Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / kernel / cgroup / cpuset.c
blob2f4039bafebb8300afc905d7a8a08f48a93612a6
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
60 #include <linux/uaccess.h>
61 #include <linux/atomic.h>
62 #include <linux/mutex.h>
63 #include <linux/cgroup.h>
64 #include <linux/wait.h>
66 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
67 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69 /* See "Frequency meter" comments, below. */
71 struct fmeter {
72 int cnt; /* unprocessed events count */
73 int val; /* most recent output value */
74 time64_t time; /* clock (secs) when val computed */
75 spinlock_t lock; /* guards read or write of above */
78 struct cpuset {
79 struct cgroup_subsys_state css;
81 unsigned long flags; /* "unsigned long" so bitops work */
84 * On default hierarchy:
86 * The user-configured masks can only be changed by writing to
87 * cpuset.cpus and cpuset.mems, and won't be limited by the
88 * parent masks.
90 * The effective masks is the real masks that apply to the tasks
91 * in the cpuset. They may be changed if the configured masks are
92 * changed or hotplug happens.
94 * effective_mask == configured_mask & parent's effective_mask,
95 * and if it ends up empty, it will inherit the parent's mask.
98 * On legacy hierachy:
100 * The user-configured masks are always the same with effective masks.
103 /* user-configured CPUs and Memory Nodes allow to tasks */
104 cpumask_var_t cpus_allowed;
105 nodemask_t mems_allowed;
107 /* effective CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t effective_cpus;
109 nodemask_t effective_mems;
112 * This is old Memory Nodes tasks took on.
114 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
115 * - A new cpuset's old_mems_allowed is initialized when some
116 * task is moved into it.
117 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
118 * cpuset.mems_allowed and have tasks' nodemask updated, and
119 * then old_mems_allowed is updated to mems_allowed.
121 nodemask_t old_mems_allowed;
123 struct fmeter fmeter; /* memory_pressure filter */
126 * Tasks are being attached to this cpuset. Used to prevent
127 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
129 int attach_in_progress;
131 /* partition number for rebuild_sched_domains() */
132 int pn;
134 /* for custom sched domain */
135 int relax_domain_level;
138 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140 return css ? container_of(css, struct cpuset, css) : NULL;
143 /* Retrieve the cpuset for a task */
144 static inline struct cpuset *task_cs(struct task_struct *task)
146 return css_cs(task_css(task, cpuset_cgrp_id));
149 static inline struct cpuset *parent_cs(struct cpuset *cs)
151 return css_cs(cs->css.parent);
154 #ifdef CONFIG_NUMA
155 static inline bool task_has_mempolicy(struct task_struct *task)
157 return task->mempolicy;
159 #else
160 static inline bool task_has_mempolicy(struct task_struct *task)
162 return false;
164 #endif
167 /* bits in struct cpuset flags field */
168 typedef enum {
169 CS_ONLINE,
170 CS_CPU_EXCLUSIVE,
171 CS_MEM_EXCLUSIVE,
172 CS_MEM_HARDWALL,
173 CS_MEMORY_MIGRATE,
174 CS_SCHED_LOAD_BALANCE,
175 CS_SPREAD_PAGE,
176 CS_SPREAD_SLAB,
177 } cpuset_flagbits_t;
179 /* convenient tests for these bits */
180 static inline bool is_cpuset_online(struct cpuset *cs)
182 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
185 static inline int is_cpu_exclusive(const struct cpuset *cs)
187 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
190 static inline int is_mem_exclusive(const struct cpuset *cs)
192 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
195 static inline int is_mem_hardwall(const struct cpuset *cs)
197 return test_bit(CS_MEM_HARDWALL, &cs->flags);
200 static inline int is_sched_load_balance(const struct cpuset *cs)
202 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
205 static inline int is_memory_migrate(const struct cpuset *cs)
207 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
210 static inline int is_spread_page(const struct cpuset *cs)
212 return test_bit(CS_SPREAD_PAGE, &cs->flags);
215 static inline int is_spread_slab(const struct cpuset *cs)
217 return test_bit(CS_SPREAD_SLAB, &cs->flags);
220 static struct cpuset top_cpuset = {
221 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
222 (1 << CS_MEM_EXCLUSIVE)),
226 * cpuset_for_each_child - traverse online children of a cpuset
227 * @child_cs: loop cursor pointing to the current child
228 * @pos_css: used for iteration
229 * @parent_cs: target cpuset to walk children of
231 * Walk @child_cs through the online children of @parent_cs. Must be used
232 * with RCU read locked.
234 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
235 css_for_each_child((pos_css), &(parent_cs)->css) \
236 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
239 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
240 * @des_cs: loop cursor pointing to the current descendant
241 * @pos_css: used for iteration
242 * @root_cs: target cpuset to walk ancestor of
244 * Walk @des_cs through the online descendants of @root_cs. Must be used
245 * with RCU read locked. The caller may modify @pos_css by calling
246 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
247 * iteration and the first node to be visited.
249 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
250 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
251 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
254 * There are two global locks guarding cpuset structures - cpuset_mutex and
255 * callback_lock. We also require taking task_lock() when dereferencing a
256 * task's cpuset pointer. See "The task_lock() exception", at the end of this
257 * comment.
259 * A task must hold both locks to modify cpusets. If a task holds
260 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
261 * is the only task able to also acquire callback_lock and be able to
262 * modify cpusets. It can perform various checks on the cpuset structure
263 * first, knowing nothing will change. It can also allocate memory while
264 * just holding cpuset_mutex. While it is performing these checks, various
265 * callback routines can briefly acquire callback_lock to query cpusets.
266 * Once it is ready to make the changes, it takes callback_lock, blocking
267 * everyone else.
269 * Calls to the kernel memory allocator can not be made while holding
270 * callback_lock, as that would risk double tripping on callback_lock
271 * from one of the callbacks into the cpuset code from within
272 * __alloc_pages().
274 * If a task is only holding callback_lock, then it has read-only
275 * access to cpusets.
277 * Now, the task_struct fields mems_allowed and mempolicy may be changed
278 * by other task, we use alloc_lock in the task_struct fields to protect
279 * them.
281 * The cpuset_common_file_read() handlers only hold callback_lock across
282 * small pieces of code, such as when reading out possibly multi-word
283 * cpumasks and nodemasks.
285 * Accessing a task's cpuset should be done in accordance with the
286 * guidelines for accessing subsystem state in kernel/cgroup.c
289 static DEFINE_MUTEX(cpuset_mutex);
290 static DEFINE_SPINLOCK(callback_lock);
292 static struct workqueue_struct *cpuset_migrate_mm_wq;
295 * CPU / memory hotplug is handled asynchronously.
297 static void cpuset_hotplug_workfn(struct work_struct *work);
298 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
300 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
303 * This is ugly, but preserves the userspace API for existing cpuset
304 * users. If someone tries to mount the "cpuset" filesystem, we
305 * silently switch it to mount "cgroup" instead
307 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
308 int flags, const char *unused_dev_name, void *data)
310 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
311 struct dentry *ret = ERR_PTR(-ENODEV);
312 if (cgroup_fs) {
313 char mountopts[] =
314 "cpuset,noprefix,"
315 "release_agent=/sbin/cpuset_release_agent";
316 ret = cgroup_fs->mount(cgroup_fs, flags,
317 unused_dev_name, mountopts);
318 put_filesystem(cgroup_fs);
320 return ret;
323 static struct file_system_type cpuset_fs_type = {
324 .name = "cpuset",
325 .mount = cpuset_mount,
329 * Return in pmask the portion of a cpusets's cpus_allowed that
330 * are online. If none are online, walk up the cpuset hierarchy
331 * until we find one that does have some online cpus.
333 * One way or another, we guarantee to return some non-empty subset
334 * of cpu_online_mask.
336 * Call with callback_lock or cpuset_mutex held.
338 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
340 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
341 cs = parent_cs(cs);
342 if (unlikely(!cs)) {
344 * The top cpuset doesn't have any online cpu as a
345 * consequence of a race between cpuset_hotplug_work
346 * and cpu hotplug notifier. But we know the top
347 * cpuset's effective_cpus is on its way to to be
348 * identical to cpu_online_mask.
350 cpumask_copy(pmask, cpu_online_mask);
351 return;
354 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
358 * Return in *pmask the portion of a cpusets's mems_allowed that
359 * are online, with memory. If none are online with memory, walk
360 * up the cpuset hierarchy until we find one that does have some
361 * online mems. The top cpuset always has some mems online.
363 * One way or another, we guarantee to return some non-empty subset
364 * of node_states[N_MEMORY].
366 * Call with callback_lock or cpuset_mutex held.
368 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
370 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
371 cs = parent_cs(cs);
372 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
376 * update task's spread flag if cpuset's page/slab spread flag is set
378 * Call with callback_lock or cpuset_mutex held.
380 static void cpuset_update_task_spread_flag(struct cpuset *cs,
381 struct task_struct *tsk)
383 if (is_spread_page(cs))
384 task_set_spread_page(tsk);
385 else
386 task_clear_spread_page(tsk);
388 if (is_spread_slab(cs))
389 task_set_spread_slab(tsk);
390 else
391 task_clear_spread_slab(tsk);
395 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
397 * One cpuset is a subset of another if all its allowed CPUs and
398 * Memory Nodes are a subset of the other, and its exclusive flags
399 * are only set if the other's are set. Call holding cpuset_mutex.
