1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
50 * FIXME: remove all knowledge of the buffer layer from the core VM
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
60 * Shared mappings now work. 15.8.1995 Bruno.
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
71 * ->i_mmap_rwsem (truncate_pagecache)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
85 * ->lock_page (access_process_vm)
87 * ->i_mutex (generic_perform_write)
88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
91 * sb_lock (fs/fs-writeback.c)
92 * ->i_pages lock (__sync_single_inode)
95 * ->anon_vma.lock (vma_adjust)
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->i_pages lock (try_to_unmap_one)
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
116 * ->tasklist_lock (memory_failure, collect_procs_ao)
119 static void page_cache_delete(struct address_space
*mapping
,
120 struct page
*page
, void *shadow
)
122 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
125 mapping_set_update(&xas
, mapping
);
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page
)) {
129 xas_set_order(&xas
, page
->index
, compound_order(page
));
130 nr
= compound_nr(page
);
133 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
134 VM_BUG_ON_PAGE(PageTail(page
), page
);
135 VM_BUG_ON_PAGE(nr
!= 1 && shadow
, page
);
137 xas_store(&xas
, shadow
);
138 xas_init_marks(&xas
);
140 page
->mapping
= NULL
;
141 /* Leave page->index set: truncation lookup relies upon it */
144 mapping
->nrexceptional
+= nr
;
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
153 mapping
->nrpages
-= nr
;
156 static void unaccount_page_cache_page(struct address_space
*mapping
,
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
166 if (PageUptodate(page
) && PageMappedToDisk(page
))
167 cleancache_put_page(page
);
169 cleancache_invalidate_page(mapping
, page
);
171 VM_BUG_ON_PAGE(PageTail(page
), page
);
172 VM_BUG_ON_PAGE(page_mapped(page
), page
);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(page_mapped(page
))) {
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current
->comm
, page_to_pfn(page
));
178 dump_page(page
, "still mapped when deleted");
180 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
182 mapcount
= page_mapcount(page
);
183 if (mapping_exiting(mapping
) &&
184 page_count(page
) >= mapcount
+ 2) {
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
191 page_mapcount_reset(page
);
192 page_ref_sub(page
, mapcount
);
196 /* hugetlb pages do not participate in page cache accounting. */
200 nr
= hpage_nr_pages(page
);
202 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
203 if (PageSwapBacked(page
)) {
204 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, -nr
);
205 if (PageTransHuge(page
))
206 __dec_node_page_state(page
, NR_SHMEM_THPS
);
207 } else if (PageTransHuge(page
)) {
208 __dec_node_page_state(page
, NR_FILE_THPS
);
209 filemap_nr_thps_dec(mapping
);
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
222 if (WARN_ON_ONCE(PageDirty(page
)))
223 account_page_cleaned(page
, mapping
, inode_to_wb(mapping
->host
));
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
229 * is safe. The caller must hold the i_pages lock.
231 void __delete_from_page_cache(struct page
*page
, void *shadow
)
233 struct address_space
*mapping
= page
->mapping
;
235 trace_mm_filemap_delete_from_page_cache(page
);
237 unaccount_page_cache_page(mapping
, page
);
238 page_cache_delete(mapping
, page
, shadow
);
241 static void page_cache_free_page(struct address_space
*mapping
,
244 void (*freepage
)(struct page
*);
246 freepage
= mapping
->a_ops
->freepage
;
250 if (PageTransHuge(page
) && !PageHuge(page
)) {
251 page_ref_sub(page
, HPAGE_PMD_NR
);
252 VM_BUG_ON_PAGE(page_count(page
) <= 0, page
);
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
266 void delete_from_page_cache(struct page
*page
)
268 struct address_space
*mapping
= page_mapping(page
);
271 BUG_ON(!PageLocked(page
));
272 xa_lock_irqsave(&mapping
->i_pages
, flags
);
273 __delete_from_page_cache(page
, NULL
);
274 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
276 page_cache_free_page(mapping
, page
);
278 EXPORT_SYMBOL(delete_from_page_cache
);
281 * page_cache_delete_batch - delete several pages from page cache
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
285 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
288 * It tolerates holes in @pvec (mapping entries at those indices are not
289 * modified). The function expects only THP head pages to be present in the
292 * The function expects the i_pages lock to be held.
294 static void page_cache_delete_batch(struct address_space
*mapping
,
295 struct pagevec
*pvec
)
297 XA_STATE(xas
, &mapping
->i_pages
, pvec
->pages
[0]->index
);
302 mapping_set_update(&xas
, mapping
);
303 xas_for_each(&xas
, page
, ULONG_MAX
) {
304 if (i
>= pagevec_count(pvec
))
307 /* A swap/dax/shadow entry got inserted? Skip it. */
308 if (xa_is_value(page
))
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
317 if (page
!= pvec
->pages
[i
]) {
318 VM_BUG_ON_PAGE(page
->index
> pvec
->pages
[i
]->index
,
323 WARN_ON_ONCE(!PageLocked(page
));
325 if (page
->index
== xas
.xa_index
)
326 page
->mapping
= NULL
;
327 /* Leave page->index set: truncation lookup relies on it */
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
334 if (page
->index
+ compound_nr(page
) - 1 == xas
.xa_index
)
336 xas_store(&xas
, NULL
);
339 mapping
->nrpages
-= total_pages
;
342 void delete_from_page_cache_batch(struct address_space
*mapping
,
343 struct pagevec
*pvec
)
348 if (!pagevec_count(pvec
))
351 xa_lock_irqsave(&mapping
->i_pages
, flags
);
352 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
353 trace_mm_filemap_delete_from_page_cache(pvec
->pages
[i
]);
355 unaccount_page_cache_page(mapping
, pvec
->pages
[i
]);
357 page_cache_delete_batch(mapping
, pvec
);
358 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
360 for (i
= 0; i
< pagevec_count(pvec
); i
++)
361 page_cache_free_page(mapping
, pvec
->pages
[i
]);
364 int filemap_check_errors(struct address_space
*mapping
)
367 /* Check for outstanding write errors */
368 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
369 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
371 if (test_bit(AS_EIO
, &mapping
->flags
) &&
372 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
376 EXPORT_SYMBOL(filemap_check_errors
);
378 static int filemap_check_and_keep_errors(struct address_space
*mapping
)
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO
, &mapping
->flags
))
383 if (test_bit(AS_ENOSPC
, &mapping
->flags
))
389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
392 * @end: offset in bytes where the range ends (inclusive)
393 * @sync_mode: enable synchronous operation
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399 * opposed to a regular memory cleansing writeback. The difference between
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
403 * Return: %0 on success, negative error code otherwise.
405 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
406 loff_t end
, int sync_mode
)
409 struct writeback_control wbc
= {
410 .sync_mode
= sync_mode
,
411 .nr_to_write
= LONG_MAX
,
412 .range_start
= start
,
416 if (!mapping_cap_writeback_dirty(mapping
) ||
417 !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
420 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
421 ret
= do_writepages(mapping
, &wbc
);
422 wbc_detach_inode(&wbc
);
426 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
429 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
432 int filemap_fdatawrite(struct address_space
*mapping
)
434 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
436 EXPORT_SYMBOL(filemap_fdatawrite
);
438 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
441 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
443 EXPORT_SYMBOL(filemap_fdatawrite_range
);
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
452 * Return: %0 on success, negative error code otherwise.
454 int filemap_flush(struct address_space
*mapping
)
456 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
458 EXPORT_SYMBOL(filemap_flush
);
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
469 * Return: %true if at least one page exists in the specified range,
472 bool filemap_range_has_page(struct address_space
*mapping
,
473 loff_t start_byte
, loff_t end_byte
)
476 XA_STATE(xas
, &mapping
->i_pages
, start_byte
>> PAGE_SHIFT
);
477 pgoff_t max
= end_byte
>> PAGE_SHIFT
;
479 if (end_byte
< start_byte
)
484 page
= xas_find(&xas
, max
);
485 if (xas_retry(&xas
, page
))
487 /* Shadow entries don't count */
488 if (xa_is_value(page
))
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
501 EXPORT_SYMBOL(filemap_range_has_page
);
503 static void __filemap_fdatawait_range(struct address_space
*mapping
,
504 loff_t start_byte
, loff_t end_byte
)
506 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
507 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
511 if (end_byte
< start_byte
)
515 while (index
<= end
) {
518 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
,
519 end
, PAGECACHE_TAG_WRITEBACK
);
523 for (i
= 0; i
< nr_pages
; i
++) {
524 struct page
*page
= pvec
.pages
[i
];
526 wait_on_page_writeback(page
);
527 ClearPageError(page
);
529 pagevec_release(&pvec
);
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
548 * Return: error status of the address space.
550 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
553 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
554 return filemap_check_errors(mapping
);
556 EXPORT_SYMBOL(filemap_fdatawait_range
);
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
572 int filemap_fdatawait_range_keep_errors(struct address_space
*mapping
,
573 loff_t start_byte
, loff_t end_byte
)
575 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
576 return filemap_check_and_keep_errors(mapping
);
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors
);
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
596 int file_fdatawait_range(struct file
*file
, loff_t start_byte
, loff_t end_byte
)
598 struct address_space
*mapping
= file
->f_mapping
;
600 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
601 return file_check_and_advance_wb_err(file
);
603 EXPORT_SYMBOL(file_fdatawait_range
);
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
617 * Return: error status of the address space.
619 int filemap_fdatawait_keep_errors(struct address_space
*mapping
)
621 __filemap_fdatawait_range(mapping
, 0, LLONG_MAX
);
622 return filemap_check_and_keep_errors(mapping
);
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors
);
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space
*mapping
)
629 if (dax_mapping(mapping
))
630 return mapping
->nrexceptional
;
632 return mapping
->nrpages
;
635 int filemap_write_and_wait(struct address_space
*mapping
)
639 if (mapping_needs_writeback(mapping
)) {
640 err
= filemap_fdatawrite(mapping
);
642 * Even if the above returned error, the pages may be
643 * written partially (e.g. -ENOSPC), so we wait for it.
644 * But the -EIO is special case, it may indicate the worst
645 * thing (e.g. bug) happened, so we avoid waiting for it.
648 int err2
= filemap_fdatawait(mapping
);
652 /* Clear any previously stored errors */
653 filemap_check_errors(mapping
);
656 err
= filemap_check_errors(mapping
);
660 EXPORT_SYMBOL(filemap_write_and_wait
);
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
668 * Write out and wait upon file offsets lstart->lend, inclusive.
