drm/panfrost: perfcnt: Reserve/use the AS attached to the perfcnt MMU context
[linux/fpc-iii.git] / fs / btrfs / compression.c
blob9ab610cc91142092765fb8a1eca310e30d35ab7c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
33 u64 start, struct page **pages, unsigned long *out_pages,
34 unsigned long *total_in, unsigned long *total_out);
35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
36 int zlib_decompress(struct list_head *ws, unsigned char *data_in,
37 struct page *dest_page, unsigned long start_byte, size_t srclen,
38 size_t destlen);
39 struct list_head *zlib_alloc_workspace(unsigned int level);
40 void zlib_free_workspace(struct list_head *ws);
41 struct list_head *zlib_get_workspace(unsigned int level);
43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
44 u64 start, struct page **pages, unsigned long *out_pages,
45 unsigned long *total_in, unsigned long *total_out);
46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
47 int lzo_decompress(struct list_head *ws, unsigned char *data_in,
48 struct page *dest_page, unsigned long start_byte, size_t srclen,
49 size_t destlen);
50 struct list_head *lzo_alloc_workspace(unsigned int level);
51 void lzo_free_workspace(struct list_head *ws);
53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
54 u64 start, struct page **pages, unsigned long *out_pages,
55 unsigned long *total_in, unsigned long *total_out);
56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
57 int zstd_decompress(struct list_head *ws, unsigned char *data_in,
58 struct page *dest_page, unsigned long start_byte, size_t srclen,
59 size_t destlen);
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head *zstd_alloc_workspace(unsigned int level);
63 void zstd_free_workspace(struct list_head *ws);
64 struct list_head *zstd_get_workspace(unsigned int level);
65 void zstd_put_workspace(struct list_head *ws);
67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
71 switch (type) {
72 case BTRFS_COMPRESS_ZLIB:
73 case BTRFS_COMPRESS_LZO:
74 case BTRFS_COMPRESS_ZSTD:
75 case BTRFS_COMPRESS_NONE:
76 return btrfs_compress_types[type];
77 default:
78 break;
81 return NULL;
84 bool btrfs_compress_is_valid_type(const char *str, size_t len)
86 int i;
88 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
89 size_t comp_len = strlen(btrfs_compress_types[i]);
91 if (len < comp_len)
92 continue;
94 if (!strncmp(btrfs_compress_types[i], str, comp_len))
95 return true;
97 return false;
100 static int compression_compress_pages(int type, struct list_head *ws,
101 struct address_space *mapping, u64 start, struct page **pages,
102 unsigned long *out_pages, unsigned long *total_in,
103 unsigned long *total_out)
105 switch (type) {
106 case BTRFS_COMPRESS_ZLIB:
107 return zlib_compress_pages(ws, mapping, start, pages,
108 out_pages, total_in, total_out);
109 case BTRFS_COMPRESS_LZO:
110 return lzo_compress_pages(ws, mapping, start, pages,
111 out_pages, total_in, total_out);
112 case BTRFS_COMPRESS_ZSTD:
113 return zstd_compress_pages(ws, mapping, start, pages,
114 out_pages, total_in, total_out);
115 case BTRFS_COMPRESS_NONE:
116 default:
118 * This can't happen, the type is validated several times
119 * before we get here. As a sane fallback, return what the
120 * callers will understand as 'no compression happened'.
122 return -E2BIG;
126 static int compression_decompress_bio(int type, struct list_head *ws,
127 struct compressed_bio *cb)
129 switch (type) {
130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 case BTRFS_COMPRESS_NONE:
134 default:
136 * This can't happen, the type is validated several times
137 * before we get here.
139 BUG();
143 static int compression_decompress(int type, struct list_head *ws,
144 unsigned char *data_in, struct page *dest_page,
145 unsigned long start_byte, size_t srclen, size_t destlen)
147 switch (type) {
148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 start_byte, srclen, destlen);
150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
151 start_byte, srclen, destlen);
152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 start_byte, srclen, destlen);
154 case BTRFS_COMPRESS_NONE:
155 default:
157 * This can't happen, the type is validated several times
158 * before we get here.
160 BUG();
164 static int btrfs_decompress_bio(struct compressed_bio *cb);
166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
167 unsigned long disk_size)
169 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
171 return sizeof(struct compressed_bio) +
172 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
175 static int check_compressed_csum(struct btrfs_inode *inode,
176 struct compressed_bio *cb,
177 u64 disk_start)
179 struct btrfs_fs_info *fs_info = inode->root->fs_info;
180 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
181 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
182 int ret;
183 struct page *page;
184 unsigned long i;
185 char *kaddr;
186 u8 csum[BTRFS_CSUM_SIZE];
187 u8 *cb_sum = cb->sums;
189 if (inode->flags & BTRFS_INODE_NODATASUM)
190 return 0;
192 shash->tfm = fs_info->csum_shash;
194 for (i = 0; i < cb->nr_pages; i++) {
195 page = cb->compressed_pages[i];
197 crypto_shash_init(shash);
198 kaddr = kmap_atomic(page);
199 crypto_shash_update(shash, kaddr, PAGE_SIZE);
200 kunmap_atomic(kaddr);
201 crypto_shash_final(shash, (u8 *)&csum);
203 if (memcmp(&csum, cb_sum, csum_size)) {
204 btrfs_print_data_csum_error(inode, disk_start,
205 csum, cb_sum, cb->mirror_num);
206 ret = -EIO;
207 goto fail;
209 cb_sum += csum_size;
212 ret = 0;
213 fail:
214 return ret;
217 /* when we finish reading compressed pages from the disk, we
218 * decompress them and then run the bio end_io routines on the
219 * decompressed pages (in the inode address space).
