4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
60 #include <linux/uaccess.h>
61 #include <linux/atomic.h>
62 #include <linux/mutex.h>
63 #include <linux/cgroup.h>
64 #include <linux/wait.h>
66 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key
);
67 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key
);
69 /* See "Frequency meter" comments, below. */
72 int cnt
; /* unprocessed events count */
73 int val
; /* most recent output value */
74 time64_t time
; /* clock (secs) when val computed */
75 spinlock_t lock
; /* guards read or write of above */
79 struct cgroup_subsys_state css
;
81 unsigned long flags
; /* "unsigned long" so bitops work */
84 * On default hierarchy:
86 * The user-configured masks can only be changed by writing to
87 * cpuset.cpus and cpuset.mems, and won't be limited by the
90 * The effective masks is the real masks that apply to the tasks
91 * in the cpuset. They may be changed if the configured masks are
92 * changed or hotplug happens.
94 * effective_mask == configured_mask & parent's effective_mask,
95 * and if it ends up empty, it will inherit the parent's mask.
100 * The user-configured masks are always the same with effective masks.
103 /* user-configured CPUs and Memory Nodes allow to tasks */
104 cpumask_var_t cpus_allowed
;
105 nodemask_t mems_allowed
;
107 /* effective CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t effective_cpus
;
109 nodemask_t effective_mems
;
112 * This is old Memory Nodes tasks took on.
114 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
115 * - A new cpuset's old_mems_allowed is initialized when some
116 * task is moved into it.
117 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
118 * cpuset.mems_allowed and have tasks' nodemask updated, and
119 * then old_mems_allowed is updated to mems_allowed.
121 nodemask_t old_mems_allowed
;
123 struct fmeter fmeter
; /* memory_pressure filter */
126 * Tasks are being attached to this cpuset. Used to prevent
127 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
129 int attach_in_progress
;
131 /* partition number for rebuild_sched_domains() */
134 /* for custom sched domain */
135 int relax_domain_level
;
138 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
140 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
143 /* Retrieve the cpuset for a task */
144 static inline struct cpuset
*task_cs(struct task_struct
*task
)
146 return css_cs(task_css(task
, cpuset_cgrp_id
));
149 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
151 return css_cs(cs
->css
.parent
);
155 static inline bool task_has_mempolicy(struct task_struct
*task
)
157 return task
->mempolicy
;
160 static inline bool task_has_mempolicy(struct task_struct
*task
)
167 /* bits in struct cpuset flags field */
174 CS_SCHED_LOAD_BALANCE
,
179 /* convenient tests for these bits */
180 static inline bool is_cpuset_online(struct cpuset
*cs
)
182 return test_bit(CS_ONLINE
, &cs
->flags
) && !css_is_dying(&cs
->css
);
185 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
187 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
190 static inline int is_mem_exclusive(const struct cpuset
*cs
)
192 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
195 static inline int is_mem_hardwall(const struct cpuset
*cs
)
197 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
200 static inline int is_sched_load_balance(const struct cpuset
*cs
)
202 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
205 static inline int is_memory_migrate(const struct cpuset
*cs
)
207 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
210 static inline int is_spread_page(const struct cpuset
*cs
)
212 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
215 static inline int is_spread_slab(const struct cpuset
*cs
)
217 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
220 static struct cpuset top_cpuset
= {
221 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
222 (1 << CS_MEM_EXCLUSIVE
)),
226 * cpuset_for_each_child - traverse online children of a cpuset
227 * @child_cs: loop cursor pointing to the current child
228 * @pos_css: used for iteration
229 * @parent_cs: target cpuset to walk children of
231 * Walk @child_cs through the online children of @parent_cs. Must be used
232 * with RCU read locked.
234 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
235 css_for_each_child((pos_css), &(parent_cs)->css) \
236 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
239 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
240 * @des_cs: loop cursor pointing to the current descendant
241 * @pos_css: used for iteration
242 * @root_cs: target cpuset to walk ancestor of
244 * Walk @des_cs through the online descendants of @root_cs. Must be used
245 * with RCU read locked. The caller may modify @pos_css by calling
246 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
247 * iteration and the first node to be visited.
249 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
250 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
251 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
254 * There are two global locks guarding cpuset structures - cpuset_mutex and
255 * callback_lock. We also require taking task_lock() when dereferencing a
256 * task's cpuset pointer. See "The task_lock() exception", at the end of this
259 * A task must hold both locks to modify cpusets. If a task holds
260 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
261 * is the only task able to also acquire callback_lock and be able to
262 * modify cpusets. It can perform various checks on the cpuset structure
263 * first, knowing nothing will change. It can also allocate memory while
264 * just holding cpuset_mutex. While it is performing these checks, various
265 * callback routines can briefly acquire callback_lock to query cpusets.
266 * Once it is ready to make the changes, it takes callback_lock, blocking
269 * Calls to the kernel memory allocator can not be made while holding
270 * callback_lock, as that would risk double tripping on callback_lock
271 * from one of the callbacks into the cpuset code from within
274 * If a task is only holding callback_lock, then it has read-only
277 * Now, the task_struct fields mems_allowed and mempolicy may be changed
278 * by other task, we use alloc_lock in the task_struct fields to protect
281 * The cpuset_common_file_read() handlers only hold callback_lock across
282 * small pieces of code, such as when reading out possibly multi-word
283 * cpumasks and nodemasks.
285 * Accessing a task's cpuset should be done in accordance with the
286 * guidelines for accessing subsystem state in kernel/cgroup.c
289 static DEFINE_MUTEX(cpuset_mutex
);
290 static DEFINE_SPINLOCK(callback_lock
);
292 static struct workqueue_struct
*cpuset_migrate_mm_wq
;
295 * CPU / memory hotplug is handled asynchronously.
297 static void cpuset_hotplug_workfn(struct work_struct
*work
);
298 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
300 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
303 * This is ugly, but preserves the userspace API for existing cpuset
304 * users. If someone tries to mount the "cpuset" filesystem, we
305 * silently switch it to mount "cgroup" instead
307 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
308 int flags
, const char *unused_dev_name
, void *data
)
310 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
311 struct dentry
*ret
= ERR_PTR(-ENODEV
);
315 "release_agent=/sbin/cpuset_release_agent";
316 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
317 unused_dev_name
, mountopts
);
318 put_filesystem(cgroup_fs
);
323 static struct file_system_type cpuset_fs_type
= {
325 .mount
= cpuset_mount
,
329 * Return in pmask the portion of a cpusets's cpus_allowed that
330 * are online. If none are online, walk up the cpuset hierarchy
331 * until we find one that does have some online cpus.
333 * One way or another, we guarantee to return some non-empty subset
334 * of cpu_online_mask.
336 * Call with callback_lock or cpuset_mutex held.
338 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
340 while (!cpumask_intersects(cs
->effective_cpus
, cpu_online_mask
)) {
344 * The top cpuset doesn't have any online cpu as a
345 * consequence of a race between cpuset_hotplug_work
346 * and cpu hotplug notifier. But we know the top
347 * cpuset's effective_cpus is on its way to to be
348 * identical to cpu_online_mask.
350 cpumask_copy(pmask
, cpu_online_mask
);
354 cpumask_and(pmask
, cs
->effective_cpus
, cpu_online_mask
);
358 * Return in *pmask the portion of a cpusets's mems_allowed that
359 * are online, with memory. If none are online with memory, walk
360 * up the cpuset hierarchy until we find one that does have some
361 * online mems. The top cpuset always has some mems online.
363 * One way or another, we guarantee to return some non-empty subset
364 * of node_states[N_MEMORY].
366 * Call with callback_lock or cpuset_mutex held.
368 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
370 while (!nodes_intersects(cs
->effective_mems
, node_states
[N_MEMORY
]))
372 nodes_and(*pmask
, cs
->effective_mems
, node_states
[N_MEMORY
]);
376 * update task's spread flag if cpuset's page/slab spread flag is set
378 * Call with callback_lock or cpuset_mutex held.
380 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
381 struct task_struct
*tsk
)
383 if (is_spread_page(cs
))
384 task_set_spread_page(tsk
);
386 task_clear_spread_page(tsk
);
388 if (is_spread_slab(cs
))
389 task_set_spread_slab(tsk
);
391 task_clear_spread_slab(tsk
);
395 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
397 * One cpuset is a subset of another if all its allowed CPUs and
398 * Memory Nodes are a subset of the other, and its exclusive flags
399 * are only set if the other's are set. Call holding cpuset_mutex.
