Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / kernel / cgroup / cgroup-v1.c
blob7bf4b1533f3466411fecaaab4e761f12323a3810
1 #include "cgroup-internal.h"
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
17 #include <trace/events/cgroup.h>
20 * pidlists linger the following amount before being destroyed. The goal
21 * is avoiding frequent destruction in the middle of consecutive read calls
22 * Expiring in the middle is a performance problem not a correctness one.
23 * 1 sec should be enough.
25 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
31 * pidlist destructions need to be flushed on cgroup destruction. Use a
32 * separate workqueue as flush domain.
34 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
40 static DEFINE_SPINLOCK(release_agent_path_lock);
42 bool cgroup1_ssid_disabled(int ssid)
44 return cgroup_no_v1_mask & (1 << ssid);
47 /**
48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49 * @from: attach to all cgroups of a given task
50 * @tsk: the task to be attached
52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
54 struct cgroup_root *root;
55 int retval = 0;
57 mutex_lock(&cgroup_mutex);
58 percpu_down_write(&cgroup_threadgroup_rwsem);
59 for_each_root(root) {
60 struct cgroup *from_cgrp;
62 if (root == &cgrp_dfl_root)
63 continue;
65 spin_lock_irq(&css_set_lock);
66 from_cgrp = task_cgroup_from_root(from, root);
67 spin_unlock_irq(&css_set_lock);
69 retval = cgroup_attach_task(from_cgrp, tsk, false);
70 if (retval)
71 break;
73 percpu_up_write(&cgroup_threadgroup_rwsem);
74 mutex_unlock(&cgroup_mutex);
76 return retval;
78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80 /**
81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82 * @to: cgroup to which the tasks will be moved
83 * @from: cgroup in which the tasks currently reside
85 * Locking rules between cgroup_post_fork() and the migration path
86 * guarantee that, if a task is forking while being migrated, the new child
87 * is guaranteed to be either visible in the source cgroup after the
88 * parent's migration is complete or put into the target cgroup. No task
89 * can slip out of migration through forking.
91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
93 DEFINE_CGROUP_MGCTX(mgctx);
94 struct cgrp_cset_link *link;
95 struct css_task_iter it;
96 struct task_struct *task;
97 int ret;
99 if (cgroup_on_dfl(to))
100 return -EINVAL;
102 if (!cgroup_may_migrate_to(to))
103 return -EBUSY;
105 mutex_lock(&cgroup_mutex);
107 percpu_down_write(&cgroup_threadgroup_rwsem);
109 /* all tasks in @from are being moved, all csets are source */
110 spin_lock_irq(&css_set_lock);
111 list_for_each_entry(link, &from->cset_links, cset_link)
112 cgroup_migrate_add_src(link->cset, to, &mgctx);
113 spin_unlock_irq(&css_set_lock);
115 ret = cgroup_migrate_prepare_dst(&mgctx);
116 if (ret)
117 goto out_err;
120 * Migrate tasks one-by-one until @from is empty. This fails iff
121 * ->can_attach() fails.
123 do {
124 css_task_iter_start(&from->self, &it);
125 task = css_task_iter_next(&it);
126 if (task)
127 get_task_struct(task);
128 css_task_iter_end(&it);
130 if (task) {
131 ret = cgroup_migrate(task, false, &mgctx);
132 if (!ret)
133 trace_cgroup_transfer_tasks(to, task, false);
134 put_task_struct(task);
136 } while (task && !ret);
137 out_err:
138 cgroup_migrate_finish(&mgctx);
139 percpu_up_write(&cgroup_threadgroup_rwsem);
140 mutex_unlock(&cgroup_mutex);
141 return ret;
145 * Stuff for reading the 'tasks'/'procs' files.
147 * Reading this file can return large amounts of data if a cgroup has
148 * *lots* of attached tasks. So it may need several calls to read(),
149 * but we cannot guarantee that the information we produce is correct
150 * unless we produce it entirely atomically.
154 /* which pidlist file are we talking about? */
155 enum cgroup_filetype {
156 CGROUP_FILE_PROCS,
157 CGROUP_FILE_TASKS,
161 * A pidlist is a list of pids that virtually represents the contents of one
162 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
163 * a pair (one each for procs, tasks) for each pid namespace that's relevant
164 * to the cgroup.