221 * This allows the checksumming and other IO error handling routines
222 * to work normally
224 * The compressed pages are freed here, and it must be run
225 * in process context
227 static void end_compressed_bio_read(struct bio *bio)
229 struct compressed_bio *cb = bio->bi_private;
230 struct inode *inode;
231 struct page *page;
232 unsigned long index;
233 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
234 int ret = 0;
236 if (bio->bi_status)
237 cb->errors = 1;
239 /* if there are more bios still pending for this compressed
240 * extent, just exit
242 if (!refcount_dec_and_test(&cb->pending_bios))
243 goto out;
246 * Record the correct mirror_num in cb->orig_bio so that
247 * read-repair can work properly.
249 ASSERT(btrfs_io_bio(cb->orig_bio));
250 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
251 cb->mirror_num = mirror;
254 * Some IO in this cb have failed, just skip checksum as there
255 * is no way it could be correct.
257 if (cb->errors == 1)
258 goto csum_failed;
260 inode = cb->inode;
261 ret = check_compressed_csum(BTRFS_I(inode), cb,
262 (u64)bio->bi_iter.bi_sector << 9);
263 if (ret)
264 goto csum_failed;
266 /* ok, we're the last bio for this extent, lets start
267 * the decompression.
269 ret = btrfs_decompress_bio(cb);
271 csum_failed:
272 if (ret)
273 cb->errors = 1;
275 /* release the compressed pages */
276 index = 0;
277 for (index = 0; index < cb->nr_pages; index++) {
278 page = cb->compressed_pages[index];
279 page->mapping = NULL;
280 put_page(page);
283 /* do io completion on the original bio */
284 if (cb->errors) {
285 bio_io_error(cb->orig_bio);
286 } else {
287 struct bio_vec *bvec;
288 struct bvec_iter_all iter_all;
291 * we have verified the checksum already, set page
292 * checked so the end_io handlers know about it
294 ASSERT(!bio_flagged(bio, BIO_CLONED));
295 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
296 SetPageChecked(bvec->bv_page);
298 bio_endio(cb->orig_bio);
301 /* finally free the cb struct */
302 kfree(cb->compressed_pages);
303 kfree(cb);
304 out:
305 bio_put(bio);
309 * Clear the writeback bits on all of the file
310 * pages for a compressed write
312 static noinline void end_compressed_writeback(struct inode *inode,
313 const struct compressed_bio *cb)
315 unsigned long index = cb->start >> PAGE_SHIFT;
316 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
317 struct page *pages[16];
318 unsigned long nr_pages = end_index - index + 1;
319 int i;
320 int ret;
322 if (cb->errors)
323 mapping_set_error(inode->i_mapping, -EIO);
325 while (nr_pages > 0) {
326 ret = find_get_pages_contig(inode->i_mapping, index,
327 min_t(unsigned long,
328 nr_pages, ARRAY_SIZE(pages)), pages);
329 if (ret == 0) {
330 nr_pages -= 1;
331 index += 1;
332 continue;
334 for (i = 0; i < ret; i++) {
335 if (cb->errors)
336 SetPageError(pages[i]);
337 end_page_writeback(pages[i]);
338 put_page(pages[i]);
340 nr_pages -= ret;
341 index += ret;
343 /* the inode may be gone now */
347 * do the cleanup once all the compressed pages hit the disk.
348 * This will clear writeback on the file pages and free the compressed
349 * pages.
351 * This also calls the writeback end hooks for the file pages so that
352 * metadata and checksums can be updated in the file.
354 static void end_compressed_bio_write(struct bio *bio)
356 struct compressed_bio *cb = bio->bi_private;
357 struct inode *inode;
358 struct page *page;
359 unsigned long index;
361 if (bio->bi_status)
362 cb->errors = 1;
364 /* if there are more bios still pending for this compressed
365 * extent, just exit
367 if (!refcount_dec_and_test(&cb->pending_bios))
368 goto out;
370 /* ok, we're the last bio for this extent, step one is to
371 * call back into the FS and do all the end_io operations
373 inode = cb->inode;
374 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
375 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
376 cb->start, cb->start + cb->len - 1,
377 bio->bi_status == BLK_STS_OK);
378 cb->compressed_pages[0]->mapping = NULL;
380 end_compressed_writeback(inode, cb);
381 /* note, our inode could be gone now */
384 * release the compressed pages, these came from alloc_page and
385 * are not attached to the inode at all
387 index = 0;
388 for (index = 0; index < cb->nr_pages; index++) {
389 page = cb->compressed_pages[index];
390 page->mapping = NULL;
391 put_page(page);
394 /* finally free the cb struct */
395 kfree(cb->compressed_pages);
396 kfree(cb);
397 out:
398 bio_put(bio);
402 * worker function to build and submit bios for previously compressed pages.
403 * The corresponding pages in the inode should be marked for writeback
404 * and the compressed pages should have a reference on them for dropping
405 * when the IO is complete.
407 * This also checksums the file bytes and gets things ready for
408 * the end io hooks.
