usb: musb: hsdma: use musb_read/writel
[linux/fpc-iii.git] / fs / exec.c
blobe6e94c626c2cbebb7699597271a953b65e611e6e
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 struct file *file;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
113 if (IS_ERR(tmp))
114 goto out;
116 file = do_filp_open(AT_FDCWD, tmp,
117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 MAY_READ | MAY_EXEC | MAY_OPEN);
119 putname(tmp);
120 error = PTR_ERR(file);
121 if (IS_ERR(file))
122 goto out;
124 error = -EINVAL;
125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 goto exit;
128 error = -EACCES;
129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 goto exit;
132 fsnotify_open(file->f_path.dentry);
134 error = -ENOEXEC;
135 if(file->f_op) {
136 struct linux_binfmt * fmt;
138 read_lock(&binfmt_lock);
139 list_for_each_entry(fmt, &formats, lh) {
140 if (!fmt->load_shlib)
141 continue;
142 if (!try_module_get(fmt->module))
143 continue;
144 read_unlock(&binfmt_lock);
145 error = fmt->load_shlib(file);
146 read_lock(&binfmt_lock);
147 put_binfmt(fmt);
148 if (error != -ENOEXEC)
149 break;
151 read_unlock(&binfmt_lock);
153 exit:
154 fput(file);
155 out:
156 return error;
159 #ifdef CONFIG_MMU
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 int write)
164 struct page *page;
165 int ret;
167 #ifdef CONFIG_STACK_GROWSUP
168 if (write) {
169 ret = expand_stack_downwards(bprm->vma, pos);
170 if (ret < 0)
171 return NULL;
173 #endif
174 ret = get_user_pages(current, bprm->mm, pos,
175 1, write, 1, &page, NULL);
176 if (ret <= 0)
177 return NULL;
179 if (write) {
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 struct rlimit *rlim;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
187 if (size <= ARG_MAX)
188 return page;
191 * Limit to 1/4-th the stack size for the argv+env strings.
192 * This ensures that:
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
195 * to work from.
197 rlim = current->signal->rlim;
198 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
199 put_page(page);
200 return NULL;
204 return page;
207 static void put_arg_page(struct page *page)
209 put_page(page);
212 static void free_arg_page(struct linux_binprm *bprm, int i)
216 static void free_arg_pages(struct linux_binprm *bprm)
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 struct page *page)
223 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
226 static int __bprm_mm_init(struct linux_binprm *bprm)
228 int err;
229 struct vm_area_struct *vma = NULL;
230 struct mm_struct *mm = bprm->mm;
232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 if (!vma)
234 return -ENOMEM;
236 down_write(&mm->mmap_sem);
237 vma->vm_mm = mm;
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
243 * configured yet.
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 INIT_LIST_HEAD(&vma->anon_vma_chain);
250 err = insert_vm_struct(mm, vma);
251 if (err)
252 goto err;
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
258 err:
259 up_write(&mm->mmap_sem);
260 bprm->vma = NULL;
261 kmem_cache_free(vm_area_cachep, vma);
262 return err;
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
267 return len <= MAX_ARG_STRLEN;
270 #else
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 int write)
275 struct page *page;
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 if (!page)
281 return NULL;
282 bprm->page[pos / PAGE_SIZE] = page;
285 return page;
288 static void put_arg_page(struct page *page)
292 static void free_arg_page(struct linux_binprm *bprm, int i)
294 if (bprm->page[i]) {
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
300 static void free_arg_pages(struct linux_binprm *bprm)
302 int i;
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 struct page *page)
313 static int __bprm_mm_init(struct linux_binprm *bprm)
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 return 0;
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
321 return len <= bprm->p;
324 #endif /* CONFIG_MMU */
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
332 int bprm_mm_init(struct linux_binprm *bprm)
334 int err;
335 struct mm_struct *mm = NULL;
337 bprm->mm = mm = mm_alloc();
338 err = -ENOMEM;
339 if (!mm)
340 goto err;
342 err = init_new_context(current, mm);
343 if (err)
344 goto err;
346 err = __bprm_mm_init(bprm);
347 if (err)
348 goto err;
350 return 0;
352 err:
353 if (mm) {
354 bprm->mm = NULL;
355 mmdrop(mm);
358 return err;
362 * count() counts the number of strings in array ARGV.
364 static int count(char __user * __user * argv, int max)
366 int i = 0;
368 if (argv != NULL) {
369 for (;;) {
370 char __user * p;
372 if (get_user(p, argv))
373 return -EFAULT;
374 if (!p)
375 break;
376 argv++;
377 if (i++ >= max)
378 return -E2BIG;
379 cond_resched();
382 return i;
386 * 'copy_strings()' copies argument/environment strings from the old
387 * processes's memory to the new process's stack. The call to get_user_pages()
388 * ensures the destination page is created and not swapped out.
390 static int copy_strings(int argc, char __user * __user * argv,
391 struct linux_binprm *bprm)
393 struct page *kmapped_page = NULL;
394 char *kaddr = NULL;
395 unsigned long kpos = 0;
396 int ret;
398 while (argc-- > 0) {
399 char __user *str;
400 int len;
401 unsigned long pos;
403 if (get_user(str, argv+argc) ||
404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 ret = -EFAULT;
406 goto out;
409 if (!valid_arg_len(bprm, len)) {
410 ret = -E2BIG;
411 goto out;
414 /* We're going to work our way backwords. */
415 pos = bprm->p;
416 str += len;
417 bprm->p -= len;
419 while (len > 0) {
420 int offset, bytes_to_copy;
422 offset = pos % PAGE_SIZE;
423 if (offset == 0)
424 offset = PAGE_SIZE;
426 bytes_to_copy = offset;
427 if (bytes_to_copy > len)
428 bytes_to_copy = len;
430 offset -= bytes_to_copy;
431 pos -= bytes_to_copy;
432 str -= bytes_to_copy;
433 len -= bytes_to_copy;
435 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 struct page *page;
438 page = get_arg_page(bprm, pos, 1);
439 if (!page) {
440 ret = -E2BIG;
441 goto out;
444 if (kmapped_page) {
445 flush_kernel_dcache_page(kmapped_page);
446 kunmap(kmapped_page);
447 put_arg_page(kmapped_page);
449 kmapped_page = page;
450 kaddr = kmap(kmapped_page);
451 kpos = pos & PAGE_MASK;
452 flush_arg_page(bprm, kpos, kmapped_page);
454 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 ret = -EFAULT;
456 goto out;
460 ret = 0;
461 out:
462 if (kmapped_page) {
463 flush_kernel_dcache_page(kmapped_page);
464 kunmap(kmapped_page);
465 put_arg_page(kmapped_page);
467 return ret;
471 * Like copy_strings, but get argv and its values from kernel memory.