670 * Note that @lend is inclusive (describes the last byte to be written) so
671 * that this function can be used to write to the very end-of-file (end = -1).
673 * Return: error status of the address space.
675 int filemap_write_and_wait_range(struct address_space
*mapping
,
676 loff_t lstart
, loff_t lend
)
680 if (mapping_needs_writeback(mapping
)) {
681 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
683 /* See comment of filemap_write_and_wait() */
685 int err2
= filemap_fdatawait_range(mapping
,
690 /* Clear any previously stored errors */
691 filemap_check_errors(mapping
);
694 err
= filemap_check_errors(mapping
);
698 EXPORT_SYMBOL(filemap_write_and_wait_range
);
700 void __filemap_set_wb_err(struct address_space
*mapping
, int err
)
702 errseq_t eseq
= errseq_set(&mapping
->wb_err
, err
);
704 trace_filemap_set_wb_err(mapping
, eseq
);
706 EXPORT_SYMBOL(__filemap_set_wb_err
);
709 * file_check_and_advance_wb_err - report wb error (if any) that was previously
710 * and advance wb_err to current one
711 * @file: struct file on which the error is being reported
713 * When userland calls fsync (or something like nfsd does the equivalent), we
714 * want to report any writeback errors that occurred since the last fsync (or
715 * since the file was opened if there haven't been any).
717 * Grab the wb_err from the mapping. If it matches what we have in the file,
718 * then just quickly return 0. The file is all caught up.
720 * If it doesn't match, then take the mapping value, set the "seen" flag in
721 * it and try to swap it into place. If it works, or another task beat us
722 * to it with the new value, then update the f_wb_err and return the error
723 * portion. The error at this point must be reported via proper channels
724 * (a'la fsync, or NFS COMMIT operation, etc.).
726 * While we handle mapping->wb_err with atomic operations, the f_wb_err
727 * value is protected by the f_lock since we must ensure that it reflects
728 * the latest value swapped in for this file descriptor.
730 * Return: %0 on success, negative error code otherwise.
732 int file_check_and_advance_wb_err(struct file
*file
)
735 errseq_t old
= READ_ONCE(file
->f_wb_err
);
736 struct address_space
*mapping
= file
->f_mapping
;
738 /* Locklessly handle the common case where nothing has changed */
739 if (errseq_check(&mapping
->wb_err
, old
)) {
740 /* Something changed, must use slow path */
741 spin_lock(&file
->f_lock
);
742 old
= file
->f_wb_err
;
743 err
= errseq_check_and_advance(&mapping
->wb_err
,
745 trace_file_check_and_advance_wb_err(file
, old
);
746 spin_unlock(&file
->f_lock
);
750 * We're mostly using this function as a drop in replacement for
751 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
752 * that the legacy code would have had on these flags.
754 clear_bit(AS_EIO
, &mapping
->flags
);
755 clear_bit(AS_ENOSPC
, &mapping
->flags
);
758 EXPORT_SYMBOL(file_check_and_advance_wb_err
);
761 * file_write_and_wait_range - write out & wait on a file range
762 * @file: file pointing to address_space with pages
763 * @lstart: offset in bytes where the range starts
764 * @lend: offset in bytes where the range ends (inclusive)
766 * Write out and wait upon file offsets lstart->lend, inclusive.
768 * Note that @lend is inclusive (describes the last byte to be written) so
769 * that this function can be used to write to the very end-of-file (end = -1).
771 * After writing out and waiting on the data, we check and advance the
772 * f_wb_err cursor to the latest value, and return any errors detected there.
774 * Return: %0 on success, negative error code otherwise.
776 int file_write_and_wait_range(struct file
*file
, loff_t lstart
, loff_t lend
)
779 struct address_space
*mapping
= file
->f_mapping
;
781 if (mapping_needs_writeback(mapping
)) {
782 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
784 /* See comment of filemap_write_and_wait() */
786 __filemap_fdatawait_range(mapping
, lstart
, lend
);
788 err2
= file_check_and_advance_wb_err(file
);
793 EXPORT_SYMBOL(file_write_and_wait_range
);
796 * replace_page_cache_page - replace a pagecache page with a new one
797 * @old: page to be replaced
798 * @new: page to replace with
799 * @gfp_mask: allocation mode
801 * This function replaces a page in the pagecache with a new one. On
802 * success it acquires the pagecache reference for the new page and
803 * drops it for the old page. Both the old and new pages must be
804 * locked. This function does not add the new page to the LRU, the
805 * caller must do that.
807 * The remove + add is atomic. This function cannot fail.
811 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
813 struct address_space
*mapping
= old
->mapping
;
814 void (*freepage
)(struct page
*) = mapping
->a_ops
->freepage
;
815 pgoff_t offset
= old
->index
;
816 XA_STATE(xas
, &mapping
->i_pages
, offset
);
819 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
820 VM_BUG_ON_PAGE(!PageLocked(new), new);
821 VM_BUG_ON_PAGE(new->mapping
, new);
824 new->mapping
= mapping
;
827 xas_lock_irqsave(&xas
, flags
);
828 xas_store(&xas
, new);
831 /* hugetlb pages do not participate in page cache accounting. */
833 __dec_node_page_state(new, NR_FILE_PAGES
);
835 __inc_node_page_state(new, NR_FILE_PAGES
);
836 if (PageSwapBacked(old
))
837 __dec_node_page_state(new, NR_SHMEM
);
838 if (PageSwapBacked(new))
839 __inc_node_page_state(new, NR_SHMEM
);
840 xas_unlock_irqrestore(&xas
, flags
);
841 mem_cgroup_migrate(old
, new);
848 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
850 static int __add_to_page_cache_locked(struct page
*page
,
851 struct address_space
*mapping
,
852 pgoff_t offset
, gfp_t gfp_mask
,
855 XA_STATE(xas
, &mapping
->i_pages
, offset
);
856 int huge
= PageHuge(page
);
857 struct mem_cgroup
*memcg
;
861 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
862 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
863 mapping_set_update(&xas
, mapping
);
866 error
= mem_cgroup_try_charge(page
, current
->mm
,
867 gfp_mask
, &memcg
, false);
873 page
->mapping
= mapping
;
874 page
->index
= offset
;
878 old
= xas_load(&xas
);
879 if (old
&& !xa_is_value(old
))
880 xas_set_err(&xas
, -EEXIST
);
881 xas_store(&xas
, page
);
885 if (xa_is_value(old
)) {
886 mapping
->nrexceptional
--;
892 /* hugetlb pages do not participate in page cache accounting */
894 __inc_node_page_state(page
, NR_FILE_PAGES
);
896 xas_unlock_irq(&xas
);
897 } while (xas_nomem(&xas
, gfp_mask
& GFP_RECLAIM_MASK
));
903 mem_cgroup_commit_charge(page
, memcg
, false, false);
904 trace_mm_filemap_add_to_page_cache(page
);
907 page
->mapping
= NULL
;
908 /* Leave page->index set: truncation relies upon it */
910 mem_cgroup_cancel_charge(page
, memcg
, false);
912 return xas_error(&xas
);
914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked
, ERRNO
);
917 * add_to_page_cache_locked - add a locked page to the pagecache
919 * @mapping: the page's address_space
920 * @offset: page index
921 * @gfp_mask: page allocation mode
923 * This function is used to add a page to the pagecache. It must be locked.
924 * This function does not add the page to the LRU. The caller must do that.
926 * Return: %0 on success, negative error code otherwise.
928 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
929 pgoff_t offset
, gfp_t gfp_mask
)
931 return __add_to_page_cache_locked(page
, mapping
, offset
,
934 EXPORT_SYMBOL(add_to_page_cache_locked
);
936 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
937 pgoff_t offset
, gfp_t gfp_mask
)
942 __SetPageLocked(page
);
943 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
946 __ClearPageLocked(page
);
949 * The page might have been evicted from cache only
950 * recently, in which case it should be activated like
951 * any other repeatedly accessed page.
952 * The exception is pages getting rewritten; evicting other
953 * data from the working set, only to cache data that will
954 * get overwritten with something else, is a waste of memory.
956 WARN_ON_ONCE(PageActive(page
));
957 if (!(gfp_mask
& __GFP_WRITE
) && shadow
)
958 workingset_refault(page
, shadow
);
963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
966 struct page
*__page_cache_alloc(gfp_t gfp
)
971 if (cpuset_do_page_mem_spread()) {
972 unsigned int cpuset_mems_cookie
;
974 cpuset_mems_cookie
= read_mems_allowed_begin();
975 n
= cpuset_mem_spread_node();
976 page
= __alloc_pages_node(n
, gfp
, 0);
977 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
981 return alloc_pages(gfp
, 0);
983 EXPORT_SYMBOL(__page_cache_alloc
);
987 * In order to wait for pages to become available there must be
988 * waitqueues associated with pages. By using a hash table of
989 * waitqueues where the bucket discipline is to maintain all
990 * waiters on the same queue and wake all when any of the pages
991 * become available, and for the woken contexts to check to be
992 * sure the appropriate page became available, this saves space
993 * at a cost of "thundering herd" phenomena during rare hash
996 #define PAGE_WAIT_TABLE_BITS 8
997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
998 static wait_queue_head_t page_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
1000 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
1002 return &page_wait_table
[hash_ptr(page
, PAGE_WAIT_TABLE_BITS
)];
1005 void __init
pagecache_init(void)
1009 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
1010 init_waitqueue_head(&page_wait_table
[i
]);
1012 page_writeback_init();
1015 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1016 struct wait_page_key
{
1022 struct wait_page_queue
{
1025 wait_queue_entry_t wait
;
1028 static int wake_page_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *arg
)
1030 struct wait_page_key
*key
= arg
;
1031 struct wait_page_queue
*wait_page
1032 = container_of(wait
, struct wait_page_queue
, wait
);
1034 if (wait_page
->page
!= key
->page
)
1036 key
->page_match
= 1;
1038 if (wait_page
->bit_nr
!= key
->bit_nr
)
1042 * Stop walking if it's locked.
1043 * Is this safe if put_and_wait_on_page_locked() is in use?
