
3149 if (skb_is_gso(skb) ||
3150 (skb->ip_summed == CHECKSUM_PARTIAL) ||
3151 (tx_flags & IXGBE_TX_FLAGS_VLAN))
3152 count++;
3154 count += TXD_USE_COUNT(skb_headlen(skb));
3155 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3156 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3158 if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3159 adapter->tx_busy++;
3160 return NETDEV_TX_BUSY;
3163 first = tx_ring->next_to_use;
3165 if (skb->protocol == htons(ETH_P_IP))
3166 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3167 tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3168 if (tso < 0) {
3169 dev_kfree_skb_any(skb);
3170 return NETDEV_TX_OK;
3173 if (tso)
3174 tx_flags |= IXGBE_TX_FLAGS_TSO;
3175 else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3176 (skb->ip_summed == CHECKSUM_PARTIAL))
3177 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3179 ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3180 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3181 skb->len, hdr_len);
3183 ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3185 return NETDEV_TX_OK;
3189 * ixgbevf_get_stats - Get System Network Statistics
3190 * @netdev: network interface device structure
3192 * Returns the address of the device statistics structure.
3193 * The statistics are actually updated from the timer callback.
3195 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3197 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3199 /* only return the current stats */
3200 return &adapter->net_stats;
3204 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3205 * @netdev: network interface device structure
3206 * @p: pointer to an address structure
3208 * Returns 0 on success, negative on failure
3210 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3212 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3213 struct ixgbe_hw *hw = &adapter->hw;
3214 struct sockaddr *addr = p;
3216 if (!is_valid_ether_addr(addr->sa_data))
3217 return -EADDRNOTAVAIL;
3219 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3220 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3222 if (hw->mac.ops.set_rar)
3223 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3225 return 0;
3229 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3230 * @netdev: network interface device structure
3231 * @new_mtu: new value for maximum frame size
3233 * Returns 0 on success, negative on failure
3235 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3237 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3238 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3240 /* MTU < 68 is an error and causes problems on some kernels */
3241 if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3242 return -EINVAL;
3244 hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3245 netdev->mtu, new_mtu);
3246 /* must set new MTU before calling down or up */
3247 netdev->mtu = new_mtu;
3249 if (netif_running(netdev))
3250 ixgbevf_reinit_locked(adapter);
3252 return 0;
3255 static void ixgbevf_shutdown(struct pci_dev *pdev)
3257 struct net_device *netdev = pci_get_drvdata(pdev);
3258 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3260 netif_device_detach(netdev);
3262 if (netif_running(netdev)) {
3263 ixgbevf_down(adapter);
3264 ixgbevf_free_irq(adapter);
3265 ixgbevf_free_all_tx_resources(adapter);
3266 ixgbevf_free_all_rx_resources(adapter);
3269 #ifdef CONFIG_PM
3270 pci_save_state(pdev);
3271 #endif
3273 pci_disable_device(pdev);
3276 static const struct net_device_ops ixgbe_netdev_ops = {
3277 .ndo_open = &ixgbevf_open,
3278 .ndo_stop = &ixgbevf_close,
3279 .ndo_start_xmit = &ixgbevf_xmit_frame,
3280 .ndo_get_stats = &ixgbevf_get_stats,
3281 .ndo_set_rx_mode = &ixgbevf_set_rx_mode,
3282 .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3283 .ndo_validate_addr = eth_validate_addr,
3284 .ndo_set_mac_address = &ixgbevf_set_mac,
3285 .ndo_change_mtu = &ixgbevf_change_mtu,
3286 .ndo_tx_timeout = &ixgbevf_tx_timeout,
3287 .ndo_vlan_rx_register = &ixgbevf_vlan_rx_register,
3288 .ndo_vlan_rx_add_vid = &ixgbevf_vlan_rx_add_vid,
3289 .ndo_vlan_rx_kill_vid = &ixgbevf_vlan_rx_kill_vid,
3292 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3294 struct ixgbevf_adapter *adapter;
3295 adapter = netdev_priv(dev);
3296 dev->netdev_ops = &ixgbe_netdev_ops;
3297 ixgbevf_set_ethtool_ops(dev);
3298 dev->watchdog_timeo = 5 * HZ;
3302 * ixgbevf_probe - Device Initialization Routine
3303 * @pdev: PCI device information struct
3304 * @ent: entry in ixgbevf_pci_tbl
3306 * Returns 0 on success, negative on failure
3308 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3309 * The OS initialization, configuring of the adapter private structure,
3310 * and a hardware reset occur.