402 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
404 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
405 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
406 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
407 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
411 * alloc_trial_cpuset - allocate a trial cpuset
412 * @cs: the cpuset that the trial cpuset duplicates
414 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
416 struct cpuset
*trial
;
418 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
422 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
))
424 if (!alloc_cpumask_var(&trial
->effective_cpus
, GFP_KERNEL
))
427 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
428 cpumask_copy(trial
->effective_cpus
, cs
->effective_cpus
);
432 free_cpumask_var(trial
->cpus_allowed
);
439 * free_trial_cpuset - free the trial cpuset
440 * @trial: the trial cpuset to be freed
442 static void free_trial_cpuset(struct cpuset
*trial
)
444 free_cpumask_var(trial
->effective_cpus
);
445 free_cpumask_var(trial
->cpus_allowed
);
450 * validate_change() - Used to validate that any proposed cpuset change
451 * follows the structural rules for cpusets.
453 * If we replaced the flag and mask values of the current cpuset
454 * (cur) with those values in the trial cpuset (trial), would
455 * our various subset and exclusive rules still be valid? Presumes
458 * 'cur' is the address of an actual, in-use cpuset. Operations
459 * such as list traversal that depend on the actual address of the
460 * cpuset in the list must use cur below, not trial.
462 * 'trial' is the address of bulk structure copy of cur, with
463 * perhaps one or more of the fields cpus_allowed, mems_allowed,
464 * or flags changed to new, trial values.
466 * Return 0 if valid, -errno if not.
469 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
471 struct cgroup_subsys_state
*css
;
472 struct cpuset
*c
, *par
;
477 /* Each of our child cpusets must be a subset of us */
479 cpuset_for_each_child(c
, css
, cur
)
480 if (!is_cpuset_subset(c
, trial
))
483 /* Remaining checks don't apply to root cpuset */
485 if (cur
== &top_cpuset
)
488 par
= parent_cs(cur
);
490 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
492 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
493 !is_cpuset_subset(trial
, par
))
497 * If either I or some sibling (!= me) is exclusive, we can't
501 cpuset_for_each_child(c
, css
, par
) {
502 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
504 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
506 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
508 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
513 * Cpusets with tasks - existing or newly being attached - can't
514 * be changed to have empty cpus_allowed or mems_allowed.
517 if ((cgroup_is_populated(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
518 if (!cpumask_empty(cur
->cpus_allowed
) &&
519 cpumask_empty(trial
->cpus_allowed
))
521 if (!nodes_empty(cur
->mems_allowed
) &&
522 nodes_empty(trial
->mems_allowed
))
527 * We can't shrink if we won't have enough room for SCHED_DEADLINE
531 if (is_cpu_exclusive(cur
) &&
532 !cpuset_cpumask_can_shrink(cur
->cpus_allowed
,
533 trial
->cpus_allowed
))
544 * Helper routine for generate_sched_domains().
545 * Do cpusets a, b have overlapping effective cpus_allowed masks?
547 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
549 return cpumask_intersects(a
->effective_cpus
, b
->effective_cpus
);
553 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
555 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
556 dattr
->relax_domain_level
= c
->relax_domain_level
;
560 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
561 struct cpuset
*root_cs
)
564 struct cgroup_subsys_state
*pos_css
;
567 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
568 /* skip the whole subtree if @cp doesn't have any CPU */
569 if (cpumask_empty(cp
->cpus_allowed
)) {
570 pos_css
= css_rightmost_descendant(pos_css
);
574 if (is_sched_load_balance(cp
))
575 update_domain_attr(dattr
, cp
);
580 /* Must be called with cpuset_mutex held. */
581 static inline int nr_cpusets(void)
583 /* jump label reference count + the top-level cpuset */
584 return static_key_count(&cpusets_enabled_key
.key
) + 1;
588 * generate_sched_domains()
590 * This function builds a partial partition of the systems CPUs
591 * A 'partial partition' is a set of non-overlapping subsets whose
592 * union is a subset of that set.
593 * The output of this function needs to be passed to kernel/sched/core.c
594 * partition_sched_domains() routine, which will rebuild the scheduler's
595 * load balancing domains (sched domains) as specified by that partial
598 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
599 * for a background explanation of this.
601 * Does not return errors, on the theory that the callers of this
602 * routine would rather not worry about failures to rebuild sched
603 * domains when operating in the severe memory shortage situations
604 * that could cause allocation failures below.
606 * Must be called with cpuset_mutex held.
608 * The three key local variables below are:
609 * q - a linked-list queue of cpuset pointers, used to implement a
610 * top-down scan of all cpusets. This scan loads a pointer
611 * to each cpuset marked is_sched_load_balance into the
612 * array 'csa'. For our purposes, rebuilding the schedulers
613 * sched domains, we can ignore !is_sched_load_balance cpusets.
614 * csa - (for CpuSet Array) Array of pointers to all the cpusets
615 * that need to be load balanced, for convenient iterative
616 * access by the subsequent code that finds the best partition,
617 * i.e the set of domains (subsets) of CPUs such that the
618 * cpus_allowed of every cpuset marked is_sched_load_balance
619 * is a subset of one of these domains, while there are as
620 * many such domains as possible, each as small as possible.
621 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
622 * the kernel/sched/core.c routine partition_sched_domains() in a
623 * convenient format, that can be easily compared to the prior
624 * value to determine what partition elements (sched domains)
625 * were changed (added or removed.)
627 * Finding the best partition (set of domains):
628 * The triple nested loops below over i, j, k scan over the
629 * load balanced cpusets (using the array of cpuset pointers in
630 * csa[]) looking for pairs of cpusets that have overlapping
631 * cpus_allowed, but which don't have the same 'pn' partition
632 * number and gives them in the same partition number. It keeps
633 * looping on the 'restart' label until it can no longer find
636 * The union of the cpus_allowed masks from the set of
637 * all cpusets having the same 'pn' value then form the one
638 * element of the partition (one sched domain) to be passed to
639 * partition_sched_domains().
641 static int generate_sched_domains(cpumask_var_t
**domains
,
642 struct sched_domain_attr
**attributes
)
644 struct cpuset
*cp
; /* scans q */
645 struct cpuset
**csa
; /* array of all cpuset ptrs */
646 int csn
; /* how many cpuset ptrs in csa so far */
647 int i
, j
, k
; /* indices for partition finding loops */
648 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
649 cpumask_var_t non_isolated_cpus
; /* load balanced CPUs */
650 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
651 int ndoms
= 0; /* number of sched domains in result */
652 int nslot
; /* next empty doms[] struct cpumask slot */
653 struct cgroup_subsys_state
*pos_css
;
659 if (!alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
))
661 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
663 /* Special case for the 99% of systems with one, full, sched domain */
664 if (is_sched_load_balance(&top_cpuset
)) {
666 doms
= alloc_sched_domains(ndoms
);
670 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
672 *dattr
= SD_ATTR_INIT
;
673 update_domain_attr_tree(dattr
, &top_cpuset
);
675 cpumask_and(doms
[0], top_cpuset
.effective_cpus
,
681 csa
= kmalloc(nr_cpusets() * sizeof(cp
), GFP_KERNEL
);
687 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
688 if (cp
== &top_cpuset
)
691 * Continue traversing beyond @cp iff @cp has some CPUs and
692 * isn't load balancing. The former is obvious. The
693 * latter: All child cpusets contain a subset of the
694 * parent's cpus, so just skip them, and then we call
695 * update_domain_attr_tree() to calc relax_domain_level of
696 * the corresponding sched domain.
698 if (!cpumask_empty(cp
->cpus_allowed
) &&
699 !(is_sched_load_balance(cp
) &&
700 cpumask_intersects(cp
->cpus_allowed
, non_isolated_cpus
)))
703 if (is_sched_load_balance(cp
))
706 /* skip @cp's subtree */
707 pos_css
= css_rightmost_descendant(pos_css
);
711 for (i
= 0; i
< csn
; i
++)
716 /* Find the best partition (set of sched domains) */
717 for (i
= 0; i
< csn
; i
++) {
718 struct cpuset
*a
= csa
[i
];
721 for (j
= 0; j
< csn
; j
++) {
722 struct cpuset
*b
= csa
[j
];
725 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
726 for (k
= 0; k
< csn
; k
++) {
727 struct cpuset
*c
= csa
[k
];
732 ndoms
--; /* one less element */
739 * Now we know how many domains to create.