1044 * Yes: the waker must hold a reference to this page, and if PG_locked
1045 * has now already been set by another task, that task must also hold
1046 * a reference to the *same usage* of this page; so there is no need
1047 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1049 if (test_bit(key
->bit_nr
, &key
->page
->flags
))
1052 return autoremove_wake_function(wait
, mode
, sync
, key
);
1055 static void wake_up_page_bit(struct page
*page
, int bit_nr
)
1057 wait_queue_head_t
*q
= page_waitqueue(page
);
1058 struct wait_page_key key
;
1059 unsigned long flags
;
1060 wait_queue_entry_t bookmark
;
1063 key
.bit_nr
= bit_nr
;
1067 bookmark
.private = NULL
;
1068 bookmark
.func
= NULL
;
1069 INIT_LIST_HEAD(&bookmark
.entry
);
1071 spin_lock_irqsave(&q
->lock
, flags
);
1072 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1074 while (bookmark
.flags
& WQ_FLAG_BOOKMARK
) {
1076 * Take a breather from holding the lock,
1077 * allow pages that finish wake up asynchronously
1078 * to acquire the lock and remove themselves
1081 spin_unlock_irqrestore(&q
->lock
, flags
);
1083 spin_lock_irqsave(&q
->lock
, flags
);
1084 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1088 * It is possible for other pages to have collided on the waitqueue
1089 * hash, so in that case check for a page match. That prevents a long-
1092 * It is still possible to miss a case here, when we woke page waiters
1093 * and removed them from the waitqueue, but there are still other
1096 if (!waitqueue_active(q
) || !key
.page_match
) {
1097 ClearPageWaiters(page
);
1099 * It's possible to miss clearing Waiters here, when we woke
1100 * our page waiters, but the hashed waitqueue has waiters for
1101 * other pages on it.
1103 * That's okay, it's a rare case. The next waker will clear it.
1106 spin_unlock_irqrestore(&q
->lock
, flags
);
1109 static void wake_up_page(struct page
*page
, int bit
)
1111 if (!PageWaiters(page
))
1113 wake_up_page_bit(page
, bit
);
1117 * A choice of three behaviors for wait_on_page_bit_common():
1120 EXCLUSIVE
, /* Hold ref to page and take the bit when woken, like
1121 * __lock_page() waiting on then setting PG_locked.
1123 SHARED
, /* Hold ref to page and check the bit when woken, like
1124 * wait_on_page_writeback() waiting on PG_writeback.
1126 DROP
, /* Drop ref to page before wait, no check when woken,
1127 * like put_and_wait_on_page_locked() on PG_locked.
1131 static inline int wait_on_page_bit_common(wait_queue_head_t
*q
,
1132 struct page
*page
, int bit_nr
, int state
, enum behavior behavior
)
1134 struct wait_page_queue wait_page
;
1135 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1137 bool thrashing
= false;
1138 bool delayacct
= false;
1139 unsigned long pflags
;
1142 if (bit_nr
== PG_locked
&&
1143 !PageUptodate(page
) && PageWorkingset(page
)) {
1144 if (!PageSwapBacked(page
)) {
1145 delayacct_thrashing_start();
1148 psi_memstall_enter(&pflags
);
1153 wait
->flags
= behavior
== EXCLUSIVE
? WQ_FLAG_EXCLUSIVE
: 0;
1154 wait
->func
= wake_page_function
;
1155 wait_page
.page
= page
;
1156 wait_page
.bit_nr
= bit_nr
;
1159 spin_lock_irq(&q
->lock
);
1161 if (likely(list_empty(&wait
->entry
))) {
1162 __add_wait_queue_entry_tail(q
, wait
);
1163 SetPageWaiters(page
);
1166 set_current_state(state
);
1168 spin_unlock_irq(&q
->lock
);
1170 bit_is_set
= test_bit(bit_nr
, &page
->flags
);
1171 if (behavior
== DROP
)
1174 if (likely(bit_is_set
))
1177 if (behavior
== EXCLUSIVE
) {
1178 if (!test_and_set_bit_lock(bit_nr
, &page
->flags
))
1180 } else if (behavior
== SHARED
) {
1181 if (!test_bit(bit_nr
, &page
->flags
))
1185 if (signal_pending_state(state
, current
)) {
1190 if (behavior
== DROP
) {
1192 * We can no longer safely access page->flags:
1193 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1194 * there is a risk of waiting forever on a page reused
1195 * for something that keeps it locked indefinitely.
1196 * But best check for -EINTR above before breaking.
1202 finish_wait(q
, wait
);
1206 delayacct_thrashing_end();
1207 psi_memstall_leave(&pflags
);
1211 * A signal could leave PageWaiters set. Clearing it here if
1212 * !waitqueue_active would be possible (by open-coding finish_wait),
1213 * but still fail to catch it in the case of wait hash collision. We
1214 * already can fail to clear wait hash collision cases, so don't
1215 * bother with signals either.
1221 void wait_on_page_bit(struct page
*page
, int bit_nr
)
1223 wait_queue_head_t
*q
= page_waitqueue(page
);
1224 wait_on_page_bit_common(q
, page
, bit_nr
, TASK_UNINTERRUPTIBLE
, SHARED
);
1226 EXPORT_SYMBOL(wait_on_page_bit
);
1228 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
1230 wait_queue_head_t
*q
= page_waitqueue(page
);
1231 return wait_on_page_bit_common(q
, page
, bit_nr
, TASK_KILLABLE
, SHARED
);
1233 EXPORT_SYMBOL(wait_on_page_bit_killable
);
1236 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1237 * @page: The page to wait for.
1239 * The caller should hold a reference on @page. They expect the page to
1240 * become unlocked relatively soon, but do not wish to hold up migration
1241 * (for example) by holding the reference while waiting for the page to
1242 * come unlocked. After this function returns, the caller should not
1243 * dereference @page.
1245 void put_and_wait_on_page_locked(struct page
*page
)
1247 wait_queue_head_t
*q
;
1249 page
= compound_head(page
);
1250 q
= page_waitqueue(page
);
1251 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
, DROP
);
1255 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1256 * @page: Page defining the wait queue of interest
1257 * @waiter: Waiter to add to the queue
1259 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1261 void add_page_wait_queue(struct page
*page
, wait_queue_entry_t
*waiter
)
1263 wait_queue_head_t
*q
= page_waitqueue(page
);
1264 unsigned long flags
;
1266 spin_lock_irqsave(&q
->lock
, flags
);
1267 __add_wait_queue_entry_tail(q
, waiter
);
1268 SetPageWaiters(page
);
1269 spin_unlock_irqrestore(&q
->lock
, flags
);
1271 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
1273 #ifndef clear_bit_unlock_is_negative_byte
1276 * PG_waiters is the high bit in the same byte as PG_lock.
1278 * On x86 (and on many other architectures), we can clear PG_lock and
1279 * test the sign bit at the same time. But if the architecture does
1280 * not support that special operation, we just do this all by hand
1283 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1284 * being cleared, but a memory barrier should be unneccssary since it is
1285 * in the same byte as PG_locked.
1287 static inline bool clear_bit_unlock_is_negative_byte(long nr
, volatile void *mem
)
1289 clear_bit_unlock(nr
, mem
);
1290 /* smp_mb__after_atomic(); */
1291 return test_bit(PG_waiters
, mem
);
1297 * unlock_page - unlock a locked page
1300 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1301 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1302 * mechanism between PageLocked pages and PageWriteback pages is shared.
1303 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1305 * Note that this depends on PG_waiters being the sign bit in the byte
1306 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1307 * clear the PG_locked bit and test PG_waiters at the same time fairly
1308 * portably (architectures that do LL/SC can test any bit, while x86 can
1309 * test the sign bit).
1311 void unlock_page(struct page
*page
)
1313 BUILD_BUG_ON(PG_waiters
!= 7);
1314 page
= compound_head(page
);
1315 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1316 if (clear_bit_unlock_is_negative_byte(PG_locked
, &page
->flags
))
1317 wake_up_page_bit(page
, PG_locked
);
1319 EXPORT_SYMBOL(unlock_page
);
1322 * end_page_writeback - end writeback against a page
1325 void end_page_writeback(struct page
*page
)
1328 * TestClearPageReclaim could be used here but it is an atomic
1329 * operation and overkill in this particular case. Failing to
1330 * shuffle a page marked for immediate reclaim is too mild to
1331 * justify taking an atomic operation penalty at the end of
1332 * ever page writeback.
1334 if (PageReclaim(page
)) {
1335 ClearPageReclaim(page
);
1336 rotate_reclaimable_page(page
);
1339 if (!test_clear_page_writeback(page
))
1342 smp_mb__after_atomic();
1343 wake_up_page(page
, PG_writeback
);
1345 EXPORT_SYMBOL(end_page_writeback
);
1348 * After completing I/O on a page, call this routine to update the page
1349 * flags appropriately
1351 void page_endio(struct page
*page
, bool is_write
, int err
)
1355 SetPageUptodate(page
);
1357 ClearPageUptodate(page
);
1363 struct address_space
*mapping
;
1366 mapping
= page_mapping(page
);
1368 mapping_set_error(mapping
, err
);
1370 end_page_writeback(page
);
1373 EXPORT_SYMBOL_GPL(page_endio
);
1376 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1377 * @__page: the page to lock
1379 void __lock_page(struct page
*__page
)
1381 struct page
*page
= compound_head(__page
);
1382 wait_queue_head_t
*q
= page_waitqueue(page
);
1383 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
,
1386 EXPORT_SYMBOL(__lock_page
);
1388 int __lock_page_killable(struct page
*__page
)
1390 struct page
*page
= compound_head(__page
);
1391 wait_queue_head_t
*q
= page_waitqueue(page
);
1392 return wait_on_page_bit_common(q
, page
, PG_locked
, TASK_KILLABLE
,
1395 EXPORT_SYMBOL_GPL(__lock_page_killable
);
1399 * 1 - page is locked; mmap_sem is still held.
1400 * 0 - page is not locked.
1401 * mmap_sem has been released (up_read()), unless flags had both
1402 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1403 * which case mmap_sem is still held.
1405 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1406 * with the page locked and the mmap_sem unperturbed.
1408 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
1411 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1413 * CAUTION! In this case, mmap_sem is not released
1414 * even though return 0.
1416 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1419 up_read(&mm
->mmap_sem
);
1420 if (flags
& FAULT_FLAG_KILLABLE
)
1421 wait_on_page_locked_killable(page
);
1423 wait_on_page_locked(page
);
1426 if (flags
& FAULT_FLAG_KILLABLE
) {
1429 ret
= __lock_page_killable(page
);
1431 up_read(&mm
->mmap_sem
);
1441 * page_cache_next_miss() - Find the next gap in the page cache.
1442 * @mapping: Mapping.
1444 * @max_scan: Maximum range to search.