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
475 int r;
476 mm_segment_t oldfs = get_fs();
477 set_fs(KERNEL_DS);
478 r = copy_strings(argc, (char __user * __user *)argv, bprm);
479 set_fs(oldfs);
480 return r;
482 EXPORT_SYMBOL(copy_strings_kernel);
484 #ifdef CONFIG_MMU
487 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
488 * the binfmt code determines where the new stack should reside, we shift it to
489 * its final location. The process proceeds as follows:
491 * 1) Use shift to calculate the new vma endpoints.
492 * 2) Extend vma to cover both the old and new ranges. This ensures the
493 * arguments passed to subsequent functions are consistent.
494 * 3) Move vma's page tables to the new range.
495 * 4) Free up any cleared pgd range.
496 * 5) Shrink the vma to cover only the new range.
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
500 struct mm_struct *mm = vma->vm_mm;
501 unsigned long old_start = vma->vm_start;
502 unsigned long old_end = vma->vm_end;
503 unsigned long length = old_end - old_start;
504 unsigned long new_start = old_start - shift;
505 unsigned long new_end = old_end - shift;
506 struct mmu_gather *tlb;
508 BUG_ON(new_start > new_end);
511 * ensure there are no vmas between where we want to go
512 * and where we are
514 if (vma != find_vma(mm, new_start))
515 return -EFAULT;
518 * cover the whole range: [new_start, old_end)
520 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
521 return -ENOMEM;
524 * move the page tables downwards, on failure we rely on
525 * process cleanup to remove whatever mess we made.
527 if (length != move_page_tables(vma, old_start,
528 vma, new_start, length))
529 return -ENOMEM;
531 lru_add_drain();
532 tlb = tlb_gather_mmu(mm, 0);
533 if (new_end > old_start) {
535 * when the old and new regions overlap clear from new_end.
537 free_pgd_range(tlb, new_end, old_end, new_end,
538 vma->vm_next ? vma->vm_next->vm_start : 0);
539 } else {
541 * otherwise, clean from old_start; this is done to not touch
542 * the address space in [new_end, old_start) some architectures
543 * have constraints on va-space that make this illegal (IA64) -
544 * for the others its just a little faster.
546 free_pgd_range(tlb, old_start, old_end, new_end,
547 vma->vm_next ? vma->vm_next->vm_start : 0);
549 tlb_finish_mmu(tlb, new_end, old_end);
552 * Shrink the vma to just the new range. Always succeeds.
554 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
556 return 0;
560 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561 * the stack is optionally relocated, and some extra space is added.
563 int setup_arg_pages(struct linux_binprm *bprm,
564 unsigned long stack_top,
565 int executable_stack)
567 unsigned long ret;
568 unsigned long stack_shift;
569 struct mm_struct *mm = current->mm;
570 struct vm_area_struct *vma = bprm->vma;
571 struct vm_area_struct *prev = NULL;
572 unsigned long vm_flags;
573 unsigned long stack_base;
574 unsigned long stack_size;
575 unsigned long stack_expand;
576 unsigned long rlim_stack;
578 #ifdef CONFIG_STACK_GROWSUP
579 /* Limit stack size to 1GB */
580 stack_base = rlimit_max(RLIMIT_STACK);
581 if (stack_base > (1 << 30))
582 stack_base = 1 << 30;
584 /* Make sure we didn't let the argument array grow too large. */
585 if (vma->vm_end - vma->vm_start > stack_base)
586 return -ENOMEM;
588 stack_base = PAGE_ALIGN(stack_top - stack_base);
590 stack_shift = vma->vm_start - stack_base;
591 mm->arg_start = bprm->p - stack_shift;
592 bprm->p = vma->vm_end - stack_shift;
593 #else
594 stack_top = arch_align_stack(stack_top);
595 stack_top = PAGE_ALIGN(stack_top);
596 stack_shift = vma->vm_end - stack_top;
598 bprm->p -= stack_shift;
599 mm->arg_start = bprm->p;
600 #endif
602 if (bprm->loader)
603 bprm->loader -= stack_shift;
604 bprm->exec -= stack_shift;
606 down_write(&mm->mmap_sem);
607 vm_flags = VM_STACK_FLAGS;
610 * Adjust stack execute permissions; explicitly enable for
611 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
612 * (arch default) otherwise.
614 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
615 vm_flags |= VM_EXEC;
616 else if (executable_stack == EXSTACK_DISABLE_X)
617 vm_flags &= ~VM_EXEC;
618 vm_flags |= mm->def_flags;
620 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
621 vm_flags);
622 if (ret)
623 goto out_unlock;
624 BUG_ON(prev != vma);
626 /* Move stack pages down in memory. */
627 if (stack_shift) {
628 ret = shift_arg_pages(vma, stack_shift);
629 if (ret)
630 goto out_unlock;
633 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
634 stack_size = vma->vm_end - vma->vm_start;
636 * Align this down to a page boundary as expand_stack
637 * will align it up.