740 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
742 doms
= alloc_sched_domains(ndoms
);
747 * The rest of the code, including the scheduler, can deal with
748 * dattr==NULL case. No need to abort if alloc fails.
750 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
752 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
753 struct cpuset
*a
= csa
[i
];
758 /* Skip completed partitions */
764 if (nslot
== ndoms
) {
765 static int warnings
= 10;
767 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
768 nslot
, ndoms
, csn
, i
, apn
);
776 *(dattr
+ nslot
) = SD_ATTR_INIT
;
777 for (j
= i
; j
< csn
; j
++) {
778 struct cpuset
*b
= csa
[j
];
781 cpumask_or(dp
, dp
, b
->effective_cpus
);
782 cpumask_and(dp
, dp
, non_isolated_cpus
);
784 update_domain_attr_tree(dattr
+ nslot
, b
);
786 /* Done with this partition */
792 BUG_ON(nslot
!= ndoms
);
795 free_cpumask_var(non_isolated_cpus
);
799 * Fallback to the default domain if kmalloc() failed.
800 * See comments in partition_sched_domains().
811 * Rebuild scheduler domains.
813 * If the flag 'sched_load_balance' of any cpuset with non-empty
814 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
815 * which has that flag enabled, or if any cpuset with a non-empty
816 * 'cpus' is removed, then call this routine to rebuild the
817 * scheduler's dynamic sched domains.
819 * Call with cpuset_mutex held. Takes get_online_cpus().
821 static void rebuild_sched_domains_locked(void)
823 struct sched_domain_attr
*attr
;
827 lockdep_assert_held(&cpuset_mutex
);
831 * We have raced with CPU hotplug. Don't do anything to avoid
832 * passing doms with offlined cpu to partition_sched_domains().
833 * Anyways, hotplug work item will rebuild sched domains.
835 if (!cpumask_equal(top_cpuset
.effective_cpus
, cpu_active_mask
))
838 /* Generate domain masks and attrs */
839 ndoms
= generate_sched_domains(&doms
, &attr
);
841 /* Have scheduler rebuild the domains */
842 partition_sched_domains(ndoms
, doms
, attr
);
846 #else /* !CONFIG_SMP */
847 static void rebuild_sched_domains_locked(void)
850 #endif /* CONFIG_SMP */
852 void rebuild_sched_domains(void)
854 mutex_lock(&cpuset_mutex
);
855 rebuild_sched_domains_locked();
856 mutex_unlock(&cpuset_mutex
);
860 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
861 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
863 * Iterate through each task of @cs updating its cpus_allowed to the
864 * effective cpuset's. As this function is called with cpuset_mutex held,
865 * cpuset membership stays stable.
867 static void update_tasks_cpumask(struct cpuset
*cs
)
869 struct css_task_iter it
;
870 struct task_struct
*task
;
872 css_task_iter_start(&cs
->css
, &it
);
873 while ((task
= css_task_iter_next(&it
)))
874 set_cpus_allowed_ptr(task
, cs
->effective_cpus
);
875 css_task_iter_end(&it
);
879 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
880 * @cs: the cpuset to consider
881 * @new_cpus: temp variable for calculating new effective_cpus
883 * When congifured cpumask is changed, the effective cpumasks of this cpuset
884 * and all its descendants need to be updated.
886 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
888 * Called with cpuset_mutex held
890 static void update_cpumasks_hier(struct cpuset
*cs
, struct cpumask
*new_cpus
)
893 struct cgroup_subsys_state
*pos_css
;
894 bool need_rebuild_sched_domains
= false;
897 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
898 struct cpuset
*parent
= parent_cs(cp
);
900 cpumask_and(new_cpus
, cp
->cpus_allowed
, parent
->effective_cpus
);
903 * If it becomes empty, inherit the effective mask of the
904 * parent, which is guaranteed to have some CPUs.
906 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
907 cpumask_empty(new_cpus
))
908 cpumask_copy(new_cpus
, parent
->effective_cpus
);
910 /* Skip the whole subtree if the cpumask remains the same. */
911 if (cpumask_equal(new_cpus
, cp
->effective_cpus
)) {
912 pos_css
= css_rightmost_descendant(pos_css
);
916 if (!css_tryget_online(&cp
->css
))
920 spin_lock_irq(&callback_lock
);
921 cpumask_copy(cp
->effective_cpus
, new_cpus
);
922 spin_unlock_irq(&callback_lock
);
924 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
925 !cpumask_equal(cp
->cpus_allowed
, cp
->effective_cpus
));
927 update_tasks_cpumask(cp
);
930 * If the effective cpumask of any non-empty cpuset is changed,
931 * we need to rebuild sched domains.
933 if (!cpumask_empty(cp
->cpus_allowed
) &&
934 is_sched_load_balance(cp
))
935 need_rebuild_sched_domains
= true;
942 if (need_rebuild_sched_domains
)
943 rebuild_sched_domains_locked();
947 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
948 * @cs: the cpuset to consider
949 * @trialcs: trial cpuset
950 * @buf: buffer of cpu numbers written to this cpuset
952 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
957 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
958 if (cs
== &top_cpuset
)
962 * An empty cpus_allowed is ok only if the cpuset has no tasks.
963 * Since cpulist_parse() fails on an empty mask, we special case
964 * that parsing. The validate_change() call ensures that cpusets
965 * with tasks have cpus.
968 cpumask_clear(trialcs
->cpus_allowed
);
970 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
974 if (!cpumask_subset(trialcs
->cpus_allowed
,
975 top_cpuset
.cpus_allowed
))
979 /* Nothing to do if the cpus didn't change */
980 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
983 retval
= validate_change(cs
, trialcs
);
987 spin_lock_irq(&callback_lock
);
988 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
989 spin_unlock_irq(&callback_lock
);
991 /* use trialcs->cpus_allowed as a temp variable */
992 update_cpumasks_hier(cs
, trialcs
->cpus_allowed
);
997 * Migrate memory region from one set of nodes to another. This is
998 * performed asynchronously as it can be called from process migration path
999 * holding locks involved in process management. All mm migrations are
1000 * performed in the queued order and can be waited for by flushing
1001 * cpuset_migrate_mm_wq.
1004 struct cpuset_migrate_mm_work
{
1005 struct work_struct work
;
1006 struct mm_struct
*mm
;
1011 static void cpuset_migrate_mm_workfn(struct work_struct
*work
)
1013 struct cpuset_migrate_mm_work
*mwork
=
1014 container_of(work
, struct cpuset_migrate_mm_work
, work
);
1016 /* on a wq worker, no need to worry about %current's mems_allowed */
1017 do_migrate_pages(mwork
->mm
, &mwork
->from
, &mwork
->to
, MPOL_MF_MOVE_ALL
);
1022 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
1023 const nodemask_t
*to
)
1025 struct cpuset_migrate_mm_work
*mwork
;
1027 mwork
= kzalloc(sizeof(*mwork
), GFP_KERNEL
);
1030 mwork
->from
= *from
;
1032 INIT_WORK(&mwork
->work
, cpuset_migrate_mm_workfn
);
1033 queue_work(cpuset_migrate_mm_wq
, &mwork
->work
);
1039 static void cpuset_post_attach(void)
1041 flush_workqueue(cpuset_migrate_mm_wq
);
1045 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1046 * @tsk: the task to change
1047 * @newmems: new nodes that the task will be set
1049 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1050 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1051 * parallel, it might temporarily see an empty intersection, which results in
1052 * a seqlock check and retry before OOM or allocation failure.
1054 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1055 nodemask_t
*newmems
)
1059 local_irq_disable();
1060 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1062 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1063 mpol_rebind_task(tsk
, newmems
);
1064 tsk
->mems_allowed
= *newmems
;
1066 write_seqcount_end(&tsk
->mems_allowed_seq
);
1072 static void *cpuset_being_rebound
;
1075 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1076 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1078 * Iterate through each task of @cs updating its mems_allowed to the
1079 * effective cpuset's. As this function is called with cpuset_mutex held,
1080 * cpuset membership stays stable.
1082 static void update_tasks_nodemask(struct cpuset
*cs
)
1084 static nodemask_t newmems
; /* protected by cpuset_mutex */
1085 struct css_task_iter it
;
1086 struct task_struct
*task
;
1088 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1090 guarantee_online_mems(cs
, &newmems
);
1093 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1094 * take while holding tasklist_lock. Forks can happen - the
1095 * mpol_dup() cpuset_being_rebound check will catch such forks,
1096 * and rebind their vma mempolicies too. Because we still hold
1097 * the global cpuset_mutex, we know that no other rebind effort
1098 * will be contending for the global variable cpuset_being_rebound.