1446 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1447 * gap with the lowest index.
1449 * This function may be called under the rcu_read_lock. However, this will
1450 * not atomically search a snapshot of the cache at a single point in time.
1451 * For example, if a gap is created at index 5, then subsequently a gap is
1452 * created at index 10, page_cache_next_miss covering both indices may
1453 * return 10 if called under the rcu_read_lock.
1455 * Return: The index of the gap if found, otherwise an index outside the
1456 * range specified (in which case 'return - index >= max_scan' will be true).
1457 * In the rare case of index wrap-around, 0 will be returned.
1459 pgoff_t
page_cache_next_miss(struct address_space
*mapping
,
1460 pgoff_t index
, unsigned long max_scan
)
1462 XA_STATE(xas
, &mapping
->i_pages
, index
);
1464 while (max_scan
--) {
1465 void *entry
= xas_next(&xas
);
1466 if (!entry
|| xa_is_value(entry
))
1468 if (xas
.xa_index
== 0)
1472 return xas
.xa_index
;
1474 EXPORT_SYMBOL(page_cache_next_miss
);
1477 * page_cache_prev_miss() - Find the previous gap in the page cache.
1478 * @mapping: Mapping.
1480 * @max_scan: Maximum range to search.
1482 * Search the range [max(index - max_scan + 1, 0), index] for the
1483 * gap with the highest index.
1485 * This function may be called under the rcu_read_lock. However, this will
1486 * not atomically search a snapshot of the cache at a single point in time.
1487 * For example, if a gap is created at index 10, then subsequently a gap is
1488 * created at index 5, page_cache_prev_miss() covering both indices may
1489 * return 5 if called under the rcu_read_lock.
1491 * Return: The index of the gap if found, otherwise an index outside the
1492 * range specified (in which case 'index - return >= max_scan' will be true).
1493 * In the rare case of wrap-around, ULONG_MAX will be returned.
1495 pgoff_t
page_cache_prev_miss(struct address_space
*mapping
,
1496 pgoff_t index
, unsigned long max_scan
)
1498 XA_STATE(xas
, &mapping
->i_pages
, index
);
1500 while (max_scan
--) {
1501 void *entry
= xas_prev(&xas
);
1502 if (!entry
|| xa_is_value(entry
))
1504 if (xas
.xa_index
== ULONG_MAX
)
1508 return xas
.xa_index
;
1510 EXPORT_SYMBOL(page_cache_prev_miss
);
1513 * find_get_entry - find and get a page cache entry
1514 * @mapping: the address_space to search
1515 * @offset: the page cache index
1517 * Looks up the page cache slot at @mapping & @offset. If there is a
1518 * page cache page, it is returned with an increased refcount.
1520 * If the slot holds a shadow entry of a previously evicted page, or a
1521 * swap entry from shmem/tmpfs, it is returned.
1523 * Return: the found page or shadow entry, %NULL if nothing is found.
1525 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1527 XA_STATE(xas
, &mapping
->i_pages
, offset
);
1533 page
= xas_load(&xas
);
1534 if (xas_retry(&xas
, page
))
1537 * A shadow entry of a recently evicted page, or a swap entry from
1538 * shmem/tmpfs. Return it without attempting to raise page count.
1540 if (!page
|| xa_is_value(page
))
1543 if (!page_cache_get_speculative(page
))
1547 * Has the page moved or been split?
1548 * This is part of the lockless pagecache protocol. See
1549 * include/linux/pagemap.h for details.
1551 if (unlikely(page
!= xas_reload(&xas
))) {
1555 page
= find_subpage(page
, offset
);
1561 EXPORT_SYMBOL(find_get_entry
);
1564 * find_lock_entry - locate, pin and lock a page cache entry
1565 * @mapping: the address_space to search
1566 * @offset: the page cache index
1568 * Looks up the page cache slot at @mapping & @offset. If there is a
1569 * page cache page, it is returned locked and with an increased
1572 * If the slot holds a shadow entry of a previously evicted page, or a
1573 * swap entry from shmem/tmpfs, it is returned.
1575 * find_lock_entry() may sleep.
1577 * Return: the found page or shadow entry, %NULL if nothing is found.
1579 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1584 page
= find_get_entry(mapping
, offset
);
1585 if (page
&& !xa_is_value(page
)) {
1587 /* Has the page been truncated? */
1588 if (unlikely(page_mapping(page
) != mapping
)) {
1593 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
1597 EXPORT_SYMBOL(find_lock_entry
);
1600 * pagecache_get_page - find and get a page reference
1601 * @mapping: the address_space to search
1602 * @offset: the page index
1603 * @fgp_flags: PCG flags
1604 * @gfp_mask: gfp mask to use for the page cache data page allocation
1606 * Looks up the page cache slot at @mapping & @offset.
1608 * PCG flags modify how the page is returned.
1610 * @fgp_flags can be:
1612 * - FGP_ACCESSED: the page will be marked accessed
1613 * - FGP_LOCK: Page is return locked
1614 * - FGP_CREAT: If page is not present then a new page is allocated using
1615 * @gfp_mask and added to the page cache and the VM's LRU
1616 * list. The page is returned locked and with an increased
1618 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1619 * its own locking dance if the page is already in cache, or unlock the page
1620 * before returning if we had to add the page to pagecache.
1622 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1623 * if the GFP flags specified for FGP_CREAT are atomic.
1625 * If there is a page cache page, it is returned with an increased refcount.
1627 * Return: the found page or %NULL otherwise.
1629 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1630 int fgp_flags
, gfp_t gfp_mask
)
1635 page
= find_get_entry(mapping
, offset
);
1636 if (xa_is_value(page
))
1641 if (fgp_flags
& FGP_LOCK
) {
1642 if (fgp_flags
& FGP_NOWAIT
) {
1643 if (!trylock_page(page
)) {
1651 /* Has the page been truncated? */
1652 if (unlikely(compound_head(page
)->mapping
!= mapping
)) {
1657 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1660 if (fgp_flags
& FGP_ACCESSED
)
1661 mark_page_accessed(page
);
1664 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1666 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1667 gfp_mask
|= __GFP_WRITE
;
1668 if (fgp_flags
& FGP_NOFS
)
1669 gfp_mask
&= ~__GFP_FS
;
1671 page
= __page_cache_alloc(gfp_mask
);
1675 if (WARN_ON_ONCE(!(fgp_flags
& (FGP_LOCK
| FGP_FOR_MMAP
))))
1676 fgp_flags
|= FGP_LOCK
;
1678 /* Init accessed so avoid atomic mark_page_accessed later */
1679 if (fgp_flags
& FGP_ACCESSED
)
1680 __SetPageReferenced(page
);
1682 err
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
);
1683 if (unlikely(err
)) {
1691 * add_to_page_cache_lru locks the page, and for mmap we expect
1694 if (page
&& (fgp_flags
& FGP_FOR_MMAP
))
1700 EXPORT_SYMBOL(pagecache_get_page
);
1703 * find_get_entries - gang pagecache lookup
1704 * @mapping: The address_space to search
1705 * @start: The starting page cache index
1706 * @nr_entries: The maximum number of entries
1707 * @entries: Where the resulting entries are placed
1708 * @indices: The cache indices corresponding to the entries in @entries
1710 * find_get_entries() will search for and return a group of up to
1711 * @nr_entries entries in the mapping. The entries are placed at
1712 * @entries. find_get_entries() takes a reference against any actual
1715 * The search returns a group of mapping-contiguous page cache entries
1716 * with ascending indexes. There may be holes in the indices due to
1717 * not-present pages.
1719 * Any shadow entries of evicted pages, or swap entries from
1720 * shmem/tmpfs, are included in the returned array.
1722 * Return: the number of pages and shadow entries which were found.
1724 unsigned find_get_entries(struct address_space
*mapping
,
1725 pgoff_t start
, unsigned int nr_entries
,
1726 struct page
**entries
, pgoff_t
*indices
)
1728 XA_STATE(xas
, &mapping
->i_pages
, start
);
1730 unsigned int ret
= 0;
1736 xas_for_each(&xas
, page
, ULONG_MAX
) {
1737 if (xas_retry(&xas
, page
))
1740 * A shadow entry of a recently evicted page, a swap
1741 * entry from shmem/tmpfs or a DAX entry. Return it
1742 * without attempting to raise page count.
1744 if (xa_is_value(page
))
1747 if (!page_cache_get_speculative(page
))
1750 /* Has the page moved or been split? */
1751 if (unlikely(page
!= xas_reload(&xas
)))
1753 page
= find_subpage(page
, xas
.xa_index
);
1756 indices
[ret
] = xas
.xa_index
;
1757 entries
[ret
] = page
;
1758 if (++ret
== nr_entries
)
1771 * find_get_pages_range - gang pagecache lookup
1772 * @mapping: The address_space to search
1773 * @start: The starting page index
1774 * @end: The final page index (inclusive)
1775 * @nr_pages: The maximum number of pages
1776 * @pages: Where the resulting pages are placed
1778 * find_get_pages_range() will search for and return a group of up to @nr_pages
1779 * pages in the mapping starting at index @start and up to index @end
1780 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1781 * a reference against the returned pages.
1783 * The search returns a group of mapping-contiguous pages with ascending
1784 * indexes. There may be holes in the indices due to not-present pages.
1785 * We also update @start to index the next page for the traversal.
1787 * Return: the number of pages which were found. If this number is
1788 * smaller than @nr_pages, the end of specified range has been
1791 unsigned find_get_pages_range(struct address_space
*mapping
, pgoff_t
*start
,
1792 pgoff_t end
, unsigned int nr_pages
,
1793 struct page
**pages
)
1795 XA_STATE(xas
, &mapping
->i_pages
, *start
);
1799 if (unlikely(!nr_pages
))
1803 xas_for_each(&xas
, page
, end
) {
1804 if (xas_retry(&xas
, page
))
1806 /* Skip over shadow, swap and DAX entries */
1807 if (xa_is_value(page
))
1810 if (!page_cache_get_speculative(page
))
1813 /* Has the page moved or been split? */
1814 if (unlikely(page
!= xas_reload(&xas
)))
1817 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1818 if (++ret
== nr_pages
) {
1819 *start
= xas
.xa_index
+ 1;
1830 * We come here when there is no page beyond @end. We take care to not
1831 * overflow the index @start as it confuses some of the callers. This
1832 * breaks the iteration when there is a page at index -1 but that is
1833 * already broken anyway.