166 struct cgroup_pidlist {
168 * used to find which pidlist is wanted. doesn't change as long as
169 * this particular list stays in the list.
171 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
172 /* array of xids */
173 pid_t *list;
174 /* how many elements the above list has */
175 int length;
176 /* each of these stored in a list by its cgroup */
177 struct list_head links;
178 /* pointer to the cgroup we belong to, for list removal purposes */
179 struct cgroup *owner;
180 /* for delayed destruction */
181 struct delayed_work destroy_dwork;
185 * The following two functions "fix" the issue where there are more pids
186 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
187 * TODO: replace with a kernel-wide solution to this problem
189 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
190 static void *pidlist_allocate(int count)
192 if (PIDLIST_TOO_LARGE(count))
193 return vmalloc(count * sizeof(pid_t));
194 else
195 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
198 static void pidlist_free(void *p)
200 kvfree(p);
204 * Used to destroy all pidlists lingering waiting for destroy timer. None
205 * should be left afterwards.
207 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
209 struct cgroup_pidlist *l, *tmp_l;
211 mutex_lock(&cgrp->pidlist_mutex);
212 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
213 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
214 mutex_unlock(&cgrp->pidlist_mutex);
216 flush_workqueue(cgroup_pidlist_destroy_wq);
217 BUG_ON(!list_empty(&cgrp->pidlists));
220 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
222 struct delayed_work *dwork = to_delayed_work(work);
223 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
224 destroy_dwork);
225 struct cgroup_pidlist *tofree = NULL;
227 mutex_lock(&l->owner->pidlist_mutex);
230 * Destroy iff we didn't get queued again. The state won't change
231 * as destroy_dwork can only be queued while locked.
233 if (!delayed_work_pending(dwork)) {
234 list_del(&l->links);
235 pidlist_free(l->list);
236 put_pid_ns(l->key.ns);
237 tofree = l;
240 mutex_unlock(&l->owner->pidlist_mutex);
241 kfree(tofree);
245 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
246 * Returns the number of unique elements.
248 static int pidlist_uniq(pid_t *list, int length)
250 int src, dest = 1;
253 * we presume the 0th element is unique, so i starts at 1. trivial
254 * edge cases first; no work needs to be done for either
256 if (length == 0 || length == 1)
257 return length;
258 /* src and dest walk down the list; dest counts unique elements */
259 for (src = 1; src < length; src++) {
260 /* find next unique element */
261 while (list[src] == list[src-1]) {
262 src++;
263 if (src == length)
264 goto after;
266 /* dest always points to where the next unique element goes */
267 list[dest] = list[src];
268 dest++;
270 after:
271 return dest;
275 * The two pid files - task and cgroup.procs - guaranteed that the result
276 * is sorted, which forced this whole pidlist fiasco. As pid order is
277 * different per namespace, each namespace needs differently sorted list,
278 * making it impossible to use, for example, single rbtree of member tasks
279 * sorted by task pointer. As pidlists can be fairly large, allocating one
280 * per open file is dangerous, so cgroup had to implement shared pool of
281 * pidlists keyed by cgroup and namespace.
283 static int cmppid(const void *a, const void *b)
285 return *(pid_t *)a - *(pid_t *)b;
288 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
289 enum cgroup_filetype type)
291 struct cgroup_pidlist *l;
292 /* don't need task_nsproxy() if we're looking at ourself */
293 struct pid_namespace *ns = task_active_pid_ns(current);
295 lockdep_assert_held(&cgrp->pidlist_mutex);
297 list_for_each_entry(l, &cgrp->pidlists, links)
298 if (l->key.type == type && l->key.ns == ns)
299 return l;
300 return NULL;
304 * find the appropriate pidlist for our purpose (given procs vs tasks)
305 * returns with the lock on that pidlist already held, and takes care
306 * of the use count, or returns NULL with no locks held if we're out of
307 * memory.
309 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
310 enum cgroup_filetype type)
312 struct cgroup_pidlist *l;
314 lockdep_assert_held(&cgrp->pidlist_mutex);
316 l = cgroup_pidlist_find(cgrp, type);
317 if (l)
318 return l;
320 /* entry not found; create a new one */
321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
322 if (!l)
323 return l;
325 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
326 l->key.type = type;
327 /* don't need task_nsproxy() if we're looking at ourself */
328 l->key.ns = get_pid_ns(task_active_pid_ns(current));
329 l->owner = cgrp;
330 list_add(&l->links, &cgrp->pidlists);
331 return l;
335 * cgroup_task_count - count the number of tasks in a cgroup.
