1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
18 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
19 *root
, struct btrfs_path
*path
, int level
);
20 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
21 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
22 int data_size
, int extend
);
23 static int push_node_left(struct btrfs_trans_handle
*trans
,
24 struct extent_buffer
*dst
,
25 struct extent_buffer
*src
, int empty
);
26 static int balance_node_right(struct btrfs_trans_handle
*trans
,
27 struct extent_buffer
*dst_buf
,
28 struct extent_buffer
*src_buf
);
29 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
32 static const struct btrfs_csums
{
37 [BTRFS_CSUM_TYPE_CRC32
] = { .size
= 4, .name
= "crc32c" },
38 [BTRFS_CSUM_TYPE_XXHASH
] = { .size
= 8, .name
= "xxhash64" },
39 [BTRFS_CSUM_TYPE_SHA256
] = { .size
= 32, .name
= "sha256" },
40 [BTRFS_CSUM_TYPE_BLAKE2
] = { .size
= 32, .name
= "blake2b",
41 .driver
= "blake2b-256" },
44 int btrfs_super_csum_size(const struct btrfs_super_block
*s
)
46 u16 t
= btrfs_super_csum_type(s
);
48 * csum type is validated at mount time
50 return btrfs_csums
[t
].size
;
53 const char *btrfs_super_csum_name(u16 csum_type
)
55 /* csum type is validated at mount time */
56 return btrfs_csums
[csum_type
].name
;
60 * Return driver name if defined, otherwise the name that's also a valid driver
63 const char *btrfs_super_csum_driver(u16 csum_type
)
65 /* csum type is validated at mount time */
66 return btrfs_csums
[csum_type
].driver
?:
67 btrfs_csums
[csum_type
].name
;
70 size_t __const
btrfs_get_num_csums(void)
72 return ARRAY_SIZE(btrfs_csums
);
75 struct btrfs_path
*btrfs_alloc_path(void)
77 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
80 /* this also releases the path */
81 void btrfs_free_path(struct btrfs_path
*p
)
85 btrfs_release_path(p
);
86 kmem_cache_free(btrfs_path_cachep
, p
);
90 * path release drops references on the extent buffers in the path
91 * and it drops any locks held by this path
93 * It is safe to call this on paths that no locks or extent buffers held.
95 noinline
void btrfs_release_path(struct btrfs_path
*p
)
99 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
104 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
107 free_extent_buffer(p
->nodes
[i
]);
113 * safely gets a reference on the root node of a tree. A lock
114 * is not taken, so a concurrent writer may put a different node
115 * at the root of the tree. See btrfs_lock_root_node for the
118 * The extent buffer returned by this has a reference taken, so
119 * it won't disappear. It may stop being the root of the tree
120 * at any time because there are no locks held.
122 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
124 struct extent_buffer
*eb
;
128 eb
= rcu_dereference(root
->node
);
131 * RCU really hurts here, we could free up the root node because
132 * it was COWed but we may not get the new root node yet so do
133 * the inc_not_zero dance and if it doesn't work then
134 * synchronize_rcu and try again.
136 if (atomic_inc_not_zero(&eb
->refs
)) {
146 /* loop around taking references on and locking the root node of the
147 * tree until you end up with a lock on the root. A locked buffer
148 * is returned, with a reference held.
150 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
152 struct extent_buffer
*eb
;
155 eb
= btrfs_root_node(root
);
157 if (eb
== root
->node
)
159 btrfs_tree_unlock(eb
);
160 free_extent_buffer(eb
);
165 /* loop around taking references on and locking the root node of the
166 * tree until you end up with a lock on the root. A locked buffer
167 * is returned, with a reference held.
169 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
171 struct extent_buffer
*eb
;
174 eb
= btrfs_root_node(root
);
175 btrfs_tree_read_lock(eb
);
176 if (eb
== root
->node
)
178 btrfs_tree_read_unlock(eb
);
179 free_extent_buffer(eb
);
184 /* cowonly root (everything not a reference counted cow subvolume), just get
185 * put onto a simple dirty list. transaction.c walks this to make sure they
186 * get properly updated on disk.