410 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
411 unsigned long len, u64 disk_start,
412 unsigned long compressed_len,
413 struct page **compressed_pages,
414 unsigned long nr_pages,
415 unsigned int write_flags,
416 struct cgroup_subsys_state *blkcg_css)
418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 struct bio *bio = NULL;
420 struct compressed_bio *cb;
421 unsigned long bytes_left;
422 int pg_index = 0;
423 struct page *page;
424 u64 first_byte = disk_start;
425 blk_status_t ret;
426 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
428 WARN_ON(!PAGE_ALIGNED(start));
429 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
430 if (!cb)
431 return BLK_STS_RESOURCE;
432 refcount_set(&cb->pending_bios, 0);
433 cb->errors = 0;
434 cb->inode = inode;
435 cb->start = start;
436 cb->len = len;
437 cb->mirror_num = 0;
438 cb->compressed_pages = compressed_pages;
439 cb->compressed_len = compressed_len;
440 cb->orig_bio = NULL;
441 cb->nr_pages = nr_pages;
443 bio = btrfs_bio_alloc(first_byte);
444 bio->bi_opf = REQ_OP_WRITE | write_flags;
445 bio->bi_private = cb;
446 bio->bi_end_io = end_compressed_bio_write;
448 if (blkcg_css) {
449 bio->bi_opf |= REQ_CGROUP_PUNT;
450 kthread_associate_blkcg(blkcg_css);
452 refcount_set(&cb->pending_bios, 1);
454 /* create and submit bios for the compressed pages */
455 bytes_left = compressed_len;
456 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
457 int submit = 0;
459 page = compressed_pages[pg_index];
460 page->mapping = inode->i_mapping;
461 if (bio->bi_iter.bi_size)
462 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
465 page->mapping = NULL;
466 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
467 PAGE_SIZE) {
469 * inc the count before we submit the bio so
470 * we know the end IO handler won't happen before
471 * we inc the count. Otherwise, the cb might get
472 * freed before we're done setting it up
474 refcount_inc(&cb->pending_bios);
475 ret = btrfs_bio_wq_end_io(fs_info, bio,
476 BTRFS_WQ_ENDIO_DATA);
477 BUG_ON(ret); /* -ENOMEM */
479 if (!skip_sum) {
480 ret = btrfs_csum_one_bio(inode, bio, start, 1);
481 BUG_ON(ret); /* -ENOMEM */
484 ret = btrfs_map_bio(fs_info, bio, 0);
485 if (ret) {
486 bio->bi_status = ret;
487 bio_endio(bio);
490 bio = btrfs_bio_alloc(first_byte);
491 bio->bi_opf = REQ_OP_WRITE | write_flags;
492 bio->bi_private = cb;
493 bio->bi_end_io = end_compressed_bio_write;
494 if (blkcg_css)
495 bio->bi_opf |= REQ_CGROUP_PUNT;
496 bio_add_page(bio, page, PAGE_SIZE, 0);
498 if (bytes_left < PAGE_SIZE) {
499 btrfs_info(fs_info,
500 "bytes left %lu compress len %lu nr %lu",
501 bytes_left, cb->compressed_len, cb->nr_pages);
503 bytes_left -= PAGE_SIZE;
504 first_byte += PAGE_SIZE;
505 cond_resched();
508 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
509 BUG_ON(ret); /* -ENOMEM */
511 if (!skip_sum) {
512 ret = btrfs_csum_one_bio(inode, bio, start, 1);
513 BUG_ON(ret); /* -ENOMEM */
516 ret = btrfs_map_bio(fs_info, bio, 0);
517 if (ret) {
518 bio->bi_status = ret;
519 bio_endio(bio);
522 if (blkcg_css)
523 kthread_associate_blkcg(NULL);
525 return 0;
528 static u64 bio_end_offset(struct bio *bio)
530 struct bio_vec *last = bio_last_bvec_all(bio);
532 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
535 static noinline int add_ra_bio_pages(struct inode *inode,
536 u64 compressed_end,
537 struct compressed_bio *cb)
539 unsigned long end_index;
540 unsigned long pg_index;
541 u64 last_offset;
542 u64 isize = i_size_read(inode);
543 int ret;
544 struct page *page;
545 unsigned long nr_pages = 0;
546 struct extent_map *em;
547 struct address_space *mapping = inode->i_mapping;
548 struct extent_map_tree *em_tree;
549 struct extent_io_tree *tree;
550 u64 end;
551 int misses = 0;
553 last_offset = bio_end_offset(cb->orig_bio);
554 em_tree = &BTRFS_I(inode)->extent_tree;
555 tree = &BTRFS_I(inode)->io_tree;
557 if (isize == 0)
558 return 0;
560 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
562 while (last_offset < compressed_end) {
563 pg_index = last_offset >> PAGE_SHIFT;
565 if (pg_index > end_index)
566 break;
568 page = xa_load(&mapping->i_pages, pg_index);
569 if (page && !xa_is_value(page)) {
570 misses++;
571 if (misses > 4)
572 break;
573 goto next;
576 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
577 ~__GFP_FS));
578 if (!page)
579 break;
581 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
582 put_page(page);
583 goto next;
586 end = last_offset + PAGE_SIZE - 1;
588 * at this point, we have a locked page in the page cache
589 * for these bytes in the file. But, we have to make
590 * sure they map to this compressed extent on disk.
592 set_page_extent_mapped(page);
593 lock_extent(tree, last_offset, end);
594 read_lock(&em_tree->lock);
595 em = lookup_extent_mapping(em_tree, last_offset,
596 PAGE_SIZE);
597 read_unlock(&em_tree->lock);
599 if (!em || last_offset < em->start ||
600 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
601 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
602 free_extent_map(em);
603 unlock_extent(tree, last_offset, end);
604 unlock_page(page);
605 put_page(page);
606 break;
608 free_extent_map(em);
610 if (page->index == end_index) {
611 char *userpage;
612 size_t zero_offset = offset_in_page(isize);
614 if (zero_offset) {
615 int zeros;
616 zeros = PAGE_SIZE - zero_offset;
617 userpage = kmap_atomic(page);
618 memset(userpage + zero_offset, 0, zeros);
619 flush_dcache_page(page);
620 kunmap_atomic(userpage);
624 ret = bio_add_page(cb->orig_bio, page,
625 PAGE_SIZE, 0);
627 if (ret == PAGE_SIZE) {
628 nr_pages++;
629 put_page(page);
630 } else {
631 unlock_extent(tree, last_offset, end);
632 unlock_page(page);
633 put_page(page);
634 break;
636 next:
637 last_offset += PAGE_SIZE;
639 return 0;
643 * for a compressed read, the bio we get passed has all the inode pages
644 * in it. We don't actually do IO on those pages but allocate new ones
645 * to hold the compressed pages on disk.