639 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
640 #ifdef CONFIG_STACK_GROWSUP
641 if (stack_size + stack_expand > rlim_stack)
642 stack_base = vma->vm_start + rlim_stack;
643 else
644 stack_base = vma->vm_end + stack_expand;
645 #else
646 if (stack_size + stack_expand > rlim_stack)
647 stack_base = vma->vm_end - rlim_stack;
648 else
649 stack_base = vma->vm_start - stack_expand;
650 #endif
651 ret = expand_stack(vma, stack_base);
652 if (ret)
653 ret = -EFAULT;
655 out_unlock:
656 up_write(&mm->mmap_sem);
657 return ret;
659 EXPORT_SYMBOL(setup_arg_pages);
661 #endif /* CONFIG_MMU */
663 struct file *open_exec(const char *name)
665 struct file *file;
666 int err;
668 file = do_filp_open(AT_FDCWD, name,
669 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
670 MAY_EXEC | MAY_OPEN);
671 if (IS_ERR(file))
672 goto out;
674 err = -EACCES;
675 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
676 goto exit;
678 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
679 goto exit;
681 fsnotify_open(file->f_path.dentry);
683 err = deny_write_access(file);
684 if (err)
685 goto exit;
687 out:
688 return file;
690 exit:
691 fput(file);
692 return ERR_PTR(err);
694 EXPORT_SYMBOL(open_exec);
696 int kernel_read(struct file *file, loff_t offset,
697 char *addr, unsigned long count)
699 mm_segment_t old_fs;
700 loff_t pos = offset;
701 int result;
703 old_fs = get_fs();
704 set_fs(get_ds());
705 /* The cast to a user pointer is valid due to the set_fs() */
706 result = vfs_read(file, (void __user *)addr, count, &pos);
707 set_fs(old_fs);
708 return result;
711 EXPORT_SYMBOL(kernel_read);
713 static int exec_mmap(struct mm_struct *mm)
715 struct task_struct *tsk;
716 struct mm_struct * old_mm, *active_mm;
718 /* Notify parent that we're no longer interested in the old VM */
719 tsk = current;
720 old_mm = current->mm;
721 sync_mm_rss(tsk, old_mm);
722 mm_release(tsk, old_mm);
724 if (old_mm) {
726 * Make sure that if there is a core dump in progress
727 * for the old mm, we get out and die instead of going
728 * through with the exec. We must hold mmap_sem around
729 * checking core_state and changing tsk->mm.
731 down_read(&old_mm->mmap_sem);
732 if (unlikely(old_mm->core_state)) {
733 up_read(&old_mm->mmap_sem);
734 return -EINTR;
737 task_lock(tsk);
738 active_mm = tsk->active_mm;
739 tsk->mm = mm;
740 tsk->active_mm = mm;
741 activate_mm(active_mm, mm);
742 task_unlock(tsk);
743 arch_pick_mmap_layout(mm);
744 if (old_mm) {
745 up_read(&old_mm->mmap_sem);
746 BUG_ON(active_mm != old_mm);
747 mm_update_next_owner(old_mm);
748 mmput(old_mm);
749 return 0;
751 mmdrop(active_mm);
752 return 0;
756 * This function makes sure the current process has its own signal table,
757 * so that flush_signal_handlers can later reset the handlers without
758 * disturbing other processes. (Other processes might share the signal
759 * table via the CLONE_SIGHAND option to clone().)
761 static int de_thread(struct task_struct *tsk)
763 struct signal_struct *sig = tsk->signal;
764 struct sighand_struct *oldsighand = tsk->sighand;
765 spinlock_t *lock = &oldsighand->siglock;
766 int count;
768 if (thread_group_empty(tsk))
769 goto no_thread_group;
772 * Kill all other threads in the thread group.
774 spin_lock_irq(lock);
775 if (signal_group_exit(sig)) {
777 * Another group action in progress, just
778 * return so that the signal is processed.
780 spin_unlock_irq(lock);
781 return -EAGAIN;
783 sig->group_exit_task = tsk;
784 zap_other_threads(tsk);
786 /* Account for the thread group leader hanging around: */
787 count = thread_group_leader(tsk) ? 1 : 2;
788 sig->notify_count = count;
789 while (atomic_read(&sig->count) > count) {
790 __set_current_state(TASK_UNINTERRUPTIBLE);
791 spin_unlock_irq(lock);
792 schedule();
793 spin_lock_irq(lock);
795 spin_unlock_irq(lock);
798 * At this point all other threads have exited, all we have to
799 * do is to wait for the thread group leader to become inactive,
800 * and to assume its PID:
802 if (!thread_group_leader(tsk)) {
803 struct task_struct *leader = tsk->group_leader;
805 sig->notify_count = -1; /* for exit_notify() */
806 for (;;) {
807 write_lock_irq(&tasklist_lock);
808 if (likely(leader->exit_state))
809 break;
810 __set_current_state(TASK_UNINTERRUPTIBLE);
811 write_unlock_irq(&tasklist_lock);
812 schedule();
816 * The only record we have of the real-time age of a
817 * process, regardless of execs it's done, is start_time.
818 * All the past CPU time is accumulated in signal_struct
819 * from sister threads now dead. But in this non-leader
820 * exec, nothing survives from the original leader thread,
821 * whose birth marks the true age of this process now.
822 * When we take on its identity by switching to its PID, we
823 * also take its birthdate (always earlier than our own).
825 tsk->start_time = leader->start_time;
827 BUG_ON(!same_thread_group(leader, tsk));
828 BUG_ON(has_group_leader_pid(tsk));
830 * An exec() starts a new thread group with the
831 * TGID of the previous thread group. Rehash the
832 * two threads with a switched PID, and release
833 * the former thread group leader:
836 /* Become a process group leader with the old leader's pid.
837 * The old leader becomes a thread of the this thread group.
838 * Note: The old leader also uses this pid until release_task
839 * is called. Odd but simple and correct.
841 detach_pid(tsk, PIDTYPE_PID);
842 tsk->pid = leader->pid;
843 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
844 transfer_pid(leader, tsk, PIDTYPE_PGID);
845 transfer_pid(leader, tsk, PIDTYPE_SID);
847 list_replace_rcu(&leader->tasks, &tsk->tasks);
848 list_replace_init(&leader->sibling, &tsk->sibling);
850 tsk->group_leader = tsk;
851 leader->group_leader = tsk;
853 tsk->exit_signal = SIGCHLD;
855 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
856 leader->exit_state = EXIT_DEAD;
857 write_unlock_irq(&tasklist_lock);
859 release_task(leader);
862 sig->group_exit_task = NULL;
863 sig->notify_count = 0;
865 no_thread_group:
866 if (current->mm)
867 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
869 exit_itimers(sig);
870 flush_itimer_signals();
872 if (atomic_read(&oldsighand->count) != 1) {
873 struct sighand_struct *newsighand;
875 * This ->sighand is shared with the CLONE_SIGHAND
876 * but not CLONE_THREAD task, switch to the new one.