402 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
404 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
405 nodes_subset(p->mems_allowed, q->mems_allowed) &&
406 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
407 is_mem_exclusive(p) <= is_mem_exclusive(q);
411 * alloc_trial_cpuset - allocate a trial cpuset
412 * @cs: the cpuset that the trial cpuset duplicates
414 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
416 struct cpuset *trial;
418 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
419 if (!trial)
420 return NULL;
422 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
423 goto free_cs;
424 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
425 goto free_cpus;
427 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
428 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
429 return trial;
431 free_cpus:
432 free_cpumask_var(trial->cpus_allowed);
433 free_cs:
434 kfree(trial);
435 return NULL;
439 * free_trial_cpuset - free the trial cpuset
440 * @trial: the trial cpuset to be freed
442 static void free_trial_cpuset(struct cpuset *trial)
444 free_cpumask_var(trial->effective_cpus);
445 free_cpumask_var(trial->cpus_allowed);
446 kfree(trial);
450 * validate_change() - Used to validate that any proposed cpuset change
451 * follows the structural rules for cpusets.
453 * If we replaced the flag and mask values of the current cpuset
454 * (cur) with those values in the trial cpuset (trial), would
455 * our various subset and exclusive rules still be valid? Presumes
456 * cpuset_mutex held.
458 * 'cur' is the address of an actual, in-use cpuset. Operations
459 * such as list traversal that depend on the actual address of the
460 * cpuset in the list must use cur below, not trial.
462 * 'trial' is the address of bulk structure copy of cur, with
463 * perhaps one or more of the fields cpus_allowed, mems_allowed,
464 * or flags changed to new, trial values.
466 * Return 0 if valid, -errno if not.
469 static int validate_change(struct cpuset *cur, struct cpuset *trial)
471 struct cgroup_subsys_state *css;
472 struct cpuset *c, *par;
473 int ret;
475 rcu_read_lock();
477 /* Each of our child cpusets must be a subset of us */
478 ret = -EBUSY;
479 cpuset_for_each_child(c, css, cur)
480 if (!is_cpuset_subset(c, trial))
481 goto out;
483 /* Remaining checks don't apply to root cpuset */
484 ret = 0;
485 if (cur == &top_cpuset)
486 goto out;
488 par = parent_cs(cur);
490 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
491 ret = -EACCES;
492 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
493 !is_cpuset_subset(trial, par))
494 goto out;
497 * If either I or some sibling (!= me) is exclusive, we can't
498 * overlap
500 ret = -EINVAL;
501 cpuset_for_each_child(c, css, par) {
502 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
503 c != cur &&
504 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
505 goto out;
506 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
507 c != cur &&
508 nodes_intersects(trial->mems_allowed, c->mems_allowed))
509 goto out;
513 * Cpusets with tasks - existing or newly being attached - can't
514 * be changed to have empty cpus_allowed or mems_allowed.
516 ret = -ENOSPC;
517 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
518 if (!cpumask_empty(cur->cpus_allowed) &&
519 cpumask_empty(trial->cpus_allowed))
520 goto out;
521 if (!nodes_empty(cur->mems_allowed) &&
522 nodes_empty(trial->mems_allowed))
523 goto out;
527 * We can't shrink if we won't have enough room for SCHED_DEADLINE
528 * tasks.
530 ret = -EBUSY;
531 if (is_cpu_exclusive(cur) &&
532 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
533 trial->cpus_allowed))
534 goto out;
536 ret = 0;
537 out:
538 rcu_read_unlock();
539 return ret;
542 #ifdef CONFIG_SMP
544 * Helper routine for generate_sched_domains().
545 * Do cpusets a, b have overlapping effective cpus_allowed masks?
547 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
549 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
552 static void
553 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
555 if (dattr->relax_domain_level < c->relax_domain_level)
556 dattr->relax_domain_level = c->relax_domain_level;
557 return;
560 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
561 struct cpuset *root_cs)
563 struct cpuset *cp;
564 struct cgroup_subsys_state *pos_css;
566 rcu_read_lock();
567 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
568 /* skip the whole subtree if @cp doesn't have any CPU */
569 if (cpumask_empty(cp->cpus_allowed)) {
570 pos_css = css_rightmost_descendant(pos_css);
571 continue;
574 if (is_sched_load_balance(cp))
575 update_domain_attr(dattr, cp);
577 rcu_read_unlock();
580 /* Must be called with cpuset_mutex held. */
581 static inline int nr_cpusets(void)
583 /* jump label reference count + the top-level cpuset */
584 return static_key_count(&cpusets_enabled_key.key) + 1;
588 * generate_sched_domains()
590 * This function builds a partial partition of the systems CPUs
591 * A 'partial partition' is a set of non-overlapping subsets whose
592 * union is a subset of that set.
593 * The output of this function needs to be passed to kernel/sched/core.c
594 * partition_sched_domains() routine, which will rebuild the scheduler's
595 * load balancing domains (sched domains) as specified by that partial
596 * partition.
598 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
599 * for a background explanation of this.
601 * Does not return errors, on the theory that the callers of this
602 * routine would rather not worry about failures to rebuild sched
603 * domains when operating in the severe memory shortage situations
604 * that could cause allocation failures below.
606 * Must be called with cpuset_mutex held.
608 * The three key local variables below are:
609 * q - a linked-list queue of cpuset pointers, used to implement a
610 * top-down scan of all cpusets. This scan loads a pointer
611 * to each cpuset marked is_sched_load_balance into the
612 * array 'csa'. For our purposes, rebuilding the schedulers
613 * sched domains, we can ignore !is_sched_load_balance cpusets.
614 * csa - (for CpuSet Array) Array of pointers to all the cpusets
615 * that need to be load balanced, for convenient iterative
616 * access by the subsequent code that finds the best partition,
617 * i.e the set of domains (subsets) of CPUs such that the
618 * cpus_allowed of every cpuset marked is_sched_load_balance
619 * is a subset of one of these domains, while there are as
620 * many such domains as possible, each as small as possible.
621 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
622 * the kernel/sched/core.c routine partition_sched_domains() in a
623 * convenient format, that can be easily compared to the prior
624 * value to determine what partition elements (sched domains)
625 * were changed (added or removed.)
627 * Finding the best partition (set of domains):
628 * The triple nested loops below over i, j, k scan over the
629 * load balanced cpusets (using the array of cpuset pointers in
630 * csa[]) looking for pairs of cpusets that have overlapping
631 * cpus_allowed, but which don't have the same 'pn' partition
632 * number and gives them in the same partition number. It keeps
633 * looping on the 'restart' label until it can no longer find
634 * any such pairs.
636 * The union of the cpus_allowed masks from the set of
637 * all cpusets having the same 'pn' value then form the one
638 * element of the partition (one sched domain) to be passed to
639 * partition_sched_domains().
641 static int generate_sched_domains(cpumask_var_t **domains,
642 struct sched_domain_attr **attributes)
644 struct cpuset *cp; /* scans q */
645 struct cpuset **csa; /* array of all cpuset ptrs */
646 int csn; /* how many cpuset ptrs in csa so far */
647 int i, j, k; /* indices for partition finding loops */
648 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
649 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
650 struct sched_domain_attr *dattr; /* attributes for custom domains */
651 int ndoms = 0; /* number of sched domains in result */
652 int nslot; /* next empty doms[] struct cpumask slot */
653 struct cgroup_subsys_state *pos_css;
655 doms = NULL;
656 dattr = NULL;
657 csa = NULL;
659 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
660 goto done;
661 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
663 /* Special case for the 99% of systems with one, full, sched domain */
664 if (is_sched_load_balance(&top_cpuset)) {
665 ndoms = 1;
666 doms = alloc_sched_domains(ndoms);
667 if (!doms)
668 goto done;
670 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
671 if (dattr) {
672 *dattr = SD_ATTR_INIT;
673 update_domain_attr_tree(dattr, &top_cpuset);
675 cpumask_and(doms[0], top_cpuset.effective_cpus,
676 non_isolated_cpus);
678 goto done;
681 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
682 if (!csa)
683 goto done;
684 csn = 0;
686 rcu_read_lock();
687 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
688 if (cp == &top_cpuset)
689 continue;
691 * Continue traversing beyond @cp iff @cp has some CPUs and
692 * isn't load balancing. The former is obvious. The
693 * latter: All child cpusets contain a subset of the
694 * parent's cpus, so just skip them, and then we call
695 * update_domain_attr_tree() to calc relax_domain_level of
696 * the corresponding sched domain.