1835 if (end
== (pgoff_t
)-1)
1836 *start
= (pgoff_t
)-1;
1846 * find_get_pages_contig - gang contiguous pagecache lookup
1847 * @mapping: The address_space to search
1848 * @index: The starting page index
1849 * @nr_pages: The maximum number of pages
1850 * @pages: Where the resulting pages are placed
1852 * find_get_pages_contig() works exactly like find_get_pages(), except
1853 * that the returned number of pages are guaranteed to be contiguous.
1855 * Return: the number of pages which were found.
1857 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1858 unsigned int nr_pages
, struct page
**pages
)
1860 XA_STATE(xas
, &mapping
->i_pages
, index
);
1862 unsigned int ret
= 0;
1864 if (unlikely(!nr_pages
))
1868 for (page
= xas_load(&xas
); page
; page
= xas_next(&xas
)) {
1869 if (xas_retry(&xas
, page
))
1872 * If the entry has been swapped out, we can stop looking.
1873 * No current caller is looking for DAX entries.
1875 if (xa_is_value(page
))
1878 if (!page_cache_get_speculative(page
))
1881 /* Has the page moved or been split? */
1882 if (unlikely(page
!= xas_reload(&xas
)))
1885 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1886 if (++ret
== nr_pages
)
1897 EXPORT_SYMBOL(find_get_pages_contig
);
1900 * find_get_pages_range_tag - find and return pages in given range matching @tag
1901 * @mapping: the address_space to search
1902 * @index: the starting page index
1903 * @end: The final page index (inclusive)
1904 * @tag: the tag index
1905 * @nr_pages: the maximum number of pages
1906 * @pages: where the resulting pages are placed
1908 * Like find_get_pages, except we only return pages which are tagged with
1909 * @tag. We update @index to index the next page for the traversal.
1911 * Return: the number of pages which were found.
1913 unsigned find_get_pages_range_tag(struct address_space
*mapping
, pgoff_t
*index
,
1914 pgoff_t end
, xa_mark_t tag
, unsigned int nr_pages
,
1915 struct page
**pages
)
1917 XA_STATE(xas
, &mapping
->i_pages
, *index
);
1921 if (unlikely(!nr_pages
))
1925 xas_for_each_marked(&xas
, page
, end
, tag
) {
1926 if (xas_retry(&xas
, page
))
1929 * Shadow entries should never be tagged, but this iteration
1930 * is lockless so there is a window for page reclaim to evict
1931 * a page we saw tagged. Skip over it.
1933 if (xa_is_value(page
))
1936 if (!page_cache_get_speculative(page
))
1939 /* Has the page moved or been split? */
1940 if (unlikely(page
!= xas_reload(&xas
)))
1943 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1944 if (++ret
== nr_pages
) {
1945 *index
= xas
.xa_index
+ 1;
1956 * We come here when we got to @end. We take care to not overflow the
1957 * index @index as it confuses some of the callers. This breaks the
1958 * iteration when there is a page at index -1 but that is already
1961 if (end
== (pgoff_t
)-1)
1962 *index
= (pgoff_t
)-1;
1970 EXPORT_SYMBOL(find_get_pages_range_tag
);
1973 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1974 * a _large_ part of the i/o request. Imagine the worst scenario:
1976 * ---R__________________________________________B__________
1977 * ^ reading here ^ bad block(assume 4k)
1979 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1980 * => failing the whole request => read(R) => read(R+1) =>
1981 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1982 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1983 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1985 * It is going insane. Fix it by quickly scaling down the readahead size.
1987 static void shrink_readahead_size_eio(struct file
*filp
,
1988 struct file_ra_state
*ra
)
1994 * generic_file_buffered_read - generic file read routine
1995 * @iocb: the iocb to read
1996 * @iter: data destination
1997 * @written: already copied
1999 * This is a generic file read routine, and uses the
2000 * mapping->a_ops->readpage() function for the actual low-level stuff.
2002 * This is really ugly. But the goto's actually try to clarify some
2003 * of the logic when it comes to error handling etc.
2006 * * total number of bytes copied, including those the were already @written
2007 * * negative error code if nothing was copied
2009 static ssize_t
generic_file_buffered_read(struct kiocb
*iocb
,
2010 struct iov_iter
*iter
, ssize_t written
)
2012 struct file
*filp
= iocb
->ki_filp
;
2013 struct address_space
*mapping
= filp
->f_mapping
;
2014 struct inode
*inode
= mapping
->host
;
2015 struct file_ra_state
*ra
= &filp
->f_ra
;
2016 loff_t
*ppos
= &iocb
->ki_pos
;
2020 unsigned long offset
; /* offset into pagecache page */
2021 unsigned int prev_offset
;
2024 if (unlikely(*ppos
>= inode
->i_sb
->s_maxbytes
))
2026 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
);
2028 index
= *ppos
>> PAGE_SHIFT
;
2029 prev_index
= ra
->prev_pos
>> PAGE_SHIFT
;
2030 prev_offset
= ra
->prev_pos
& (PAGE_SIZE
-1);
2031 last_index
= (*ppos
+ iter
->count
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
2032 offset
= *ppos
& ~PAGE_MASK
;
2038 unsigned long nr
, ret
;
2042 if (fatal_signal_pending(current
)) {
2047 page
= find_get_page(mapping
, index
);
2049 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2051 page_cache_sync_readahead(mapping
,
2053 index
, last_index
- index
);
2054 page
= find_get_page(mapping
, index
);
2055 if (unlikely(page
== NULL
))
2056 goto no_cached_page
;
2058 if (PageReadahead(page
)) {
2059 page_cache_async_readahead(mapping
,
2061 index
, last_index
- index
);
2063 if (!PageUptodate(page
)) {
2064 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2070 * See comment in do_read_cache_page on why
2071 * wait_on_page_locked is used to avoid unnecessarily
2072 * serialisations and why it's safe.
2074 error
= wait_on_page_locked_killable(page
);
2075 if (unlikely(error
))
2076 goto readpage_error
;
2077 if (PageUptodate(page
))
2080 if (inode
->i_blkbits
== PAGE_SHIFT
||
2081 !mapping
->a_ops
->is_partially_uptodate
)
2082 goto page_not_up_to_date
;
2083 /* pipes can't handle partially uptodate pages */
2084 if (unlikely(iov_iter_is_pipe(iter
)))
2085 goto page_not_up_to_date
;
2086 if (!trylock_page(page
))
2087 goto page_not_up_to_date
;
2088 /* Did it get truncated before we got the lock? */
2090 goto page_not_up_to_date_locked
;
2091 if (!mapping
->a_ops
->is_partially_uptodate(page
,
2092 offset
, iter
->count
))
2093 goto page_not_up_to_date_locked
;
2098 * i_size must be checked after we know the page is Uptodate.
2100 * Checking i_size after the check allows us to calculate
2101 * the correct value for "nr", which means the zero-filled
2102 * part of the page is not copied back to userspace (unless
2103 * another truncate extends the file - this is desired though).
2106 isize
= i_size_read(inode
);
2107 end_index
= (isize
- 1) >> PAGE_SHIFT
;
2108 if (unlikely(!isize
|| index
> end_index
)) {
2113 /* nr is the maximum number of bytes to copy from this page */
2115 if (index
== end_index
) {
2116 nr
= ((isize
- 1) & ~PAGE_MASK
) + 1;
2124 /* If users can be writing to this page using arbitrary
2125 * virtual addresses, take care about potential aliasing
2126 * before reading the page on the kernel side.
2128 if (mapping_writably_mapped(mapping
))
2129 flush_dcache_page(page
);
2132 * When a sequential read accesses a page several times,
2133 * only mark it as accessed the first time.
2135 if (prev_index
!= index
|| offset
!= prev_offset
)
2136 mark_page_accessed(page
);
2140 * Ok, we have the page, and it's up-to-date, so
2141 * now we can copy it to user space...
2144 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
2146 index
+= offset
>> PAGE_SHIFT
;
2147 offset
&= ~PAGE_MASK
;
2148 prev_offset
= offset
;
2152 if (!iov_iter_count(iter
))
2160 page_not_up_to_date
:
2161 /* Get exclusive access to the page ... */
2162 error
= lock_page_killable(page
);
2163 if (unlikely(error
))
2164 goto readpage_error
;
2166 page_not_up_to_date_locked
:
2167 /* Did it get truncated before we got the lock? */
2168 if (!page
->mapping
) {
2174 /* Did somebody else fill it already? */
2175 if (PageUptodate(page
)) {
2182 * A previous I/O error may have been due to temporary
2183 * failures, eg. multipath errors.
2184 * PG_error will be set again if readpage fails.
2186 ClearPageError(page
);
2187 /* Start the actual read. The read will unlock the page. */
2188 error
= mapping
->a_ops
->readpage(filp
, page
);
2190 if (unlikely(error
)) {
2191 if (error
== AOP_TRUNCATED_PAGE
) {
2196 goto readpage_error
;
2199 if (!PageUptodate(page
)) {
2200 error
= lock_page_killable(page
);
2201 if (unlikely(error
))
2202 goto readpage_error
;
2203 if (!PageUptodate(page
)) {
2204 if (page
->mapping
== NULL
) {
2206 * invalidate_mapping_pages got it
2213 shrink_readahead_size_eio(filp
, ra
);
2215 goto readpage_error
;
2223 /* UHHUH! A synchronous read error occurred. Report it */
2229 * Ok, it wasn't cached, so we need to create a new
2232 page
= page_cache_alloc(mapping
);
2237 error
= add_to_page_cache_lru(page
, mapping
, index
,
2238 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
2241 if (error
== -EEXIST
) {
2253 ra
->prev_pos
= prev_index
;
2254 ra
->prev_pos
<<= PAGE_SHIFT
;
2255 ra
->prev_pos
|= prev_offset
;
2257 *ppos
= ((loff_t
)index
<< PAGE_SHIFT
) + offset
;
2258 file_accessed(filp
);
2259 return written
? written
: error
;
2263 * generic_file_read_iter - generic filesystem read routine
2264 * @iocb: kernel I/O control block
2265 * @iter: destination for the data read
2267 * This is the "read_iter()" routine for all filesystems
2268 * that can use the page cache directly.
