1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
32 int zlib_compress_pages(struct list_head
*ws
, struct address_space
*mapping
,
33 u64 start
, struct page
**pages
, unsigned long *out_pages
,
34 unsigned long *total_in
, unsigned long *total_out
);
35 int zlib_decompress_bio(struct list_head
*ws
, struct compressed_bio
*cb
);
36 int zlib_decompress(struct list_head
*ws
, unsigned char *data_in
,
37 struct page
*dest_page
, unsigned long start_byte
, size_t srclen
,
39 struct list_head
*zlib_alloc_workspace(unsigned int level
);
40 void zlib_free_workspace(struct list_head
*ws
);
41 struct list_head
*zlib_get_workspace(unsigned int level
);
43 int lzo_compress_pages(struct list_head
*ws
, struct address_space
*mapping
,
44 u64 start
, struct page
**pages
, unsigned long *out_pages
,
45 unsigned long *total_in
, unsigned long *total_out
);
46 int lzo_decompress_bio(struct list_head
*ws
, struct compressed_bio
*cb
);
47 int lzo_decompress(struct list_head
*ws
, unsigned char *data_in
,
48 struct page
*dest_page
, unsigned long start_byte
, size_t srclen
,
50 struct list_head
*lzo_alloc_workspace(unsigned int level
);
51 void lzo_free_workspace(struct list_head
*ws
);
53 int zstd_compress_pages(struct list_head
*ws
, struct address_space
*mapping
,
54 u64 start
, struct page
**pages
, unsigned long *out_pages
,
55 unsigned long *total_in
, unsigned long *total_out
);
56 int zstd_decompress_bio(struct list_head
*ws
, struct compressed_bio
*cb
);
57 int zstd_decompress(struct list_head
*ws
, unsigned char *data_in
,
58 struct page
*dest_page
, unsigned long start_byte
, size_t srclen
,
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head
*zstd_alloc_workspace(unsigned int level
);
63 void zstd_free_workspace(struct list_head
*ws
);
64 struct list_head
*zstd_get_workspace(unsigned int level
);
65 void zstd_put_workspace(struct list_head
*ws
);
67 static const char* const btrfs_compress_types
[] = { "", "zlib", "lzo", "zstd" };
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type
)
72 case BTRFS_COMPRESS_ZLIB
:
73 case BTRFS_COMPRESS_LZO
:
74 case BTRFS_COMPRESS_ZSTD
:
75 case BTRFS_COMPRESS_NONE
:
76 return btrfs_compress_types
[type
];
84 bool btrfs_compress_is_valid_type(const char *str
, size_t len
)
88 for (i
= 1; i
< ARRAY_SIZE(btrfs_compress_types
); i
++) {
89 size_t comp_len
= strlen(btrfs_compress_types
[i
]);
94 if (!strncmp(btrfs_compress_types
[i
], str
, comp_len
))
100 static int compression_compress_pages(int type
, struct list_head
*ws
,
101 struct address_space
*mapping
, u64 start
, struct page
**pages
,
102 unsigned long *out_pages
, unsigned long *total_in
,
103 unsigned long *total_out
)
106 case BTRFS_COMPRESS_ZLIB
:
107 return zlib_compress_pages(ws
, mapping
, start
, pages
,
108 out_pages
, total_in
, total_out
);
109 case BTRFS_COMPRESS_LZO
:
110 return lzo_compress_pages(ws
, mapping
, start
, pages
,
111 out_pages
, total_in
, total_out
);
112 case BTRFS_COMPRESS_ZSTD
:
113 return zstd_compress_pages(ws
, mapping
, start
, pages
,
114 out_pages
, total_in
, total_out
);
115 case BTRFS_COMPRESS_NONE
:
118 * This can't happen, the type is validated several times
119 * before we get here. As a sane fallback, return what the
120 * callers will understand as 'no compression happened'.
126 static int compression_decompress_bio(int type
, struct list_head
*ws
,
127 struct compressed_bio
*cb
)
130 case BTRFS_COMPRESS_ZLIB
: return zlib_decompress_bio(ws
, cb
);
131 case BTRFS_COMPRESS_LZO
: return lzo_decompress_bio(ws
, cb
);
132 case BTRFS_COMPRESS_ZSTD
: return zstd_decompress_bio(ws
, cb
);
133 case BTRFS_COMPRESS_NONE
:
136 * This can't happen, the type is validated several times
137 * before we get here.
143 static int compression_decompress(int type
, struct list_head
*ws
,
144 unsigned char *data_in
, struct page
*dest_page
,
145 unsigned long start_byte
, size_t srclen
, size_t destlen
)
148 case BTRFS_COMPRESS_ZLIB
: return zlib_decompress(ws
, data_in
, dest_page
,
149 start_byte
, srclen
, destlen
);
150 case BTRFS_COMPRESS_LZO
: return lzo_decompress(ws
, data_in
, dest_page
,
151 start_byte
, srclen
, destlen
);
152 case BTRFS_COMPRESS_ZSTD
: return zstd_decompress(ws
, data_in
, dest_page
,
153 start_byte
, srclen
, destlen
);
154 case BTRFS_COMPRESS_NONE
:
157 * This can't happen, the type is validated several times
158 * before we get here.