878 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
879 if (!newsighand)
880 return -ENOMEM;
882 atomic_set(&newsighand->count, 1);
883 memcpy(newsighand->action, oldsighand->action,
884 sizeof(newsighand->action));
886 write_lock_irq(&tasklist_lock);
887 spin_lock(&oldsighand->siglock);
888 rcu_assign_pointer(tsk->sighand, newsighand);
889 spin_unlock(&oldsighand->siglock);
890 write_unlock_irq(&tasklist_lock);
892 __cleanup_sighand(oldsighand);
895 BUG_ON(!thread_group_leader(tsk));
896 return 0;
900 * These functions flushes out all traces of the currently running executable
901 * so that a new one can be started
903 static void flush_old_files(struct files_struct * files)
905 long j = -1;
906 struct fdtable *fdt;
908 spin_lock(&files->file_lock);
909 for (;;) {
910 unsigned long set, i;
912 j++;
913 i = j * __NFDBITS;
914 fdt = files_fdtable(files);
915 if (i >= fdt->max_fds)
916 break;
917 set = fdt->close_on_exec->fds_bits[j];
918 if (!set)
919 continue;
920 fdt->close_on_exec->fds_bits[j] = 0;
921 spin_unlock(&files->file_lock);
922 for ( ; set ; i++,set >>= 1) {
923 if (set & 1) {
924 sys_close(i);
927 spin_lock(&files->file_lock);
930 spin_unlock(&files->file_lock);
933 char *get_task_comm(char *buf, struct task_struct *tsk)
935 /* buf must be at least sizeof(tsk->comm) in size */
936 task_lock(tsk);
937 strncpy(buf, tsk->comm, sizeof(tsk->comm));
938 task_unlock(tsk);
939 return buf;
942 void set_task_comm(struct task_struct *tsk, char *buf)
944 task_lock(tsk);
947 * Threads may access current->comm without holding
948 * the task lock, so write the string carefully.
949 * Readers without a lock may see incomplete new
950 * names but are safe from non-terminating string reads.
952 memset(tsk->comm, 0, TASK_COMM_LEN);
953 wmb();
954 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
955 task_unlock(tsk);
956 perf_event_comm(tsk);
959 int flush_old_exec(struct linux_binprm * bprm)
961 int retval;
964 * Make sure we have a private signal table and that
965 * we are unassociated from the previous thread group.
967 retval = de_thread(current);
968 if (retval)
969 goto out;
971 set_mm_exe_file(bprm->mm, bprm->file);
974 * Release all of the old mmap stuff
976 retval = exec_mmap(bprm->mm);
977 if (retval)
978 goto out;
980 bprm->mm = NULL; /* We're using it now */
982 current->flags &= ~PF_RANDOMIZE;
983 flush_thread();
984 current->personality &= ~bprm->per_clear;
986 return 0;
988 out:
989 return retval;
991 EXPORT_SYMBOL(flush_old_exec);
993 void setup_new_exec(struct linux_binprm * bprm)
995 int i, ch;
996 char * name;
997 char tcomm[sizeof(current->comm)];
999 arch_pick_mmap_layout(current->mm);
1001 /* This is the point of no return */
1002 current->sas_ss_sp = current->sas_ss_size = 0;
1004 if (current_euid() == current_uid() && current_egid() == current_gid())
1005 set_dumpable(current->mm, 1);
1006 else
1007 set_dumpable(current->mm, suid_dumpable);
1009 name = bprm->filename;
1011 /* Copies the binary name from after last slash */
1012 for (i=0; (ch = *(name++)) != '\0';) {
1013 if (ch == '/')
1014 i = 0; /* overwrite what we wrote */
1015 else
1016 if (i < (sizeof(tcomm) - 1))
1017 tcomm[i++] = ch;
1019 tcomm[i] = '\0';
1020 set_task_comm(current, tcomm);
1022 /* Set the new mm task size. We have to do that late because it may
1023 * depend on TIF_32BIT which is only updated in flush_thread() on
1024 * some architectures like powerpc
1026 current->mm->task_size = TASK_SIZE;
1028 /* install the new credentials */
1029 if (bprm->cred->uid != current_euid() ||
1030 bprm->cred->gid != current_egid()) {
1031 current->pdeath_signal = 0;
1032 } else if (file_permission(bprm->file, MAY_READ) ||
1033 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1034 set_dumpable(current->mm, suid_dumpable);
1038 * Flush performance counters when crossing a
1039 * security domain:
1041 if (!get_dumpable(current->mm))
1042 perf_event_exit_task(current);
1044 /* An exec changes our domain. We are no longer part of the thread
1045 group */
1047 current->self_exec_id++;
1049 flush_signal_handlers(current, 0);
1050 flush_old_files(current->files);
1052 EXPORT_SYMBOL(setup_new_exec);
1055 * Prepare credentials and lock ->cred_guard_mutex.
1056 * install_exec_creds() commits the new creds and drops the lock.
1057 * Or, if exec fails before, free_bprm() should release ->cred and
1058 * and unlock.
1060 int prepare_bprm_creds(struct linux_binprm *bprm)
1062 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1063 return -ERESTARTNOINTR;
1065 bprm->cred = prepare_exec_creds();
1066 if (likely(bprm->cred))
1067 return 0;
1069 mutex_unlock(&current->cred_guard_mutex);
1070 return -ENOMEM;
1073 void free_bprm(struct linux_binprm *bprm)
1075 free_arg_pages(bprm);
1076 if (bprm->cred) {
1077 mutex_unlock(&current->cred_guard_mutex);
1078 abort_creds(bprm->cred);
1080 kfree(bprm);
1084 * install the new credentials for this executable
1086 void install_exec_creds(struct linux_binprm *bprm)
1088 security_bprm_committing_creds(bprm);
1090 commit_creds(bprm->cred);
1091 bprm->cred = NULL;
1093 * cred_guard_mutex must be held at least to this point to prevent
1094 * ptrace_attach() from altering our determination of the task's
1095 * credentials; any time after this it may be unlocked.