2270 * * number of bytes copied, even for partial reads
2271 * * negative error code if nothing was read
2274 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2276 size_t count
= iov_iter_count(iter
);
2280 goto out
; /* skip atime */
2282 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2283 struct file
*file
= iocb
->ki_filp
;
2284 struct address_space
*mapping
= file
->f_mapping
;
2285 struct inode
*inode
= mapping
->host
;
2288 size
= i_size_read(inode
);
2289 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2290 if (filemap_range_has_page(mapping
, iocb
->ki_pos
,
2291 iocb
->ki_pos
+ count
- 1))
2294 retval
= filemap_write_and_wait_range(mapping
,
2296 iocb
->ki_pos
+ count
- 1);
2301 file_accessed(file
);
2303 retval
= mapping
->a_ops
->direct_IO(iocb
, iter
);
2305 iocb
->ki_pos
+= retval
;
2308 iov_iter_revert(iter
, count
- iov_iter_count(iter
));
2311 * Btrfs can have a short DIO read if we encounter
2312 * compressed extents, so if there was an error, or if
2313 * we've already read everything we wanted to, or if
2314 * there was a short read because we hit EOF, go ahead
2315 * and return. Otherwise fallthrough to buffered io for
2316 * the rest of the read. Buffered reads will not work for
2317 * DAX files, so don't bother trying.
2319 if (retval
< 0 || !count
|| iocb
->ki_pos
>= size
||
2324 retval
= generic_file_buffered_read(iocb
, iter
, retval
);
2328 EXPORT_SYMBOL(generic_file_read_iter
);
2331 #define MMAP_LOTSAMISS (100)
2333 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2334 * @vmf - the vm_fault for this fault.
2335 * @page - the page to lock.
2336 * @fpin - the pointer to the file we may pin (or is already pinned).
2338 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2339 * It differs in that it actually returns the page locked if it returns 1 and 0
2340 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2341 * will point to the pinned file and needs to be fput()'ed at a later point.
2343 static int lock_page_maybe_drop_mmap(struct vm_fault
*vmf
, struct page
*page
,
2346 if (trylock_page(page
))
2350 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2351 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2352 * is supposed to work. We have way too many special cases..
2354 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
2357 *fpin
= maybe_unlock_mmap_for_io(vmf
, *fpin
);
2358 if (vmf
->flags
& FAULT_FLAG_KILLABLE
) {
2359 if (__lock_page_killable(page
)) {
2361 * We didn't have the right flags to drop the mmap_sem,
2362 * but all fault_handlers only check for fatal signals
2363 * if we return VM_FAULT_RETRY, so we need to drop the
2364 * mmap_sem here and return 0 if we don't have a fpin.
2367 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2377 * Synchronous readahead happens when we don't even find a page in the page
2378 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2379 * to drop the mmap sem we return the file that was pinned in order for us to do
2380 * that. If we didn't pin a file then we return NULL. The file that is
2381 * returned needs to be fput()'ed when we're done with it.
2383 static struct file
*do_sync_mmap_readahead(struct vm_fault
*vmf
)
2385 struct file
*file
= vmf
->vma
->vm_file
;
2386 struct file_ra_state
*ra
= &file
->f_ra
;
2387 struct address_space
*mapping
= file
->f_mapping
;
2388 struct file
*fpin
= NULL
;
2389 pgoff_t offset
= vmf
->pgoff
;
2391 /* If we don't want any read-ahead, don't bother */
2392 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2397 if (vmf
->vma
->vm_flags
& VM_SEQ_READ
) {
2398 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2399 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
2404 /* Avoid banging the cache line if not needed */
2405 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
2409 * Do we miss much more than hit in this file? If so,
2410 * stop bothering with read-ahead. It will only hurt.
2412 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
2418 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2419 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
2420 ra
->size
= ra
->ra_pages
;
2421 ra
->async_size
= ra
->ra_pages
/ 4;
2422 ra_submit(ra
, mapping
, file
);
2427 * Asynchronous readahead happens when we find the page and PG_readahead,
2428 * so we want to possibly extend the readahead further. We return the file that
2429 * was pinned if we have to drop the mmap_sem in order to do IO.
2431 static struct file
*do_async_mmap_readahead(struct vm_fault
*vmf
,
2434 struct file
*file
= vmf
->vma
->vm_file
;
2435 struct file_ra_state
*ra
= &file
->f_ra
;
2436 struct address_space
*mapping
= file
->f_mapping
;
2437 struct file
*fpin
= NULL
;
2438 pgoff_t offset
= vmf
->pgoff
;
2440 /* If we don't want any read-ahead, don't bother */
2441 if (vmf
->vma
->vm_flags
& VM_RAND_READ
|| !ra
->ra_pages
)
2443 if (ra
->mmap_miss
> 0)
2445 if (PageReadahead(page
)) {
2446 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2447 page_cache_async_readahead(mapping
, ra
, file
,
2448 page
, offset
, ra
->ra_pages
);
2454 * filemap_fault - read in file data for page fault handling
2455 * @vmf: struct vm_fault containing details of the fault
2457 * filemap_fault() is invoked via the vma operations vector for a
2458 * mapped memory region to read in file data during a page fault.
2460 * The goto's are kind of ugly, but this streamlines the normal case of having
2461 * it in the page cache, and handles the special cases reasonably without
2462 * having a lot of duplicated code.
2464 * vma->vm_mm->mmap_sem must be held on entry.
2466 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2467 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2469 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2470 * has not been released.
2472 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2474 * Return: bitwise-OR of %VM_FAULT_ codes.
2476 vm_fault_t
filemap_fault(struct vm_fault
*vmf
)
2479 struct file
*file
= vmf
->vma
->vm_file
;
2480 struct file
*fpin
= NULL
;
2481 struct address_space
*mapping
= file
->f_mapping
;
2482 struct file_ra_state
*ra
= &file
->f_ra
;
2483 struct inode
*inode
= mapping
->host
;
2484 pgoff_t offset
= vmf
->pgoff
;
2489 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2490 if (unlikely(offset
>= max_off
))
2491 return VM_FAULT_SIGBUS
;
2494 * Do we have something in the page cache already?
2496 page
= find_get_page(mapping
, offset
);
2497 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2499 * We found the page, so try async readahead before
2500 * waiting for the lock.
2502 fpin
= do_async_mmap_readahead(vmf
, page
);
2504 /* No page in the page cache at all */
2505 count_vm_event(PGMAJFAULT
);
2506 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
2507 ret
= VM_FAULT_MAJOR
;
2508 fpin
= do_sync_mmap_readahead(vmf
);
2510 page
= pagecache_get_page(mapping
, offset
,
2511 FGP_CREAT
|FGP_FOR_MMAP
,
2516 return vmf_error(-ENOMEM
);
2520 if (!lock_page_maybe_drop_mmap(vmf
, page
, &fpin
))
2523 /* Did it get truncated? */
2524 if (unlikely(compound_head(page
)->mapping
!= mapping
)) {
2529 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
2532 * We have a locked page in the page cache, now we need to check
2533 * that it's up-to-date. If not, it is going to be due to an error.
2535 if (unlikely(!PageUptodate(page
)))
2536 goto page_not_uptodate
;
2539 * We've made it this far and we had to drop our mmap_sem, now is the
2540 * time to return to the upper layer and have it re-find the vma and
2549 * Found the page and have a reference on it.
2550 * We must recheck i_size under page lock.
2552 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2553 if (unlikely(offset
>= max_off
)) {
2556 return VM_FAULT_SIGBUS
;
2560 return ret
| VM_FAULT_LOCKED
;
2564 * Umm, take care of errors if the page isn't up-to-date.
2565 * Try to re-read it _once_. We do this synchronously,
2566 * because there really aren't any performance issues here
2567 * and we need to check for errors.
2569 ClearPageError(page
);
2570 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2571 error
= mapping
->a_ops
->readpage(file
, page
);
2573 wait_on_page_locked(page
);
2574 if (!PageUptodate(page
))
2581 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2584 /* Things didn't work out. Return zero to tell the mm layer so. */
2585 shrink_readahead_size_eio(file
, ra
);
2586 return VM_FAULT_SIGBUS
;
2590 * We dropped the mmap_sem, we need to return to the fault handler to
2591 * re-find the vma and come back and find our hopefully still populated
2598 return ret
| VM_FAULT_RETRY
;
2600 EXPORT_SYMBOL(filemap_fault
);
2602 void filemap_map_pages(struct vm_fault
*vmf
,
2603 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
2605 struct file
*file
= vmf
->vma
->vm_file
;
2606 struct address_space
*mapping
= file
->f_mapping
;
2607 pgoff_t last_pgoff
= start_pgoff
;
2608 unsigned long max_idx
;
2609 XA_STATE(xas
, &mapping
->i_pages
, start_pgoff
);
2613 xas_for_each(&xas
, page
, end_pgoff
) {
2614 if (xas_retry(&xas
, page
))
2616 if (xa_is_value(page
))
2620 * Check for a locked page first, as a speculative
2621 * reference may adversely influence page migration.
2623 if (PageLocked(page
))
2625 if (!page_cache_get_speculative(page
))
2628 /* Has the page moved or been split? */
2629 if (unlikely(page
!= xas_reload(&xas
)))
2631 page
= find_subpage(page
, xas
.xa_index
);
2633 if (!PageUptodate(page
) ||
2634 PageReadahead(page
) ||
2637 if (!trylock_page(page
))
2640 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2643 max_idx
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2644 if (page
->index
>= max_idx
)
2647 if (file
->f_ra
.mmap_miss
> 0)
2648 file
->f_ra
.mmap_miss
--;
2650 vmf
->address
+= (xas
.xa_index
- last_pgoff
) << PAGE_SHIFT
;
2652 vmf
->pte
+= xas
.xa_index
- last_pgoff
;
2653 last_pgoff
= xas
.xa_index
;
2654 if (alloc_set_pte(vmf
, NULL
, page
))
2663 /* Huge page is mapped? No need to proceed. */
2664 if (pmd_trans_huge(*vmf
->pmd
))
2669 EXPORT_SYMBOL(filemap_map_pages
);
2671 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2673 struct page
*page
= vmf
->page
;
2674 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
2675 vm_fault_t ret
= VM_FAULT_LOCKED
;
2677 sb_start_pagefault(inode
->i_sb
);
2678 file_update_time(vmf
->vma
->vm_file
);
2680 if (page
->mapping
!= inode
->i_mapping
) {
2682 ret
= VM_FAULT_NOPAGE
;
2686 * We mark the page dirty already here so that when freeze is in
2687 * progress, we are guaranteed that writeback during freezing will
2688 * see the dirty page and writeprotect it again.