698 if (!cpumask_empty(cp->cpus_allowed) &&
699 !(is_sched_load_balance(cp) &&
700 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
701 continue;
703 if (is_sched_load_balance(cp))
704 csa[csn++] = cp;
706 /* skip @cp's subtree */
707 pos_css = css_rightmost_descendant(pos_css);
709 rcu_read_unlock();
711 for (i = 0; i < csn; i++)
712 csa[i]->pn = i;
713 ndoms = csn;
715 restart:
716 /* Find the best partition (set of sched domains) */
717 for (i = 0; i < csn; i++) {
718 struct cpuset *a = csa[i];
719 int apn = a->pn;
721 for (j = 0; j < csn; j++) {
722 struct cpuset *b = csa[j];
723 int bpn = b->pn;
725 if (apn != bpn && cpusets_overlap(a, b)) {
726 for (k = 0; k < csn; k++) {
727 struct cpuset *c = csa[k];
729 if (c->pn == bpn)
730 c->pn = apn;
732 ndoms--; /* one less element */
733 goto restart;
739 * Now we know how many domains to create.
740 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
742 doms = alloc_sched_domains(ndoms);
743 if (!doms)
744 goto done;
747 * The rest of the code, including the scheduler, can deal with
748 * dattr==NULL case. No need to abort if alloc fails.
750 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
752 for (nslot = 0, i = 0; i < csn; i++) {
753 struct cpuset *a = csa[i];
754 struct cpumask *dp;
755 int apn = a->pn;
757 if (apn < 0) {
758 /* Skip completed partitions */
759 continue;
762 dp = doms[nslot];
764 if (nslot == ndoms) {
765 static int warnings = 10;
766 if (warnings) {
767 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
768 nslot, ndoms, csn, i, apn);
769 warnings--;
771 continue;
774 cpumask_clear(dp);
775 if (dattr)
776 *(dattr + nslot) = SD_ATTR_INIT;
777 for (j = i; j < csn; j++) {
778 struct cpuset *b = csa[j];
780 if (apn == b->pn) {
781 cpumask_or(dp, dp, b->effective_cpus);
782 cpumask_and(dp, dp, non_isolated_cpus);
783 if (dattr)
784 update_domain_attr_tree(dattr + nslot, b);
786 /* Done with this partition */
787 b->pn = -1;
790 nslot++;
792 BUG_ON(nslot != ndoms);
794 done:
795 free_cpumask_var(non_isolated_cpus);
796 kfree(csa);
799 * Fallback to the default domain if kmalloc() failed.
800 * See comments in partition_sched_domains().
802 if (doms == NULL)
803 ndoms = 1;
805 *domains = doms;
806 *attributes = dattr;
807 return ndoms;
811 * Rebuild scheduler domains.
813 * If the flag 'sched_load_balance' of any cpuset with non-empty
814 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
815 * which has that flag enabled, or if any cpuset with a non-empty
816 * 'cpus' is removed, then call this routine to rebuild the
817 * scheduler's dynamic sched domains.
819 * Call with cpuset_mutex held. Takes get_online_cpus().
821 static void rebuild_sched_domains_locked(void)
823 struct sched_domain_attr *attr;
824 cpumask_var_t *doms;
825 int ndoms;
827 lockdep_assert_held(&cpuset_mutex);
828 get_online_cpus();
831 * We have raced with CPU hotplug. Don't do anything to avoid
832 * passing doms with offlined cpu to partition_sched_domains().
833 * Anyways, hotplug work item will rebuild sched domains.
835 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
836 goto out;
838 /* Generate domain masks and attrs */
839 ndoms = generate_sched_domains(&doms, &attr);
841 /* Have scheduler rebuild the domains */
842 partition_sched_domains(ndoms, doms, attr);
843 out:
844 put_online_cpus();
846 #else /* !CONFIG_SMP */
847 static void rebuild_sched_domains_locked(void)
850 #endif /* CONFIG_SMP */
852 void rebuild_sched_domains(void)
854 mutex_lock(&cpuset_mutex);
855 rebuild_sched_domains_locked();
856 mutex_unlock(&cpuset_mutex);
860 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
861 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
863 * Iterate through each task of @cs updating its cpus_allowed to the
864 * effective cpuset's. As this function is called with cpuset_mutex held,
865 * cpuset membership stays stable.
867 static void update_tasks_cpumask(struct cpuset *cs)
869 struct css_task_iter it;
870 struct task_struct *task;
872 css_task_iter_start(&cs->css, &it);
873 while ((task = css_task_iter_next(&it)))
874 set_cpus_allowed_ptr(task, cs->effective_cpus);
875 css_task_iter_end(&it);
879 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
880 * @cs: the cpuset to consider
881 * @new_cpus: temp variable for calculating new effective_cpus
883 * When congifured cpumask is changed, the effective cpumasks of this cpuset
884 * and all its descendants need to be updated.
886 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
888 * Called with cpuset_mutex held
890 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
892 struct cpuset *cp;
893 struct cgroup_subsys_state *pos_css;
894 bool need_rebuild_sched_domains = false;
896 rcu_read_lock();
897 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
898 struct cpuset *parent = parent_cs(cp);
900 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
903 * If it becomes empty, inherit the effective mask of the
904 * parent, which is guaranteed to have some CPUs.
906 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
907 cpumask_empty(new_cpus))
908 cpumask_copy(new_cpus, parent->effective_cpus);
910 /* Skip the whole subtree if the cpumask remains the same. */
911 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
912 pos_css = css_rightmost_descendant(pos_css);
913 continue;
916 if (!css_tryget_online(&cp->css))
917 continue;
918 rcu_read_unlock();
920 spin_lock_irq(&callback_lock);
921 cpumask_copy(cp->effective_cpus, new_cpus);
922 spin_unlock_irq(&callback_lock);
924 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
925 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
927 update_tasks_cpumask(cp);
930 * If the effective cpumask of any non-empty cpuset is changed,
931 * we need to rebuild sched domains.
933 if (!cpumask_empty(cp->cpus_allowed) &&
934 is_sched_load_balance(cp))
935 need_rebuild_sched_domains = true;
937 rcu_read_lock();
938 css_put(&cp->css);
940 rcu_read_unlock();
942 if (need_rebuild_sched_domains)
943 rebuild_sched_domains_locked();
947 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
948 * @cs: the cpuset to consider
949 * @trialcs: trial cpuset
950 * @buf: buffer of cpu numbers written to this cpuset
952 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
953 const char *buf)
955 int retval;
957 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
958 if (cs == &top_cpuset)
959 return -EACCES;
962 * An empty cpus_allowed is ok only if the cpuset has no tasks.
963 * Since cpulist_parse() fails on an empty mask, we special case
964 * that parsing. The validate_change() call ensures that cpusets
965 * with tasks have cpus.
967 if (!*buf) {
968 cpumask_clear(trialcs->cpus_allowed);
969 } else {
970 retval = cpulist_parse(buf, trialcs->cpus_allowed);
971 if (retval < 0)
972 return retval;
974 if (!cpumask_subset(trialcs->cpus_allowed,
975 top_cpuset.cpus_allowed))
976 return -EINVAL;
979 /* Nothing to do if the cpus didn't change */
980 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
981 return 0;
983 retval = validate_change(cs, trialcs);
984 if (retval < 0)
985 return retval;
987 spin_lock_irq(&callback_lock);
988 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
989 spin_unlock_irq(&callback_lock);
991 /* use trialcs->cpus_allowed as a temp variable */
992 update_cpumasks_hier(cs, trialcs->cpus_allowed);
993 return 0;
997 * Migrate memory region from one set of nodes to another. This is
998 * performed asynchronously as it can be called from process migration path
999 * holding locks involved in process management. All mm migrations are
1000 * performed in the queued order and can be waited for by flushing
1001 * cpuset_migrate_mm_wq.
1004 struct cpuset_migrate_mm_work {
1005 struct work_struct work;
1006 struct mm_struct *mm;
1007 nodemask_t from;
1008 nodemask_t to;
1011 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1013 struct cpuset_migrate_mm_work *mwork =
1014 container_of(work, struct cpuset_migrate_mm_work, work);
1016 /* on a wq worker, no need to worry about %current's mems_allowed */
1017 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1018 mmput(mwork->mm);
1019 kfree(mwork);
1022 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1023 const nodemask_t *to)
1025 struct cpuset_migrate_mm_work *mwork;
1027 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1028 if (mwork) {
1029 mwork->mm = mm;
1030 mwork->from = *from;
1031 mwork->to = *to;
1032 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1033 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1034 } else {
1035 mmput(mm);
1039 static void cpuset_post_attach(void)
1041 flush_workqueue(cpuset_migrate_mm_wq);
1045 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1046 * @tsk: the task to change
1047 * @newmems: new nodes that the task will be set
1049 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1050 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1051 * parallel, it might temporarily see an empty intersection, which results in
1052 * a seqlock check and retry before OOM or allocation failure.
1054 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1055 nodemask_t *newmems)
1057 task_lock(tsk);
1059 local_irq_disable();
1060 write_seqcount_begin(&tsk->mems_allowed_seq);
1062 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1063 mpol_rebind_task(tsk, newmems);
1064 tsk->mems_allowed = *newmems;
1066 write_seqcount_end(&tsk->mems_allowed_seq);
1067 local_irq_enable();
1069 task_unlock(tsk);
1072 static void *cpuset_being_rebound;
1075 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1076 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1078 * Iterate through each task of @cs updating its mems_allowed to the
1079 * effective cpuset's. As this function is called with cpuset_mutex held,
1080 * cpuset membership stays stable.