3312 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3313 const struct pci_device_id *ent)
3315 struct net_device *netdev;
3316 struct ixgbevf_adapter *adapter = NULL;
3317 struct ixgbe_hw *hw = NULL;
3318 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3319 static int cards_found;
3320 int err, pci_using_dac;
3322 err = pci_enable_device(pdev);
3323 if (err)
3324 return err;
3326 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3327 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3328 pci_using_dac = 1;
3329 } else {
3330 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3331 if (err) {
3332 err = dma_set_coherent_mask(&pdev->dev,
3333 DMA_BIT_MASK(32));
3334 if (err) {
3335 dev_err(&pdev->dev, "No usable DMA "
3336 "configuration, aborting\n");
3337 goto err_dma;
3340 pci_using_dac = 0;
3343 err = pci_request_regions(pdev, ixgbevf_driver_name);
3344 if (err) {
3345 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3346 goto err_pci_reg;
3349 pci_set_master(pdev);
3351 #ifdef HAVE_TX_MQ
3352 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3353 MAX_TX_QUEUES);
3354 #else
3355 netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3356 #endif
3357 if (!netdev) {
3358 err = -ENOMEM;
3359 goto err_alloc_etherdev;
3362 SET_NETDEV_DEV(netdev, &pdev->dev);
3364 pci_set_drvdata(pdev, netdev);
3365 adapter = netdev_priv(netdev);
3367 adapter->netdev = netdev;
3368 adapter->pdev = pdev;
3369 hw = &adapter->hw;
3370 hw->back = adapter;
3371 adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3374 * call save state here in standalone driver because it relies on
3375 * adapter struct to exist, and needs to call netdev_priv
3377 pci_save_state(pdev);
3379 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3380 pci_resource_len(pdev, 0));
3381 if (!hw->hw_addr) {
3382 err = -EIO;
3383 goto err_ioremap;
3386 ixgbevf_assign_netdev_ops(netdev);
3388 adapter->bd_number = cards_found;
3390 /* Setup hw api */
3391 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3392 hw->mac.type = ii->mac;
3394 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3395 sizeof(struct ixgbe_mac_operations));
3397 adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3398 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3399 adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3401 /* setup the private structure */
3402 err = ixgbevf_sw_init(adapter);
3404 #ifdef MAX_SKB_FRAGS
3405 netdev->features = NETIF_F_SG |
3406 NETIF_F_IP_CSUM |
3407 NETIF_F_HW_VLAN_TX |
3408 NETIF_F_HW_VLAN_RX |
3409 NETIF_F_HW_VLAN_FILTER;
3411 netdev->features |= NETIF_F_IPV6_CSUM;
3412 netdev->features |= NETIF_F_TSO;
3413 netdev->features |= NETIF_F_TSO6;
3414 netdev->vlan_features |= NETIF_F_TSO;
3415 netdev->vlan_features |= NETIF_F_TSO6;
3416 netdev->vlan_features |= NETIF_F_IP_CSUM;
3417 netdev->vlan_features |= NETIF_F_SG;
3419 if (pci_using_dac)
3420 netdev->features |= NETIF_F_HIGHDMA;
3422 #endif /* MAX_SKB_FRAGS */
3424 /* The HW MAC address was set and/or determined in sw_init */
3425 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3426 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3428 if (!is_valid_ether_addr(netdev->dev_addr)) {
3429 printk(KERN_ERR "invalid MAC address\n");
3430 err = -EIO;
3431 goto err_sw_init;
3434 init_timer(&adapter->watchdog_timer);
3435 adapter->watchdog_timer.function = &ixgbevf_watchdog;
3436 adapter->watchdog_timer.data = (unsigned long)adapter;
3438 INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3439 INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3441 err = ixgbevf_init_interrupt_scheme(adapter);