164 static int btrfs_decompress_bio(struct compressed_bio
*cb
);
166 static inline int compressed_bio_size(struct btrfs_fs_info
*fs_info
,
167 unsigned long disk_size
)
169 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
171 return sizeof(struct compressed_bio
) +
172 (DIV_ROUND_UP(disk_size
, fs_info
->sectorsize
)) * csum_size
;
175 static int check_compressed_csum(struct btrfs_inode
*inode
,
176 struct compressed_bio
*cb
,
179 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
180 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
181 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
186 u8 csum
[BTRFS_CSUM_SIZE
];
187 u8
*cb_sum
= cb
->sums
;
189 if (inode
->flags
& BTRFS_INODE_NODATASUM
)
192 shash
->tfm
= fs_info
->csum_shash
;
194 for (i
= 0; i
< cb
->nr_pages
; i
++) {
195 page
= cb
->compressed_pages
[i
];
197 crypto_shash_init(shash
);
198 kaddr
= kmap_atomic(page
);
199 crypto_shash_update(shash
, kaddr
, PAGE_SIZE
);
200 kunmap_atomic(kaddr
);
201 crypto_shash_final(shash
, (u8
*)&csum
);
203 if (memcmp(&csum
, cb_sum
, csum_size
)) {
204 btrfs_print_data_csum_error(inode
, disk_start
,
205 csum
, cb_sum
, cb
->mirror_num
);
217 /* when we finish reading compressed pages from the disk, we
218 * decompress them and then run the bio end_io routines on the
219 * decompressed pages (in the inode address space).
221 * This allows the checksumming and other IO error handling routines
224 * The compressed pages are freed here, and it must be run
227 static void end_compressed_bio_read(struct bio
*bio
)
229 struct compressed_bio
*cb
= bio
->bi_private
;
233 unsigned int mirror
= btrfs_io_bio(bio
)->mirror_num
;
239 /* if there are more bios still pending for this compressed
242 if (!refcount_dec_and_test(&cb
->pending_bios
))
246 * Record the correct mirror_num in cb->orig_bio so that
247 * read-repair can work properly.
249 ASSERT(btrfs_io_bio(cb
->orig_bio
));
250 btrfs_io_bio(cb
->orig_bio
)->mirror_num
= mirror
;
251 cb
->mirror_num
= mirror
;
254 * Some IO in this cb have failed, just skip checksum as there
255 * is no way it could be correct.
261 ret
= check_compressed_csum(BTRFS_I(inode
), cb
,
262 (u64
)bio
->bi_iter
.bi_sector
<< 9);
266 /* ok, we're the last bio for this extent, lets start
269 ret
= btrfs_decompress_bio(cb
);
275 /* release the compressed pages */
277 for (index
= 0; index
< cb
->nr_pages
; index
++) {
278 page
= cb
->compressed_pages
[index
];
279 page
->mapping
= NULL
;
283 /* do io completion on the original bio */
285 bio_io_error(cb
->orig_bio
);
287 struct bio_vec
*bvec
;
288 struct bvec_iter_all iter_all
;
291 * we have verified the checksum already, set page
292 * checked so the end_io handlers know about it
294 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
295 bio_for_each_segment_all(bvec
, cb
->orig_bio
, iter_all
)
296 SetPageChecked(bvec
->bv_page
);
298 bio_endio(cb
->orig_bio
);
301 /* finally free the cb struct */
302 kfree(cb
->compressed_pages
);
309 * Clear the writeback bits on all of the file
310 * pages for a compressed write
312 static noinline
void end_compressed_writeback(struct inode
*inode
,
313 const struct compressed_bio
*cb
)
315 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
316 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
317 struct page
*pages
[16];
318 unsigned long nr_pages
= end_index
- index
+ 1;
323 mapping_set_error(inode
->i_mapping
, -EIO
);
325 while (nr_pages
> 0) {
326 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
328 nr_pages
, ARRAY_SIZE(pages
)), pages
);
334 for (i
= 0; i
< ret
; i
++) {
336 SetPageError(pages
[i
]);
337 end_page_writeback(pages
[i
]);
343 /* the inode may be gone now */
347 * do the cleanup once all the compressed pages hit the disk.
348 * This will clear writeback on the file pages and free the compressed
351 * This also calls the writeback end hooks for the file pages so that
352 * metadata and checksums can be updated in the file.
354 static void end_compressed_bio_write(struct bio
*bio
)
356 struct compressed_bio
*cb
= bio
->bi_private
;
364 /* if there are more bios still pending for this compressed
367 if (!refcount_dec_and_test(&cb
->pending_bios
))
370 /* ok, we're the last bio for this extent, step one is to
371 * call back into the FS and do all the end_io operations
374 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
375 btrfs_writepage_endio_finish_ordered(cb
->compressed_pages
[0],
376 cb
->start
, cb
->start
+ cb
->len
- 1,
377 bio
->bi_status
== BLK_STS_OK
);
378 cb
->compressed_pages
[0]->mapping
= NULL
;
380 end_compressed_writeback(inode
, cb
);
381 /* note, our inode could be gone now */
384 * release the compressed pages, these came from alloc_page and
385 * are not attached to the inode at all
388 for (index
= 0; index
< cb
->nr_pages
; index
++) {
389 page
= cb
->compressed_pages
[index
];
390 page
->mapping
= NULL
;
394 /* finally free the cb struct */
395 kfree(cb
->compressed_pages
);
402 * worker function to build and submit bios for previously compressed pages.
403 * The corresponding pages in the inode should be marked for writeback
404 * and the compressed pages should have a reference on them for dropping
405 * when the IO is complete.