1082 static void update_tasks_nodemask(struct cpuset *cs)
1084 static nodemask_t newmems; /* protected by cpuset_mutex */
1085 struct css_task_iter it;
1086 struct task_struct *task;
1088 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1090 guarantee_online_mems(cs, &newmems);
1093 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1094 * take while holding tasklist_lock. Forks can happen - the
1095 * mpol_dup() cpuset_being_rebound check will catch such forks,
1096 * and rebind their vma mempolicies too. Because we still hold
1097 * the global cpuset_mutex, we know that no other rebind effort
1098 * will be contending for the global variable cpuset_being_rebound.
1099 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1100 * is idempotent. Also migrate pages in each mm to new nodes.
1102 css_task_iter_start(&cs->css, &it);
1103 while ((task = css_task_iter_next(&it))) {
1104 struct mm_struct *mm;
1105 bool migrate;
1107 cpuset_change_task_nodemask(task, &newmems);
1109 mm = get_task_mm(task);
1110 if (!mm)
1111 continue;
1113 migrate = is_memory_migrate(cs);
1115 mpol_rebind_mm(mm, &cs->mems_allowed);
1116 if (migrate)
1117 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1118 else
1119 mmput(mm);
1121 css_task_iter_end(&it);
1124 * All the tasks' nodemasks have been updated, update
1125 * cs->old_mems_allowed.
1127 cs->old_mems_allowed = newmems;
1129 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1130 cpuset_being_rebound = NULL;
1134 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1135 * @cs: the cpuset to consider
1136 * @new_mems: a temp variable for calculating new effective_mems
1138 * When configured nodemask is changed, the effective nodemasks of this cpuset
1139 * and all its descendants need to be updated.
1141 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1143 * Called with cpuset_mutex held
1145 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1147 struct cpuset *cp;
1148 struct cgroup_subsys_state *pos_css;
1150 rcu_read_lock();
1151 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1152 struct cpuset *parent = parent_cs(cp);
1154 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1157 * If it becomes empty, inherit the effective mask of the
1158 * parent, which is guaranteed to have some MEMs.
1160 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1161 nodes_empty(*new_mems))
1162 *new_mems = parent->effective_mems;
1164 /* Skip the whole subtree if the nodemask remains the same. */
1165 if (nodes_equal(*new_mems, cp->effective_mems)) {
1166 pos_css = css_rightmost_descendant(pos_css);
1167 continue;
1170 if (!css_tryget_online(&cp->css))
1171 continue;
1172 rcu_read_unlock();
1174 spin_lock_irq(&callback_lock);
1175 cp->effective_mems = *new_mems;
1176 spin_unlock_irq(&callback_lock);
1178 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1179 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1181 update_tasks_nodemask(cp);
1183 rcu_read_lock();
1184 css_put(&cp->css);
1186 rcu_read_unlock();
1190 * Handle user request to change the 'mems' memory placement
1191 * of a cpuset. Needs to validate the request, update the
1192 * cpusets mems_allowed, and for each task in the cpuset,
1193 * update mems_allowed and rebind task's mempolicy and any vma
1194 * mempolicies and if the cpuset is marked 'memory_migrate',
1195 * migrate the tasks pages to the new memory.
1197 * Call with cpuset_mutex held. May take callback_lock during call.
1198 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1199 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1200 * their mempolicies to the cpusets new mems_allowed.
1202 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1203 const char *buf)
1205 int retval;
1208 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1209 * it's read-only
1211 if (cs == &top_cpuset) {
1212 retval = -EACCES;
1213 goto done;
1217 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1218 * Since nodelist_parse() fails on an empty mask, we special case
1219 * that parsing. The validate_change() call ensures that cpusets
1220 * with tasks have memory.
1222 if (!*buf) {
1223 nodes_clear(trialcs->mems_allowed);
1224 } else {
1225 retval = nodelist_parse(buf, trialcs->mems_allowed);
1226 if (retval < 0)
1227 goto done;
1229 if (!nodes_subset(trialcs->mems_allowed,
1230 top_cpuset.mems_allowed)) {
1231 retval = -EINVAL;
1232 goto done;
1236 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1237 retval = 0; /* Too easy - nothing to do */
1238 goto done;
1240 retval = validate_change(cs, trialcs);
1241 if (retval < 0)
1242 goto done;
1244 spin_lock_irq(&callback_lock);
1245 cs->mems_allowed = trialcs->mems_allowed;
1246 spin_unlock_irq(&callback_lock);
1248 /* use trialcs->mems_allowed as a temp variable */
1249 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1250 done:
1251 return retval;
1254 int current_cpuset_is_being_rebound(void)
1256 int ret;
1258 rcu_read_lock();
1259 ret = task_cs(current) == cpuset_being_rebound;
1260 rcu_read_unlock();
1262 return ret;
1265 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1267 #ifdef CONFIG_SMP
1268 if (val < -1 || val >= sched_domain_level_max)
1269 return -EINVAL;
1270 #endif
1272 if (val != cs->relax_domain_level) {
1273 cs->relax_domain_level = val;
1274 if (!cpumask_empty(cs->cpus_allowed) &&
1275 is_sched_load_balance(cs))
1276 rebuild_sched_domains_locked();
1279 return 0;
1283 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1284 * @cs: the cpuset in which each task's spread flags needs to be changed
1286 * Iterate through each task of @cs updating its spread flags. As this
1287 * function is called with cpuset_mutex held, cpuset membership stays
1288 * stable.
1290 static void update_tasks_flags(struct cpuset *cs)
1292 struct css_task_iter it;
1293 struct task_struct *task;
1295 css_task_iter_start(&cs->css, &it);
1296 while ((task = css_task_iter_next(&it)))
1297 cpuset_update_task_spread_flag(cs, task);
1298 css_task_iter_end(&it);
1302 * update_flag - read a 0 or a 1 in a file and update associated flag
1303 * bit: the bit to update (see cpuset_flagbits_t)
1304 * cs: the cpuset to update
1305 * turning_on: whether the flag is being set or cleared
1307 * Call with cpuset_mutex held.
1310 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1311 int turning_on)
1313 struct cpuset *trialcs;
1314 int balance_flag_changed;
1315 int spread_flag_changed;
1316 int err;
1318 trialcs = alloc_trial_cpuset(cs);
1319 if (!trialcs)
1320 return -ENOMEM;
1322 if (turning_on)
1323 set_bit(bit, &trialcs->flags);
1324 else
1325 clear_bit(bit, &trialcs->flags);
1327 err = validate_change(cs, trialcs);
1328 if (err < 0)
1329 goto out;
1331 balance_flag_changed = (is_sched_load_balance(cs) !=
1332 is_sched_load_balance(trialcs));
1334 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1335 || (is_spread_page(cs) != is_spread_page(trialcs)));
1337 spin_lock_irq(&callback_lock);
1338 cs->flags = trialcs->flags;
1339 spin_unlock_irq(&callback_lock);
1341 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1342 rebuild_sched_domains_locked();
1344 if (spread_flag_changed)
1345 update_tasks_flags(cs);
1346 out:
1347 free_trial_cpuset(trialcs);
1348 return err;
1352 * Frequency meter - How fast is some event occurring?
1354 * These routines manage a digitally filtered, constant time based,
1355 * event frequency meter. There are four routines:
1356 * fmeter_init() - initialize a frequency meter.
1357 * fmeter_markevent() - called each time the event happens.
1358 * fmeter_getrate() - returns the recent rate of such events.
1359 * fmeter_update() - internal routine used to update fmeter.
1361 * A common data structure is passed to each of these routines,
1362 * which is used to keep track of the state required to manage the
1363 * frequency meter and its digital filter.
1365 * The filter works on the number of events marked per unit time.
1366 * The filter is single-pole low-pass recursive (IIR). The time unit
1367 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1368 * simulate 3 decimal digits of precision (multiplied by 1000).
1370 * With an FM_COEF of 933, and a time base of 1 second, the filter
1371 * has a half-life of 10 seconds, meaning that if the events quit
1372 * happening, then the rate returned from the fmeter_getrate()
1373 * will be cut in half each 10 seconds, until it converges to zero.
1375 * It is not worth doing a real infinitely recursive filter. If more
1376 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1377 * just compute FM_MAXTICKS ticks worth, by which point the level
1378 * will be stable.
1380 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1381 * arithmetic overflow in the fmeter_update() routine.
1383 * Given the simple 32 bit integer arithmetic used, this meter works
1384 * best for reporting rates between one per millisecond (msec) and
1385 * one per 32 (approx) seconds. At constant rates faster than one
1386 * per msec it maxes out at values just under 1,000,000. At constant
1387 * rates between one per msec, and one per second it will stabilize
1388 * to a value N*1000, where N is the rate of events per second.
1389 * At constant rates between one per second and one per 32 seconds,
1390 * it will be choppy, moving up on the seconds that have an event,
1391 * and then decaying until the next event. At rates slower than
1392 * about one in 32 seconds, it decays all the way back to zero between
1393 * each event.