2690 set_page_dirty(page
);
2691 wait_for_stable_page(page
);
2693 sb_end_pagefault(inode
->i_sb
);
2697 const struct vm_operations_struct generic_file_vm_ops
= {
2698 .fault
= filemap_fault
,
2699 .map_pages
= filemap_map_pages
,
2700 .page_mkwrite
= filemap_page_mkwrite
,
2703 /* This is used for a general mmap of a disk file */
2705 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2707 struct address_space
*mapping
= file
->f_mapping
;
2709 if (!mapping
->a_ops
->readpage
)
2711 file_accessed(file
);
2712 vma
->vm_ops
= &generic_file_vm_ops
;
2717 * This is for filesystems which do not implement ->writepage.
2719 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2721 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2723 return generic_file_mmap(file
, vma
);
2726 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2728 return VM_FAULT_SIGBUS
;
2730 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2734 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2738 #endif /* CONFIG_MMU */
2740 EXPORT_SYMBOL(filemap_page_mkwrite
);
2741 EXPORT_SYMBOL(generic_file_mmap
);
2742 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2744 static struct page
*wait_on_page_read(struct page
*page
)
2746 if (!IS_ERR(page
)) {
2747 wait_on_page_locked(page
);
2748 if (!PageUptodate(page
)) {
2750 page
= ERR_PTR(-EIO
);
2756 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2758 int (*filler
)(void *, struct page
*),
2765 page
= find_get_page(mapping
, index
);
2767 page
= __page_cache_alloc(gfp
);
2769 return ERR_PTR(-ENOMEM
);
2770 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2771 if (unlikely(err
)) {
2775 /* Presumably ENOMEM for xarray node */
2776 return ERR_PTR(err
);
2781 err
= filler(data
, page
);
2783 err
= mapping
->a_ops
->readpage(data
, page
);
2787 return ERR_PTR(err
);
2790 page
= wait_on_page_read(page
);
2795 if (PageUptodate(page
))
2799 * Page is not up to date and may be locked due one of the following
2800 * case a: Page is being filled and the page lock is held
2801 * case b: Read/write error clearing the page uptodate status
2802 * case c: Truncation in progress (page locked)
2803 * case d: Reclaim in progress
2805 * Case a, the page will be up to date when the page is unlocked.
2806 * There is no need to serialise on the page lock here as the page
2807 * is pinned so the lock gives no additional protection. Even if the
2808 * the page is truncated, the data is still valid if PageUptodate as
2809 * it's a race vs truncate race.
2810 * Case b, the page will not be up to date
2811 * Case c, the page may be truncated but in itself, the data may still
2812 * be valid after IO completes as it's a read vs truncate race. The
2813 * operation must restart if the page is not uptodate on unlock but
2814 * otherwise serialising on page lock to stabilise the mapping gives
2815 * no additional guarantees to the caller as the page lock is
2816 * released before return.
2817 * Case d, similar to truncation. If reclaim holds the page lock, it
2818 * will be a race with remove_mapping that determines if the mapping
2819 * is valid on unlock but otherwise the data is valid and there is
2820 * no need to serialise with page lock.
2822 * As the page lock gives no additional guarantee, we optimistically
2823 * wait on the page to be unlocked and check if it's up to date and
2824 * use the page if it is. Otherwise, the page lock is required to
2825 * distinguish between the different cases. The motivation is that we
2826 * avoid spurious serialisations and wakeups when multiple processes
2827 * wait on the same page for IO to complete.
2829 wait_on_page_locked(page
);
2830 if (PageUptodate(page
))
2833 /* Distinguish between all the cases under the safety of the lock */
2836 /* Case c or d, restart the operation */
2837 if (!page
->mapping
) {
2843 /* Someone else locked and filled the page in a very small window */
2844 if (PageUptodate(page
)) {
2851 mark_page_accessed(page
);
2856 * read_cache_page - read into page cache, fill it if needed
2857 * @mapping: the page's address_space
2858 * @index: the page index
2859 * @filler: function to perform the read
2860 * @data: first arg to filler(data, page) function, often left as NULL
2862 * Read into the page cache. If a page already exists, and PageUptodate() is
2863 * not set, try to fill the page and wait for it to become unlocked.
2865 * If the page does not get brought uptodate, return -EIO.
2867 * Return: up to date page on success, ERR_PTR() on failure.
2869 struct page
*read_cache_page(struct address_space
*mapping
,
2871 int (*filler
)(void *, struct page
*),
2874 return do_read_cache_page(mapping
, index
, filler
, data
,
2875 mapping_gfp_mask(mapping
));
2877 EXPORT_SYMBOL(read_cache_page
);
2880 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2881 * @mapping: the page's address_space
2882 * @index: the page index
2883 * @gfp: the page allocator flags to use if allocating
2885 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2886 * any new page allocations done using the specified allocation flags.
2888 * If the page does not get brought uptodate, return -EIO.
2890 * Return: up to date page on success, ERR_PTR() on failure.
2892 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2896 return do_read_cache_page(mapping
, index
, NULL
, NULL
, gfp
);
2898 EXPORT_SYMBOL(read_cache_page_gfp
);
2901 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2902 * LFS limits. If pos is under the limit it becomes a short access. If it
2903 * exceeds the limit we return -EFBIG.
2905 static int generic_write_check_limits(struct file
*file
, loff_t pos
,
2908 struct inode
*inode
= file
->f_mapping
->host
;
2909 loff_t max_size
= inode
->i_sb
->s_maxbytes
;
2910 loff_t limit
= rlimit(RLIMIT_FSIZE
);
2912 if (limit
!= RLIM_INFINITY
) {
2914 send_sig(SIGXFSZ
, current
, 0);
2917 *count
= min(*count
, limit
- pos
);
2920 if (!(file
->f_flags
& O_LARGEFILE
))
2921 max_size
= MAX_NON_LFS
;
2923 if (unlikely(pos
>= max_size
))
2926 *count
= min(*count
, max_size
- pos
);
2932 * Performs necessary checks before doing a write
2934 * Can adjust writing position or amount of bytes to write.
2935 * Returns appropriate error code that caller should return or
2936 * zero in case that write should be allowed.
2938 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2940 struct file
*file
= iocb
->ki_filp
;
2941 struct inode
*inode
= file
->f_mapping
->host
;
2945 if (IS_SWAPFILE(inode
))
2948 if (!iov_iter_count(from
))
2951 /* FIXME: this is for backwards compatibility with 2.4 */
2952 if (iocb
->ki_flags
& IOCB_APPEND
)
2953 iocb
->ki_pos
= i_size_read(inode
);
2955 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && !(iocb
->ki_flags
& IOCB_DIRECT
))
2958 count
= iov_iter_count(from
);
2959 ret
= generic_write_check_limits(file
, iocb
->ki_pos
, &count
);
2963 iov_iter_truncate(from
, count
);
2964 return iov_iter_count(from
);
2966 EXPORT_SYMBOL(generic_write_checks
);
2969 * Performs necessary checks before doing a clone.
2971 * Can adjust amount of bytes to clone via @req_count argument.
2972 * Returns appropriate error code that caller should return or
2973 * zero in case the clone should be allowed.
2975 int generic_remap_checks(struct file
*file_in
, loff_t pos_in
,
2976 struct file
*file_out
, loff_t pos_out
,
2977 loff_t
*req_count
, unsigned int remap_flags
)
2979 struct inode
*inode_in
= file_in
->f_mapping
->host
;
2980 struct inode
*inode_out
= file_out
->f_mapping
->host
;
2981 uint64_t count
= *req_count
;
2983 loff_t size_in
, size_out
;
2984 loff_t bs
= inode_out
->i_sb
->s_blocksize
;
2987 /* The start of both ranges must be aligned to an fs block. */
2988 if (!IS_ALIGNED(pos_in
, bs
) || !IS_ALIGNED(pos_out
, bs
))
2991 /* Ensure offsets don't wrap. */
2992 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
2995 size_in
= i_size_read(inode_in
);
2996 size_out
= i_size_read(inode_out
);
2998 /* Dedupe requires both ranges to be within EOF. */
2999 if ((remap_flags
& REMAP_FILE_DEDUP
) &&
3000 (pos_in
>= size_in
|| pos_in
+ count
> size_in
||
3001 pos_out
>= size_out
|| pos_out
+ count
> size_out
))
3004 /* Ensure the infile range is within the infile. */
3005 if (pos_in
>= size_in
)
3007 count
= min(count
, size_in
- (uint64_t)pos_in
);
3009 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3014 * If the user wanted us to link to the infile's EOF, round up to the
3015 * next block boundary for this check.
3017 * Otherwise, make sure the count is also block-aligned, having
3018 * already confirmed the starting offsets' block alignment.
3020 if (pos_in
+ count
== size_in
) {
3021 bcount
= ALIGN(size_in
, bs
) - pos_in
;
3023 if (!IS_ALIGNED(count
, bs
))
3024 count
= ALIGN_DOWN(count
, bs
);
3028 /* Don't allow overlapped cloning within the same file. */
3029 if (inode_in
== inode_out
&&
3030 pos_out
+ bcount
> pos_in
&&
3031 pos_out
< pos_in
+ bcount
)
3035 * We shortened the request but the caller can't deal with that, so
3036 * bounce the request back to userspace.
3038 if (*req_count
!= count
&& !(remap_flags
& REMAP_FILE_CAN_SHORTEN
))
3047 * Performs common checks before doing a file copy/clone
3048 * from @file_in to @file_out.
3050 int generic_file_rw_checks(struct file
*file_in
, struct file
*file_out
)
3052 struct inode
*inode_in
= file_inode(file_in
);
3053 struct inode
*inode_out
= file_inode(file_out
);
3055 /* Don't copy dirs, pipes, sockets... */
3056 if (S_ISDIR(inode_in
->i_mode
) || S_ISDIR(inode_out
->i_mode
))
3058 if (!S_ISREG(inode_in
->i_mode
) || !S_ISREG(inode_out
->i_mode
))
3061 if (!(file_in
->f_mode
& FMODE_READ
) ||
3062 !(file_out
->f_mode
& FMODE_WRITE
) ||
3063 (file_out
->f_flags
& O_APPEND
))
3070 * Performs necessary checks before doing a file copy
3072 * Can adjust amount of bytes to copy via @req_count argument.
3073 * Returns appropriate error code that caller should return or
3074 * zero in case the copy should be allowed.