1097 security_bprm_committed_creds(bprm);
1098 mutex_unlock(&current->cred_guard_mutex);
1100 EXPORT_SYMBOL(install_exec_creds);
1103 * determine how safe it is to execute the proposed program
1104 * - the caller must hold current->cred_guard_mutex to protect against
1105 * PTRACE_ATTACH
1107 int check_unsafe_exec(struct linux_binprm *bprm)
1109 struct task_struct *p = current, *t;
1110 unsigned n_fs;
1111 int res = 0;
1113 bprm->unsafe = tracehook_unsafe_exec(p);
1115 n_fs = 1;
1116 write_lock(&p->fs->lock);
1117 rcu_read_lock();
1118 for (t = next_thread(p); t != p; t = next_thread(t)) {
1119 if (t->fs == p->fs)
1120 n_fs++;
1122 rcu_read_unlock();
1124 if (p->fs->users > n_fs) {
1125 bprm->unsafe |= LSM_UNSAFE_SHARE;
1126 } else {
1127 res = -EAGAIN;
1128 if (!p->fs->in_exec) {
1129 p->fs->in_exec = 1;
1130 res = 1;
1133 write_unlock(&p->fs->lock);
1135 return res;
1139 * Fill the binprm structure from the inode.
1140 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1142 * This may be called multiple times for binary chains (scripts for example).
1144 int prepare_binprm(struct linux_binprm *bprm)
1146 umode_t mode;
1147 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1148 int retval;
1150 mode = inode->i_mode;
1151 if (bprm->file->f_op == NULL)
1152 return -EACCES;
1154 /* clear any previous set[ug]id data from a previous binary */
1155 bprm->cred->euid = current_euid();
1156 bprm->cred->egid = current_egid();
1158 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1159 /* Set-uid? */
1160 if (mode & S_ISUID) {
1161 bprm->per_clear |= PER_CLEAR_ON_SETID;
1162 bprm->cred->euid = inode->i_uid;
1165 /* Set-gid? */
1167 * If setgid is set but no group execute bit then this
1168 * is a candidate for mandatory locking, not a setgid
1169 * executable.
1171 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1172 bprm->per_clear |= PER_CLEAR_ON_SETID;
1173 bprm->cred->egid = inode->i_gid;
1177 /* fill in binprm security blob */
1178 retval = security_bprm_set_creds(bprm);
1179 if (retval)
1180 return retval;
1181 bprm->cred_prepared = 1;
1183 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1184 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1187 EXPORT_SYMBOL(prepare_binprm);
1190 * Arguments are '\0' separated strings found at the location bprm->p
1191 * points to; chop off the first by relocating brpm->p to right after
1192 * the first '\0' encountered.
1194 int remove_arg_zero(struct linux_binprm *bprm)
1196 int ret = 0;
1197 unsigned long offset;
1198 char *kaddr;
1199 struct page *page;
1201 if (!bprm->argc)
1202 return 0;
1204 do {
1205 offset = bprm->p & ~PAGE_MASK;
1206 page = get_arg_page(bprm, bprm->p, 0);
1207 if (!page) {
1208 ret = -EFAULT;
1209 goto out;
1211 kaddr = kmap_atomic(page, KM_USER0);
1213 for (; offset < PAGE_SIZE && kaddr[offset];
1214 offset++, bprm->p++)
1217 kunmap_atomic(kaddr, KM_USER0);
1218 put_arg_page(page);
1220 if (offset == PAGE_SIZE)
1221 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1222 } while (offset == PAGE_SIZE);
1224 bprm->p++;
1225 bprm->argc--;
1226 ret = 0;
1228 out:
1229 return ret;
1231 EXPORT_SYMBOL(remove_arg_zero);
1234 * cycle the list of binary formats handler, until one recognizes the image
1236 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1238 unsigned int depth = bprm->recursion_depth;
1239 int try,retval;
1240 struct linux_binfmt *fmt;
1242 retval = security_bprm_check(bprm);
1243 if (retval)
1244 return retval;
1246 /* kernel module loader fixup */
1247 /* so we don't try to load run modprobe in kernel space. */
1248 set_fs(USER_DS);
1250 retval = audit_bprm(bprm);
1251 if (retval)
1252 return retval;
1254 retval = -ENOENT;
1255 for (try=0; try<2; try++) {
1256 read_lock(&binfmt_lock);
1257 list_for_each_entry(fmt, &formats, lh) {
1258 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1259 if (!fn)
1260 continue;
1261 if (!try_module_get(fmt->module))
1262 continue;
1263 read_unlock(&binfmt_lock);
1264 retval = fn(bprm, regs);
1266 * Restore the depth counter to its starting value
1267 * in this call, so we don't have to rely on every
1268 * load_binary function to restore it on return.
1270 bprm->recursion_depth = depth;
1271 if (retval >= 0) {
1272 if (depth == 0)
1273 tracehook_report_exec(fmt, bprm, regs);
1274 put_binfmt(fmt);
1275 allow_write_access(bprm->file);
1276 if (bprm->file)
1277 fput(bprm->file);
1278 bprm->file = NULL;
1279 current->did_exec = 1;
1280 proc_exec_connector(current);
1281 return retval;
1283 read_lock(&binfmt_lock);
1284 put_binfmt(fmt);
1285 if (retval != -ENOEXEC || bprm->mm == NULL)
1286 break;
1287 if (!bprm->file) {
1288 read_unlock(&binfmt_lock);
1289 return retval;
1292 read_unlock(&binfmt_lock);
1293 if (retval != -ENOEXEC || bprm->mm == NULL) {
1294 break;
1295 #ifdef CONFIG_MODULES
1296 } else {
1297 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1298 if (printable(bprm->buf[0]) &&
1299 printable(bprm->buf[1]) &&
1300 printable(bprm->buf[2]) &&
1301 printable(bprm->buf[3]))
1302 break; /* -ENOEXEC */
1303 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1304 #endif
1307 return retval;
1310 EXPORT_SYMBOL(search_binary_handler);
1313 * sys_execve() executes a new program.