1396 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1397 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1398 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1399 #define FM_SCALE 1000 /* faux fixed point scale */
1401 /* Initialize a frequency meter */
1402 static void fmeter_init(struct fmeter *fmp)
1404 fmp->cnt = 0;
1405 fmp->val = 0;
1406 fmp->time = 0;
1407 spin_lock_init(&fmp->lock);
1410 /* Internal meter update - process cnt events and update value */
1411 static void fmeter_update(struct fmeter *fmp)
1413 time64_t now;
1414 u32 ticks;
1416 now = ktime_get_seconds();
1417 ticks = now - fmp->time;
1419 if (ticks == 0)
1420 return;
1422 ticks = min(FM_MAXTICKS, ticks);
1423 while (ticks-- > 0)
1424 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1425 fmp->time = now;
1427 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1428 fmp->cnt = 0;
1431 /* Process any previous ticks, then bump cnt by one (times scale). */
1432 static void fmeter_markevent(struct fmeter *fmp)
1434 spin_lock(&fmp->lock);
1435 fmeter_update(fmp);
1436 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1437 spin_unlock(&fmp->lock);
1440 /* Process any previous ticks, then return current value. */
1441 static int fmeter_getrate(struct fmeter *fmp)
1443 int val;
1445 spin_lock(&fmp->lock);
1446 fmeter_update(fmp);
1447 val = fmp->val;
1448 spin_unlock(&fmp->lock);
1449 return val;
1452 static struct cpuset *cpuset_attach_old_cs;
1454 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1455 static int cpuset_can_attach(struct cgroup_taskset *tset)
1457 struct cgroup_subsys_state *css;
1458 struct cpuset *cs;
1459 struct task_struct *task;
1460 int ret;
1462 /* used later by cpuset_attach() */
1463 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1464 cs = css_cs(css);
1466 mutex_lock(&cpuset_mutex);
1468 /* allow moving tasks into an empty cpuset if on default hierarchy */
1469 ret = -ENOSPC;
1470 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1471 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1472 goto out_unlock;
1474 cgroup_taskset_for_each(task, css, tset) {
1475 ret = task_can_attach(task, cs->cpus_allowed);
1476 if (ret)
1477 goto out_unlock;
1478 ret = security_task_setscheduler(task);
1479 if (ret)
1480 goto out_unlock;
1484 * Mark attach is in progress. This makes validate_change() fail
1485 * changes which zero cpus/mems_allowed.
1487 cs->attach_in_progress++;
1488 ret = 0;
1489 out_unlock:
1490 mutex_unlock(&cpuset_mutex);
1491 return ret;
1494 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1496 struct cgroup_subsys_state *css;
1497 struct cpuset *cs;
1499 cgroup_taskset_first(tset, &css);
1500 cs = css_cs(css);
1502 mutex_lock(&cpuset_mutex);
1503 css_cs(css)->attach_in_progress--;
1504 mutex_unlock(&cpuset_mutex);
1508 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1509 * but we can't allocate it dynamically there. Define it global and
1510 * allocate from cpuset_init().
1512 static cpumask_var_t cpus_attach;
1514 static void cpuset_attach(struct cgroup_taskset *tset)
1516 /* static buf protected by cpuset_mutex */
1517 static nodemask_t cpuset_attach_nodemask_to;
1518 struct task_struct *task;
1519 struct task_struct *leader;
1520 struct cgroup_subsys_state *css;
1521 struct cpuset *cs;
1522 struct cpuset *oldcs = cpuset_attach_old_cs;
1524 cgroup_taskset_first(tset, &css);
1525 cs = css_cs(css);
1527 mutex_lock(&cpuset_mutex);
1529 /* prepare for attach */
1530 if (cs == &top_cpuset)
1531 cpumask_copy(cpus_attach, cpu_possible_mask);
1532 else
1533 guarantee_online_cpus(cs, cpus_attach);
1535 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1537 cgroup_taskset_for_each(task, css, tset) {
1539 * can_attach beforehand should guarantee that this doesn't
1540 * fail. TODO: have a better way to handle failure here
1542 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1544 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1545 cpuset_update_task_spread_flag(cs, task);
1549 * Change mm for all threadgroup leaders. This is expensive and may
1550 * sleep and should be moved outside migration path proper.
1552 cpuset_attach_nodemask_to = cs->effective_mems;
1553 cgroup_taskset_for_each_leader(leader, css, tset) {
1554 struct mm_struct *mm = get_task_mm(leader);
1556 if (mm) {
1557 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1560 * old_mems_allowed is the same with mems_allowed
1561 * here, except if this task is being moved
1562 * automatically due to hotplug. In that case
1563 * @mems_allowed has been updated and is empty, so
1564 * @old_mems_allowed is the right nodesets that we
1565 * migrate mm from.
1567 if (is_memory_migrate(cs))
1568 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1569 &cpuset_attach_nodemask_to);
1570 else
1571 mmput(mm);
1575 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1577 cs->attach_in_progress--;
1578 if (!cs->attach_in_progress)
1579 wake_up(&cpuset_attach_wq);
1581 mutex_unlock(&cpuset_mutex);
1584 /* The various types of files and directories in a cpuset file system */
1586 typedef enum {
1587 FILE_MEMORY_MIGRATE,
1588 FILE_CPULIST,
1589 FILE_MEMLIST,
1590 FILE_EFFECTIVE_CPULIST,
1591 FILE_EFFECTIVE_MEMLIST,
1592 FILE_CPU_EXCLUSIVE,
1593 FILE_MEM_EXCLUSIVE,
1594 FILE_MEM_HARDWALL,
1595 FILE_SCHED_LOAD_BALANCE,
1596 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1597 FILE_MEMORY_PRESSURE_ENABLED,
1598 FILE_MEMORY_PRESSURE,
1599 FILE_SPREAD_PAGE,
1600 FILE_SPREAD_SLAB,
1601 } cpuset_filetype_t;
1603 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1604 u64 val)
1606 struct cpuset *cs = css_cs(css);
1607 cpuset_filetype_t type = cft->private;
1608 int retval = 0;
1610 mutex_lock(&cpuset_mutex);
1611 if (!is_cpuset_online(cs)) {
1612 retval = -ENODEV;
1613 goto out_unlock;
1616 switch (type) {
1617 case FILE_CPU_EXCLUSIVE:
1618 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1619 break;
1620 case FILE_MEM_EXCLUSIVE:
1621 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1622 break;
1623 case FILE_MEM_HARDWALL:
1624 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1625 break;
1626 case FILE_SCHED_LOAD_BALANCE:
1627 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1628 break;
1629 case FILE_MEMORY_MIGRATE:
1630 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1631 break;
1632 case FILE_MEMORY_PRESSURE_ENABLED:
1633 cpuset_memory_pressure_enabled = !!val;
1634 break;
1635 case FILE_SPREAD_PAGE:
1636 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1637 break;
1638 case FILE_SPREAD_SLAB:
1639 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1640 break;
1641 default:
1642 retval = -EINVAL;
1643 break;
1645 out_unlock:
1646 mutex_unlock(&cpuset_mutex);
1647 return retval;
1650 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1651 s64 val)
1653 struct cpuset *cs = css_cs(css);
1654 cpuset_filetype_t type = cft->private;
1655 int retval = -ENODEV;
1657 mutex_lock(&cpuset_mutex);
1658 if (!is_cpuset_online(cs))
1659 goto out_unlock;
1661 switch (type) {
1662 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1663 retval = update_relax_domain_level(cs, val);
1664 break;
1665 default:
1666 retval = -EINVAL;
1667 break;
1669 out_unlock:
1670 mutex_unlock(&cpuset_mutex);
1671 return retval;
1675 * Common handling for a write to a "cpus" or "mems" file.
1677 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1678 char *buf, size_t nbytes, loff_t off)
1680 struct cpuset *cs = css_cs(of_css(of));
1681 struct cpuset *trialcs;
1682 int retval = -ENODEV;
1684 buf = strstrip(buf);
1687 * CPU or memory hotunplug may leave @cs w/o any execution
1688 * resources, in which case the hotplug code asynchronously updates
1689 * configuration and transfers all tasks to the nearest ancestor
1690 * which can execute.
1692 * As writes to "cpus" or "mems" may restore @cs's execution
1693 * resources, wait for the previously scheduled operations before
1694 * proceeding, so that we don't end up keep removing tasks added
1695 * after execution capability is restored.
1697 * cpuset_hotplug_work calls back into cgroup core via
1698 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1699 * operation like this one can lead to a deadlock through kernfs
1700 * active_ref protection. Let's break the protection. Losing the
1701 * protection is okay as we check whether @cs is online after
1702 * grabbing cpuset_mutex anyway. This only happens on the legacy
1703 * hierarchies.
1705 css_get(&cs->css);
1706 kernfs_break_active_protection(of->kn);
1707 flush_work(&cpuset_hotplug_work);
1709 mutex_lock(&cpuset_mutex);
1710 if (!is_cpuset_online(cs))
1711 goto out_unlock;
1713 trialcs = alloc_trial_cpuset(cs);
1714 if (!trialcs) {
1715 retval = -ENOMEM;
1716 goto out_unlock;
1719 switch (of_cft(of)->private) {
1720 case FILE_CPULIST:
1721 retval = update_cpumask(cs, trialcs, buf);
1722 break;
1723 case FILE_MEMLIST:
1724 retval = update_nodemask(cs, trialcs, buf);
1725 break;
1726 default:
1727 retval = -EINVAL;
1728 break;
1731 free_trial_cpuset(trialcs);
1732 out_unlock:
1733 mutex_unlock(&cpuset_mutex);
1734 kernfs_unbreak_active_protection(of->kn);
1735 css_put(&cs->css);
1736 flush_workqueue(cpuset_migrate_mm_wq);
1737 return retval ?: nbytes;
1741 * These ascii lists should be read in a single call, by using a user
1742 * buffer large enough to hold the entire map. If read in smaller
1743 * chunks, there is no guarantee of atomicity. Since the display format
1744 * used, list of ranges of sequential numbers, is variable length,
1745 * and since these maps can change value dynamically, one could read
1746 * gibberish by doing partial reads while a list was changing.