1099 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1100 * is idempotent. Also migrate pages in each mm to new nodes.
1102 css_task_iter_start(&cs
->css
, &it
);
1103 while ((task
= css_task_iter_next(&it
))) {
1104 struct mm_struct
*mm
;
1107 cpuset_change_task_nodemask(task
, &newmems
);
1109 mm
= get_task_mm(task
);
1113 migrate
= is_memory_migrate(cs
);
1115 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1117 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1121 css_task_iter_end(&it
);
1124 * All the tasks' nodemasks have been updated, update
1125 * cs->old_mems_allowed.
1127 cs
->old_mems_allowed
= newmems
;
1129 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1130 cpuset_being_rebound
= NULL
;
1134 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1135 * @cs: the cpuset to consider
1136 * @new_mems: a temp variable for calculating new effective_mems
1138 * When configured nodemask is changed, the effective nodemasks of this cpuset
1139 * and all its descendants need to be updated.
1141 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1143 * Called with cpuset_mutex held
1145 static void update_nodemasks_hier(struct cpuset
*cs
, nodemask_t
*new_mems
)
1148 struct cgroup_subsys_state
*pos_css
;
1151 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1152 struct cpuset
*parent
= parent_cs(cp
);
1154 nodes_and(*new_mems
, cp
->mems_allowed
, parent
->effective_mems
);
1157 * If it becomes empty, inherit the effective mask of the
1158 * parent, which is guaranteed to have some MEMs.
1160 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
1161 nodes_empty(*new_mems
))
1162 *new_mems
= parent
->effective_mems
;
1164 /* Skip the whole subtree if the nodemask remains the same. */
1165 if (nodes_equal(*new_mems
, cp
->effective_mems
)) {
1166 pos_css
= css_rightmost_descendant(pos_css
);
1170 if (!css_tryget_online(&cp
->css
))
1174 spin_lock_irq(&callback_lock
);
1175 cp
->effective_mems
= *new_mems
;
1176 spin_unlock_irq(&callback_lock
);
1178 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
1179 !nodes_equal(cp
->mems_allowed
, cp
->effective_mems
));
1181 update_tasks_nodemask(cp
);
1190 * Handle user request to change the 'mems' memory placement
1191 * of a cpuset. Needs to validate the request, update the
1192 * cpusets mems_allowed, and for each task in the cpuset,
1193 * update mems_allowed and rebind task's mempolicy and any vma
1194 * mempolicies and if the cpuset is marked 'memory_migrate',
1195 * migrate the tasks pages to the new memory.
1197 * Call with cpuset_mutex held. May take callback_lock during call.
1198 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1199 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1200 * their mempolicies to the cpusets new mems_allowed.
1202 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1208 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1211 if (cs
== &top_cpuset
) {
1217 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1218 * Since nodelist_parse() fails on an empty mask, we special case
1219 * that parsing. The validate_change() call ensures that cpusets
1220 * with tasks have memory.
1223 nodes_clear(trialcs
->mems_allowed
);
1225 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1229 if (!nodes_subset(trialcs
->mems_allowed
,
1230 top_cpuset
.mems_allowed
)) {
1236 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1237 retval
= 0; /* Too easy - nothing to do */
1240 retval
= validate_change(cs
, trialcs
);
1244 spin_lock_irq(&callback_lock
);
1245 cs
->mems_allowed
= trialcs
->mems_allowed
;
1246 spin_unlock_irq(&callback_lock
);
1248 /* use trialcs->mems_allowed as a temp variable */
1249 update_nodemasks_hier(cs
, &trialcs
->mems_allowed
);
1254 int current_cpuset_is_being_rebound(void)
1259 ret
= task_cs(current
) == cpuset_being_rebound
;
1265 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1268 if (val
< -1 || val
>= sched_domain_level_max
)
1272 if (val
!= cs
->relax_domain_level
) {
1273 cs
->relax_domain_level
= val
;
1274 if (!cpumask_empty(cs
->cpus_allowed
) &&
1275 is_sched_load_balance(cs
))
1276 rebuild_sched_domains_locked();
1283 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1284 * @cs: the cpuset in which each task's spread flags needs to be changed
1286 * Iterate through each task of @cs updating its spread flags. As this
1287 * function is called with cpuset_mutex held, cpuset membership stays
1290 static void update_tasks_flags(struct cpuset
*cs
)
1292 struct css_task_iter it
;
1293 struct task_struct
*task
;
1295 css_task_iter_start(&cs
->css
, &it
);
1296 while ((task
= css_task_iter_next(&it
)))
1297 cpuset_update_task_spread_flag(cs
, task
);
1298 css_task_iter_end(&it
);
1302 * update_flag - read a 0 or a 1 in a file and update associated flag
1303 * bit: the bit to update (see cpuset_flagbits_t)
1304 * cs: the cpuset to update
1305 * turning_on: whether the flag is being set or cleared
1307 * Call with cpuset_mutex held.
1310 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1313 struct cpuset
*trialcs
;
1314 int balance_flag_changed
;
1315 int spread_flag_changed
;
1318 trialcs
= alloc_trial_cpuset(cs
);
1323 set_bit(bit
, &trialcs
->flags
);
1325 clear_bit(bit
, &trialcs
->flags
);
1327 err
= validate_change(cs
, trialcs
);
1331 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1332 is_sched_load_balance(trialcs
));
1334 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1335 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1337 spin_lock_irq(&callback_lock
);
1338 cs
->flags
= trialcs
->flags
;
1339 spin_unlock_irq(&callback_lock
);
1341 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1342 rebuild_sched_domains_locked();
1344 if (spread_flag_changed
)
1345 update_tasks_flags(cs
);
1347 free_trial_cpuset(trialcs
);
1352 * Frequency meter - How fast is some event occurring?
1354 * These routines manage a digitally filtered, constant time based,
1355 * event frequency meter. There are four routines:
1356 * fmeter_init() - initialize a frequency meter.
1357 * fmeter_markevent() - called each time the event happens.
1358 * fmeter_getrate() - returns the recent rate of such events.
1359 * fmeter_update() - internal routine used to update fmeter.
1361 * A common data structure is passed to each of these routines,
1362 * which is used to keep track of the state required to manage the
1363 * frequency meter and its digital filter.
1365 * The filter works on the number of events marked per unit time.
1366 * The filter is single-pole low-pass recursive (IIR). The time unit
1367 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1368 * simulate 3 decimal digits of precision (multiplied by 1000).
1370 * With an FM_COEF of 933, and a time base of 1 second, the filter
1371 * has a half-life of 10 seconds, meaning that if the events quit
1372 * happening, then the rate returned from the fmeter_getrate()
1373 * will be cut in half each 10 seconds, until it converges to zero.
1375 * It is not worth doing a real infinitely recursive filter. If more
1376 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1377 * just compute FM_MAXTICKS ticks worth, by which point the level
1380 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1381 * arithmetic overflow in the fmeter_update() routine.
1383 * Given the simple 32 bit integer arithmetic used, this meter works
1384 * best for reporting rates between one per millisecond (msec) and
1385 * one per 32 (approx) seconds. At constant rates faster than one
1386 * per msec it maxes out at values just under 1,000,000. At constant
1387 * rates between one per msec, and one per second it will stabilize
1388 * to a value N*1000, where N is the rate of events per second.
1389 * At constant rates between one per second and one per 32 seconds,
1390 * it will be choppy, moving up on the seconds that have an event,
1391 * and then decaying until the next event. At rates slower than
1392 * about one in 32 seconds, it decays all the way back to zero between
1396 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1397 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1398 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1399 #define FM_SCALE 1000 /* faux fixed point scale */
1401 /* Initialize a frequency meter */
1402 static void fmeter_init(struct fmeter
*fmp
)
1407 spin_lock_init(&fmp
->lock
);
1410 /* Internal meter update - process cnt events and update value */
1411 static void fmeter_update(struct fmeter
*fmp
)
1416 now
= ktime_get_seconds();
1417 ticks
= now
- fmp
->time
;
1422 ticks
= min(FM_MAXTICKS
, ticks
);
1424 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1427 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1431 /* Process any previous ticks, then bump cnt by one (times scale). */
1432 static void fmeter_markevent(struct fmeter
*fmp
)
1434 spin_lock(&fmp
->lock
);
1436 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1437 spin_unlock(&fmp
->lock
);
1440 /* Process any previous ticks, then return current value. */
1441 static int fmeter_getrate(struct fmeter
*fmp
)
1445 spin_lock(&fmp
->lock
);
1448 spin_unlock(&fmp
->lock
);
1452 static struct cpuset
*cpuset_attach_old_cs
;
1454 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1455 static int cpuset_can_attach(struct cgroup_taskset
*tset
)
1457 struct cgroup_subsys_state
*css
;
1459 struct task_struct
*task
;
1462 /* used later by cpuset_attach() */
1463 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
, &css
));
1466 mutex_lock(&cpuset_mutex
);
1468 /* allow moving tasks into an empty cpuset if on default hierarchy */
1470 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
1471 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1474 cgroup_taskset_for_each(task
, css
, tset
) {
1475 ret
= task_can_attach(task
, cs
->cpus_allowed
);
1478 ret
= security_task_setscheduler(task
);
1484 * Mark attach is in progress. This makes validate_change() fail
1485 * changes which zero cpus/mems_allowed.