336 * @cgrp: the cgroup in question
338 int cgroup_task_count(const struct cgroup *cgrp)
340 int count = 0;
341 struct cgrp_cset_link *link;
343 spin_lock_irq(&css_set_lock);
344 list_for_each_entry(link, &cgrp->cset_links, cset_link)
345 count += link->cset->nr_tasks;
346 spin_unlock_irq(&css_set_lock);
347 return count;
351 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
353 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
354 struct cgroup_pidlist **lp)
356 pid_t *array;
357 int length;
358 int pid, n = 0; /* used for populating the array */
359 struct css_task_iter it;
360 struct task_struct *tsk;
361 struct cgroup_pidlist *l;
363 lockdep_assert_held(&cgrp->pidlist_mutex);
366 * If cgroup gets more users after we read count, we won't have
367 * enough space - tough. This race is indistinguishable to the
368 * caller from the case that the additional cgroup users didn't
369 * show up until sometime later on.
371 length = cgroup_task_count(cgrp);
372 array = pidlist_allocate(length);
373 if (!array)
374 return -ENOMEM;
375 /* now, populate the array */
376 css_task_iter_start(&cgrp->self, &it);
377 while ((tsk = css_task_iter_next(&it))) {
378 if (unlikely(n == length))
379 break;
380 /* get tgid or pid for procs or tasks file respectively */
381 if (type == CGROUP_FILE_PROCS)
382 pid = task_tgid_vnr(tsk);
383 else
384 pid = task_pid_vnr(tsk);
385 if (pid > 0) /* make sure to only use valid results */
386 array[n++] = pid;
388 css_task_iter_end(&it);
389 length = n;
390 /* now sort & (if procs) strip out duplicates */
391 sort(array, length, sizeof(pid_t), cmppid, NULL);
392 if (type == CGROUP_FILE_PROCS)
393 length = pidlist_uniq(array, length);
395 l = cgroup_pidlist_find_create(cgrp, type);
396 if (!l) {
397 pidlist_free(array);
398 return -ENOMEM;
401 /* store array, freeing old if necessary */
402 pidlist_free(l->list);
403 l->list = array;
404 l->length = length;
405 *lp = l;
406 return 0;
410 * seq_file methods for the tasks/procs files. The seq_file position is the
411 * next pid to display; the seq_file iterator is a pointer to the pid
412 * in the cgroup->l->list array.
415 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
418 * Initially we receive a position value that corresponds to
419 * one more than the last pid shown (or 0 on the first call or
420 * after a seek to the start). Use a binary-search to find the
421 * next pid to display, if any
423 struct kernfs_open_file *of = s->private;
424 struct cgroup *cgrp = seq_css(s)->cgroup;
425 struct cgroup_pidlist *l;
426 enum cgroup_filetype type = seq_cft(s)->private;
427 int index = 0, pid = *pos;
428 int *iter, ret;
430 mutex_lock(&cgrp->pidlist_mutex);
433 * !NULL @of->priv indicates that this isn't the first start()
434 * after open. If the matching pidlist is around, we can use that.
435 * Look for it. Note that @of->priv can't be used directly. It
436 * could already have been destroyed.
438 if (of->priv)
439 of->priv = cgroup_pidlist_find(cgrp, type);
442 * Either this is the first start() after open or the matching
443 * pidlist has been destroyed inbetween. Create a new one.