188 static void add_root_to_dirty_list(struct btrfs_root
*root
)
190 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
192 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
193 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
196 spin_lock(&fs_info
->trans_lock
);
197 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
198 /* Want the extent tree to be the last on the list */
199 if (root
->root_key
.objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
200 list_move_tail(&root
->dirty_list
,
201 &fs_info
->dirty_cowonly_roots
);
203 list_move(&root
->dirty_list
,
204 &fs_info
->dirty_cowonly_roots
);
206 spin_unlock(&fs_info
->trans_lock
);
210 * used by snapshot creation to make a copy of a root for a tree with
211 * a given objectid. The buffer with the new root node is returned in
212 * cow_ret, and this func returns zero on success or a negative error code.
214 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
215 struct btrfs_root
*root
,
216 struct extent_buffer
*buf
,
217 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
219 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
220 struct extent_buffer
*cow
;
223 struct btrfs_disk_key disk_key
;
225 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
226 trans
->transid
!= fs_info
->running_transaction
->transid
);
227 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
228 trans
->transid
!= root
->last_trans
);
230 level
= btrfs_header_level(buf
);
232 btrfs_item_key(buf
, &disk_key
, 0);
234 btrfs_node_key(buf
, &disk_key
, 0);
236 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
237 &disk_key
, level
, buf
->start
, 0);
241 copy_extent_buffer_full(cow
, buf
);
242 btrfs_set_header_bytenr(cow
, cow
->start
);
243 btrfs_set_header_generation(cow
, trans
->transid
);
244 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
245 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
246 BTRFS_HEADER_FLAG_RELOC
);
247 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
248 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
250 btrfs_set_header_owner(cow
, new_root_objectid
);
252 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
254 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
255 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
256 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
258 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
263 btrfs_mark_buffer_dirty(cow
);
272 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
273 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
275 MOD_LOG_ROOT_REPLACE
,
278 struct tree_mod_root
{
283 struct tree_mod_elem
{
289 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
292 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
295 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
296 struct btrfs_disk_key key
;
299 /* this is used for op == MOD_LOG_MOVE_KEYS */
305 /* this is used for op == MOD_LOG_ROOT_REPLACE */
306 struct tree_mod_root old_root
;
310 * Pull a new tree mod seq number for our operation.
312 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
314 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
318 * This adds a new blocker to the tree mod log's blocker list if the @elem
319 * passed does not already have a sequence number set. So when a caller expects
320 * to record tree modifications, it should ensure to set elem->seq to zero
321 * before calling btrfs_get_tree_mod_seq.
322 * Returns a fresh, unused tree log modification sequence number, even if no new
325 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
326 struct seq_list
*elem
)
328 write_lock(&fs_info
->tree_mod_log_lock
);
330 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
331 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
333 write_unlock(&fs_info
->tree_mod_log_lock
);
338 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
339 struct seq_list
*elem
)
341 struct rb_root
*tm_root
;
342 struct rb_node
*node
;
343 struct rb_node
*next
;
344 struct seq_list
*cur_elem
;
345 struct tree_mod_elem
*tm
;
346 u64 min_seq
= (u64
)-1;
347 u64 seq_putting
= elem
->seq
;
352 write_lock(&fs_info
->tree_mod_log_lock
);
353 list_del(&elem
->list
);
356 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
357 if (cur_elem
->seq
< min_seq
) {
358 if (seq_putting
> cur_elem
->seq
) {
360 * blocker with lower sequence number exists, we
361 * cannot remove anything from the log
363 write_unlock(&fs_info
->tree_mod_log_lock
);
366 min_seq
= cur_elem
->seq
;
371 * anything that's lower than the lowest existing (read: blocked)
372 * sequence number can be removed from the tree.
374 tm_root
= &fs_info
->tree_mod_log
;
375 for (node
= rb_first(tm_root
); node
; node
= next
) {
376 next
= rb_next(node
);
377 tm
= rb_entry(node
, struct tree_mod_elem
, node
);
378 if (tm
->seq
>= min_seq
)
380 rb_erase(node
, tm_root
);
383 write_unlock(&fs_info
->tree_mod_log_lock
);
387 * key order of the log:
388 * node/leaf start address -> sequence
390 * The 'start address' is the logical address of the *new* root node
391 * for root replace operations, or the logical address of the affected
392 * block for all other operations.