1487 cs
->attach_in_progress
++;
1490 mutex_unlock(&cpuset_mutex
);
1494 static void cpuset_cancel_attach(struct cgroup_taskset
*tset
)
1496 struct cgroup_subsys_state
*css
;
1499 cgroup_taskset_first(tset
, &css
);
1502 mutex_lock(&cpuset_mutex
);
1503 css_cs(css
)->attach_in_progress
--;
1504 mutex_unlock(&cpuset_mutex
);
1508 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1509 * but we can't allocate it dynamically there. Define it global and
1510 * allocate from cpuset_init().
1512 static cpumask_var_t cpus_attach
;
1514 static void cpuset_attach(struct cgroup_taskset
*tset
)
1516 /* static buf protected by cpuset_mutex */
1517 static nodemask_t cpuset_attach_nodemask_to
;
1518 struct task_struct
*task
;
1519 struct task_struct
*leader
;
1520 struct cgroup_subsys_state
*css
;
1522 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
1524 cgroup_taskset_first(tset
, &css
);
1527 mutex_lock(&cpuset_mutex
);
1529 /* prepare for attach */
1530 if (cs
== &top_cpuset
)
1531 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1533 guarantee_online_cpus(cs
, cpus_attach
);
1535 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
1537 cgroup_taskset_for_each(task
, css
, tset
) {
1539 * can_attach beforehand should guarantee that this doesn't
1540 * fail. TODO: have a better way to handle failure here
1542 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1544 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1545 cpuset_update_task_spread_flag(cs
, task
);
1549 * Change mm for all threadgroup leaders. This is expensive and may
1550 * sleep and should be moved outside migration path proper.
1552 cpuset_attach_nodemask_to
= cs
->effective_mems
;
1553 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
1554 struct mm_struct
*mm
= get_task_mm(leader
);
1557 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1560 * old_mems_allowed is the same with mems_allowed
1561 * here, except if this task is being moved
1562 * automatically due to hotplug. In that case
1563 * @mems_allowed has been updated and is empty, so
1564 * @old_mems_allowed is the right nodesets that we
1567 if (is_memory_migrate(cs
))
1568 cpuset_migrate_mm(mm
, &oldcs
->old_mems_allowed
,
1569 &cpuset_attach_nodemask_to
);
1575 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1577 cs
->attach_in_progress
--;
1578 if (!cs
->attach_in_progress
)
1579 wake_up(&cpuset_attach_wq
);
1581 mutex_unlock(&cpuset_mutex
);
1584 /* The various types of files and directories in a cpuset file system */
1587 FILE_MEMORY_MIGRATE
,
1590 FILE_EFFECTIVE_CPULIST
,
1591 FILE_EFFECTIVE_MEMLIST
,
1595 FILE_SCHED_LOAD_BALANCE
,
1596 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1597 FILE_MEMORY_PRESSURE_ENABLED
,
1598 FILE_MEMORY_PRESSURE
,
1601 } cpuset_filetype_t
;
1603 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1606 struct cpuset
*cs
= css_cs(css
);
1607 cpuset_filetype_t type
= cft
->private;
1610 mutex_lock(&cpuset_mutex
);
1611 if (!is_cpuset_online(cs
)) {
1617 case FILE_CPU_EXCLUSIVE
:
1618 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1620 case FILE_MEM_EXCLUSIVE
:
1621 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1623 case FILE_MEM_HARDWALL
:
1624 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1626 case FILE_SCHED_LOAD_BALANCE
:
1627 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1629 case FILE_MEMORY_MIGRATE
:
1630 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1632 case FILE_MEMORY_PRESSURE_ENABLED
:
1633 cpuset_memory_pressure_enabled
= !!val
;
1635 case FILE_SPREAD_PAGE
:
1636 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1638 case FILE_SPREAD_SLAB
:
1639 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1646 mutex_unlock(&cpuset_mutex
);
1650 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1653 struct cpuset
*cs
= css_cs(css
);
1654 cpuset_filetype_t type
= cft
->private;
1655 int retval
= -ENODEV
;
1657 mutex_lock(&cpuset_mutex
);
1658 if (!is_cpuset_online(cs
))
1662 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1663 retval
= update_relax_domain_level(cs
, val
);
1670 mutex_unlock(&cpuset_mutex
);
1675 * Common handling for a write to a "cpus" or "mems" file.
1677 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
1678 char *buf
, size_t nbytes
, loff_t off
)
1680 struct cpuset
*cs
= css_cs(of_css(of
));
1681 struct cpuset
*trialcs
;
1682 int retval
= -ENODEV
;
1684 buf
= strstrip(buf
);
1687 * CPU or memory hotunplug may leave @cs w/o any execution
1688 * resources, in which case the hotplug code asynchronously updates
1689 * configuration and transfers all tasks to the nearest ancestor
1690 * which can execute.
1692 * As writes to "cpus" or "mems" may restore @cs's execution
1693 * resources, wait for the previously scheduled operations before
1694 * proceeding, so that we don't end up keep removing tasks added
1695 * after execution capability is restored.
1697 * cpuset_hotplug_work calls back into cgroup core via
1698 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1699 * operation like this one can lead to a deadlock through kernfs
1700 * active_ref protection. Let's break the protection. Losing the
1701 * protection is okay as we check whether @cs is online after
1702 * grabbing cpuset_mutex anyway. This only happens on the legacy
1706 kernfs_break_active_protection(of
->kn
);
1707 flush_work(&cpuset_hotplug_work
);
1709 mutex_lock(&cpuset_mutex
);
1710 if (!is_cpuset_online(cs
))
1713 trialcs
= alloc_trial_cpuset(cs
);
1719 switch (of_cft(of
)->private) {
1721 retval
= update_cpumask(cs
, trialcs
, buf
);
1724 retval
= update_nodemask(cs
, trialcs
, buf
);
1731 free_trial_cpuset(trialcs
);
1733 mutex_unlock(&cpuset_mutex
);
1734 kernfs_unbreak_active_protection(of
->kn
);
1736 flush_workqueue(cpuset_migrate_mm_wq
);
1737 return retval
?: nbytes
;
1741 * These ascii lists should be read in a single call, by using a user
1742 * buffer large enough to hold the entire map. If read in smaller
1743 * chunks, there is no guarantee of atomicity. Since the display format
1744 * used, list of ranges of sequential numbers, is variable length,
1745 * and since these maps can change value dynamically, one could read
1746 * gibberish by doing partial reads while a list was changing.