445 if (!of->priv) {
446 ret = pidlist_array_load(cgrp, type,
447 (struct cgroup_pidlist **)&of->priv);
448 if (ret)
449 return ERR_PTR(ret);
451 l = of->priv;
453 if (pid) {
454 int end = l->length;
456 while (index < end) {
457 int mid = (index + end) / 2;
458 if (l->list[mid] == pid) {
459 index = mid;
460 break;
461 } else if (l->list[mid] <= pid)
462 index = mid + 1;
463 else
464 end = mid;
467 /* If we're off the end of the array, we're done */
468 if (index >= l->length)
469 return NULL;
470 /* Update the abstract position to be the actual pid that we found */
471 iter = l->list + index;
472 *pos = *iter;
473 return iter;
476 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
478 struct kernfs_open_file *of = s->private;
479 struct cgroup_pidlist *l = of->priv;
481 if (l)
482 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
483 CGROUP_PIDLIST_DESTROY_DELAY);
484 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
487 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
489 struct kernfs_open_file *of = s->private;
490 struct cgroup_pidlist *l = of->priv;
491 pid_t *p = v;
492 pid_t *end = l->list + l->length;
494 * Advance to the next pid in the array. If this goes off the
495 * end, we're done
497 p++;
498 if (p >= end) {
499 return NULL;
500 } else {
501 *pos = *p;
502 return p;
506 static int cgroup_pidlist_show(struct seq_file *s, void *v)
508 seq_printf(s, "%d\n", *(int *)v);
510 return 0;
513 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
514 char *buf, size_t nbytes, loff_t off)
516 return __cgroup_procs_write(of, buf, nbytes, off, false);
519 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
520 char *buf, size_t nbytes, loff_t off)
522 struct cgroup *cgrp;
524 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
526 cgrp = cgroup_kn_lock_live(of->kn, false);
527 if (!cgrp)
528 return -ENODEV;
529 spin_lock(&release_agent_path_lock);
530 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
531 sizeof(cgrp->root->release_agent_path));
532 spin_unlock(&release_agent_path_lock);
533 cgroup_kn_unlock(of->kn);
534 return nbytes;
537 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
539 struct cgroup *cgrp = seq_css(seq)->cgroup;
541 spin_lock(&release_agent_path_lock);
542 seq_puts(seq, cgrp->root->release_agent_path);
543 spin_unlock(&release_agent_path_lock);
544 seq_putc(seq, '\n');
545 return 0;
548 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
550 seq_puts(seq, "0\n");
551 return 0;
554 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
555 struct cftype *cft)
557 return notify_on_release(css->cgroup);
560 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
561 struct cftype *cft, u64 val)
563 if (val)
564 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
565 else
566 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
567 return 0;
570 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
571 struct cftype *cft)
573 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
576 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
577 struct cftype *cft, u64 val)
579 if (val)
580 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
581 else
582 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
583 return 0;
586 /* cgroup core interface files for the legacy hierarchies */
587 struct cftype cgroup1_base_files[] = {
589 .name = "cgroup.procs",
590 .seq_start = cgroup_pidlist_start,
591 .seq_next = cgroup_pidlist_next,
592 .seq_stop = cgroup_pidlist_stop,
593 .seq_show = cgroup_pidlist_show,
594 .private = CGROUP_FILE_PROCS,
595 .write = cgroup_procs_write,
598 .name = "cgroup.clone_children",
599 .read_u64 = cgroup_clone_children_read,
600 .write_u64 = cgroup_clone_children_write,
603 .name = "cgroup.sane_behavior",
604 .flags = CFTYPE_ONLY_ON_ROOT,
605 .seq_show = cgroup_sane_behavior_show,
608 .name = "tasks",
609 .seq_start = cgroup_pidlist_start,
610 .seq_next = cgroup_pidlist_next,
611 .seq_stop = cgroup_pidlist_stop,
612 .seq_show = cgroup_pidlist_show,
613 .private = CGROUP_FILE_TASKS,
614 .write = cgroup_tasks_write,
617 .name = "notify_on_release",
618 .read_u64 = cgroup_read_notify_on_release,
619 .write_u64 = cgroup_write_notify_on_release,
622 .name = "release_agent",
623 .flags = CFTYPE_ONLY_ON_ROOT,
624 .seq_show = cgroup_release_agent_show,
625 .write = cgroup_release_agent_write,
626 .max_write_len = PATH_MAX - 1,
628 { } /* terminate */
631 /* Display information about each subsystem and each hierarchy */
632 static int proc_cgroupstats_show(struct seq_file *m, void *v)
634 struct cgroup_subsys *ss;
635 int i;
637 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
639 * ideally we don't want subsystems moving around while we do this.
640 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
641 * subsys/hierarchy state.