395 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
397 struct rb_root
*tm_root
;
398 struct rb_node
**new;
399 struct rb_node
*parent
= NULL
;
400 struct tree_mod_elem
*cur
;
402 lockdep_assert_held_write(&fs_info
->tree_mod_log_lock
);
404 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
406 tm_root
= &fs_info
->tree_mod_log
;
407 new = &tm_root
->rb_node
;
409 cur
= rb_entry(*new, struct tree_mod_elem
, node
);
411 if (cur
->logical
< tm
->logical
)
412 new = &((*new)->rb_left
);
413 else if (cur
->logical
> tm
->logical
)
414 new = &((*new)->rb_right
);
415 else if (cur
->seq
< tm
->seq
)
416 new = &((*new)->rb_left
);
417 else if (cur
->seq
> tm
->seq
)
418 new = &((*new)->rb_right
);
423 rb_link_node(&tm
->node
, parent
, new);
424 rb_insert_color(&tm
->node
, tm_root
);
429 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
430 * returns zero with the tree_mod_log_lock acquired. The caller must hold
431 * this until all tree mod log insertions are recorded in the rb tree and then
432 * write unlock fs_info::tree_mod_log_lock.
434 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
435 struct extent_buffer
*eb
) {
437 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
439 if (eb
&& btrfs_header_level(eb
) == 0)
442 write_lock(&fs_info
->tree_mod_log_lock
);
443 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
444 write_unlock(&fs_info
->tree_mod_log_lock
);
451 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
452 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
453 struct extent_buffer
*eb
)
456 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
458 if (eb
&& btrfs_header_level(eb
) == 0)
464 static struct tree_mod_elem
*
465 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
466 enum mod_log_op op
, gfp_t flags
)
468 struct tree_mod_elem
*tm
;
470 tm
= kzalloc(sizeof(*tm
), flags
);
474 tm
->logical
= eb
->start
;
475 if (op
!= MOD_LOG_KEY_ADD
) {
476 btrfs_node_key(eb
, &tm
->key
, slot
);
477 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
481 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
482 RB_CLEAR_NODE(&tm
->node
);
487 static noinline
int tree_mod_log_insert_key(struct extent_buffer
*eb
, int slot
,
488 enum mod_log_op op
, gfp_t flags
)
490 struct tree_mod_elem
*tm
;
493 if (!tree_mod_need_log(eb
->fs_info
, eb
))
496 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
500 if (tree_mod_dont_log(eb
->fs_info
, eb
)) {
505 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
506 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
513 static noinline
int tree_mod_log_insert_move(struct extent_buffer
*eb
,
514 int dst_slot
, int src_slot
, int nr_items
)
516 struct tree_mod_elem
*tm
= NULL
;
517 struct tree_mod_elem
**tm_list
= NULL
;
522 if (!tree_mod_need_log(eb
->fs_info
, eb
))
525 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
529 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
535 tm
->logical
= eb
->start
;
537 tm
->move
.dst_slot
= dst_slot
;
538 tm
->move
.nr_items
= nr_items
;
539 tm
->op
= MOD_LOG_MOVE_KEYS
;
541 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
542 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
543 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, GFP_NOFS
);
550 if (tree_mod_dont_log(eb
->fs_info
, eb
))
555 * When we override something during the move, we log these removals.
556 * This can only happen when we move towards the beginning of the
557 * buffer, i.e. dst_slot < src_slot.
559 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
560 ret
= __tree_mod_log_insert(eb
->fs_info
, tm_list
[i
]);
565 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
568 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
573 for (i
= 0; i
< nr_items
; i
++) {
574 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
575 rb_erase(&tm_list
[i
]->node
, &eb
->fs_info
->tree_mod_log
);
579 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
587 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
588 struct tree_mod_elem
**tm_list
,
594 for (i
= nritems
- 1; i
>= 0; i
--) {
595 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
597 for (j
= nritems
- 1; j
> i
; j
--)
598 rb_erase(&tm_list
[j
]->node
,
599 &fs_info
->tree_mod_log
);
607 static noinline
int tree_mod_log_insert_root(struct extent_buffer
*old_root
,
608 struct extent_buffer
*new_root
, int log_removal
)
610 struct btrfs_fs_info
*fs_info
= old_root
->fs_info
;
611 struct tree_mod_elem
*tm
= NULL
;
612 struct tree_mod_elem
**tm_list
= NULL
;
617 if (!tree_mod_need_log(fs_info
, NULL
))
620 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
621 nritems
= btrfs_header_nritems(old_root
);
622 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
628 for (i
= 0; i
< nritems
; i
++) {
629 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
630 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
638 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