1748 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1750 struct cpuset *cs = css_cs(seq_css(sf));
1751 cpuset_filetype_t type = seq_cft(sf)->private;
1752 int ret = 0;
1754 spin_lock_irq(&callback_lock);
1756 switch (type) {
1757 case FILE_CPULIST:
1758 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1759 break;
1760 case FILE_MEMLIST:
1761 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1762 break;
1763 case FILE_EFFECTIVE_CPULIST:
1764 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1765 break;
1766 case FILE_EFFECTIVE_MEMLIST:
1767 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1768 break;
1769 default:
1770 ret = -EINVAL;
1773 spin_unlock_irq(&callback_lock);
1774 return ret;
1777 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1779 struct cpuset *cs = css_cs(css);
1780 cpuset_filetype_t type = cft->private;
1781 switch (type) {
1782 case FILE_CPU_EXCLUSIVE:
1783 return is_cpu_exclusive(cs);
1784 case FILE_MEM_EXCLUSIVE:
1785 return is_mem_exclusive(cs);
1786 case FILE_MEM_HARDWALL:
1787 return is_mem_hardwall(cs);
1788 case FILE_SCHED_LOAD_BALANCE:
1789 return is_sched_load_balance(cs);
1790 case FILE_MEMORY_MIGRATE:
1791 return is_memory_migrate(cs);
1792 case FILE_MEMORY_PRESSURE_ENABLED:
1793 return cpuset_memory_pressure_enabled;
1794 case FILE_MEMORY_PRESSURE:
1795 return fmeter_getrate(&cs->fmeter);
1796 case FILE_SPREAD_PAGE:
1797 return is_spread_page(cs);
1798 case FILE_SPREAD_SLAB:
1799 return is_spread_slab(cs);
1800 default:
1801 BUG();
1804 /* Unreachable but makes gcc happy */
1805 return 0;
1808 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1810 struct cpuset *cs = css_cs(css);
1811 cpuset_filetype_t type = cft->private;
1812 switch (type) {
1813 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1814 return cs->relax_domain_level;
1815 default:
1816 BUG();
1819 /* Unrechable but makes gcc happy */
1820 return 0;
1825 * for the common functions, 'private' gives the type of file
1828 static struct cftype files[] = {
1830 .name = "cpus",
1831 .seq_show = cpuset_common_seq_show,
1832 .write = cpuset_write_resmask,
1833 .max_write_len = (100U + 6 * NR_CPUS),
1834 .private = FILE_CPULIST,
1838 .name = "mems",
1839 .seq_show = cpuset_common_seq_show,
1840 .write = cpuset_write_resmask,
1841 .max_write_len = (100U + 6 * MAX_NUMNODES),
1842 .private = FILE_MEMLIST,
1846 .name = "effective_cpus",
1847 .seq_show = cpuset_common_seq_show,
1848 .private = FILE_EFFECTIVE_CPULIST,
1852 .name = "effective_mems",
1853 .seq_show = cpuset_common_seq_show,
1854 .private = FILE_EFFECTIVE_MEMLIST,
1858 .name = "cpu_exclusive",
1859 .read_u64 = cpuset_read_u64,
1860 .write_u64 = cpuset_write_u64,
1861 .private = FILE_CPU_EXCLUSIVE,
1865 .name = "mem_exclusive",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_MEM_EXCLUSIVE,
1872 .name = "mem_hardwall",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_MEM_HARDWALL,
1879 .name = "sched_load_balance",
1880 .read_u64 = cpuset_read_u64,
1881 .write_u64 = cpuset_write_u64,
1882 .private = FILE_SCHED_LOAD_BALANCE,
1886 .name = "sched_relax_domain_level",
1887 .read_s64 = cpuset_read_s64,
1888 .write_s64 = cpuset_write_s64,
1889 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1893 .name = "memory_migrate",
1894 .read_u64 = cpuset_read_u64,
1895 .write_u64 = cpuset_write_u64,
1896 .private = FILE_MEMORY_MIGRATE,
1900 .name = "memory_pressure",
1901 .read_u64 = cpuset_read_u64,
1902 .private = FILE_MEMORY_PRESSURE,
1906 .name = "memory_spread_page",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_SPREAD_PAGE,
1913 .name = "memory_spread_slab",
1914 .read_u64 = cpuset_read_u64,
1915 .write_u64 = cpuset_write_u64,
1916 .private = FILE_SPREAD_SLAB,
1920 .name = "memory_pressure_enabled",
1921 .flags = CFTYPE_ONLY_ON_ROOT,
1922 .read_u64 = cpuset_read_u64,
1923 .write_u64 = cpuset_write_u64,
1924 .private = FILE_MEMORY_PRESSURE_ENABLED,
1927 { } /* terminate */
1931 * cpuset_css_alloc - allocate a cpuset css
1932 * cgrp: control group that the new cpuset will be part of
1935 static struct cgroup_subsys_state *
1936 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1938 struct cpuset *cs;
1940 if (!parent_css)
1941 return &top_cpuset.css;
1943 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1944 if (!cs)
1945 return ERR_PTR(-ENOMEM);
1946 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1947 goto free_cs;
1948 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1949 goto free_cpus;
1951 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1952 cpumask_clear(cs->cpus_allowed);
1953 nodes_clear(cs->mems_allowed);
1954 cpumask_clear(cs->effective_cpus);
1955 nodes_clear(cs->effective_mems);
1956 fmeter_init(&cs->fmeter);
1957 cs->relax_domain_level = -1;
1959 return &cs->css;
1961 free_cpus:
1962 free_cpumask_var(cs->cpus_allowed);
1963 free_cs:
1964 kfree(cs);
1965 return ERR_PTR(-ENOMEM);
1968 static int cpuset_css_online(struct cgroup_subsys_state *css)
1970 struct cpuset *cs = css_cs(css);
1971 struct cpuset *parent = parent_cs(cs);
1972 struct cpuset *tmp_cs;
1973 struct cgroup_subsys_state *pos_css;
1975 if (!parent)
1976 return 0;
1978 mutex_lock(&cpuset_mutex);
1980 set_bit(CS_ONLINE, &cs->flags);
1981 if (is_spread_page(parent))
1982 set_bit(CS_SPREAD_PAGE, &cs->flags);
1983 if (is_spread_slab(parent))
1984 set_bit(CS_SPREAD_SLAB, &cs->flags);
1986 cpuset_inc();
1988 spin_lock_irq(&callback_lock);
1989 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1990 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1991 cs->effective_mems = parent->effective_mems;
1993 spin_unlock_irq(&callback_lock);
1995 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1996 goto out_unlock;
1999 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2000 * set. This flag handling is implemented in cgroup core for
2001 * histrical reasons - the flag may be specified during mount.
2003 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2004 * refuse to clone the configuration - thereby refusing the task to
2005 * be entered, and as a result refusing the sys_unshare() or
2006 * clone() which initiated it. If this becomes a problem for some
2007 * users who wish to allow that scenario, then this could be
2008 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2009 * (and likewise for mems) to the new cgroup.
2011 rcu_read_lock();
2012 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2013 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2014 rcu_read_unlock();
2015 goto out_unlock;
2018 rcu_read_unlock();
2020 spin_lock_irq(&callback_lock);
2021 cs->mems_allowed = parent->mems_allowed;
2022 cs->effective_mems = parent->mems_allowed;
2023 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2024 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2025 spin_unlock_irq(&callback_lock);
2026 out_unlock:
2027 mutex_unlock(&cpuset_mutex);
2028 return 0;
2032 * If the cpuset being removed has its flag 'sched_load_balance'
2033 * enabled, then simulate turning sched_load_balance off, which
2034 * will call rebuild_sched_domains_locked().
2037 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2039 struct cpuset *cs = css_cs(css);
2041 mutex_lock(&cpuset_mutex);
2043 if (is_sched_load_balance(cs))
2044 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2046 cpuset_dec();
2047 clear_bit(CS_ONLINE, &cs->flags);
2049 mutex_unlock(&cpuset_mutex);
2052 static void cpuset_css_free(struct cgroup_subsys_state *css)
2054 struct cpuset *cs = css_cs(css);
2056 free_cpumask_var(cs->effective_cpus);
2057 free_cpumask_var(cs->cpus_allowed);
2058 kfree(cs);
2061 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2063 mutex_lock(&cpuset_mutex);
2064 spin_lock_irq(&callback_lock);
2066 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2067 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2068 top_cpuset.mems_allowed = node_possible_map;
2069 } else {
2070 cpumask_copy(top_cpuset.cpus_allowed,
2071 top_cpuset.effective_cpus);
2072 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2075 spin_unlock_irq(&callback_lock);
2076 mutex_unlock(&cpuset_mutex);
2080 * Make sure the new task conform to the current state of its parent,
2081 * which could have been changed by cpuset just after it inherits the
2082 * state from the parent and before it sits on the cgroup's task list.