407 * This also checksums the file bytes and gets things ready for
410 blk_status_t
btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
411 unsigned long len
, u64 disk_start
,
412 unsigned long compressed_len
,
413 struct page
**compressed_pages
,
414 unsigned long nr_pages
,
415 unsigned int write_flags
,
416 struct cgroup_subsys_state
*blkcg_css
)
418 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
419 struct bio
*bio
= NULL
;
420 struct compressed_bio
*cb
;
421 unsigned long bytes_left
;
424 u64 first_byte
= disk_start
;
426 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
428 WARN_ON(!PAGE_ALIGNED(start
));
429 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
431 return BLK_STS_RESOURCE
;
432 refcount_set(&cb
->pending_bios
, 0);
438 cb
->compressed_pages
= compressed_pages
;
439 cb
->compressed_len
= compressed_len
;
441 cb
->nr_pages
= nr_pages
;
443 bio
= btrfs_bio_alloc(first_byte
);
444 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
445 bio
->bi_private
= cb
;
446 bio
->bi_end_io
= end_compressed_bio_write
;
449 bio
->bi_opf
|= REQ_CGROUP_PUNT
;
450 kthread_associate_blkcg(blkcg_css
);
452 refcount_set(&cb
->pending_bios
, 1);
454 /* create and submit bios for the compressed pages */
455 bytes_left
= compressed_len
;
456 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
459 page
= compressed_pages
[pg_index
];
460 page
->mapping
= inode
->i_mapping
;
461 if (bio
->bi_iter
.bi_size
)
462 submit
= btrfs_bio_fits_in_stripe(page
, PAGE_SIZE
, bio
,
465 page
->mapping
= NULL
;
466 if (submit
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
469 * inc the count before we submit the bio so
470 * we know the end IO handler won't happen before
471 * we inc the count. Otherwise, the cb might get
472 * freed before we're done setting it up
474 refcount_inc(&cb
->pending_bios
);
475 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
476 BTRFS_WQ_ENDIO_DATA
);
477 BUG_ON(ret
); /* -ENOMEM */
480 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
481 BUG_ON(ret
); /* -ENOMEM */
484 ret
= btrfs_map_bio(fs_info
, bio
, 0);
486 bio
->bi_status
= ret
;
490 bio
= btrfs_bio_alloc(first_byte
);
491 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
492 bio
->bi_private
= cb
;
493 bio
->bi_end_io
= end_compressed_bio_write
;
495 bio
->bi_opf
|= REQ_CGROUP_PUNT
;
496 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
498 if (bytes_left
< PAGE_SIZE
) {
500 "bytes left %lu compress len %lu nr %lu",
501 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
503 bytes_left
-= PAGE_SIZE
;
504 first_byte
+= PAGE_SIZE
;
508 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
509 BUG_ON(ret
); /* -ENOMEM */
512 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
513 BUG_ON(ret
); /* -ENOMEM */
516 ret
= btrfs_map_bio(fs_info
, bio
, 0);
518 bio
->bi_status
= ret
;
523 kthread_associate_blkcg(NULL
);
528 static u64
bio_end_offset(struct bio
*bio
)
530 struct bio_vec
*last
= bio_last_bvec_all(bio
);
532 return page_offset(last
->bv_page
) + last
->bv_len
+ last
->bv_offset
;
535 static noinline
int add_ra_bio_pages(struct inode
*inode
,
537 struct compressed_bio
*cb
)
539 unsigned long end_index
;
540 unsigned long pg_index
;
542 u64 isize
= i_size_read(inode
);
545 unsigned long nr_pages
= 0;
546 struct extent_map
*em
;
547 struct address_space
*mapping
= inode
->i_mapping
;
548 struct extent_map_tree
*em_tree
;
549 struct extent_io_tree
*tree
;
553 last_offset
= bio_end_offset(cb
->orig_bio
);
554 em_tree
= &BTRFS_I(inode
)->extent_tree
;
555 tree
= &BTRFS_I(inode
)->io_tree
;
560 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
562 while (last_offset
< compressed_end
) {
563 pg_index
= last_offset
>> PAGE_SHIFT
;
565 if (pg_index
> end_index
)
568 page
= xa_load(&mapping
->i_pages
, pg_index
);
569 if (page
&& !xa_is_value(page
)) {
576 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
581 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
586 end
= last_offset
+ PAGE_SIZE
- 1;
588 * at this point, we have a locked page in the page cache
589 * for these bytes in the file. But, we have to make
590 * sure they map to this compressed extent on disk.
592 set_page_extent_mapped(page
);
593 lock_extent(tree
, last_offset
, end
);
594 read_lock(&em_tree
->lock
);
595 em
= lookup_extent_mapping(em_tree
, last_offset
,
597 read_unlock(&em_tree
->lock
);
599 if (!em
|| last_offset
< em
->start
||
600 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
601 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
603 unlock_extent(tree
, last_offset
, end
);
610 if (page
->index
== end_index
) {
612 size_t zero_offset
= offset_in_page(isize
);
616 zeros
= PAGE_SIZE
- zero_offset
;
617 userpage
= kmap_atomic(page
);
618 memset(userpage
+ zero_offset
, 0, zeros
);
619 flush_dcache_page(page
);
620 kunmap_atomic(userpage
);
624 ret
= bio_add_page(cb
->orig_bio
, page
,
627 if (ret
== PAGE_SIZE
) {
631 unlock_extent(tree
, last_offset
, end
);
637 last_offset
+= PAGE_SIZE
;
643 * for a compressed read, the bio we get passed has all the inode pages
644 * in it. We don't actually do IO on those pages but allocate new ones
645 * to hold the compressed pages on disk.