3442 if (err)
3443 goto err_sw_init;
3445 /* pick up the PCI bus settings for reporting later */
3446 if (hw->mac.ops.get_bus_info)
3447 hw->mac.ops.get_bus_info(hw);
3450 netif_carrier_off(netdev);
3451 netif_tx_stop_all_queues(netdev);
3453 strcpy(netdev->name, "eth%d");
3455 err = register_netdev(netdev);
3456 if (err)
3457 goto err_register;
3459 adapter->netdev_registered = true;
3461 ixgbevf_init_last_counter_stats(adapter);
3463 /* print the MAC address */
3464 hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3465 netdev->dev_addr[0],
3466 netdev->dev_addr[1],
3467 netdev->dev_addr[2],
3468 netdev->dev_addr[3],
3469 netdev->dev_addr[4],
3470 netdev->dev_addr[5]);
3472 hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3474 hw_dbg(hw, "LRO is disabled\n");
3476 hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3477 cards_found++;
3478 return 0;
3480 err_register:
3481 err_sw_init:
3482 ixgbevf_reset_interrupt_capability(adapter);
3483 iounmap(hw->hw_addr);
3484 err_ioremap:
3485 free_netdev(netdev);
3486 err_alloc_etherdev:
3487 pci_release_regions(pdev);
3488 err_pci_reg:
3489 err_dma:
3490 pci_disable_device(pdev);
3491 return err;
3495 * ixgbevf_remove - Device Removal Routine
3496 * @pdev: PCI device information struct
3498 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3499 * that it should release a PCI device. The could be caused by a
3500 * Hot-Plug event, or because the driver is going to be removed from
3501 * memory.
3503 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3505 struct net_device *netdev = pci_get_drvdata(pdev);
3506 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3508 set_bit(__IXGBEVF_DOWN, &adapter->state);
3510 del_timer_sync(&adapter->watchdog_timer);
3512 cancel_work_sync(&adapter->watchdog_task);
3514 flush_scheduled_work();
3516 if (adapter->netdev_registered) {
3517 unregister_netdev(netdev);
3518 adapter->netdev_registered = false;
3521 ixgbevf_reset_interrupt_capability(adapter);
3523 iounmap(adapter->hw.hw_addr);
3524 pci_release_regions(pdev);
3526 hw_dbg(&adapter->hw, "Remove complete\n");
3528 kfree(adapter->tx_ring);
3529 kfree(adapter->rx_ring);
3531 free_netdev(netdev);
3533 pci_disable_device(pdev);
3536 static struct pci_driver ixgbevf_driver = {
3537 .name = ixgbevf_driver_name,
3538 .id_table = ixgbevf_pci_tbl,
3539 .probe = ixgbevf_probe,
3540 .remove = __devexit_p(ixgbevf_remove),
3541 .shutdown = ixgbevf_shutdown,
3545 * ixgbe_init_module - Driver Registration Routine
3547 * ixgbe_init_module is the first routine called when the driver is
3548 * loaded. All it does is register with the PCI subsystem.
3550 static int __init ixgbevf_init_module(void)
3552 int ret;
3553 printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3554 ixgbevf_driver_version);
3556 printk(KERN_INFO "%s\n", ixgbevf_copyright);
3558 ret = pci_register_driver(&ixgbevf_driver);
3559 return ret;
3562 module_init(ixgbevf_init_module);
3565 * ixgbe_exit_module - Driver Exit Cleanup Routine
3567 * ixgbe_exit_module is called just before the driver is removed
3568 * from memory.
3570 static void __exit ixgbevf_exit_module(void)
3572 pci_unregister_driver(&ixgbevf_driver);
3575 #ifdef DEBUG
3577 * ixgbe_get_hw_dev_name - return device name string
3578 * used by hardware layer to print debugging information
3580 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3582 struct ixgbevf_adapter *adapter = hw->back;
3583 return adapter->netdev->name;
3586 #endif
3587 module_exit(ixgbevf_exit_module);
3589 /* ixgbevf_main.c */