2084 static void cpuset_fork(struct task_struct *task)
2086 if (task_css_is_root(task, cpuset_cgrp_id))
2087 return;
2089 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2090 task->mems_allowed = current->mems_allowed;
2093 struct cgroup_subsys cpuset_cgrp_subsys = {
2094 .css_alloc = cpuset_css_alloc,
2095 .css_online = cpuset_css_online,
2096 .css_offline = cpuset_css_offline,
2097 .css_free = cpuset_css_free,
2098 .can_attach = cpuset_can_attach,
2099 .cancel_attach = cpuset_cancel_attach,
2100 .attach = cpuset_attach,
2101 .post_attach = cpuset_post_attach,
2102 .bind = cpuset_bind,
2103 .fork = cpuset_fork,
2104 .legacy_cftypes = files,
2105 .early_init = true,
2109 * cpuset_init - initialize cpusets at system boot
2111 * Description: Initialize top_cpuset and the cpuset internal file system,
2114 int __init cpuset_init(void)
2116 int err = 0;
2118 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2119 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2121 cpumask_setall(top_cpuset.cpus_allowed);
2122 nodes_setall(top_cpuset.mems_allowed);
2123 cpumask_setall(top_cpuset.effective_cpus);
2124 nodes_setall(top_cpuset.effective_mems);
2126 fmeter_init(&top_cpuset.fmeter);
2127 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2128 top_cpuset.relax_domain_level = -1;
2130 err = register_filesystem(&cpuset_fs_type);
2131 if (err < 0)
2132 return err;
2134 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2136 return 0;
2140 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2141 * or memory nodes, we need to walk over the cpuset hierarchy,
2142 * removing that CPU or node from all cpusets. If this removes the
2143 * last CPU or node from a cpuset, then move the tasks in the empty
2144 * cpuset to its next-highest non-empty parent.
2146 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2148 struct cpuset *parent;
2151 * Find its next-highest non-empty parent, (top cpuset
2152 * has online cpus, so can't be empty).
2154 parent = parent_cs(cs);
2155 while (cpumask_empty(parent->cpus_allowed) ||
2156 nodes_empty(parent->mems_allowed))
2157 parent = parent_cs(parent);
2159 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2160 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2161 pr_cont_cgroup_name(cs->css.cgroup);
2162 pr_cont("\n");
2166 static void
2167 hotplug_update_tasks_legacy(struct cpuset *cs,
2168 struct cpumask *new_cpus, nodemask_t *new_mems,
2169 bool cpus_updated, bool mems_updated)
2171 bool is_empty;
2173 spin_lock_irq(&callback_lock);
2174 cpumask_copy(cs->cpus_allowed, new_cpus);
2175 cpumask_copy(cs->effective_cpus, new_cpus);
2176 cs->mems_allowed = *new_mems;
2177 cs->effective_mems = *new_mems;
2178 spin_unlock_irq(&callback_lock);
2181 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2182 * as the tasks will be migratecd to an ancestor.
2184 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2185 update_tasks_cpumask(cs);
2186 if (mems_updated && !nodes_empty(cs->mems_allowed))
2187 update_tasks_nodemask(cs);
2189 is_empty = cpumask_empty(cs->cpus_allowed) ||
2190 nodes_empty(cs->mems_allowed);
2192 mutex_unlock(&cpuset_mutex);
2195 * Move tasks to the nearest ancestor with execution resources,
2196 * This is full cgroup operation which will also call back into
2197 * cpuset. Should be done outside any lock.
2199 if (is_empty)
2200 remove_tasks_in_empty_cpuset(cs);
2202 mutex_lock(&cpuset_mutex);
2205 static void
2206 hotplug_update_tasks(struct cpuset *cs,
2207 struct cpumask *new_cpus, nodemask_t *new_mems,
2208 bool cpus_updated, bool mems_updated)
2210 if (cpumask_empty(new_cpus))
2211 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2212 if (nodes_empty(*new_mems))
2213 *new_mems = parent_cs(cs)->effective_mems;
2215 spin_lock_irq(&callback_lock);
2216 cpumask_copy(cs->effective_cpus, new_cpus);
2217 cs->effective_mems = *new_mems;
2218 spin_unlock_irq(&callback_lock);
2220 if (cpus_updated)
2221 update_tasks_cpumask(cs);
2222 if (mems_updated)
2223 update_tasks_nodemask(cs);
2227 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2228 * @cs: cpuset in interest
2230 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2231 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2232 * all its tasks are moved to the nearest ancestor with both resources.
2234 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2236 static cpumask_t new_cpus;
2237 static nodemask_t new_mems;
2238 bool cpus_updated;
2239 bool mems_updated;
2240 retry:
2241 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2243 mutex_lock(&cpuset_mutex);
2246 * We have raced with task attaching. We wait until attaching
2247 * is finished, so we won't attach a task to an empty cpuset.
2249 if (cs->attach_in_progress) {
2250 mutex_unlock(&cpuset_mutex);
2251 goto retry;
2254 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2255 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2257 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2258 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2260 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2261 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2262 cpus_updated, mems_updated);
2263 else
2264 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2265 cpus_updated, mems_updated);
2267 mutex_unlock(&cpuset_mutex);
2271 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2273 * This function is called after either CPU or memory configuration has
2274 * changed and updates cpuset accordingly. The top_cpuset is always
2275 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2276 * order to make cpusets transparent (of no affect) on systems that are
2277 * actively using CPU hotplug but making no active use of cpusets.
2279 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2280 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2281 * all descendants.
2283 * Note that CPU offlining during suspend is ignored. We don't modify
2284 * cpusets across suspend/resume cycles at all.
2286 static void cpuset_hotplug_workfn(struct work_struct *work)
2288 static cpumask_t new_cpus;
2289 static nodemask_t new_mems;
2290 bool cpus_updated, mems_updated;
2291 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2293 mutex_lock(&cpuset_mutex);
2295 /* fetch the available cpus/mems and find out which changed how */
2296 cpumask_copy(&new_cpus, cpu_active_mask);
2297 new_mems = node_states[N_MEMORY];
2299 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2300 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2302 /* synchronize cpus_allowed to cpu_active_mask */
2303 if (cpus_updated) {
2304 spin_lock_irq(&callback_lock);
2305 if (!on_dfl)
2306 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2307 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2308 spin_unlock_irq(&callback_lock);
2309 /* we don't mess with cpumasks of tasks in top_cpuset */
2312 /* synchronize mems_allowed to N_MEMORY */
2313 if (mems_updated) {
2314 spin_lock_irq(&callback_lock);
2315 if (!on_dfl)
2316 top_cpuset.mems_allowed = new_mems;
2317 top_cpuset.effective_mems = new_mems;
2318 spin_unlock_irq(&callback_lock);
2319 update_tasks_nodemask(&top_cpuset);
2322 mutex_unlock(&cpuset_mutex);
2324 /* if cpus or mems changed, we need to propagate to descendants */
2325 if (cpus_updated || mems_updated) {
2326 struct cpuset *cs;
2327 struct cgroup_subsys_state *pos_css;
2329 rcu_read_lock();
2330 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2331 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2332 continue;
2333 rcu_read_unlock();
2335 cpuset_hotplug_update_tasks(cs);
2337 rcu_read_lock();
2338 css_put(&cs->css);
2340 rcu_read_unlock();
2343 /* rebuild sched domains if cpus_allowed has changed */
2344 if (cpus_updated)
2345 rebuild_sched_domains();
2348 void cpuset_update_active_cpus(void)
2351 * We're inside cpu hotplug critical region which usually nests
2352 * inside cgroup synchronization. Bounce actual hotplug processing
2353 * to a work item to avoid reverse locking order.
2355 schedule_work(&cpuset_hotplug_work);
2359 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2360 * Call this routine anytime after node_states[N_MEMORY] changes.
2361 * See cpuset_update_active_cpus() for CPU hotplug handling.
2363 static int cpuset_track_online_nodes(struct notifier_block *self,
2364 unsigned long action, void *arg)
2366 schedule_work(&cpuset_hotplug_work);
2367 return NOTIFY_OK;
2370 static struct notifier_block cpuset_track_online_nodes_nb = {
2371 .notifier_call = cpuset_track_online_nodes,
2372 .priority = 10, /* ??! */
2376 * cpuset_init_smp - initialize cpus_allowed
2378 * Description: Finish top cpuset after cpu, node maps are initialized
2380 void __init cpuset_init_smp(void)
2382 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2383 top_cpuset.mems_allowed = node_states[N_MEMORY];
2384 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2386 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2387 top_cpuset.effective_mems = node_states[N_MEMORY];
2389 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2391 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2392 BUG_ON(!cpuset_migrate_mm_wq);
2396 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2397 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2398 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2400 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2401 * attached to the specified @tsk. Guaranteed to return some non-empty
2402 * subset of cpu_online_mask, even if this means going outside the
2403 * tasks cpuset.