647 * bio->bi_iter.bi_sector points to the compressed extent on disk
648 * bio->bi_io_vec points to all of the inode pages
650 * After the compressed pages are read, we copy the bytes into the
651 * bio we were passed and then call the bio end_io calls
653 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
654 int mirror_num, unsigned long bio_flags)
656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
657 struct extent_map_tree *em_tree;
658 struct compressed_bio *cb;
659 unsigned long compressed_len;
660 unsigned long nr_pages;
661 unsigned long pg_index;
662 struct page *page;
663 struct bio *comp_bio;
664 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
665 u64 em_len;
666 u64 em_start;
667 struct extent_map *em;
668 blk_status_t ret = BLK_STS_RESOURCE;
669 int faili = 0;
670 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
671 u8 *sums;
673 em_tree = &BTRFS_I(inode)->extent_tree;
675 /* we need the actual starting offset of this extent in the file */
676 read_lock(&em_tree->lock);
677 em = lookup_extent_mapping(em_tree,
678 page_offset(bio_first_page_all(bio)),
679 PAGE_SIZE);
680 read_unlock(&em_tree->lock);
681 if (!em)
682 return BLK_STS_IOERR;
684 compressed_len = em->block_len;
685 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
686 if (!cb)
687 goto out;
689 refcount_set(&cb->pending_bios, 0);
690 cb->errors = 0;
691 cb->inode = inode;
692 cb->mirror_num = mirror_num;
693 sums = cb->sums;
695 cb->start = em->orig_start;
696 em_len = em->len;
697 em_start = em->start;
699 free_extent_map(em);
700 em = NULL;
702 cb->len = bio->bi_iter.bi_size;
703 cb->compressed_len = compressed_len;
704 cb->compress_type = extent_compress_type(bio_flags);
705 cb->orig_bio = bio;
707 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
708 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
709 GFP_NOFS);
710 if (!cb->compressed_pages)
711 goto fail1;
713 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
714 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
715 __GFP_HIGHMEM);
716 if (!cb->compressed_pages[pg_index]) {
717 faili = pg_index - 1;
718 ret = BLK_STS_RESOURCE;
719 goto fail2;
722 faili = nr_pages - 1;
723 cb->nr_pages = nr_pages;
725 add_ra_bio_pages(inode, em_start + em_len, cb);
727 /* include any pages we added in add_ra-bio_pages */
728 cb->len = bio->bi_iter.bi_size;
730 comp_bio = btrfs_bio_alloc(cur_disk_byte);
731 comp_bio->bi_opf = REQ_OP_READ;
732 comp_bio->bi_private = cb;
733 comp_bio->bi_end_io = end_compressed_bio_read;
734 refcount_set(&cb->pending_bios, 1);
736 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
737 int submit = 0;
739 page = cb->compressed_pages[pg_index];
740 page->mapping = inode->i_mapping;
741 page->index = em_start >> PAGE_SHIFT;
743 if (comp_bio->bi_iter.bi_size)
744 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
745 comp_bio, 0);
747 page->mapping = NULL;
748 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
749 PAGE_SIZE) {
750 unsigned int nr_sectors;
752 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
753 BTRFS_WQ_ENDIO_DATA);
754 BUG_ON(ret); /* -ENOMEM */
757 * inc the count before we submit the bio so
758 * we know the end IO handler won't happen before
759 * we inc the count. Otherwise, the cb might get
760 * freed before we're done setting it up
762 refcount_inc(&cb->pending_bios);
764 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
765 ret = btrfs_lookup_bio_sums(inode, comp_bio,
766 (u64)-1, sums);
767 BUG_ON(ret); /* -ENOMEM */
770 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
771 fs_info->sectorsize);
772 sums += csum_size * nr_sectors;
774 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
775 if (ret) {
776 comp_bio->bi_status = ret;
777 bio_endio(comp_bio);
780 comp_bio = btrfs_bio_alloc(cur_disk_byte);
781 comp_bio->bi_opf = REQ_OP_READ;
782 comp_bio->bi_private = cb;
783 comp_bio->bi_end_io = end_compressed_bio_read;
785 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
787 cur_disk_byte += PAGE_SIZE;
790 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
791 BUG_ON(ret); /* -ENOMEM */
793 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
794 ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
795 BUG_ON(ret); /* -ENOMEM */
798 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
799 if (ret) {
800 comp_bio->bi_status = ret;
801 bio_endio(comp_bio);
804 return 0;
806 fail2:
807 while (faili >= 0) {
808 __free_page(cb->compressed_pages[faili]);
809 faili--;
812 kfree(cb->compressed_pages);
813 fail1:
814 kfree(cb);
815 out:
816 free_extent_map(em);
817 return ret;
821 * Heuristic uses systematic sampling to collect data from the input data
822 * range, the logic can be tuned by the following constants:
824 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
825 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
827 #define SAMPLING_READ_SIZE (16)
828 #define SAMPLING_INTERVAL (256)
831 * For statistical analysis of the input data we consider bytes that form a
832 * Galois Field of 256 objects. Each object has an attribute count, ie. how
833 * many times the object appeared in the sample.
835 #define BUCKET_SIZE (256)
838 * The size of the sample is based on a statistical sampling rule of thumb.
839 * The common way is to perform sampling tests as long as the number of
840 * elements in each cell is at least 5.
842 * Instead of 5, we choose 32 to obtain more accurate results.
843 * If the data contain the maximum number of symbols, which is 256, we obtain a
844 * sample size bound by 8192.
846 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
847 * from up to 512 locations.