643 mutex_lock(&cgroup_mutex);
645 for_each_subsys(ss, i)
646 seq_printf(m, "%s\t%d\t%d\t%d\n",
647 ss->legacy_name, ss->root->hierarchy_id,
648 atomic_read(&ss->root->nr_cgrps),
649 cgroup_ssid_enabled(i));
651 mutex_unlock(&cgroup_mutex);
652 return 0;
655 static int cgroupstats_open(struct inode *inode, struct file *file)
657 return single_open(file, proc_cgroupstats_show, NULL);
660 const struct file_operations proc_cgroupstats_operations = {
661 .open = cgroupstats_open,
662 .read = seq_read,
663 .llseek = seq_lseek,
664 .release = single_release,
668 * cgroupstats_build - build and fill cgroupstats
669 * @stats: cgroupstats to fill information into
670 * @dentry: A dentry entry belonging to the cgroup for which stats have
671 * been requested.
673 * Build and fill cgroupstats so that taskstats can export it to user
674 * space.
676 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
678 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
679 struct cgroup *cgrp;
680 struct css_task_iter it;
681 struct task_struct *tsk;
683 /* it should be kernfs_node belonging to cgroupfs and is a directory */
684 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
685 kernfs_type(kn) != KERNFS_DIR)
686 return -EINVAL;
688 mutex_lock(&cgroup_mutex);
691 * We aren't being called from kernfs and there's no guarantee on
692 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
693 * @kn->priv is RCU safe. Let's do the RCU dancing.
695 rcu_read_lock();
696 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
697 if (!cgrp || cgroup_is_dead(cgrp)) {
698 rcu_read_unlock();
699 mutex_unlock(&cgroup_mutex);
700 return -ENOENT;
702 rcu_read_unlock();
704 css_task_iter_start(&cgrp->self, &it);
705 while ((tsk = css_task_iter_next(&it))) {
706 switch (tsk->state) {
707 case TASK_RUNNING:
708 stats->nr_running++;
709 break;
710 case TASK_INTERRUPTIBLE:
711 stats->nr_sleeping++;
712 break;
713 case TASK_UNINTERRUPTIBLE:
714 stats->nr_uninterruptible++;
715 break;
716 case TASK_STOPPED:
717 stats->nr_stopped++;
718 break;
719 default:
720 if (delayacct_is_task_waiting_on_io(tsk))
721 stats->nr_io_wait++;
722 break;
725 css_task_iter_end(&it);
727 mutex_unlock(&cgroup_mutex);
728 return 0;
731 void cgroup1_check_for_release(struct cgroup *cgrp)
733 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
734 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
735 schedule_work(&cgrp->release_agent_work);
739 * Notify userspace when a cgroup is released, by running the
740 * configured release agent with the name of the cgroup (path
741 * relative to the root of cgroup file system) as the argument.
743 * Most likely, this user command will try to rmdir this cgroup.
745 * This races with the possibility that some other task will be
746 * attached to this cgroup before it is removed, or that some other
747 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
748 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
749 * unused, and this cgroup will be reprieved from its death sentence,
750 * to continue to serve a useful existence. Next time it's released,
751 * we will get notified again, if it still has 'notify_on_release' set.
753 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
754 * means only wait until the task is successfully execve()'d. The
755 * separate release agent task is forked by call_usermodehelper(),
756 * then control in this thread returns here, without waiting for the
757 * release agent task. We don't bother to wait because the caller of
758 * this routine has no use for the exit status of the release agent
759 * task, so no sense holding our caller up for that.
761 void cgroup1_release_agent(struct work_struct *work)
763 struct cgroup *cgrp =
764 container_of(work, struct cgroup, release_agent_work);
765 char *pathbuf = NULL, *agentbuf = NULL;
766 char *argv[3], *envp[3];
767 int ret;
769 mutex_lock(&cgroup_mutex);
771 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
772 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
773 if (!pathbuf || !agentbuf)
774 goto out;
776 spin_lock_irq(&css_set_lock);
777 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
778 spin_unlock_irq(&css_set_lock);
779 if (ret < 0 || ret >= PATH_MAX)
780 goto out;
782 argv[0] = agentbuf;
783 argv[1] = pathbuf;
784 argv[2] = NULL;
786 /* minimal command environment */
787 envp[0] = "HOME=/";
788 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
789 envp[2] = NULL;
791 mutex_unlock(&cgroup_mutex);
792 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
793 goto out_free;
794 out:
795 mutex_unlock(&cgroup_mutex);
796 out_free:
797 kfree(agentbuf);
798 kfree(pathbuf);
802 * cgroup_rename - Only allow simple rename of directories in place.