647 * bio->bi_iter.bi_sector points to the compressed extent on disk
648 * bio->bi_io_vec points to all of the inode pages
650 * After the compressed pages are read, we copy the bytes into the
651 * bio we were passed and then call the bio end_io calls
653 blk_status_t
btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
654 int mirror_num
, unsigned long bio_flags
)
656 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
657 struct extent_map_tree
*em_tree
;
658 struct compressed_bio
*cb
;
659 unsigned long compressed_len
;
660 unsigned long nr_pages
;
661 unsigned long pg_index
;
663 struct bio
*comp_bio
;
664 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
667 struct extent_map
*em
;
668 blk_status_t ret
= BLK_STS_RESOURCE
;
670 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
673 em_tree
= &BTRFS_I(inode
)->extent_tree
;
675 /* we need the actual starting offset of this extent in the file */
676 read_lock(&em_tree
->lock
);
677 em
= lookup_extent_mapping(em_tree
,
678 page_offset(bio_first_page_all(bio
)),
680 read_unlock(&em_tree
->lock
);
682 return BLK_STS_IOERR
;
684 compressed_len
= em
->block_len
;
685 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
689 refcount_set(&cb
->pending_bios
, 0);
692 cb
->mirror_num
= mirror_num
;
695 cb
->start
= em
->orig_start
;
697 em_start
= em
->start
;
702 cb
->len
= bio
->bi_iter
.bi_size
;
703 cb
->compressed_len
= compressed_len
;
704 cb
->compress_type
= extent_compress_type(bio_flags
);
707 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
708 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
710 if (!cb
->compressed_pages
)
713 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
714 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
716 if (!cb
->compressed_pages
[pg_index
]) {
717 faili
= pg_index
- 1;
718 ret
= BLK_STS_RESOURCE
;
722 faili
= nr_pages
- 1;
723 cb
->nr_pages
= nr_pages
;
725 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
727 /* include any pages we added in add_ra-bio_pages */
728 cb
->len
= bio
->bi_iter
.bi_size
;
730 comp_bio
= btrfs_bio_alloc(cur_disk_byte
);
731 comp_bio
->bi_opf
= REQ_OP_READ
;
732 comp_bio
->bi_private
= cb
;
733 comp_bio
->bi_end_io
= end_compressed_bio_read
;
734 refcount_set(&cb
->pending_bios
, 1);
736 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
739 page
= cb
->compressed_pages
[pg_index
];
740 page
->mapping
= inode
->i_mapping
;
741 page
->index
= em_start
>> PAGE_SHIFT
;
743 if (comp_bio
->bi_iter
.bi_size
)
744 submit
= btrfs_bio_fits_in_stripe(page
, PAGE_SIZE
,
747 page
->mapping
= NULL
;
748 if (submit
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
750 unsigned int nr_sectors
;
752 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
,
753 BTRFS_WQ_ENDIO_DATA
);
754 BUG_ON(ret
); /* -ENOMEM */
757 * inc the count before we submit the bio so
758 * we know the end IO handler won't happen before
759 * we inc the count. Otherwise, the cb might get
760 * freed before we're done setting it up
762 refcount_inc(&cb
->pending_bios
);
764 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
765 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
,
767 BUG_ON(ret
); /* -ENOMEM */
770 nr_sectors
= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
771 fs_info
->sectorsize
);
772 sums
+= csum_size
* nr_sectors
;
774 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
);
776 comp_bio
->bi_status
= ret
;
780 comp_bio
= btrfs_bio_alloc(cur_disk_byte
);
781 comp_bio
->bi_opf
= REQ_OP_READ
;
782 comp_bio
->bi_private
= cb
;
783 comp_bio
->bi_end_io
= end_compressed_bio_read
;
785 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
787 cur_disk_byte
+= PAGE_SIZE
;
790 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
, BTRFS_WQ_ENDIO_DATA
);
791 BUG_ON(ret
); /* -ENOMEM */
793 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
794 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
, (u64
)-1, sums
);
795 BUG_ON(ret
); /* -ENOMEM */
798 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
);
800 comp_bio
->bi_status
= ret
;
808 __free_page(cb
->compressed_pages
[faili
]);
812 kfree(cb
->compressed_pages
);
821 * Heuristic uses systematic sampling to collect data from the input data
822 * range, the logic can be tuned by the following constants:
824 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
825 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
827 #define SAMPLING_READ_SIZE (16)
828 #define SAMPLING_INTERVAL (256)
831 * For statistical analysis of the input data we consider bytes that form a
832 * Galois Field of 256 objects. Each object has an attribute count, ie. how
833 * many times the object appeared in the sample.
835 #define BUCKET_SIZE (256)
838 * The size of the sample is based on a statistical sampling rule of thumb.
839 * The common way is to perform sampling tests as long as the number of
840 * elements in each cell is at least 5.
842 * Instead of 5, we choose 32 to obtain more accurate results.
843 * If the data contain the maximum number of symbols, which is 256, we obtain a
844 * sample size bound by 8192.
846 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
847 * from up to 512 locations.
849 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
850 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
856 struct heuristic_ws
{
857 /* Partial copy of input data */
860 /* Buckets store counters for each byte value */
861 struct bucket_item
*bucket
;
863 struct bucket_item
*bucket_b
;
864 struct list_head list
;
867 static struct workspace_manager heuristic_wsm
;
869 static void free_heuristic_ws(struct list_head
*ws
)
871 struct heuristic_ws
*workspace
;
873 workspace
= list_entry(ws
, struct heuristic_ws
, list
);
875 kvfree(workspace
->sample
);
876 kfree(workspace
->bucket
);
877 kfree(workspace
->bucket_b
);
881 static struct list_head
*alloc_heuristic_ws(unsigned int level
)
883 struct heuristic_ws
*ws
;
885 ws
= kzalloc(sizeof(*ws
), GFP_KERNEL
);
887 return ERR_PTR(-ENOMEM
);
889 ws
->sample
= kvmalloc(MAX_SAMPLE_SIZE
, GFP_KERNEL
);
893 ws
->bucket
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket
), GFP_KERNEL
);
897 ws
->bucket_b
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket_b
), GFP_KERNEL
);
901 INIT_LIST_HEAD(&ws
->list
);
904 free_heuristic_ws(&ws
->list
);
905 return ERR_PTR(-ENOMEM
);
908 const struct btrfs_compress_op btrfs_heuristic_compress
= {
909 .workspace_manager
= &heuristic_wsm
,
912 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
913 /* The heuristic is represented as compression type 0 */
914 &btrfs_heuristic_compress
,
915 &btrfs_zlib_compress
,
917 &btrfs_zstd_compress
,
920 static struct list_head
*alloc_workspace(int type
, unsigned int level
)
923 case BTRFS_COMPRESS_NONE
: return alloc_heuristic_ws(level
);
924 case BTRFS_COMPRESS_ZLIB
: return zlib_alloc_workspace(level
);
925 case BTRFS_COMPRESS_LZO
: return lzo_alloc_workspace(level
);
926 case BTRFS_COMPRESS_ZSTD
: return zstd_alloc_workspace(level
);
929 * This can't happen, the type is validated several times
930 * before we get here.