849 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
850 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
852 struct bucket_item {
853 u32 count;
856 struct heuristic_ws {
857 /* Partial copy of input data */
858 u8 *sample;
859 u32 sample_size;
860 /* Buckets store counters for each byte value */
861 struct bucket_item *bucket;
862 /* Sorting buffer */
863 struct bucket_item *bucket_b;
864 struct list_head list;
867 static struct workspace_manager heuristic_wsm;
869 static void free_heuristic_ws(struct list_head *ws)
871 struct heuristic_ws *workspace;
873 workspace = list_entry(ws, struct heuristic_ws, list);
875 kvfree(workspace->sample);
876 kfree(workspace->bucket);
877 kfree(workspace->bucket_b);
878 kfree(workspace);
881 static struct list_head *alloc_heuristic_ws(unsigned int level)
883 struct heuristic_ws *ws;
885 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
886 if (!ws)
887 return ERR_PTR(-ENOMEM);
889 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
890 if (!ws->sample)
891 goto fail;
893 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
894 if (!ws->bucket)
895 goto fail;
897 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
898 if (!ws->bucket_b)
899 goto fail;
901 INIT_LIST_HEAD(&ws->list);
902 return &ws->list;
903 fail:
904 free_heuristic_ws(&ws->list);
905 return ERR_PTR(-ENOMEM);
908 const struct btrfs_compress_op btrfs_heuristic_compress = {
909 .workspace_manager = &heuristic_wsm,
912 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
913 /* The heuristic is represented as compression type 0 */
914 &btrfs_heuristic_compress,
915 &btrfs_zlib_compress,
916 &btrfs_lzo_compress,
917 &btrfs_zstd_compress,
920 static struct list_head *alloc_workspace(int type, unsigned int level)
922 switch (type) {
923 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
924 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
925 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
926 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
927 default:
929 * This can't happen, the type is validated several times
930 * before we get here.
932 BUG();
936 static void free_workspace(int type, struct list_head *ws)
938 switch (type) {
939 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
940 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
941 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
942 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
943 default:
945 * This can't happen, the type is validated several times
946 * before we get here.
948 BUG();
952 static void btrfs_init_workspace_manager(int type)
954 struct workspace_manager *wsm;
955 struct list_head *workspace;
957 wsm = btrfs_compress_op[type]->workspace_manager;
958 INIT_LIST_HEAD(&wsm->idle_ws);
959 spin_lock_init(&wsm->ws_lock);
960 atomic_set(&wsm->total_ws, 0);
961 init_waitqueue_head(&wsm->ws_wait);
964 * Preallocate one workspace for each compression type so we can
965 * guarantee forward progress in the worst case
967 workspace = alloc_workspace(type, 0);
968 if (IS_ERR(workspace)) {
969 pr_warn(
970 "BTRFS: cannot preallocate compression workspace, will try later\n");
971 } else {
972 atomic_set(&wsm->total_ws, 1);
973 wsm->free_ws = 1;
974 list_add(workspace, &wsm->idle_ws);
978 static void btrfs_cleanup_workspace_manager(int type)
980 struct workspace_manager *wsman;
981 struct list_head *ws;
983 wsman = btrfs_compress_op[type]->workspace_manager;
984 while (!list_empty(&wsman->idle_ws)) {
985 ws = wsman->idle_ws.next;
986 list_del(ws);
987 free_workspace(type, ws);
988 atomic_dec(&wsman->total_ws);
993 * This finds an available workspace or allocates a new one.
994 * If it's not possible to allocate a new one, waits until there's one.
995 * Preallocation makes a forward progress guarantees and we do not return
996 * errors.
998 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1000 struct workspace_manager *wsm;
1001 struct list_head *workspace;
1002 int cpus = num_online_cpus();
1003 unsigned nofs_flag;
1004 struct list_head *idle_ws;
1005 spinlock_t *ws_lock;
1006 atomic_t *total_ws;
1007 wait_queue_head_t *ws_wait;
1008 int *free_ws;
1010 wsm = btrfs_compress_op[type]->workspace_manager;
1011 idle_ws = &wsm->idle_ws;
1012 ws_lock = &wsm->ws_lock;
1013 total_ws = &wsm->total_ws;
1014 ws_wait = &wsm->ws_wait;
1015 free_ws = &wsm->free_ws;
1017 again:
1018 spin_lock(ws_lock);
1019 if (!list_empty(idle_ws)) {
1020 workspace = idle_ws->next;
1021 list_del(workspace);
1022 (*free_ws)--;
1023 spin_unlock(ws_lock);
1024 return workspace;
1027 if (atomic_read(total_ws) > cpus) {
1028 DEFINE_WAIT(wait);
1030 spin_unlock(ws_lock);
1031 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1032 if (atomic_read(total_ws) > cpus && !*free_ws)
1033 schedule();
1034 finish_wait(ws_wait, &wait);
1035 goto again;
1037 atomic_inc(total_ws);
1038 spin_unlock(ws_lock);
1041 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1042 * to turn it off here because we might get called from the restricted
1043 * context of btrfs_compress_bio/btrfs_compress_pages
1045 nofs_flag = memalloc_nofs_save();
1046 workspace = alloc_workspace(type, level);
1047 memalloc_nofs_restore(nofs_flag);
1049 if (IS_ERR(workspace)) {
1050 atomic_dec(total_ws);
1051 wake_up(ws_wait);
1054 * Do not return the error but go back to waiting. There's a
1055 * workspace preallocated for each type and the compression
1056 * time is bounded so we get to a workspace eventually. This
1057 * makes our caller's life easier.
1059 * To prevent silent and low-probability deadlocks (when the
1060 * initial preallocation fails), check if there are any
1061 * workspaces at all.
1063 if (atomic_read(total_ws) == 0) {
1064 static DEFINE_RATELIMIT_STATE(_rs,
1065 /* once per minute */ 60 * HZ,
1066 /* no burst */ 1);
1068 if (__ratelimit(&_rs)) {
1069 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1072 goto again;
1074 return workspace;
1077 static struct list_head *get_workspace(int type, int level)
1079 switch (type) {
1080 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1081 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1082 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1083 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1084 default:
1086 * This can't happen, the type is validated several times
1087 * before we get here.