1748 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
1750 struct cpuset
*cs
= css_cs(seq_css(sf
));
1751 cpuset_filetype_t type
= seq_cft(sf
)->private;
1754 spin_lock_irq(&callback_lock
);
1758 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->cpus_allowed
));
1761 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->mems_allowed
));
1763 case FILE_EFFECTIVE_CPULIST
:
1764 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->effective_cpus
));
1766 case FILE_EFFECTIVE_MEMLIST
:
1767 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->effective_mems
));
1773 spin_unlock_irq(&callback_lock
);
1777 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1779 struct cpuset
*cs
= css_cs(css
);
1780 cpuset_filetype_t type
= cft
->private;
1782 case FILE_CPU_EXCLUSIVE
:
1783 return is_cpu_exclusive(cs
);
1784 case FILE_MEM_EXCLUSIVE
:
1785 return is_mem_exclusive(cs
);
1786 case FILE_MEM_HARDWALL
:
1787 return is_mem_hardwall(cs
);
1788 case FILE_SCHED_LOAD_BALANCE
:
1789 return is_sched_load_balance(cs
);
1790 case FILE_MEMORY_MIGRATE
:
1791 return is_memory_migrate(cs
);
1792 case FILE_MEMORY_PRESSURE_ENABLED
:
1793 return cpuset_memory_pressure_enabled
;
1794 case FILE_MEMORY_PRESSURE
:
1795 return fmeter_getrate(&cs
->fmeter
);
1796 case FILE_SPREAD_PAGE
:
1797 return is_spread_page(cs
);
1798 case FILE_SPREAD_SLAB
:
1799 return is_spread_slab(cs
);
1804 /* Unreachable but makes gcc happy */
1808 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1810 struct cpuset
*cs
= css_cs(css
);
1811 cpuset_filetype_t type
= cft
->private;
1813 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1814 return cs
->relax_domain_level
;
1819 /* Unrechable but makes gcc happy */
1825 * for the common functions, 'private' gives the type of file
1828 static struct cftype files
[] = {
1831 .seq_show
= cpuset_common_seq_show
,
1832 .write
= cpuset_write_resmask
,
1833 .max_write_len
= (100U + 6 * NR_CPUS
),
1834 .private = FILE_CPULIST
,
1839 .seq_show
= cpuset_common_seq_show
,
1840 .write
= cpuset_write_resmask
,
1841 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1842 .private = FILE_MEMLIST
,
1846 .name
= "effective_cpus",
1847 .seq_show
= cpuset_common_seq_show
,
1848 .private = FILE_EFFECTIVE_CPULIST
,
1852 .name
= "effective_mems",
1853 .seq_show
= cpuset_common_seq_show
,
1854 .private = FILE_EFFECTIVE_MEMLIST
,
1858 .name
= "cpu_exclusive",
1859 .read_u64
= cpuset_read_u64
,
1860 .write_u64
= cpuset_write_u64
,
1861 .private = FILE_CPU_EXCLUSIVE
,
1865 .name
= "mem_exclusive",
1866 .read_u64
= cpuset_read_u64
,
1867 .write_u64
= cpuset_write_u64
,
1868 .private = FILE_MEM_EXCLUSIVE
,
1872 .name
= "mem_hardwall",
1873 .read_u64
= cpuset_read_u64
,
1874 .write_u64
= cpuset_write_u64
,
1875 .private = FILE_MEM_HARDWALL
,
1879 .name
= "sched_load_balance",
1880 .read_u64
= cpuset_read_u64
,
1881 .write_u64
= cpuset_write_u64
,
1882 .private = FILE_SCHED_LOAD_BALANCE
,
1886 .name
= "sched_relax_domain_level",
1887 .read_s64
= cpuset_read_s64
,
1888 .write_s64
= cpuset_write_s64
,
1889 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1893 .name
= "memory_migrate",
1894 .read_u64
= cpuset_read_u64
,
1895 .write_u64
= cpuset_write_u64
,
1896 .private = FILE_MEMORY_MIGRATE
,
1900 .name
= "memory_pressure",
1901 .read_u64
= cpuset_read_u64
,
1902 .private = FILE_MEMORY_PRESSURE
,
1906 .name
= "memory_spread_page",
1907 .read_u64
= cpuset_read_u64
,
1908 .write_u64
= cpuset_write_u64
,
1909 .private = FILE_SPREAD_PAGE
,
1913 .name
= "memory_spread_slab",
1914 .read_u64
= cpuset_read_u64
,
1915 .write_u64
= cpuset_write_u64
,
1916 .private = FILE_SPREAD_SLAB
,
1920 .name
= "memory_pressure_enabled",
1921 .flags
= CFTYPE_ONLY_ON_ROOT
,
1922 .read_u64
= cpuset_read_u64
,
1923 .write_u64
= cpuset_write_u64
,
1924 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1931 * cpuset_css_alloc - allocate a cpuset css
1932 * cgrp: control group that the new cpuset will be part of
1935 static struct cgroup_subsys_state
*
1936 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
1941 return &top_cpuset
.css
;
1943 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1945 return ERR_PTR(-ENOMEM
);
1946 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
))
1948 if (!alloc_cpumask_var(&cs
->effective_cpus
, GFP_KERNEL
))
1951 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1952 cpumask_clear(cs
->cpus_allowed
);
1953 nodes_clear(cs
->mems_allowed
);
1954 cpumask_clear(cs
->effective_cpus
);
1955 nodes_clear(cs
->effective_mems
);
1956 fmeter_init(&cs
->fmeter
);
1957 cs
->relax_domain_level
= -1;
1962 free_cpumask_var(cs
->cpus_allowed
);
1965 return ERR_PTR(-ENOMEM
);
1968 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
1970 struct cpuset
*cs
= css_cs(css
);
1971 struct cpuset
*parent
= parent_cs(cs
);
1972 struct cpuset
*tmp_cs
;
1973 struct cgroup_subsys_state
*pos_css
;
1978 mutex_lock(&cpuset_mutex
);
1980 set_bit(CS_ONLINE
, &cs
->flags
);
1981 if (is_spread_page(parent
))
1982 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1983 if (is_spread_slab(parent
))
1984 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1988 spin_lock_irq(&callback_lock
);
1989 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys
)) {
1990 cpumask_copy(cs
->effective_cpus
, parent
->effective_cpus
);
1991 cs
->effective_mems
= parent
->effective_mems
;
1993 spin_unlock_irq(&callback_lock
);
1995 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
1999 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2000 * set. This flag handling is implemented in cgroup core for
2001 * histrical reasons - the flag may be specified during mount.
2003 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2004 * refuse to clone the configuration - thereby refusing the task to
2005 * be entered, and as a result refusing the sys_unshare() or
2006 * clone() which initiated it. If this becomes a problem for some
2007 * users who wish to allow that scenario, then this could be
2008 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2009 * (and likewise for mems) to the new cgroup.
2012 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
2013 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
2020 spin_lock_irq(&callback_lock
);
2021 cs
->mems_allowed
= parent
->mems_allowed
;
2022 cs
->effective_mems
= parent
->mems_allowed
;
2023 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2024 cpumask_copy(cs
->effective_cpus
, parent
->cpus_allowed
);
2025 spin_unlock_irq(&callback_lock
);
2027 mutex_unlock(&cpuset_mutex
);
2032 * If the cpuset being removed has its flag 'sched_load_balance'
2033 * enabled, then simulate turning sched_load_balance off, which
2034 * will call rebuild_sched_domains_locked().
2037 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2039 struct cpuset
*cs
= css_cs(css
);
2041 mutex_lock(&cpuset_mutex
);
2043 if (is_sched_load_balance(cs
))
2044 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2047 clear_bit(CS_ONLINE
, &cs
->flags
);
2049 mutex_unlock(&cpuset_mutex
);
2052 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2054 struct cpuset
*cs
= css_cs(css
);
2056 free_cpumask_var(cs
->effective_cpus
);
2057 free_cpumask_var(cs
->cpus_allowed
);
2061 static void cpuset_bind(struct cgroup_subsys_state
*root_css
)
2063 mutex_lock(&cpuset_mutex
);
2064 spin_lock_irq(&callback_lock
);
2066 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys
)) {
2067 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_possible_mask
);
2068 top_cpuset
.mems_allowed
= node_possible_map
;
2070 cpumask_copy(top_cpuset
.cpus_allowed
,
2071 top_cpuset
.effective_cpus
);
2072 top_cpuset
.mems_allowed
= top_cpuset
.effective_mems
;
2075 spin_unlock_irq(&callback_lock
);
2076 mutex_unlock(&cpuset_mutex
);
2080 * Make sure the new task conform to the current state of its parent,
2081 * which could have been changed by cpuset just after it inherits the
2082 * state from the parent and before it sits on the cgroup's task list.