1315 int do_execve(char * filename,
1316 char __user *__user *argv,
1317 char __user *__user *envp,
1318 struct pt_regs * regs)
1320 struct linux_binprm *bprm;
1321 struct file *file;
1322 struct files_struct *displaced;
1323 bool clear_in_exec;
1324 int retval;
1326 retval = unshare_files(&displaced);
1327 if (retval)
1328 goto out_ret;
1330 retval = -ENOMEM;
1331 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1332 if (!bprm)
1333 goto out_files;
1335 retval = prepare_bprm_creds(bprm);
1336 if (retval)
1337 goto out_free;
1339 retval = check_unsafe_exec(bprm);
1340 if (retval < 0)
1341 goto out_free;
1342 clear_in_exec = retval;
1343 current->in_execve = 1;
1345 file = open_exec(filename);
1346 retval = PTR_ERR(file);
1347 if (IS_ERR(file))
1348 goto out_unmark;
1350 sched_exec();
1352 bprm->file = file;
1353 bprm->filename = filename;
1354 bprm->interp = filename;
1356 retval = bprm_mm_init(bprm);
1357 if (retval)
1358 goto out_file;
1360 bprm->argc = count(argv, MAX_ARG_STRINGS);
1361 if ((retval = bprm->argc) < 0)
1362 goto out;
1364 bprm->envc = count(envp, MAX_ARG_STRINGS);
1365 if ((retval = bprm->envc) < 0)
1366 goto out;
1368 retval = prepare_binprm(bprm);
1369 if (retval < 0)
1370 goto out;
1372 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1373 if (retval < 0)
1374 goto out;
1376 bprm->exec = bprm->p;
1377 retval = copy_strings(bprm->envc, envp, bprm);
1378 if (retval < 0)
1379 goto out;
1381 retval = copy_strings(bprm->argc, argv, bprm);
1382 if (retval < 0)
1383 goto out;
1385 current->flags &= ~PF_KTHREAD;
1386 retval = search_binary_handler(bprm,regs);
1387 if (retval < 0)
1388 goto out;
1390 /* execve succeeded */
1391 current->fs->in_exec = 0;
1392 current->in_execve = 0;
1393 acct_update_integrals(current);
1394 free_bprm(bprm);
1395 if (displaced)
1396 put_files_struct(displaced);
1397 return retval;
1399 out:
1400 if (bprm->mm)
1401 mmput (bprm->mm);
1403 out_file:
1404 if (bprm->file) {
1405 allow_write_access(bprm->file);
1406 fput(bprm->file);
1409 out_unmark:
1410 if (clear_in_exec)
1411 current->fs->in_exec = 0;
1412 current->in_execve = 0;
1414 out_free:
1415 free_bprm(bprm);
1417 out_files:
1418 if (displaced)
1419 reset_files_struct(displaced);
1420 out_ret:
1421 return retval;
1424 void set_binfmt(struct linux_binfmt *new)
1426 struct mm_struct *mm = current->mm;
1428 if (mm->binfmt)
1429 module_put(mm->binfmt->module);
1431 mm->binfmt = new;
1432 if (new)
1433 __module_get(new->module);
1436 EXPORT_SYMBOL(set_binfmt);
1438 /* format_corename will inspect the pattern parameter, and output a
1439 * name into corename, which must have space for at least
1440 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1442 static int format_corename(char *corename, long signr)
1444 const struct cred *cred = current_cred();
1445 const char *pat_ptr = core_pattern;
1446 int ispipe = (*pat_ptr == '|');
1447 char *out_ptr = corename;
1448 char *const out_end = corename + CORENAME_MAX_SIZE;
1449 int rc;
1450 int pid_in_pattern = 0;
1452 /* Repeat as long as we have more pattern to process and more output
1453 space */
1454 while (*pat_ptr) {
1455 if (*pat_ptr != '%') {
1456 if (out_ptr == out_end)
1457 goto out;
1458 *out_ptr++ = *pat_ptr++;
1459 } else {
1460 switch (*++pat_ptr) {
1461 case 0:
1462 goto out;
1463 /* Double percent, output one percent */
1464 case '%':
1465 if (out_ptr == out_end)
1466 goto out;
1467 *out_ptr++ = '%';
1468 break;
1469 /* pid */
1470 case 'p':
1471 pid_in_pattern = 1;
1472 rc = snprintf(out_ptr, out_end - out_ptr,
1473 "%d", task_tgid_vnr(current));
1474 if (rc > out_end - out_ptr)
1475 goto out;
1476 out_ptr += rc;
1477 break;
1478 /* uid */
1479 case 'u':
1480 rc = snprintf(out_ptr, out_end - out_ptr,
1481 "%d", cred->uid);
1482 if (rc > out_end - out_ptr)
1483 goto out;
1484 out_ptr += rc;
1485 break;
1486 /* gid */
1487 case 'g':
1488 rc = snprintf(out_ptr, out_end - out_ptr,
1489 "%d", cred->gid);
1490 if (rc > out_end - out_ptr)
1491 goto out;
1492 out_ptr += rc;
1493 break;
1494 /* signal that caused the coredump */
1495 case 's':
1496 rc = snprintf(out_ptr, out_end - out_ptr,
1497 "%ld", signr);
1498 if (rc > out_end - out_ptr)
1499 goto out;
1500 out_ptr += rc;
1501 break;
1502 /* UNIX time of coredump */
1503 case 't': {
1504 struct timeval tv;
1505 do_gettimeofday(&tv);
1506 rc = snprintf(out_ptr, out_end - out_ptr,
1507 "%lu", tv.tv_sec);
1508 if (rc > out_end - out_ptr)
1509 goto out;
1510 out_ptr += rc;
1511 break;
1513 /* hostname */
1514 case 'h':
1515 down_read(&uts_sem);
1516 rc = snprintf(out_ptr, out_end - out_ptr,
1517 "%s", utsname()->nodename);
1518 up_read(&uts_sem);
1519 if (rc > out_end - out_ptr)
1520 goto out;
1521 out_ptr += rc;
1522 break;
1523 /* executable */
1524 case 'e':
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 "%s", current->comm);
1527 if (rc > out_end - out_ptr)
1528 goto out;
1529 out_ptr += rc;
1530 break;
1531 /* core limit size */
1532 case 'c':
1533 rc = snprintf(out_ptr, out_end - out_ptr,
1534 "%lu", rlimit(RLIMIT_CORE));
1535 if (rc > out_end - out_ptr)
1536 goto out;
1537 out_ptr += rc;
1538 break;
1539 default:
1540 break;
1542 ++pat_ptr;
1545 /* Backward compatibility with core_uses_pid:
1547 * If core_pattern does not include a %p (as is the default)
1548 * and core_uses_pid is set, then .%pid will be appended to
1549 * the filename. Do not do this for piped commands. */
1550 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1551 rc = snprintf(out_ptr, out_end - out_ptr,
1552 ".%d", task_tgid_vnr(current));
1553 if (rc > out_end - out_ptr)
1554 goto out;
1555 out_ptr += rc;
1557 out:
1558 *out_ptr = 0;
1559 return ispipe;
1562 static int zap_process(struct task_struct *start, int exit_code)
1564 struct task_struct *t;
1565 int nr = 0;
1567 start->signal->flags = SIGNAL_GROUP_EXIT;
1568 start->signal->group_exit_code = exit_code;
1569 start->signal->group_stop_count = 0;
1571 t = start;
1572 do {
1573 if (t != current && t->mm) {
1574 sigaddset(&t->pending.signal, SIGKILL);
1575 signal_wake_up(t, 1);
1576 nr++;
1578 } while_each_thread(start, t);
1580 return nr;
1583 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1584 struct core_state *core_state, int exit_code)
1586 struct task_struct *g, *p;
1587 unsigned long flags;
1588 int nr = -EAGAIN;
1590 spin_lock_irq(&tsk->sighand->siglock);
1591 if (!signal_group_exit(tsk->signal)) {
1592 mm->core_state = core_state;
1593 nr = zap_process(tsk, exit_code);
1595 spin_unlock_irq(&tsk->sighand->siglock);
1596 if (unlikely(nr < 0))
1597 return nr;
1599 if (atomic_read(&mm->mm_users) == nr + 1)
1600 goto done;
1602 * We should find and kill all tasks which use this mm, and we should
1603 * count them correctly into ->nr_threads. We don't take tasklist
1604 * lock, but this is safe wrt:
1606 * fork:
1607 * None of sub-threads can fork after zap_process(leader). All
1608 * processes which were created before this point should be
1609 * visible to zap_threads() because copy_process() adds the new
1610 * process to the tail of init_task.tasks list, and lock/unlock
1611 * of ->siglock provides a memory barrier.
1613 * do_exit:
1614 * The caller holds mm->mmap_sem. This means that the task which
1615 * uses this mm can't pass exit_mm(), so it can't exit or clear
1616 * its ->mm.
1618 * de_thread:
1619 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1620 * we must see either old or new leader, this does not matter.
1621 * However, it can change p->sighand, so lock_task_sighand(p)
1622 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1623 * it can't fail.
1625 * Note also that "g" can be the old leader with ->mm == NULL
1626 * and already unhashed and thus removed from ->thread_group.
1627 * This is OK, __unhash_process()->list_del_rcu() does not
1628 * clear the ->next pointer, we will find the new leader via
1629 * next_thread().
1631 rcu_read_lock();
1632 for_each_process(g) {
1633 if (g == tsk->group_leader)
1634 continue;
1635 if (g->flags & PF_KTHREAD)
1636 continue;
1637 p = g;
1638 do {
1639 if (p->mm) {
1640 if (unlikely(p->mm == mm)) {
1641 lock_task_sighand(p, &flags);
1642 nr += zap_process(p, exit_code);
1643 unlock_task_sighand(p, &flags);
1645 break;
1647 } while_each_thread(g, p);
1649 rcu_read_unlock();
1650 done:
1651 atomic_set(&core_state->nr_threads, nr);
1652 return nr;
1655 static int coredump_wait(int exit_code, struct core_state *core_state)
1657 struct task_struct *tsk = current;
1658 struct mm_struct *mm = tsk->mm;
1659 struct completion *vfork_done;
1660 int core_waiters;
1662 init_completion(&core_state->startup);
1663 core_state->dumper.task = tsk;
1664 core_state->dumper.next = NULL;
1665 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1666 up_write(&mm->mmap_sem);
1668 if (unlikely(core_waiters < 0))
1669 goto fail;
1672 * Make sure nobody is waiting for us to release the VM,
1673 * otherwise we can deadlock when we wait on each other
1675 vfork_done = tsk->vfork_done;
1676 if (vfork_done) {
1677 tsk->vfork_done = NULL;
1678 complete(vfork_done);
1681 if (core_waiters)
1682 wait_for_completion(&core_state->startup);
1683 fail:
1684 return core_waiters;
1687 static void coredump_finish(struct mm_struct *mm)
1689 struct core_thread *curr, *next;
1690 struct task_struct *task;
1692 next = mm->core_state->dumper.next;
1693 while ((curr = next) != NULL) {
1694 next = curr->next;
1695 task = curr->task;
1697 * see exit_mm(), curr->task must not see
1698 * ->task == NULL before we read ->next.
1700 smp_mb();
1701 curr->task = NULL;
1702 wake_up_process(task);
1705 mm->core_state = NULL;
1709 * set_dumpable converts traditional three-value dumpable to two flags and
1710 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1711 * these bits are not changed atomically. So get_dumpable can observe the
1712 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1713 * return either old dumpable or new one by paying attention to the order of
1714 * modifying the bits.
1716 * dumpable | mm->flags (binary)
1717 * old new | initial interim final
1718 * ---------+-----------------------
1719 * 0 1 | 00 01 01
1720 * 0 2 | 00 10(*) 11
1721 * 1 0 | 01 00 00
1722 * 1 2 | 01 11 11
1723 * 2 0 | 11 10(*) 00
1724 * 2 1 | 11 11 01
1726 * (*) get_dumpable regards interim value of 10 as 11.