1089 BUG();
1094 * put a workspace struct back on the list or free it if we have enough
1095 * idle ones sitting around
1097 void btrfs_put_workspace(int type, struct list_head *ws)
1099 struct workspace_manager *wsm;
1100 struct list_head *idle_ws;
1101 spinlock_t *ws_lock;
1102 atomic_t *total_ws;
1103 wait_queue_head_t *ws_wait;
1104 int *free_ws;
1106 wsm = btrfs_compress_op[type]->workspace_manager;
1107 idle_ws = &wsm->idle_ws;
1108 ws_lock = &wsm->ws_lock;
1109 total_ws = &wsm->total_ws;
1110 ws_wait = &wsm->ws_wait;
1111 free_ws = &wsm->free_ws;
1113 spin_lock(ws_lock);
1114 if (*free_ws <= num_online_cpus()) {
1115 list_add(ws, idle_ws);
1116 (*free_ws)++;
1117 spin_unlock(ws_lock);
1118 goto wake;
1120 spin_unlock(ws_lock);
1122 free_workspace(type, ws);
1123 atomic_dec(total_ws);
1124 wake:
1125 cond_wake_up(ws_wait);
1128 static void put_workspace(int type, struct list_head *ws)
1130 switch (type) {
1131 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1132 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1133 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1134 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1135 default:
1137 * This can't happen, the type is validated several times
1138 * before we get here.
1140 BUG();
1145 * Given an address space and start and length, compress the bytes into @pages
1146 * that are allocated on demand.
1148 * @type_level is encoded algorithm and level, where level 0 means whatever
1149 * default the algorithm chooses and is opaque here;
1150 * - compression algo are 0-3
1151 * - the level are bits 4-7
1153 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1154 * and returns number of actually allocated pages
1156 * @total_in is used to return the number of bytes actually read. It
1157 * may be smaller than the input length if we had to exit early because we
1158 * ran out of room in the pages array or because we cross the
1159 * max_out threshold.
1161 * @total_out is an in/out parameter, must be set to the input length and will
1162 * be also used to return the total number of compressed bytes
1164 * @max_out tells us the max number of bytes that we're allowed to
1165 * stuff into pages
1167 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1168 u64 start, struct page **pages,
1169 unsigned long *out_pages,
1170 unsigned long *total_in,
1171 unsigned long *total_out)
1173 int type = btrfs_compress_type(type_level);
1174 int level = btrfs_compress_level(type_level);
1175 struct list_head *workspace;
1176 int ret;
1178 level = btrfs_compress_set_level(type, level);
1179 workspace = get_workspace(type, level);
1180 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1181 out_pages, total_in, total_out);
1182 put_workspace(type, workspace);
1183 return ret;
1187 * pages_in is an array of pages with compressed data.
1189 * disk_start is the starting logical offset of this array in the file
1191 * orig_bio contains the pages from the file that we want to decompress into
1193 * srclen is the number of bytes in pages_in
1195 * The basic idea is that we have a bio that was created by readpages.
1196 * The pages in the bio are for the uncompressed data, and they may not
1197 * be contiguous. They all correspond to the range of bytes covered by
1198 * the compressed extent.
1200 static int btrfs_decompress_bio(struct compressed_bio *cb)
1202 struct list_head *workspace;
1203 int ret;
1204 int type = cb->compress_type;
1206 workspace = get_workspace(type, 0);
1207 ret = compression_decompress_bio(type, workspace, cb);
1208 put_workspace(type, workspace);
1210 return ret;
1214 * a less complex decompression routine. Our compressed data fits in a
1215 * single page, and we want to read a single page out of it.
1216 * start_byte tells us the offset into the compressed data we're interested in
1218 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1219 unsigned long start_byte, size_t srclen, size_t destlen)
1221 struct list_head *workspace;
1222 int ret;
1224 workspace = get_workspace(type, 0);
1225 ret = compression_decompress(type, workspace, data_in, dest_page,
1226 start_byte, srclen, destlen);
1227 put_workspace(type, workspace);
1229 return ret;
1232 void __init btrfs_init_compress(void)
1234 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1235 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1236 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1237 zstd_init_workspace_manager();
1240 void __cold btrfs_exit_compress(void)
1242 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1243 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1244 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1245 zstd_cleanup_workspace_manager();
1249 * Copy uncompressed data from working buffer to pages.
1251 * buf_start is the byte offset we're of the start of our workspace buffer.
1253 * total_out is the last byte of the buffer
1255 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1256 unsigned long total_out, u64 disk_start,
1257 struct bio *bio)
1259 unsigned long buf_offset;
1260 unsigned long current_buf_start;
1261 unsigned long start_byte;
1262 unsigned long prev_start_byte;
1263 unsigned long working_bytes = total_out - buf_start;
1264 unsigned long bytes;
1265 char *kaddr;
1266 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1269 * start byte is the first byte of the page we're currently
1270 * copying into relative to the start of the compressed data.
1272 start_byte = page_offset(bvec.bv_page) - disk_start;
1274 /* we haven't yet hit data corresponding to this page */
1275 if (total_out <= start_byte)
1276 return 1;
1279 * the start of the data we care about is offset into
1280 * the middle of our working buffer
1282 if (total_out > start_byte && buf_start < start_byte) {
1283 buf_offset = start_byte - buf_start;
1284 working_bytes -= buf_offset;
1285 } else {
1286 buf_offset = 0;
1288 current_buf_start = buf_start;
1290 /* copy bytes from the working buffer into the pages */
1291 while (working_bytes > 0) {
1292 bytes = min_t(unsigned long, bvec.bv_len,
1293 PAGE_SIZE - (buf_offset % PAGE_SIZE));
1294 bytes = min(bytes, working_bytes);
1296 kaddr = kmap_atomic(bvec.bv_page);
1297 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1298 kunmap_atomic(kaddr);
1299 flush_dcache_page(bvec.bv_page);
1301 buf_offset += bytes;
1302 working_bytes -= bytes;
1303 current_buf_start += bytes;
1305 /* check if we need to pick another page */
1306 bio_advance(bio, bytes);
1307 if (!bio->bi_iter.bi_size)
1308 return 0;
1309 bvec = bio_iter_iovec(bio, bio->bi_iter);
1310 prev_start_byte = start_byte;
1311 start_byte = page_offset(bvec.bv_page) - disk_start;
1314 * We need to make sure we're only adjusting
1315 * our offset into compression working buffer when
1316 * we're switching pages. Otherwise we can incorrectly
1317 * keep copying when we were actually done.