936 static void free_workspace(int type
, struct list_head
*ws
)
939 case BTRFS_COMPRESS_NONE
: return free_heuristic_ws(ws
);
940 case BTRFS_COMPRESS_ZLIB
: return zlib_free_workspace(ws
);
941 case BTRFS_COMPRESS_LZO
: return lzo_free_workspace(ws
);
942 case BTRFS_COMPRESS_ZSTD
: return zstd_free_workspace(ws
);
945 * This can't happen, the type is validated several times
946 * before we get here.
952 static void btrfs_init_workspace_manager(int type
)
954 struct workspace_manager
*wsm
;
955 struct list_head
*workspace
;
957 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
958 INIT_LIST_HEAD(&wsm
->idle_ws
);
959 spin_lock_init(&wsm
->ws_lock
);
960 atomic_set(&wsm
->total_ws
, 0);
961 init_waitqueue_head(&wsm
->ws_wait
);
964 * Preallocate one workspace for each compression type so we can
965 * guarantee forward progress in the worst case
967 workspace
= alloc_workspace(type
, 0);
968 if (IS_ERR(workspace
)) {
970 "BTRFS: cannot preallocate compression workspace, will try later\n");
972 atomic_set(&wsm
->total_ws
, 1);
974 list_add(workspace
, &wsm
->idle_ws
);
978 static void btrfs_cleanup_workspace_manager(int type
)
980 struct workspace_manager
*wsman
;
981 struct list_head
*ws
;
983 wsman
= btrfs_compress_op
[type
]->workspace_manager
;
984 while (!list_empty(&wsman
->idle_ws
)) {
985 ws
= wsman
->idle_ws
.next
;
987 free_workspace(type
, ws
);
988 atomic_dec(&wsman
->total_ws
);
993 * This finds an available workspace or allocates a new one.
994 * If it's not possible to allocate a new one, waits until there's one.
995 * Preallocation makes a forward progress guarantees and we do not return
998 struct list_head
*btrfs_get_workspace(int type
, unsigned int level
)
1000 struct workspace_manager
*wsm
;
1001 struct list_head
*workspace
;
1002 int cpus
= num_online_cpus();
1004 struct list_head
*idle_ws
;
1005 spinlock_t
*ws_lock
;
1007 wait_queue_head_t
*ws_wait
;
1010 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
1011 idle_ws
= &wsm
->idle_ws
;
1012 ws_lock
= &wsm
->ws_lock
;
1013 total_ws
= &wsm
->total_ws
;
1014 ws_wait
= &wsm
->ws_wait
;
1015 free_ws
= &wsm
->free_ws
;
1019 if (!list_empty(idle_ws
)) {
1020 workspace
= idle_ws
->next
;
1021 list_del(workspace
);
1023 spin_unlock(ws_lock
);
1027 if (atomic_read(total_ws
) > cpus
) {
1030 spin_unlock(ws_lock
);
1031 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1032 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
1034 finish_wait(ws_wait
, &wait
);
1037 atomic_inc(total_ws
);
1038 spin_unlock(ws_lock
);
1041 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1042 * to turn it off here because we might get called from the restricted
1043 * context of btrfs_compress_bio/btrfs_compress_pages
1045 nofs_flag
= memalloc_nofs_save();
1046 workspace
= alloc_workspace(type
, level
);
1047 memalloc_nofs_restore(nofs_flag
);
1049 if (IS_ERR(workspace
)) {
1050 atomic_dec(total_ws
);
1054 * Do not return the error but go back to waiting. There's a
1055 * workspace preallocated for each type and the compression
1056 * time is bounded so we get to a workspace eventually. This
1057 * makes our caller's life easier.
1059 * To prevent silent and low-probability deadlocks (when the
1060 * initial preallocation fails), check if there are any
1061 * workspaces at all.
1063 if (atomic_read(total_ws
) == 0) {
1064 static DEFINE_RATELIMIT_STATE(_rs
,
1065 /* once per minute */ 60 * HZ
,
1068 if (__ratelimit(&_rs
)) {
1069 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1077 static struct list_head
*get_workspace(int type
, int level
)
1080 case BTRFS_COMPRESS_NONE
: return btrfs_get_workspace(type
, level
);
1081 case BTRFS_COMPRESS_ZLIB
: return zlib_get_workspace(level
);
1082 case BTRFS_COMPRESS_LZO
: return btrfs_get_workspace(type
, level
);
1083 case BTRFS_COMPRESS_ZSTD
: return zstd_get_workspace(level
);
1086 * This can't happen, the type is validated several times
1087 * before we get here.
1094 * put a workspace struct back on the list or free it if we have enough
1095 * idle ones sitting around
1097 void btrfs_put_workspace(int type
, struct list_head
*ws
)
1099 struct workspace_manager
*wsm
;
1100 struct list_head
*idle_ws
;
1101 spinlock_t
*ws_lock
;
1103 wait_queue_head_t
*ws_wait
;
1106 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
1107 idle_ws
= &wsm
->idle_ws
;
1108 ws_lock
= &wsm
->ws_lock
;
1109 total_ws
= &wsm
->total_ws
;
1110 ws_wait
= &wsm
->ws_wait
;
1111 free_ws
= &wsm
->free_ws
;
1114 if (*free_ws
<= num_online_cpus()) {
1115 list_add(ws
, idle_ws
);
1117 spin_unlock(ws_lock
);
1120 spin_unlock(ws_lock
);
1122 free_workspace(type
, ws
);
1123 atomic_dec(total_ws
);
1125 cond_wake_up(ws_wait
);
1128 static void put_workspace(int type
, struct list_head
*ws
)
1131 case BTRFS_COMPRESS_NONE
: return btrfs_put_workspace(type
, ws
);
1132 case BTRFS_COMPRESS_ZLIB
: return btrfs_put_workspace(type
, ws
);
1133 case BTRFS_COMPRESS_LZO
: return btrfs_put_workspace(type
, ws
);
1134 case BTRFS_COMPRESS_ZSTD
: return zstd_put_workspace(ws
);
1137 * This can't happen, the type is validated several times
1138 * before we get here.