3076 int generic_copy_file_checks(struct file
*file_in
, loff_t pos_in
,
3077 struct file
*file_out
, loff_t pos_out
,
3078 size_t *req_count
, unsigned int flags
)
3080 struct inode
*inode_in
= file_inode(file_in
);
3081 struct inode
*inode_out
= file_inode(file_out
);
3082 uint64_t count
= *req_count
;
3086 ret
= generic_file_rw_checks(file_in
, file_out
);
3090 /* Don't touch certain kinds of inodes */
3091 if (IS_IMMUTABLE(inode_out
))
3094 if (IS_SWAPFILE(inode_in
) || IS_SWAPFILE(inode_out
))
3097 /* Ensure offsets don't wrap. */
3098 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
3101 /* Shorten the copy to EOF */
3102 size_in
= i_size_read(inode_in
);
3103 if (pos_in
>= size_in
)
3106 count
= min(count
, size_in
- (uint64_t)pos_in
);
3108 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3112 /* Don't allow overlapped copying within the same file. */
3113 if (inode_in
== inode_out
&&
3114 pos_out
+ count
> pos_in
&&
3115 pos_out
< pos_in
+ count
)
3122 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
3123 loff_t pos
, unsigned len
, unsigned flags
,
3124 struct page
**pagep
, void **fsdata
)
3126 const struct address_space_operations
*aops
= mapping
->a_ops
;
3128 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
3131 EXPORT_SYMBOL(pagecache_write_begin
);
3133 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
3134 loff_t pos
, unsigned len
, unsigned copied
,
3135 struct page
*page
, void *fsdata
)
3137 const struct address_space_operations
*aops
= mapping
->a_ops
;
3139 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
3141 EXPORT_SYMBOL(pagecache_write_end
);
3144 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
3146 struct file
*file
= iocb
->ki_filp
;
3147 struct address_space
*mapping
= file
->f_mapping
;
3148 struct inode
*inode
= mapping
->host
;
3149 loff_t pos
= iocb
->ki_pos
;
3154 write_len
= iov_iter_count(from
);
3155 end
= (pos
+ write_len
- 1) >> PAGE_SHIFT
;
3157 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
3158 /* If there are pages to writeback, return */
3159 if (filemap_range_has_page(inode
->i_mapping
, pos
,
3160 pos
+ write_len
- 1))
3163 written
= filemap_write_and_wait_range(mapping
, pos
,
3164 pos
+ write_len
- 1);
3170 * After a write we want buffered reads to be sure to go to disk to get
3171 * the new data. We invalidate clean cached page from the region we're
3172 * about to write. We do this *before* the write so that we can return
3173 * without clobbering -EIOCBQUEUED from ->direct_IO().
3175 written
= invalidate_inode_pages2_range(mapping
,
3176 pos
>> PAGE_SHIFT
, end
);
3178 * If a page can not be invalidated, return 0 to fall back
3179 * to buffered write.
3182 if (written
== -EBUSY
)
3187 written
= mapping
->a_ops
->direct_IO(iocb
, from
);
3190 * Finally, try again to invalidate clean pages which might have been
3191 * cached by non-direct readahead, or faulted in by get_user_pages()
3192 * if the source of the write was an mmap'ed region of the file
3193 * we're writing. Either one is a pretty crazy thing to do,
3194 * so we don't support it 100%. If this invalidation
3195 * fails, tough, the write still worked...
3197 * Most of the time we do not need this since dio_complete() will do
3198 * the invalidation for us. However there are some file systems that
3199 * do not end up with dio_complete() being called, so let's not break
3200 * them by removing it completely
3202 if (mapping
->nrpages
)
3203 invalidate_inode_pages2_range(mapping
,
3204 pos
>> PAGE_SHIFT
, end
);
3208 write_len
-= written
;
3209 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
3210 i_size_write(inode
, pos
);
3211 mark_inode_dirty(inode
);
3215 iov_iter_revert(from
, write_len
- iov_iter_count(from
));
3219 EXPORT_SYMBOL(generic_file_direct_write
);
3222 * Find or create a page at the given pagecache position. Return the locked
3223 * page. This function is specifically for buffered writes.
3225 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
3226 pgoff_t index
, unsigned flags
)
3229 int fgp_flags
= FGP_LOCK
|FGP_WRITE
|FGP_CREAT
;
3231 if (flags
& AOP_FLAG_NOFS
)
3232 fgp_flags
|= FGP_NOFS
;
3234 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
3235 mapping_gfp_mask(mapping
));
3237 wait_for_stable_page(page
);
3241 EXPORT_SYMBOL(grab_cache_page_write_begin
);
3243 ssize_t
generic_perform_write(struct file
*file
,
3244 struct iov_iter
*i
, loff_t pos
)
3246 struct address_space
*mapping
= file
->f_mapping
;
3247 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
3249 ssize_t written
= 0;
3250 unsigned int flags
= 0;
3254 unsigned long offset
; /* Offset into pagecache page */
3255 unsigned long bytes
; /* Bytes to write to page */
3256 size_t copied
; /* Bytes copied from user */
3259 offset
= (pos
& (PAGE_SIZE
- 1));
3260 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3265 * Bring in the user page that we will copy from _first_.
3266 * Otherwise there's a nasty deadlock on copying from the
3267 * same page as we're writing to, without it being marked
3270 * Not only is this an optimisation, but it is also required
3271 * to check that the address is actually valid, when atomic
3272 * usercopies are used, below.
3274 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
3279 if (fatal_signal_pending(current
)) {
3284 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
3286 if (unlikely(status
< 0))
3289 if (mapping_writably_mapped(mapping
))
3290 flush_dcache_page(page
);
3292 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
3293 flush_dcache_page(page
);
3295 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
3297 if (unlikely(status
< 0))
3303 iov_iter_advance(i
, copied
);
3304 if (unlikely(copied
== 0)) {
3306 * If we were unable to copy any data at all, we must
3307 * fall back to a single segment length write.
3309 * If we didn't fallback here, we could livelock
3310 * because not all segments in the iov can be copied at
3311 * once without a pagefault.
3313 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3314 iov_iter_single_seg_count(i
));
3320 balance_dirty_pages_ratelimited(mapping
);
3321 } while (iov_iter_count(i
));
3323 return written
? written
: status
;
3325 EXPORT_SYMBOL(generic_perform_write
);
3328 * __generic_file_write_iter - write data to a file
3329 * @iocb: IO state structure (file, offset, etc.)
3330 * @from: iov_iter with data to write
3332 * This function does all the work needed for actually writing data to a
3333 * file. It does all basic checks, removes SUID from the file, updates
3334 * modification times and calls proper subroutines depending on whether we
3335 * do direct IO or a standard buffered write.
3337 * It expects i_mutex to be grabbed unless we work on a block device or similar
3338 * object which does not need locking at all.
3340 * This function does *not* take care of syncing data in case of O_SYNC write.
3341 * A caller has to handle it. This is mainly due to the fact that we want to
3342 * avoid syncing under i_mutex.
3345 * * number of bytes written, even for truncated writes
3346 * * negative error code if no data has been written at all
3348 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3350 struct file
*file
= iocb
->ki_filp
;
3351 struct address_space
* mapping
= file
->f_mapping
;
3352 struct inode
*inode
= mapping
->host
;
3353 ssize_t written
= 0;
3357 /* We can write back this queue in page reclaim */
3358 current
->backing_dev_info
= inode_to_bdi(inode
);
3359 err
= file_remove_privs(file
);
3363 err
= file_update_time(file
);
3367 if (iocb
->ki_flags
& IOCB_DIRECT
) {
3368 loff_t pos
, endbyte
;
3370 written
= generic_file_direct_write(iocb
, from
);
3372 * If the write stopped short of completing, fall back to
3373 * buffered writes. Some filesystems do this for writes to
3374 * holes, for example. For DAX files, a buffered write will
3375 * not succeed (even if it did, DAX does not handle dirty
3376 * page-cache pages correctly).
3378 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
3381 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
3383 * If generic_perform_write() returned a synchronous error
3384 * then we want to return the number of bytes which were
3385 * direct-written, or the error code if that was zero. Note
3386 * that this differs from normal direct-io semantics, which
3387 * will return -EFOO even if some bytes were written.
3389 if (unlikely(status
< 0)) {
3394 * We need to ensure that the page cache pages are written to
3395 * disk and invalidated to preserve the expected O_DIRECT
3398 endbyte
= pos
+ status
- 1;
3399 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
3401 iocb
->ki_pos
= endbyte
+ 1;
3403 invalidate_mapping_pages(mapping
,
3405 endbyte
>> PAGE_SHIFT
);
3408 * We don't know how much we wrote, so just return
3409 * the number of bytes which were direct-written
3413 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
3414 if (likely(written
> 0))
3415 iocb
->ki_pos
+= written
;
3418 current
->backing_dev_info
= NULL
;
3419 return written
? written
: err
;
3421 EXPORT_SYMBOL(__generic_file_write_iter
);
3424 * generic_file_write_iter - write data to a file
3425 * @iocb: IO state structure
3426 * @from: iov_iter with data to write
3428 * This is a wrapper around __generic_file_write_iter() to be used by most
3429 * filesystems. It takes care of syncing the file in case of O_SYNC file
3430 * and acquires i_mutex as needed.
3432 * * negative error code if no data has been written at all of
3433 * vfs_fsync_range() failed for a synchronous write
3434 * * number of bytes written, even for truncated writes
3436 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3438 struct file
*file
= iocb
->ki_filp
;
3439 struct inode
*inode
= file
->f_mapping
->host
;
3443 ret
= generic_write_checks(iocb
, from
);
3445 ret
= __generic_file_write_iter(iocb
, from
);
3446 inode_unlock(inode
);
3449 ret
= generic_write_sync(iocb
, ret
);
3452 EXPORT_SYMBOL(generic_file_write_iter
);
3455 * try_to_release_page() - release old fs-specific metadata on a page
3457 * @page: the page which the kernel is trying to free
3458 * @gfp_mask: memory allocation flags (and I/O mode)
3460 * The address_space is to try to release any data against the page
3461 * (presumably at page->private).
3463 * This may also be called if PG_fscache is set on a page, indicating that the
3464 * page is known to the local caching routines.
3466 * The @gfp_mask argument specifies whether I/O may be performed to release
3467 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3469 * Return: %1 if the release was successful, otherwise return zero.
3471 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
3473 struct address_space
* const mapping
= page
->mapping
;
3475 BUG_ON(!PageLocked(page
));
3476 if (PageWriteback(page
))
3479 if (mapping
&& mapping
->a_ops
->releasepage
)
3480 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
3481 return try_to_free_buffers(page
);
3484 EXPORT_SYMBOL(try_to_release_page
);