2084 static void cpuset_fork(struct task_struct
*task
)
2086 if (task_css_is_root(task
, cpuset_cgrp_id
))
2089 set_cpus_allowed_ptr(task
, ¤t
->cpus_allowed
);
2090 task
->mems_allowed
= current
->mems_allowed
;
2093 struct cgroup_subsys cpuset_cgrp_subsys
= {
2094 .css_alloc
= cpuset_css_alloc
,
2095 .css_online
= cpuset_css_online
,
2096 .css_offline
= cpuset_css_offline
,
2097 .css_free
= cpuset_css_free
,
2098 .can_attach
= cpuset_can_attach
,
2099 .cancel_attach
= cpuset_cancel_attach
,
2100 .attach
= cpuset_attach
,
2101 .post_attach
= cpuset_post_attach
,
2102 .bind
= cpuset_bind
,
2103 .fork
= cpuset_fork
,
2104 .legacy_cftypes
= files
,
2109 * cpuset_init - initialize cpusets at system boot
2111 * Description: Initialize top_cpuset and the cpuset internal file system,
2114 int __init
cpuset_init(void)
2118 BUG_ON(!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
));
2119 BUG_ON(!alloc_cpumask_var(&top_cpuset
.effective_cpus
, GFP_KERNEL
));
2121 cpumask_setall(top_cpuset
.cpus_allowed
);
2122 nodes_setall(top_cpuset
.mems_allowed
);
2123 cpumask_setall(top_cpuset
.effective_cpus
);
2124 nodes_setall(top_cpuset
.effective_mems
);
2126 fmeter_init(&top_cpuset
.fmeter
);
2127 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2128 top_cpuset
.relax_domain_level
= -1;
2130 err
= register_filesystem(&cpuset_fs_type
);
2134 BUG_ON(!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
));
2140 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2141 * or memory nodes, we need to walk over the cpuset hierarchy,
2142 * removing that CPU or node from all cpusets. If this removes the
2143 * last CPU or node from a cpuset, then move the tasks in the empty
2144 * cpuset to its next-highest non-empty parent.
2146 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2148 struct cpuset
*parent
;
2151 * Find its next-highest non-empty parent, (top cpuset
2152 * has online cpus, so can't be empty).
2154 parent
= parent_cs(cs
);
2155 while (cpumask_empty(parent
->cpus_allowed
) ||
2156 nodes_empty(parent
->mems_allowed
))
2157 parent
= parent_cs(parent
);
2159 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2160 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2161 pr_cont_cgroup_name(cs
->css
.cgroup
);
2167 hotplug_update_tasks_legacy(struct cpuset
*cs
,
2168 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2169 bool cpus_updated
, bool mems_updated
)
2173 spin_lock_irq(&callback_lock
);
2174 cpumask_copy(cs
->cpus_allowed
, new_cpus
);
2175 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2176 cs
->mems_allowed
= *new_mems
;
2177 cs
->effective_mems
= *new_mems
;
2178 spin_unlock_irq(&callback_lock
);
2181 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2182 * as the tasks will be migratecd to an ancestor.
2184 if (cpus_updated
&& !cpumask_empty(cs
->cpus_allowed
))
2185 update_tasks_cpumask(cs
);
2186 if (mems_updated
&& !nodes_empty(cs
->mems_allowed
))
2187 update_tasks_nodemask(cs
);
2189 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2190 nodes_empty(cs
->mems_allowed
);
2192 mutex_unlock(&cpuset_mutex
);
2195 * Move tasks to the nearest ancestor with execution resources,
2196 * This is full cgroup operation which will also call back into
2197 * cpuset. Should be done outside any lock.
2200 remove_tasks_in_empty_cpuset(cs
);
2202 mutex_lock(&cpuset_mutex
);
2206 hotplug_update_tasks(struct cpuset
*cs
,
2207 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2208 bool cpus_updated
, bool mems_updated
)
2210 if (cpumask_empty(new_cpus
))
2211 cpumask_copy(new_cpus
, parent_cs(cs
)->effective_cpus
);
2212 if (nodes_empty(*new_mems
))
2213 *new_mems
= parent_cs(cs
)->effective_mems
;
2215 spin_lock_irq(&callback_lock
);
2216 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2217 cs
->effective_mems
= *new_mems
;
2218 spin_unlock_irq(&callback_lock
);
2221 update_tasks_cpumask(cs
);
2223 update_tasks_nodemask(cs
);
2227 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2228 * @cs: cpuset in interest
2230 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2231 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2232 * all its tasks are moved to the nearest ancestor with both resources.
2234 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2236 static cpumask_t new_cpus
;
2237 static nodemask_t new_mems
;
2241 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2243 mutex_lock(&cpuset_mutex
);
2246 * We have raced with task attaching. We wait until attaching
2247 * is finished, so we won't attach a task to an empty cpuset.
2249 if (cs
->attach_in_progress
) {
2250 mutex_unlock(&cpuset_mutex
);
2254 cpumask_and(&new_cpus
, cs
->cpus_allowed
, parent_cs(cs
)->effective_cpus
);
2255 nodes_and(new_mems
, cs
->mems_allowed
, parent_cs(cs
)->effective_mems
);
2257 cpus_updated
= !cpumask_equal(&new_cpus
, cs
->effective_cpus
);
2258 mems_updated
= !nodes_equal(new_mems
, cs
->effective_mems
);
2260 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys
))
2261 hotplug_update_tasks(cs
, &new_cpus
, &new_mems
,
2262 cpus_updated
, mems_updated
);
2264 hotplug_update_tasks_legacy(cs
, &new_cpus
, &new_mems
,
2265 cpus_updated
, mems_updated
);
2267 mutex_unlock(&cpuset_mutex
);
2271 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2273 * This function is called after either CPU or memory configuration has
2274 * changed and updates cpuset accordingly. The top_cpuset is always
2275 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2276 * order to make cpusets transparent (of no affect) on systems that are
2277 * actively using CPU hotplug but making no active use of cpusets.
2279 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2280 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2283 * Note that CPU offlining during suspend is ignored. We don't modify
2284 * cpusets across suspend/resume cycles at all.
2286 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2288 static cpumask_t new_cpus
;
2289 static nodemask_t new_mems
;
2290 bool cpus_updated
, mems_updated
;
2291 bool on_dfl
= cgroup_subsys_on_dfl(cpuset_cgrp_subsys
);
2293 mutex_lock(&cpuset_mutex
);
2295 /* fetch the available cpus/mems and find out which changed how */
2296 cpumask_copy(&new_cpus
, cpu_active_mask
);
2297 new_mems
= node_states
[N_MEMORY
];
2299 cpus_updated
= !cpumask_equal(top_cpuset
.effective_cpus
, &new_cpus
);
2300 mems_updated
= !nodes_equal(top_cpuset
.effective_mems
, new_mems
);
2302 /* synchronize cpus_allowed to cpu_active_mask */
2304 spin_lock_irq(&callback_lock
);
2306 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2307 cpumask_copy(top_cpuset
.effective_cpus
, &new_cpus
);
2308 spin_unlock_irq(&callback_lock
);
2309 /* we don't mess with cpumasks of tasks in top_cpuset */
2312 /* synchronize mems_allowed to N_MEMORY */
2314 spin_lock_irq(&callback_lock
);
2316 top_cpuset
.mems_allowed
= new_mems
;
2317 top_cpuset
.effective_mems
= new_mems
;
2318 spin_unlock_irq(&callback_lock
);
2319 update_tasks_nodemask(&top_cpuset
);
2322 mutex_unlock(&cpuset_mutex
);
2324 /* if cpus or mems changed, we need to propagate to descendants */
2325 if (cpus_updated
|| mems_updated
) {
2327 struct cgroup_subsys_state
*pos_css
;
2330 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
2331 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
2335 cpuset_hotplug_update_tasks(cs
);
2343 /* rebuild sched domains if cpus_allowed has changed */
2345 rebuild_sched_domains();
2348 void cpuset_update_active_cpus(void)
2351 * We're inside cpu hotplug critical region which usually nests
2352 * inside cgroup synchronization. Bounce actual hotplug processing
2353 * to a work item to avoid reverse locking order.
2355 schedule_work(&cpuset_hotplug_work
);
2359 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2360 * Call this routine anytime after node_states[N_MEMORY] changes.
2361 * See cpuset_update_active_cpus() for CPU hotplug handling.
2363 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2364 unsigned long action
, void *arg
)
2366 schedule_work(&cpuset_hotplug_work
);
2370 static struct notifier_block cpuset_track_online_nodes_nb
= {
2371 .notifier_call
= cpuset_track_online_nodes
,
2372 .priority
= 10, /* ??! */
2376 * cpuset_init_smp - initialize cpus_allowed
2378 * Description: Finish top cpuset after cpu, node maps are initialized
2380 void __init
cpuset_init_smp(void)
2382 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2383 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2384 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2386 cpumask_copy(top_cpuset
.effective_cpus
, cpu_active_mask
);
2387 top_cpuset
.effective_mems
= node_states
[N_MEMORY
];
2389 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2391 cpuset_migrate_mm_wq
= alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2392 BUG_ON(!cpuset_migrate_mm_wq
);
2396 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2397 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2398 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2400 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2401 * attached to the specified @tsk. Guaranteed to return some non-empty
2402 * subset of cpu_online_mask, even if this means going outside the
2406 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2408 unsigned long flags
;
2410 spin_lock_irqsave(&callback_lock
, flags
);
2412 guarantee_online_cpus(task_cs(tsk
), pmask
);
2414 spin_unlock_irqrestore(&callback_lock
, flags
);
2417 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2420 do_set_cpus_allowed(tsk
, task_cs(tsk
)->effective_cpus
);
2424 * We own tsk->cpus_allowed, nobody can change it under us.