1145 * Given an address space and start and length, compress the bytes into @pages
1146 * that are allocated on demand.
1148 * @type_level is encoded algorithm and level, where level 0 means whatever
1149 * default the algorithm chooses and is opaque here;
1150 * - compression algo are 0-3
1151 * - the level are bits 4-7
1153 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1154 * and returns number of actually allocated pages
1156 * @total_in is used to return the number of bytes actually read. It
1157 * may be smaller than the input length if we had to exit early because we
1158 * ran out of room in the pages array or because we cross the
1159 * max_out threshold.
1161 * @total_out is an in/out parameter, must be set to the input length and will
1162 * be also used to return the total number of compressed bytes
1164 * @max_out tells us the max number of bytes that we're allowed to
1167 int btrfs_compress_pages(unsigned int type_level
, struct address_space
*mapping
,
1168 u64 start
, struct page
**pages
,
1169 unsigned long *out_pages
,
1170 unsigned long *total_in
,
1171 unsigned long *total_out
)
1173 int type
= btrfs_compress_type(type_level
);
1174 int level
= btrfs_compress_level(type_level
);
1175 struct list_head
*workspace
;
1178 level
= btrfs_compress_set_level(type
, level
);
1179 workspace
= get_workspace(type
, level
);
1180 ret
= compression_compress_pages(type
, workspace
, mapping
, start
, pages
,
1181 out_pages
, total_in
, total_out
);
1182 put_workspace(type
, workspace
);
1187 * pages_in is an array of pages with compressed data.
1189 * disk_start is the starting logical offset of this array in the file
1191 * orig_bio contains the pages from the file that we want to decompress into
1193 * srclen is the number of bytes in pages_in
1195 * The basic idea is that we have a bio that was created by readpages.
1196 * The pages in the bio are for the uncompressed data, and they may not
1197 * be contiguous. They all correspond to the range of bytes covered by
1198 * the compressed extent.
1200 static int btrfs_decompress_bio(struct compressed_bio
*cb
)
1202 struct list_head
*workspace
;
1204 int type
= cb
->compress_type
;
1206 workspace
= get_workspace(type
, 0);
1207 ret
= compression_decompress_bio(type
, workspace
, cb
);
1208 put_workspace(type
, workspace
);
1214 * a less complex decompression routine. Our compressed data fits in a
1215 * single page, and we want to read a single page out of it.
1216 * start_byte tells us the offset into the compressed data we're interested in
1218 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
1219 unsigned long start_byte
, size_t srclen
, size_t destlen
)
1221 struct list_head
*workspace
;
1224 workspace
= get_workspace(type
, 0);
1225 ret
= compression_decompress(type
, workspace
, data_in
, dest_page
,
1226 start_byte
, srclen
, destlen
);
1227 put_workspace(type
, workspace
);
1232 void __init
btrfs_init_compress(void)
1234 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE
);
1235 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB
);
1236 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO
);
1237 zstd_init_workspace_manager();
1240 void __cold
btrfs_exit_compress(void)
1242 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE
);
1243 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB
);
1244 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO
);
1245 zstd_cleanup_workspace_manager();
1249 * Copy uncompressed data from working buffer to pages.
1251 * buf_start is the byte offset we're of the start of our workspace buffer.
1253 * total_out is the last byte of the buffer
1255 int btrfs_decompress_buf2page(const char *buf
, unsigned long buf_start
,
1256 unsigned long total_out
, u64 disk_start
,
1259 unsigned long buf_offset
;
1260 unsigned long current_buf_start
;
1261 unsigned long start_byte
;
1262 unsigned long prev_start_byte
;
1263 unsigned long working_bytes
= total_out
- buf_start
;
1264 unsigned long bytes
;
1266 struct bio_vec bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1269 * start byte is the first byte of the page we're currently
1270 * copying into relative to the start of the compressed data.
1272 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1274 /* we haven't yet hit data corresponding to this page */
1275 if (total_out
<= start_byte
)
1279 * the start of the data we care about is offset into
1280 * the middle of our working buffer
1282 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1283 buf_offset
= start_byte
- buf_start
;
1284 working_bytes
-= buf_offset
;
1288 current_buf_start
= buf_start
;
1290 /* copy bytes from the working buffer into the pages */
1291 while (working_bytes
> 0) {
1292 bytes
= min_t(unsigned long, bvec
.bv_len
,
1293 PAGE_SIZE
- (buf_offset
% PAGE_SIZE
));
1294 bytes
= min(bytes
, working_bytes
);
1296 kaddr
= kmap_atomic(bvec
.bv_page
);
1297 memcpy(kaddr
+ bvec
.bv_offset
, buf
+ buf_offset
, bytes
);
1298 kunmap_atomic(kaddr
);
1299 flush_dcache_page(bvec
.bv_page
);
1301 buf_offset
+= bytes
;
1302 working_bytes
-= bytes
;
1303 current_buf_start
+= bytes
;
1305 /* check if we need to pick another page */
1306 bio_advance(bio
, bytes
);
1307 if (!bio
->bi_iter
.bi_size
)
1309 bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1310 prev_start_byte
= start_byte
;
1311 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1314 * We need to make sure we're only adjusting
1315 * our offset into compression working buffer when
1316 * we're switching pages. Otherwise we can incorrectly
1317 * keep copying when we were actually done.