1319 if (start_byte != prev_start_byte) {
1321 * make sure our new page is covered by this
1322 * working buffer
1324 if (total_out <= start_byte)
1325 return 1;
1328 * the next page in the biovec might not be adjacent
1329 * to the last page, but it might still be found
1330 * inside this working buffer. bump our offset pointer
1332 if (total_out > start_byte &&
1333 current_buf_start < start_byte) {
1334 buf_offset = start_byte - buf_start;
1335 working_bytes = total_out - start_byte;
1336 current_buf_start = buf_start + buf_offset;
1341 return 1;
1345 * Shannon Entropy calculation
1347 * Pure byte distribution analysis fails to determine compressibility of data.
1348 * Try calculating entropy to estimate the average minimum number of bits
1349 * needed to encode the sampled data.
1351 * For convenience, return the percentage of needed bits, instead of amount of
1352 * bits directly.
1354 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1355 * and can be compressible with high probability
1357 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1359 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1361 #define ENTROPY_LVL_ACEPTABLE (65)
1362 #define ENTROPY_LVL_HIGH (80)
1365 * For increasead precision in shannon_entropy calculation,
1366 * let's do pow(n, M) to save more digits after comma:
1368 * - maximum int bit length is 64
1369 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1370 * - 13 * 4 = 52 < 64 -> M = 4
1372 * So use pow(n, 4).
1374 static inline u32 ilog2_w(u64 n)
1376 return ilog2(n * n * n * n);
1379 static u32 shannon_entropy(struct heuristic_ws *ws)
1381 const u32 entropy_max = 8 * ilog2_w(2);
1382 u32 entropy_sum = 0;
1383 u32 p, p_base, sz_base;
1384 u32 i;
1386 sz_base = ilog2_w(ws->sample_size);
1387 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1388 p = ws->bucket[i].count;
1389 p_base = ilog2_w(p);
1390 entropy_sum += p * (sz_base - p_base);
1393 entropy_sum /= ws->sample_size;
1394 return entropy_sum * 100 / entropy_max;
1397 #define RADIX_BASE 4U
1398 #define COUNTERS_SIZE (1U << RADIX_BASE)
1400 static u8 get4bits(u64 num, int shift) {
1401 u8 low4bits;
1403 num >>= shift;
1404 /* Reverse order */
1405 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1406 return low4bits;
1410 * Use 4 bits as radix base
1411 * Use 16 u32 counters for calculating new position in buf array
1413 * @array - array that will be sorted
1414 * @array_buf - buffer array to store sorting results
1415 * must be equal in size to @array
1416 * @num - array size
1418 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1419 int num)
1421 u64 max_num;
1422 u64 buf_num;
1423 u32 counters[COUNTERS_SIZE];
1424 u32 new_addr;
1425 u32 addr;
1426 int bitlen;
1427 int shift;
1428 int i;
1431 * Try avoid useless loop iterations for small numbers stored in big
1432 * counters. Example: 48 33 4 ... in 64bit array
1434 max_num = array[0].count;
1435 for (i = 1; i < num; i++) {
1436 buf_num = array[i].count;
1437 if (buf_num > max_num)
1438 max_num = buf_num;
1441 buf_num = ilog2(max_num);
1442 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1444 shift = 0;
1445 while (shift < bitlen) {
1446 memset(counters, 0, sizeof(counters));
1448 for (i = 0; i < num; i++) {
1449 buf_num = array[i].count;
1450 addr = get4bits(buf_num, shift);
1451 counters[addr]++;
1454 for (i = 1; i < COUNTERS_SIZE; i++)
1455 counters[i] += counters[i - 1];
1457 for (i = num - 1; i >= 0; i--) {
1458 buf_num = array[i].count;
1459 addr = get4bits(buf_num, shift);
1460 counters[addr]--;
1461 new_addr = counters[addr];
1462 array_buf[new_addr] = array[i];
1465 shift += RADIX_BASE;
1468 * Normal radix expects to move data from a temporary array, to
1469 * the main one. But that requires some CPU time. Avoid that
1470 * by doing another sort iteration to original array instead of
1471 * memcpy()
1473 memset(counters, 0, sizeof(counters));
1475 for (i = 0; i < num; i ++) {
1476 buf_num = array_buf[i].count;
1477 addr = get4bits(buf_num, shift);
1478 counters[addr]++;
1481 for (i = 1; i < COUNTERS_SIZE; i++)
1482 counters[i] += counters[i - 1];
1484 for (i = num - 1; i >= 0; i--) {
1485 buf_num = array_buf[i].count;
1486 addr = get4bits(buf_num, shift);
1487 counters[addr]--;
1488 new_addr = counters[addr];
1489 array[new_addr] = array_buf[i];
1492 shift += RADIX_BASE;
1497 * Size of the core byte set - how many bytes cover 90% of the sample
1499 * There are several types of structured binary data that use nearly all byte
1500 * values. The distribution can be uniform and counts in all buckets will be
1501 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1503 * Other possibility is normal (Gaussian) distribution, where the data could
1504 * be potentially compressible, but we have to take a few more steps to decide
1505 * how much.
1507 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1508 * compression algo can easy fix that
1509 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1510 * probability is not compressible
1512 #define BYTE_CORE_SET_LOW (64)
1513 #define BYTE_CORE_SET_HIGH (200)
1515 static int byte_core_set_size(struct heuristic_ws *ws)
1517 u32 i;
1518 u32 coreset_sum = 0;
1519 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1520 struct bucket_item *bucket = ws->bucket;
1522 /* Sort in reverse order */
1523 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1525 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1526 coreset_sum += bucket[i].count;
1528 if (coreset_sum > core_set_threshold)
1529 return i;
1531 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1532 coreset_sum += bucket[i].count;
1533 if (coreset_sum > core_set_threshold)
1534 break;
1537 return i;
1541 * Count byte values in buckets.