2426 * But we used cs && cs->cpus_allowed lockless and thus can
2427 * race with cgroup_attach_task() or update_cpumask() and get
2428 * the wrong tsk->cpus_allowed. However, both cases imply the
2429 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2430 * which takes task_rq_lock().
2432 * If we are called after it dropped the lock we must see all
2433 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2434 * set any mask even if it is not right from task_cs() pov,
2435 * the pending set_cpus_allowed_ptr() will fix things.
2437 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2442 void __init
cpuset_init_current_mems_allowed(void)
2444 nodes_setall(current
->mems_allowed
);
2448 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2449 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2451 * Description: Returns the nodemask_t mems_allowed of the cpuset
2452 * attached to the specified @tsk. Guaranteed to return some non-empty
2453 * subset of node_states[N_MEMORY], even if this means going outside the
2457 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2460 unsigned long flags
;
2462 spin_lock_irqsave(&callback_lock
, flags
);
2464 guarantee_online_mems(task_cs(tsk
), &mask
);
2466 spin_unlock_irqrestore(&callback_lock
, flags
);
2472 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2473 * @nodemask: the nodemask to be checked
2475 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2477 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2479 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2483 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2484 * mem_hardwall ancestor to the specified cpuset. Call holding
2485 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2486 * (an unusual configuration), then returns the root cpuset.
2488 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
2490 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2496 * cpuset_node_allowed - Can we allocate on a memory node?
2497 * @node: is this an allowed node?
2498 * @gfp_mask: memory allocation flags
2500 * If we're in interrupt, yes, we can always allocate. If @node is set in
2501 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2502 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2503 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2506 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2507 * and do not allow allocations outside the current tasks cpuset
2508 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2509 * GFP_KERNEL allocations are not so marked, so can escape to the
2510 * nearest enclosing hardwalled ancestor cpuset.
2512 * Scanning up parent cpusets requires callback_lock. The
2513 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2514 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2515 * current tasks mems_allowed came up empty on the first pass over
2516 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2517 * cpuset are short of memory, might require taking the callback_lock.
2519 * The first call here from mm/page_alloc:get_page_from_freelist()
2520 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2521 * so no allocation on a node outside the cpuset is allowed (unless
2522 * in interrupt, of course).
2524 * The second pass through get_page_from_freelist() doesn't even call
2525 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2526 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2527 * in alloc_flags. That logic and the checks below have the combined
2529 * in_interrupt - any node ok (current task context irrelevant)
2530 * GFP_ATOMIC - any node ok
2531 * TIF_MEMDIE - any node ok
2532 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2533 * GFP_USER - only nodes in current tasks mems allowed ok.
2535 bool __cpuset_node_allowed(int node
, gfp_t gfp_mask
)
2537 struct cpuset
*cs
; /* current cpuset ancestors */
2538 int allowed
; /* is allocation in zone z allowed? */
2539 unsigned long flags
;
2543 if (node_isset(node
, current
->mems_allowed
))
2546 * Allow tasks that have access to memory reserves because they have
2547 * been OOM killed to get memory anywhere.
2549 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2551 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2554 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2557 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2558 spin_lock_irqsave(&callback_lock
, flags
);
2561 cs
= nearest_hardwall_ancestor(task_cs(current
));
2562 allowed
= node_isset(node
, cs
->mems_allowed
);
2565 spin_unlock_irqrestore(&callback_lock
, flags
);
2570 * cpuset_mem_spread_node() - On which node to begin search for a file page
2571 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2573 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2574 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2575 * and if the memory allocation used cpuset_mem_spread_node()
2576 * to determine on which node to start looking, as it will for
2577 * certain page cache or slab cache pages such as used for file
2578 * system buffers and inode caches, then instead of starting on the
2579 * local node to look for a free page, rather spread the starting
2580 * node around the tasks mems_allowed nodes.
2582 * We don't have to worry about the returned node being offline
2583 * because "it can't happen", and even if it did, it would be ok.
2585 * The routines calling guarantee_online_mems() are careful to
2586 * only set nodes in task->mems_allowed that are online. So it
2587 * should not be possible for the following code to return an
2588 * offline node. But if it did, that would be ok, as this routine
2589 * is not returning the node where the allocation must be, only
2590 * the node where the search should start. The zonelist passed to
2591 * __alloc_pages() will include all nodes. If the slab allocator
2592 * is passed an offline node, it will fall back to the local node.
2593 * See kmem_cache_alloc_node().
2596 static int cpuset_spread_node(int *rotor
)
2598 return *rotor
= next_node_in(*rotor
, current
->mems_allowed
);
2601 int cpuset_mem_spread_node(void)
2603 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2604 current
->cpuset_mem_spread_rotor
=
2605 node_random(¤t
->mems_allowed
);
2607 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2610 int cpuset_slab_spread_node(void)
2612 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2613 current
->cpuset_slab_spread_rotor
=
2614 node_random(¤t
->mems_allowed
);
2616 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2619 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2622 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2623 * @tsk1: pointer to task_struct of some task.
2624 * @tsk2: pointer to task_struct of some other task.
2626 * Description: Return true if @tsk1's mems_allowed intersects the
2627 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2628 * one of the task's memory usage might impact the memory available
2632 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2633 const struct task_struct
*tsk2
)
2635 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2639 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2641 * Description: Prints current's name, cpuset name, and cached copy of its
2642 * mems_allowed to the kernel log.
2644 void cpuset_print_current_mems_allowed(void)
2646 struct cgroup
*cgrp
;
2650 cgrp
= task_cs(current
)->css
.cgroup
;
2651 pr_info("%s cpuset=", current
->comm
);
2652 pr_cont_cgroup_name(cgrp
);
2653 pr_cont(" mems_allowed=%*pbl\n",
2654 nodemask_pr_args(¤t
->mems_allowed
));
2660 * Collection of memory_pressure is suppressed unless
2661 * this flag is enabled by writing "1" to the special
2662 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2665 int cpuset_memory_pressure_enabled __read_mostly
;
2668 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2670 * Keep a running average of the rate of synchronous (direct)
2671 * page reclaim efforts initiated by tasks in each cpuset.
2673 * This represents the rate at which some task in the cpuset
2674 * ran low on memory on all nodes it was allowed to use, and
2675 * had to enter the kernels page reclaim code in an effort to
2676 * create more free memory by tossing clean pages or swapping
2677 * or writing dirty pages.
2679 * Display to user space in the per-cpuset read-only file
2680 * "memory_pressure". Value displayed is an integer
2681 * representing the recent rate of entry into the synchronous
2682 * (direct) page reclaim by any task attached to the cpuset.
2685 void __cpuset_memory_pressure_bump(void)
2688 fmeter_markevent(&task_cs(current
)->fmeter
);
2692 #ifdef CONFIG_PROC_PID_CPUSET
2694 * proc_cpuset_show()
2695 * - Print tasks cpuset path into seq_file.
2696 * - Used for /proc/<pid>/cpuset.
2697 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2698 * doesn't really matter if tsk->cpuset changes after we read it,
2699 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2702 int proc_cpuset_show(struct seq_file
*m
, struct pid_namespace
*ns
,
2703 struct pid
*pid
, struct task_struct
*tsk
)
2706 struct cgroup_subsys_state
*css
;
2710 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
2714 css
= task_get_css(tsk
, cpuset_cgrp_id
);
2715 retval
= cgroup_path_ns(css
->cgroup
, buf
, PATH_MAX
,
2716 current
->nsproxy
->cgroup_ns
);
2718 if (retval
>= PATH_MAX
)
2719 retval
= -ENAMETOOLONG
;
2730 #endif /* CONFIG_PROC_PID_CPUSET */
2732 /* Display task mems_allowed in /proc/<pid>/status file. */
2733 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2735 seq_printf(m
, "Mems_allowed:\t%*pb\n",
2736 nodemask_pr_args(&task
->mems_allowed
));
2737 seq_printf(m
, "Mems_allowed_list:\t%*pbl\n",
2738 nodemask_pr_args(&task
->mems_allowed
));