804 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
805 const char *new_name_str)
807 struct cgroup *cgrp = kn->priv;
808 int ret;
810 if (kernfs_type(kn) != KERNFS_DIR)
811 return -ENOTDIR;
812 if (kn->parent != new_parent)
813 return -EIO;
816 * We're gonna grab cgroup_mutex which nests outside kernfs
817 * active_ref. kernfs_rename() doesn't require active_ref
818 * protection. Break them before grabbing cgroup_mutex.
820 kernfs_break_active_protection(new_parent);
821 kernfs_break_active_protection(kn);
823 mutex_lock(&cgroup_mutex);
825 ret = kernfs_rename(kn, new_parent, new_name_str);
826 if (!ret)
827 trace_cgroup_rename(cgrp);
829 mutex_unlock(&cgroup_mutex);
831 kernfs_unbreak_active_protection(kn);
832 kernfs_unbreak_active_protection(new_parent);
833 return ret;
836 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
838 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
839 struct cgroup_subsys *ss;
840 int ssid;
842 for_each_subsys(ss, ssid)
843 if (root->subsys_mask & (1 << ssid))
844 seq_show_option(seq, ss->legacy_name, NULL);
845 if (root->flags & CGRP_ROOT_NOPREFIX)
846 seq_puts(seq, ",noprefix");
847 if (root->flags & CGRP_ROOT_XATTR)
848 seq_puts(seq, ",xattr");
850 spin_lock(&release_agent_path_lock);
851 if (strlen(root->release_agent_path))
852 seq_show_option(seq, "release_agent",
853 root->release_agent_path);
854 spin_unlock(&release_agent_path_lock);
856 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
857 seq_puts(seq, ",clone_children");
858 if (strlen(root->name))
859 seq_show_option(seq, "name", root->name);
860 return 0;
863 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
865 char *token, *o = data;
866 bool all_ss = false, one_ss = false;
867 u16 mask = U16_MAX;
868 struct cgroup_subsys *ss;
869 int nr_opts = 0;
870 int i;
872 #ifdef CONFIG_CPUSETS
873 mask = ~((u16)1 << cpuset_cgrp_id);
874 #endif
876 memset(opts, 0, sizeof(*opts));
878 while ((token = strsep(&o, ",")) != NULL) {
879 nr_opts++;
881 if (!*token)
882 return -EINVAL;
883 if (!strcmp(token, "none")) {
884 /* Explicitly have no subsystems */
885 opts->none = true;
886 continue;
888 if (!strcmp(token, "all")) {
889 /* Mutually exclusive option 'all' + subsystem name */
890 if (one_ss)
891 return -EINVAL;
892 all_ss = true;
893 continue;
895 if (!strcmp(token, "noprefix")) {
896 opts->flags |= CGRP_ROOT_NOPREFIX;
897 continue;
899 if (!strcmp(token, "clone_children")) {
900 opts->cpuset_clone_children = true;
901 continue;
903 if (!strcmp(token, "xattr")) {
904 opts->flags |= CGRP_ROOT_XATTR;
905 continue;
907 if (!strncmp(token, "release_agent=", 14)) {
908 /* Specifying two release agents is forbidden */
909 if (opts->release_agent)
910 return -EINVAL;
911 opts->release_agent =
912 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
913 if (!opts->release_agent)
914 return -ENOMEM;
915 continue;
917 if (!strncmp(token, "name=", 5)) {
918 const char *name = token + 5;
919 /* Can't specify an empty name */
920 if (!strlen(name))
921 return -EINVAL;
922 /* Must match [\w.-]+ */
923 for (i = 0; i < strlen(name); i++) {
924 char c = name[i];
925 if (isalnum(c))
926 continue;
927 if ((c == '.') || (c == '-') || (c == '_'))
928 continue;
929 return -EINVAL;
931 /* Specifying two names is forbidden */
932 if (opts->name)
933 return -EINVAL;
934 opts->name = kstrndup(name,
935 MAX_CGROUP_ROOT_NAMELEN - 1,
936 GFP_KERNEL);
937 if (!opts->name)
938 return -ENOMEM;
940 continue;
943 for_each_subsys(ss, i) {
944 if (strcmp(token, ss->legacy_name))
945 continue;
946 if (!cgroup_ssid_enabled(i))
947 continue;
948 if (cgroup1_ssid_disabled(i))
949 continue;
951 /* Mutually exclusive option 'all' + subsystem name */
952 if (all_ss)
953 return -EINVAL;
954 opts->subsys_mask |= (1 << i);
955 one_ss = true;
957 break;
959 if (i == CGROUP_SUBSYS_COUNT)
960 return -ENOENT;
964 * If the 'all' option was specified select all the subsystems,
965 * otherwise if 'none', 'name=' and a subsystem name options were
966 * not specified, let's default to 'all'
968 if (all_ss || (!one_ss && !opts->none && !opts->name))
969 for_each_subsys(ss, i)
970 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
971 opts->subsys_mask |= (1 << i);
974 * We either have to specify by name or by subsystems. (So all
975 * empty hierarchies must have a name).