2406 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2408 unsigned long flags;
2410 spin_lock_irqsave(&callback_lock, flags);
2411 rcu_read_lock();
2412 guarantee_online_cpus(task_cs(tsk), pmask);
2413 rcu_read_unlock();
2414 spin_unlock_irqrestore(&callback_lock, flags);
2417 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2419 rcu_read_lock();
2420 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2421 rcu_read_unlock();
2424 * We own tsk->cpus_allowed, nobody can change it under us.
2426 * But we used cs && cs->cpus_allowed lockless and thus can
2427 * race with cgroup_attach_task() or update_cpumask() and get
2428 * the wrong tsk->cpus_allowed. However, both cases imply the
2429 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2430 * which takes task_rq_lock().
2432 * If we are called after it dropped the lock we must see all
2433 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2434 * set any mask even if it is not right from task_cs() pov,
2435 * the pending set_cpus_allowed_ptr() will fix things.
2437 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2438 * if required.
2442 void __init cpuset_init_current_mems_allowed(void)
2444 nodes_setall(current->mems_allowed);
2448 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2449 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2451 * Description: Returns the nodemask_t mems_allowed of the cpuset
2452 * attached to the specified @tsk. Guaranteed to return some non-empty
2453 * subset of node_states[N_MEMORY], even if this means going outside the
2454 * tasks cpuset.
2457 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2459 nodemask_t mask;
2460 unsigned long flags;
2462 spin_lock_irqsave(&callback_lock, flags);
2463 rcu_read_lock();
2464 guarantee_online_mems(task_cs(tsk), &mask);
2465 rcu_read_unlock();
2466 spin_unlock_irqrestore(&callback_lock, flags);
2468 return mask;
2472 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2473 * @nodemask: the nodemask to be checked
2475 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2477 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2479 return nodes_intersects(*nodemask, current->mems_allowed);
2483 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2484 * mem_hardwall ancestor to the specified cpuset. Call holding
2485 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2486 * (an unusual configuration), then returns the root cpuset.
2488 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2490 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2491 cs = parent_cs(cs);
2492 return cs;
2496 * cpuset_node_allowed - Can we allocate on a memory node?
2497 * @node: is this an allowed node?
2498 * @gfp_mask: memory allocation flags
2500 * If we're in interrupt, yes, we can always allocate. If @node is set in
2501 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2502 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2503 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2504 * Otherwise, no.
2506 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2507 * and do not allow allocations outside the current tasks cpuset
2508 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2509 * GFP_KERNEL allocations are not so marked, so can escape to the
2510 * nearest enclosing hardwalled ancestor cpuset.
2512 * Scanning up parent cpusets requires callback_lock. The
2513 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2514 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2515 * current tasks mems_allowed came up empty on the first pass over
2516 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2517 * cpuset are short of memory, might require taking the callback_lock.
2519 * The first call here from mm/page_alloc:get_page_from_freelist()
2520 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2521 * so no allocation on a node outside the cpuset is allowed (unless
2522 * in interrupt, of course).
2524 * The second pass through get_page_from_freelist() doesn't even call
2525 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2526 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2527 * in alloc_flags. That logic and the checks below have the combined
2528 * affect that:
2529 * in_interrupt - any node ok (current task context irrelevant)
2530 * GFP_ATOMIC - any node ok
2531 * TIF_MEMDIE - any node ok
2532 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2533 * GFP_USER - only nodes in current tasks mems allowed ok.
2535 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2537 struct cpuset *cs; /* current cpuset ancestors */
2538 int allowed; /* is allocation in zone z allowed? */
2539 unsigned long flags;
2541 if (in_interrupt())
2542 return true;
2543 if (node_isset(node, current->mems_allowed))
2544 return true;
2546 * Allow tasks that have access to memory reserves because they have
2547 * been OOM killed to get memory anywhere.
2549 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2550 return true;
2551 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2552 return false;
2554 if (current->flags & PF_EXITING) /* Let dying task have memory */
2555 return true;
2557 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2558 spin_lock_irqsave(&callback_lock, flags);
2560 rcu_read_lock();
2561 cs = nearest_hardwall_ancestor(task_cs(current));
2562 allowed = node_isset(node, cs->mems_allowed);
2563 rcu_read_unlock();
2565 spin_unlock_irqrestore(&callback_lock, flags);
2566 return allowed;
2570 * cpuset_mem_spread_node() - On which node to begin search for a file page
2571 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2573 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2574 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2575 * and if the memory allocation used cpuset_mem_spread_node()
2576 * to determine on which node to start looking, as it will for
2577 * certain page cache or slab cache pages such as used for file
2578 * system buffers and inode caches, then instead of starting on the
2579 * local node to look for a free page, rather spread the starting
2580 * node around the tasks mems_allowed nodes.
2582 * We don't have to worry about the returned node being offline
2583 * because "it can't happen", and even if it did, it would be ok.
2585 * The routines calling guarantee_online_mems() are careful to
2586 * only set nodes in task->mems_allowed that are online. So it
2587 * should not be possible for the following code to return an
2588 * offline node. But if it did, that would be ok, as this routine
2589 * is not returning the node where the allocation must be, only
2590 * the node where the search should start. The zonelist passed to
2591 * __alloc_pages() will include all nodes. If the slab allocator
2592 * is passed an offline node, it will fall back to the local node.
2593 * See kmem_cache_alloc_node().
2596 static int cpuset_spread_node(int *rotor)
2598 return *rotor = next_node_in(*rotor, current->mems_allowed);
2601 int cpuset_mem_spread_node(void)
2603 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2604 current->cpuset_mem_spread_rotor =
2605 node_random(&current->mems_allowed);
2607 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2610 int cpuset_slab_spread_node(void)
2612 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2613 current->cpuset_slab_spread_rotor =
2614 node_random(&current->mems_allowed);
2616 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2619 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2622 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2623 * @tsk1: pointer to task_struct of some task.
2624 * @tsk2: pointer to task_struct of some other task.
2626 * Description: Return true if @tsk1's mems_allowed intersects the
2627 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2628 * one of the task's memory usage might impact the memory available
2629 * to the other.
2632 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2633 const struct task_struct *tsk2)
2635 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2639 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2641 * Description: Prints current's name, cpuset name, and cached copy of its
2642 * mems_allowed to the kernel log.
2644 void cpuset_print_current_mems_allowed(void)
2646 struct cgroup *cgrp;
2648 rcu_read_lock();
2650 cgrp = task_cs(current)->css.cgroup;
2651 pr_info("%s cpuset=", current->comm);
2652 pr_cont_cgroup_name(cgrp);
2653 pr_cont(" mems_allowed=%*pbl\n",
2654 nodemask_pr_args(&current->mems_allowed));
2656 rcu_read_unlock();
2660 * Collection of memory_pressure is suppressed unless
2661 * this flag is enabled by writing "1" to the special
2662 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2665 int cpuset_memory_pressure_enabled __read_mostly;
2668 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2670 * Keep a running average of the rate of synchronous (direct)
2671 * page reclaim efforts initiated by tasks in each cpuset.
2673 * This represents the rate at which some task in the cpuset
2674 * ran low on memory on all nodes it was allowed to use, and
2675 * had to enter the kernels page reclaim code in an effort to
2676 * create more free memory by tossing clean pages or swapping
2677 * or writing dirty pages.
2679 * Display to user space in the per-cpuset read-only file
2680 * "memory_pressure". Value displayed is an integer
2681 * representing the recent rate of entry into the synchronous
2682 * (direct) page reclaim by any task attached to the cpuset.
2685 void __cpuset_memory_pressure_bump(void)
2687 rcu_read_lock();
2688 fmeter_markevent(&task_cs(current)->fmeter);
2689 rcu_read_unlock();
2692 #ifdef CONFIG_PROC_PID_CPUSET
2694 * proc_cpuset_show()
2695 * - Print tasks cpuset path into seq_file.
2696 * - Used for /proc/<pid>/cpuset.
2697 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2698 * doesn't really matter if tsk->cpuset changes after we read it,
2699 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2700 * anyway.
2702 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2703 struct pid *pid, struct task_struct *tsk)
2705 char *buf;
2706 struct cgroup_subsys_state *css;
2707 int retval;
2709 retval = -ENOMEM;
2710 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2711 if (!buf)
2712 goto out;
2714 css = task_get_css(tsk, cpuset_cgrp_id);
2715 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2716 current->nsproxy->cgroup_ns);
2717 css_put(css);
2718 if (retval >= PATH_MAX)
2719 retval = -ENAMETOOLONG;
2720 if (retval < 0)
2721 goto out_free;
2722 seq_puts(m, buf);
2723 seq_putc(m, '\n');
2724 retval = 0;
2725 out_free:
2726 kfree(buf);
2727 out:
2728 return retval;
2730 #endif /* CONFIG_PROC_PID_CPUSET */
2732 /* Display task mems_allowed in /proc/<pid>/status file. */
2733 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2735 seq_printf(m, "Mems_allowed:\t%*pb\n",
2736 nodemask_pr_args(&task->mems_allowed));
2737 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2738 nodemask_pr_args(&task->mems_allowed));