1542 * This heuristic can detect textual data (configs, xml, json, html, etc).
1543 * Because in most text-like data byte set is restricted to limited number of
1544 * possible characters, and that restriction in most cases makes data easy to
1545 * compress.
1547 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1548 * less - compressible
1549 * more - need additional analysis
1551 #define BYTE_SET_THRESHOLD (64)
1553 static u32 byte_set_size(const struct heuristic_ws *ws)
1555 u32 i;
1556 u32 byte_set_size = 0;
1558 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1559 if (ws->bucket[i].count > 0)
1560 byte_set_size++;
1564 * Continue collecting count of byte values in buckets. If the byte
1565 * set size is bigger then the threshold, it's pointless to continue,
1566 * the detection technique would fail for this type of data.
1568 for (; i < BUCKET_SIZE; i++) {
1569 if (ws->bucket[i].count > 0) {
1570 byte_set_size++;
1571 if (byte_set_size > BYTE_SET_THRESHOLD)
1572 return byte_set_size;
1576 return byte_set_size;
1579 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1581 const u32 half_of_sample = ws->sample_size / 2;
1582 const u8 *data = ws->sample;
1584 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1587 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1588 struct heuristic_ws *ws)
1590 struct page *page;
1591 u64 index, index_end;
1592 u32 i, curr_sample_pos;
1593 u8 *in_data;
1596 * Compression handles the input data by chunks of 128KiB
1597 * (defined by BTRFS_MAX_UNCOMPRESSED)
1599 * We do the same for the heuristic and loop over the whole range.
1601 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1602 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1604 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1605 end = start + BTRFS_MAX_UNCOMPRESSED;
1607 index = start >> PAGE_SHIFT;
1608 index_end = end >> PAGE_SHIFT;
1610 /* Don't miss unaligned end */
1611 if (!IS_ALIGNED(end, PAGE_SIZE))
1612 index_end++;
1614 curr_sample_pos = 0;
1615 while (index < index_end) {
1616 page = find_get_page(inode->i_mapping, index);
1617 in_data = kmap(page);
1618 /* Handle case where the start is not aligned to PAGE_SIZE */
1619 i = start % PAGE_SIZE;
1620 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1621 /* Don't sample any garbage from the last page */
1622 if (start > end - SAMPLING_READ_SIZE)
1623 break;
1624 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1625 SAMPLING_READ_SIZE);
1626 i += SAMPLING_INTERVAL;
1627 start += SAMPLING_INTERVAL;
1628 curr_sample_pos += SAMPLING_READ_SIZE;
1630 kunmap(page);
1631 put_page(page);
1633 index++;
1636 ws->sample_size = curr_sample_pos;
1640 * Compression heuristic.
1642 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1643 * quickly (compared to direct compression) detect data characteristics
1644 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1645 * data.
1647 * The following types of analysis can be performed:
1648 * - detect mostly zero data
1649 * - detect data with low "byte set" size (text, etc)
1650 * - detect data with low/high "core byte" set
1652 * Return non-zero if the compression should be done, 0 otherwise.
1654 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1656 struct list_head *ws_list = get_workspace(0, 0);
1657 struct heuristic_ws *ws;
1658 u32 i;
1659 u8 byte;
1660 int ret = 0;
1662 ws = list_entry(ws_list, struct heuristic_ws, list);
1664 heuristic_collect_sample(inode, start, end, ws);
1666 if (sample_repeated_patterns(ws)) {
1667 ret = 1;
1668 goto out;
1671 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1673 for (i = 0; i < ws->sample_size; i++) {
1674 byte = ws->sample[i];
1675 ws->bucket[byte].count++;
1678 i = byte_set_size(ws);
1679 if (i < BYTE_SET_THRESHOLD) {
1680 ret = 2;
1681 goto out;
1684 i = byte_core_set_size(ws);
1685 if (i <= BYTE_CORE_SET_LOW) {
1686 ret = 3;
1687 goto out;
1690 if (i >= BYTE_CORE_SET_HIGH) {
1691 ret = 0;
1692 goto out;
1695 i = shannon_entropy(ws);
1696 if (i <= ENTROPY_LVL_ACEPTABLE) {
1697 ret = 4;
1698 goto out;
1702 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1703 * needed to give green light to compression.
1705 * For now just assume that compression at that level is not worth the
1706 * resources because:
1708 * 1. it is possible to defrag the data later
1710 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1711 * values, every bucket has counter at level ~54. The heuristic would
1712 * be confused. This can happen when data have some internal repeated
1713 * patterns like "abbacbbc...". This can be detected by analyzing
1714 * pairs of bytes, which is too costly.
1716 if (i < ENTROPY_LVL_HIGH) {
1717 ret = 5;
1718 goto out;
1719 } else {
1720 ret = 0;
1721 goto out;
1724 out:
1725 put_workspace(0, ws_list);
1726 return ret;
1730 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1731 * level, unrecognized string will set the default level
1733 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1735 unsigned int level = 0;
1736 int ret;
1738 if (!type)
1739 return 0;
1741 if (str[0] == ':') {
1742 ret = kstrtouint(str + 1, 10, &level);
1743 if (ret)
1744 level = 0;
1747 level = btrfs_compress_set_level(type, level);
1749 return level;
1753 * Adjust @level according to the limits of the compression algorithm or
1754 * fallback to default
1756 unsigned int btrfs_compress_set_level(int type, unsigned level)
1758 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1760 if (level == 0)
1761 level = ops->default_level;
1762 else
1763 level = min(level, ops->max_level);
1765 return level;