977 if (!opts->subsys_mask && !opts->name)
978 return -EINVAL;
981 * Option noprefix was introduced just for backward compatibility
982 * with the old cpuset, so we allow noprefix only if mounting just
983 * the cpuset subsystem.
985 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
986 return -EINVAL;
988 /* Can't specify "none" and some subsystems */
989 if (opts->subsys_mask && opts->none)
990 return -EINVAL;
992 return 0;
995 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
997 int ret = 0;
998 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
999 struct cgroup_sb_opts opts;
1000 u16 added_mask, removed_mask;
1002 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1004 /* See what subsystems are wanted */
1005 ret = parse_cgroupfs_options(data, &opts);
1006 if (ret)
1007 goto out_unlock;
1009 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1010 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1011 task_tgid_nr(current), current->comm);
1013 added_mask = opts.subsys_mask & ~root->subsys_mask;
1014 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1016 /* Don't allow flags or name to change at remount */
1017 if ((opts.flags ^ root->flags) ||
1018 (opts.name && strcmp(opts.name, root->name))) {
1019 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1020 opts.flags, opts.name ?: "", root->flags, root->name);
1021 ret = -EINVAL;
1022 goto out_unlock;
1025 /* remounting is not allowed for populated hierarchies */
1026 if (!list_empty(&root->cgrp.self.children)) {
1027 ret = -EBUSY;
1028 goto out_unlock;
1031 ret = rebind_subsystems(root, added_mask);
1032 if (ret)
1033 goto out_unlock;
1035 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1037 if (opts.release_agent) {
1038 spin_lock(&release_agent_path_lock);
1039 strcpy(root->release_agent_path, opts.release_agent);
1040 spin_unlock(&release_agent_path_lock);
1043 trace_cgroup_remount(root);
1045 out_unlock:
1046 kfree(opts.release_agent);
1047 kfree(opts.name);
1048 mutex_unlock(&cgroup_mutex);
1049 return ret;
1052 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1053 .rename = cgroup1_rename,
1054 .show_options = cgroup1_show_options,
1055 .remount_fs = cgroup1_remount,
1056 .mkdir = cgroup_mkdir,
1057 .rmdir = cgroup_rmdir,
1058 .show_path = cgroup_show_path,
1061 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1062 void *data, unsigned long magic,
1063 struct cgroup_namespace *ns)
1065 struct super_block *pinned_sb = NULL;
1066 struct cgroup_sb_opts opts;
1067 struct cgroup_root *root;
1068 struct cgroup_subsys *ss;
1069 struct dentry *dentry;
1070 int i, ret;
1071 bool new_root = false;
1073 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1075 /* First find the desired set of subsystems */
1076 ret = parse_cgroupfs_options(data, &opts);
1077 if (ret)
1078 goto out_unlock;
1081 * Destruction of cgroup root is asynchronous, so subsystems may
1082 * still be dying after the previous unmount. Let's drain the
1083 * dying subsystems. We just need to ensure that the ones
1084 * unmounted previously finish dying and don't care about new ones
1085 * starting. Testing ref liveliness is good enough.
1087 for_each_subsys(ss, i) {
1088 if (!(opts.subsys_mask & (1 << i)) ||
1089 ss->root == &cgrp_dfl_root)
1090 continue;
1092 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1093 mutex_unlock(&cgroup_mutex);
1094 msleep(10);
1095 ret = restart_syscall();
1096 goto out_free;
1098 cgroup_put(&ss->root->cgrp);
1101 for_each_root(root) {
1102 bool name_match = false;
1104 if (root == &cgrp_dfl_root)
1105 continue;
1108 * If we asked for a name then it must match. Also, if
1109 * name matches but sybsys_mask doesn't, we should fail.