1728 void set_dumpable(struct mm_struct *mm, int value)
1730 switch (value) {
1731 case 0:
1732 clear_bit(MMF_DUMPABLE, &mm->flags);
1733 smp_wmb();
1734 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1735 break;
1736 case 1:
1737 set_bit(MMF_DUMPABLE, &mm->flags);
1738 smp_wmb();
1739 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1740 break;
1741 case 2:
1742 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1743 smp_wmb();
1744 set_bit(MMF_DUMPABLE, &mm->flags);
1745 break;
1749 static int __get_dumpable(unsigned long mm_flags)
1751 int ret;
1753 ret = mm_flags & MMF_DUMPABLE_MASK;
1754 return (ret >= 2) ? 2 : ret;
1757 int get_dumpable(struct mm_struct *mm)
1759 return __get_dumpable(mm->flags);
1762 static void wait_for_dump_helpers(struct file *file)
1764 struct pipe_inode_info *pipe;
1766 pipe = file->f_path.dentry->d_inode->i_pipe;
1768 pipe_lock(pipe);
1769 pipe->readers++;
1770 pipe->writers--;
1772 while ((pipe->readers > 1) && (!signal_pending(current))) {
1773 wake_up_interruptible_sync(&pipe->wait);
1774 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1775 pipe_wait(pipe);
1778 pipe->readers--;
1779 pipe->writers++;
1780 pipe_unlock(pipe);
1785 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1787 struct core_state core_state;
1788 char corename[CORENAME_MAX_SIZE + 1];
1789 struct mm_struct *mm = current->mm;
1790 struct linux_binfmt * binfmt;
1791 struct inode * inode;
1792 const struct cred *old_cred;
1793 struct cred *cred;
1794 int retval = 0;
1795 int flag = 0;
1796 int ispipe = 0;
1797 char **helper_argv = NULL;
1798 int helper_argc = 0;
1799 int dump_count = 0;
1800 static atomic_t core_dump_count = ATOMIC_INIT(0);
1801 struct coredump_params cprm = {
1802 .signr = signr,
1803 .regs = regs,
1804 .limit = rlimit(RLIMIT_CORE),
1806 * We must use the same mm->flags while dumping core to avoid
1807 * inconsistency of bit flags, since this flag is not protected
1808 * by any locks.
1810 .mm_flags = mm->flags,
1813 audit_core_dumps(signr);
1815 binfmt = mm->binfmt;
1816 if (!binfmt || !binfmt->core_dump)
1817 goto fail;
1819 cred = prepare_creds();
1820 if (!cred) {
1821 retval = -ENOMEM;
1822 goto fail;
1825 down_write(&mm->mmap_sem);
1827 * If another thread got here first, or we are not dumpable, bail out.
1829 if (mm->core_state || !__get_dumpable(cprm.mm_flags)) {
1830 up_write(&mm->mmap_sem);
1831 put_cred(cred);
1832 goto fail;
1836 * We cannot trust fsuid as being the "true" uid of the
1837 * process nor do we know its entire history. We only know it
1838 * was tainted so we dump it as root in mode 2.
1840 if (__get_dumpable(cprm.mm_flags) == 2) {
1841 /* Setuid core dump mode */
1842 flag = O_EXCL; /* Stop rewrite attacks */
1843 cred->fsuid = 0; /* Dump root private */
1846 retval = coredump_wait(exit_code, &core_state);
1847 if (retval < 0) {
1848 put_cred(cred);
1849 goto fail;
1852 old_cred = override_creds(cred);
1855 * Clear any false indication of pending signals that might
1856 * be seen by the filesystem code called to write the core file.
1858 clear_thread_flag(TIF_SIGPENDING);
1861 * lock_kernel() because format_corename() is controlled by sysctl, which
1862 * uses lock_kernel()
1864 lock_kernel();
1865 ispipe = format_corename(corename, signr);
1866 unlock_kernel();
1868 if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1869 goto fail_unlock;
1871 if (ispipe) {
1872 if (cprm.limit == 0) {
1874 * Normally core limits are irrelevant to pipes, since
1875 * we're not writing to the file system, but we use
1876 * cprm.limit of 0 here as a speacial value. Any
1877 * non-zero limit gets set to RLIM_INFINITY below, but
1878 * a limit of 0 skips the dump. This is a consistent
1879 * way to catch recursive crashes. We can still crash
1880 * if the core_pattern binary sets RLIM_CORE = !0
1881 * but it runs as root, and can do lots of stupid things
1882 * Note that we use task_tgid_vnr here to grab the pid
1883 * of the process group leader. That way we get the
1884 * right pid if a thread in a multi-threaded
1885 * core_pattern process dies.
1887 printk(KERN_WARNING
1888 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1889 task_tgid_vnr(current), current->comm);
1890 printk(KERN_WARNING "Aborting core\n");
1891 goto fail_unlock;
1894 dump_count = atomic_inc_return(&core_dump_count);
1895 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1896 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1897 task_tgid_vnr(current), current->comm);
1898 printk(KERN_WARNING "Skipping core dump\n");
1899 goto fail_dropcount;
1902 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1903 if (!helper_argv) {
1904 printk(KERN_WARNING "%s failed to allocate memory\n",
1905 __func__);
1906 goto fail_dropcount;
1909 cprm.limit = RLIM_INFINITY;
1911 /* SIGPIPE can happen, but it's just never processed */
1912 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1913 &cprm.file)) {
1914 printk(KERN_INFO "Core dump to %s pipe failed\n",
1915 corename);
1916 goto fail_dropcount;
1918 } else
1919 cprm.file = filp_open(corename,
1920 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1921 0600);
1922 if (IS_ERR(cprm.file))
1923 goto fail_dropcount;
1924 inode = cprm.file->f_path.dentry->d_inode;
1925 if (inode->i_nlink > 1)
1926 goto close_fail; /* multiple links - don't dump */
1927 if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1928 goto close_fail;
1930 /* AK: actually i see no reason to not allow this for named pipes etc.,
1931 but keep the previous behaviour for now. */
1932 if (!ispipe && !S_ISREG(inode->i_mode))
1933 goto close_fail;
1935 * Dont allow local users get cute and trick others to coredump
1936 * into their pre-created files:
1937 * Note, this is not relevant for pipes
1939 if (!ispipe && (inode->i_uid != current_fsuid()))
1940 goto close_fail;
1941 if (!cprm.file->f_op)
1942 goto close_fail;
1943 if (!cprm.file->f_op->write)
1944 goto close_fail;
1945 if (!ispipe &&
1946 do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1947 goto close_fail;
1949 retval = binfmt->core_dump(&cprm);
1951 if (retval)
1952 current->signal->group_exit_code |= 0x80;
1953 close_fail:
1954 if (ispipe && core_pipe_limit)
1955 wait_for_dump_helpers(cprm.file);
1956 filp_close(cprm.file, NULL);
1957 fail_dropcount:
1958 if (dump_count)
1959 atomic_dec(&core_dump_count);
1960 fail_unlock:
1961 if (helper_argv)
1962 argv_free(helper_argv);
1964 revert_creds(old_cred);
1965 put_cred(cred);
1966 coredump_finish(mm);
1967 fail:
1968 return;