1319 if (start_byte
!= prev_start_byte
) {
1321 * make sure our new page is covered by this
1324 if (total_out
<= start_byte
)
1328 * the next page in the biovec might not be adjacent
1329 * to the last page, but it might still be found
1330 * inside this working buffer. bump our offset pointer
1332 if (total_out
> start_byte
&&
1333 current_buf_start
< start_byte
) {
1334 buf_offset
= start_byte
- buf_start
;
1335 working_bytes
= total_out
- start_byte
;
1336 current_buf_start
= buf_start
+ buf_offset
;
1345 * Shannon Entropy calculation
1347 * Pure byte distribution analysis fails to determine compressibility of data.
1348 * Try calculating entropy to estimate the average minimum number of bits
1349 * needed to encode the sampled data.
1351 * For convenience, return the percentage of needed bits, instead of amount of
1354 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1355 * and can be compressible with high probability
1357 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1359 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1361 #define ENTROPY_LVL_ACEPTABLE (65)
1362 #define ENTROPY_LVL_HIGH (80)
1365 * For increasead precision in shannon_entropy calculation,
1366 * let's do pow(n, M) to save more digits after comma:
1368 * - maximum int bit length is 64
1369 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1370 * - 13 * 4 = 52 < 64 -> M = 4
1374 static inline u32
ilog2_w(u64 n
)
1376 return ilog2(n
* n
* n
* n
);
1379 static u32
shannon_entropy(struct heuristic_ws
*ws
)
1381 const u32 entropy_max
= 8 * ilog2_w(2);
1382 u32 entropy_sum
= 0;
1383 u32 p
, p_base
, sz_base
;
1386 sz_base
= ilog2_w(ws
->sample_size
);
1387 for (i
= 0; i
< BUCKET_SIZE
&& ws
->bucket
[i
].count
> 0; i
++) {
1388 p
= ws
->bucket
[i
].count
;
1389 p_base
= ilog2_w(p
);
1390 entropy_sum
+= p
* (sz_base
- p_base
);
1393 entropy_sum
/= ws
->sample_size
;
1394 return entropy_sum
* 100 / entropy_max
;
1397 #define RADIX_BASE 4U
1398 #define COUNTERS_SIZE (1U << RADIX_BASE)
1400 static u8
get4bits(u64 num
, int shift
) {
1405 low4bits
= (COUNTERS_SIZE
- 1) - (num
% COUNTERS_SIZE
);
1410 * Use 4 bits as radix base
1411 * Use 16 u32 counters for calculating new position in buf array
1413 * @array - array that will be sorted
1414 * @array_buf - buffer array to store sorting results
1415 * must be equal in size to @array
1418 static void radix_sort(struct bucket_item
*array
, struct bucket_item
*array_buf
,
1423 u32 counters
[COUNTERS_SIZE
];
1431 * Try avoid useless loop iterations for small numbers stored in big
1432 * counters. Example: 48 33 4 ... in 64bit array
1434 max_num
= array
[0].count
;
1435 for (i
= 1; i
< num
; i
++) {
1436 buf_num
= array
[i
].count
;
1437 if (buf_num
> max_num
)
1441 buf_num
= ilog2(max_num
);
1442 bitlen
= ALIGN(buf_num
, RADIX_BASE
* 2);
1445 while (shift
< bitlen
) {
1446 memset(counters
, 0, sizeof(counters
));
1448 for (i
= 0; i
< num
; i
++) {
1449 buf_num
= array
[i
].count
;
1450 addr
= get4bits(buf_num
, shift
);
1454 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1455 counters
[i
] += counters
[i
- 1];
1457 for (i
= num
- 1; i
>= 0; i
--) {
1458 buf_num
= array
[i
].count
;
1459 addr
= get4bits(buf_num
, shift
);
1461 new_addr
= counters
[addr
];
1462 array_buf
[new_addr
] = array
[i
];
1465 shift
+= RADIX_BASE
;
1468 * Normal radix expects to move data from a temporary array, to
1469 * the main one. But that requires some CPU time. Avoid that
1470 * by doing another sort iteration to original array instead of
1473 memset(counters
, 0, sizeof(counters
));
1475 for (i
= 0; i
< num
; i
++) {
1476 buf_num
= array_buf
[i
].count
;
1477 addr
= get4bits(buf_num
, shift
);
1481 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1482 counters
[i
] += counters
[i
- 1];
1484 for (i
= num
- 1; i
>= 0; i
--) {
1485 buf_num
= array_buf
[i
].count
;
1486 addr
= get4bits(buf_num
, shift
);
1488 new_addr
= counters
[addr
];
1489 array
[new_addr
] = array_buf
[i
];
1492 shift
+= RADIX_BASE
;
1497 * Size of the core byte set - how many bytes cover 90% of the sample
1499 * There are several types of structured binary data that use nearly all byte
1500 * values. The distribution can be uniform and counts in all buckets will be
1501 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1503 * Other possibility is normal (Gaussian) distribution, where the data could
1504 * be potentially compressible, but we have to take a few more steps to decide
1507 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1508 * compression algo can easy fix that
1509 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1510 * probability is not compressible
1512 #define BYTE_CORE_SET_LOW (64)
1513 #define BYTE_CORE_SET_HIGH (200)
1515 static int byte_core_set_size(struct heuristic_ws
*ws
)
1518 u32 coreset_sum
= 0;
1519 const u32 core_set_threshold
= ws
->sample_size
* 90 / 100;
1520 struct bucket_item
*bucket
= ws
->bucket
;
1522 /* Sort in reverse order */
1523 radix_sort(ws
->bucket
, ws
->bucket_b
, BUCKET_SIZE
);
1525 for (i
= 0; i
< BYTE_CORE_SET_LOW
; i
++)
1526 coreset_sum
+= bucket
[i
].count
;
1528 if (coreset_sum
> core_set_threshold
)
1531 for (; i
< BYTE_CORE_SET_HIGH
&& bucket
[i
].count
> 0; i
++) {
1532 coreset_sum
+= bucket
[i
].count
;
1533 if (coreset_sum
> core_set_threshold
)
1541 * Count byte values in buckets.