1110 * Remember whether name matched.
1112 if (opts.name) {
1113 if (strcmp(opts.name, root->name))
1114 continue;
1115 name_match = true;
1119 * If we asked for subsystems (or explicitly for no
1120 * subsystems) then they must match.
1122 if ((opts.subsys_mask || opts.none) &&
1123 (opts.subsys_mask != root->subsys_mask)) {
1124 if (!name_match)
1125 continue;
1126 ret = -EBUSY;
1127 goto out_unlock;
1130 if (root->flags ^ opts.flags)
1131 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1134 * We want to reuse @root whose lifetime is governed by its
1135 * ->cgrp. Let's check whether @root is alive and keep it
1136 * that way. As cgroup_kill_sb() can happen anytime, we
1137 * want to block it by pinning the sb so that @root doesn't
1138 * get killed before mount is complete.
1140 * With the sb pinned, tryget_live can reliably indicate
1141 * whether @root can be reused. If it's being killed,
1142 * drain it. We can use wait_queue for the wait but this
1143 * path is super cold. Let's just sleep a bit and retry.
1145 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1146 if (IS_ERR(pinned_sb) ||
1147 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1148 mutex_unlock(&cgroup_mutex);
1149 if (!IS_ERR_OR_NULL(pinned_sb))
1150 deactivate_super(pinned_sb);
1151 msleep(10);
1152 ret = restart_syscall();
1153 goto out_free;
1156 ret = 0;
1157 goto out_unlock;
1161 * No such thing, create a new one. name= matching without subsys
1162 * specification is allowed for already existing hierarchies but we
1163 * can't create new one without subsys specification.
1165 if (!opts.subsys_mask && !opts.none) {
1166 ret = -EINVAL;
1167 goto out_unlock;
1170 /* Hierarchies may only be created in the initial cgroup namespace. */
1171 if (ns != &init_cgroup_ns) {
1172 ret = -EPERM;
1173 goto out_unlock;
1176 root = kzalloc(sizeof(*root), GFP_KERNEL);
1177 if (!root) {
1178 ret = -ENOMEM;
1179 goto out_unlock;
1181 new_root = true;
1183 init_cgroup_root(root, &opts);
1185 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1186 if (ret)
1187 cgroup_free_root(root);
1189 out_unlock:
1190 mutex_unlock(&cgroup_mutex);
1191 out_free:
1192 kfree(opts.release_agent);
1193 kfree(opts.name);
1195 if (ret)
1196 return ERR_PTR(ret);
1198 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1199 CGROUP_SUPER_MAGIC, ns);
1202 * There's a race window after we release cgroup_mutex and before
1203 * allocating a superblock. Make sure a concurrent process won't
1204 * be able to re-use the root during this window by delaying the
1205 * initialization of root refcnt.
1207 if (new_root) {
1208 mutex_lock(&cgroup_mutex);
1209 percpu_ref_reinit(&root->cgrp.self.refcnt);
1210 mutex_unlock(&cgroup_mutex);
1214 * If @pinned_sb, we're reusing an existing root and holding an
1215 * extra ref on its sb. Mount is complete. Put the extra ref.
1217 if (pinned_sb)
1218 deactivate_super(pinned_sb);
1220 return dentry;
1223 static int __init cgroup1_wq_init(void)
1226 * Used to destroy pidlists and separate to serve as flush domain.
1227 * Cap @max_active to 1 too.
1229 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1230 0, 1);
1231 BUG_ON(!cgroup_pidlist_destroy_wq);
1232 return 0;
1234 core_initcall(cgroup1_wq_init);
1236 static int __init cgroup_no_v1(char *str)
1238 struct cgroup_subsys *ss;
1239 char *token;
1240 int i;
1242 while ((token = strsep(&str, ",")) != NULL) {
1243 if (!*token)
1244 continue;
1246 if (!strcmp(token, "all")) {
1247 cgroup_no_v1_mask = U16_MAX;
1248 break;
1251 for_each_subsys(ss, i) {
1252 if (strcmp(token, ss->name) &&
1253 strcmp(token, ss->legacy_name))
1254 continue;
1256 cgroup_no_v1_mask |= 1 << i;
1259 return 1;
1261 __setup("cgroup_no_v1=", cgroup_no_v1);