1542 * This heuristic can detect textual data (configs, xml, json, html, etc).
1543 * Because in most text-like data byte set is restricted to limited number of
1544 * possible characters, and that restriction in most cases makes data easy to
1547 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1548 * less - compressible
1549 * more - need additional analysis
1551 #define BYTE_SET_THRESHOLD (64)
1553 static u32
byte_set_size(const struct heuristic_ws
*ws
)
1556 u32 byte_set_size
= 0;
1558 for (i
= 0; i
< BYTE_SET_THRESHOLD
; i
++) {
1559 if (ws
->bucket
[i
].count
> 0)
1564 * Continue collecting count of byte values in buckets. If the byte
1565 * set size is bigger then the threshold, it's pointless to continue,
1566 * the detection technique would fail for this type of data.
1568 for (; i
< BUCKET_SIZE
; i
++) {
1569 if (ws
->bucket
[i
].count
> 0) {
1571 if (byte_set_size
> BYTE_SET_THRESHOLD
)
1572 return byte_set_size
;
1576 return byte_set_size
;
1579 static bool sample_repeated_patterns(struct heuristic_ws
*ws
)
1581 const u32 half_of_sample
= ws
->sample_size
/ 2;
1582 const u8
*data
= ws
->sample
;
1584 return memcmp(&data
[0], &data
[half_of_sample
], half_of_sample
) == 0;
1587 static void heuristic_collect_sample(struct inode
*inode
, u64 start
, u64 end
,
1588 struct heuristic_ws
*ws
)
1591 u64 index
, index_end
;
1592 u32 i
, curr_sample_pos
;
1596 * Compression handles the input data by chunks of 128KiB
1597 * (defined by BTRFS_MAX_UNCOMPRESSED)
1599 * We do the same for the heuristic and loop over the whole range.
1601 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1602 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1604 if (end
- start
> BTRFS_MAX_UNCOMPRESSED
)
1605 end
= start
+ BTRFS_MAX_UNCOMPRESSED
;
1607 index
= start
>> PAGE_SHIFT
;
1608 index_end
= end
>> PAGE_SHIFT
;
1610 /* Don't miss unaligned end */
1611 if (!IS_ALIGNED(end
, PAGE_SIZE
))
1614 curr_sample_pos
= 0;
1615 while (index
< index_end
) {
1616 page
= find_get_page(inode
->i_mapping
, index
);
1617 in_data
= kmap(page
);
1618 /* Handle case where the start is not aligned to PAGE_SIZE */
1619 i
= start
% PAGE_SIZE
;
1620 while (i
< PAGE_SIZE
- SAMPLING_READ_SIZE
) {
1621 /* Don't sample any garbage from the last page */
1622 if (start
> end
- SAMPLING_READ_SIZE
)
1624 memcpy(&ws
->sample
[curr_sample_pos
], &in_data
[i
],
1625 SAMPLING_READ_SIZE
);
1626 i
+= SAMPLING_INTERVAL
;
1627 start
+= SAMPLING_INTERVAL
;
1628 curr_sample_pos
+= SAMPLING_READ_SIZE
;
1636 ws
->sample_size
= curr_sample_pos
;
1640 * Compression heuristic.
1642 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1643 * quickly (compared to direct compression) detect data characteristics
1644 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1647 * The following types of analysis can be performed:
1648 * - detect mostly zero data
1649 * - detect data with low "byte set" size (text, etc)
1650 * - detect data with low/high "core byte" set
1652 * Return non-zero if the compression should be done, 0 otherwise.
1654 int btrfs_compress_heuristic(struct inode
*inode
, u64 start
, u64 end
)
1656 struct list_head
*ws_list
= get_workspace(0, 0);
1657 struct heuristic_ws
*ws
;
1662 ws
= list_entry(ws_list
, struct heuristic_ws
, list
);
1664 heuristic_collect_sample(inode
, start
, end
, ws
);
1666 if (sample_repeated_patterns(ws
)) {
1671 memset(ws
->bucket
, 0, sizeof(*ws
->bucket
)*BUCKET_SIZE
);
1673 for (i
= 0; i
< ws
->sample_size
; i
++) {
1674 byte
= ws
->sample
[i
];
1675 ws
->bucket
[byte
].count
++;
1678 i
= byte_set_size(ws
);
1679 if (i
< BYTE_SET_THRESHOLD
) {
1684 i
= byte_core_set_size(ws
);
1685 if (i
<= BYTE_CORE_SET_LOW
) {
1690 if (i
>= BYTE_CORE_SET_HIGH
) {
1695 i
= shannon_entropy(ws
);
1696 if (i
<= ENTROPY_LVL_ACEPTABLE
) {
1702 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1703 * needed to give green light to compression.
1705 * For now just assume that compression at that level is not worth the
1706 * resources because:
1708 * 1. it is possible to defrag the data later
1710 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1711 * values, every bucket has counter at level ~54. The heuristic would
1712 * be confused. This can happen when data have some internal repeated
1713 * patterns like "abbacbbc...". This can be detected by analyzing
1714 * pairs of bytes, which is too costly.
1716 if (i
< ENTROPY_LVL_HIGH
) {
1725 put_workspace(0, ws_list
);
1730 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1731 * level, unrecognized string will set the default level
1733 unsigned int btrfs_compress_str2level(unsigned int type
, const char *str
)
1735 unsigned int level
= 0;
1741 if (str
[0] == ':') {
1742 ret
= kstrtouint(str
+ 1, 10, &level
);
1747 level
= btrfs_compress_set_level(type
, level
);
1753 * Adjust @level according to the limits of the compression algorithm or
1754 * fallback to default
1756 unsigned int btrfs_compress_set_level(int type
, unsigned level
)
1758 const struct btrfs_compress_op
*ops
= btrfs_compress_op
[type
];
1761 level
= ops
->default_level
;
1763 level
= min(level
, ops
->max_level
);