644 tm
->logical
= new_root
->start
;
645 tm
->old_root
.logical
= old_root
->start
;
646 tm
->old_root
.level
= btrfs_header_level(old_root
);
647 tm
->generation
= btrfs_header_generation(old_root
);
648 tm
->op
= MOD_LOG_ROOT_REPLACE
;
650 if (tree_mod_dont_log(fs_info
, NULL
))
654 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
656 ret
= __tree_mod_log_insert(fs_info
, tm
);
658 write_unlock(&fs_info
->tree_mod_log_lock
);
667 for (i
= 0; i
< nritems
; i
++)
676 static struct tree_mod_elem
*
677 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
680 struct rb_root
*tm_root
;
681 struct rb_node
*node
;
682 struct tree_mod_elem
*cur
= NULL
;
683 struct tree_mod_elem
*found
= NULL
;
685 read_lock(&fs_info
->tree_mod_log_lock
);
686 tm_root
= &fs_info
->tree_mod_log
;
687 node
= tm_root
->rb_node
;
689 cur
= rb_entry(node
, struct tree_mod_elem
, node
);
690 if (cur
->logical
< start
) {
691 node
= node
->rb_left
;
692 } else if (cur
->logical
> start
) {
693 node
= node
->rb_right
;
694 } else if (cur
->seq
< min_seq
) {
695 node
= node
->rb_left
;
696 } else if (!smallest
) {
697 /* we want the node with the highest seq */
699 BUG_ON(found
->seq
> cur
->seq
);
701 node
= node
->rb_left
;
702 } else if (cur
->seq
> min_seq
) {
703 /* we want the node with the smallest seq */
705 BUG_ON(found
->seq
< cur
->seq
);
707 node
= node
->rb_right
;
713 read_unlock(&fs_info
->tree_mod_log_lock
);
719 * this returns the element from the log with the smallest time sequence
720 * value that's in the log (the oldest log item). any element with a time
721 * sequence lower than min_seq will be ignored.
723 static struct tree_mod_elem
*
724 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
727 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
731 * this returns the element from the log with the largest time sequence
732 * value that's in the log (the most recent log item). any element with
733 * a time sequence lower than min_seq will be ignored.
735 static struct tree_mod_elem
*
736 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
738 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
741 static noinline
int tree_mod_log_eb_copy(struct extent_buffer
*dst
,
742 struct extent_buffer
*src
, unsigned long dst_offset
,
743 unsigned long src_offset
, int nr_items
)
745 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
747 struct tree_mod_elem
**tm_list
= NULL
;
748 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
752 if (!tree_mod_need_log(fs_info
, NULL
))
755 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
758 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
763 tm_list_add
= tm_list
;
764 tm_list_rem
= tm_list
+ nr_items
;
765 for (i
= 0; i
< nr_items
; i
++) {
766 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
767 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
768 if (!tm_list_rem
[i
]) {
773 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
774 MOD_LOG_KEY_ADD
, GFP_NOFS
);
775 if (!tm_list_add
[i
]) {
781 if (tree_mod_dont_log(fs_info
, NULL
))
785 for (i
= 0; i
< nr_items
; i
++) {
786 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
789 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
794 write_unlock(&fs_info
->tree_mod_log_lock
);
800 for (i
= 0; i
< nr_items
* 2; i
++) {
801 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
802 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
806 write_unlock(&fs_info
->tree_mod_log_lock
);
812 static noinline
int tree_mod_log_free_eb(struct extent_buffer
*eb
)
814 struct tree_mod_elem
**tm_list
= NULL
;
819 if (btrfs_header_level(eb
) == 0)
822 if (!tree_mod_need_log(eb
->fs_info
, NULL
))
825 nritems
= btrfs_header_nritems(eb
);
826 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
830 for (i
= 0; i
< nritems
; i
++) {
831 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
832 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
839 if (tree_mod_dont_log(eb
->fs_info
, eb
))
842 ret
= __tree_mod_log_free_eb(eb
->fs_info
, tm_list
, nritems
);
843 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
851 for (i
= 0; i
< nritems
; i
++)
859 * check if the tree block can be shared by multiple trees
861 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
862 struct extent_buffer
*buf
)
865 * Tree blocks not in reference counted trees and tree roots
866 * are never shared. If a block was allocated after the last
867 * snapshot and the block was not allocated by tree relocation,
868 * we know the block is not shared.
870 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
871 buf
!= root
->node
&& buf
!= root
->commit_root
&&
872 (btrfs_header_generation(buf
) <=
873 btrfs_root_last_snapshot(&root
->root_item
) ||
874 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
880 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
881 struct btrfs_root
*root
,
882 struct extent_buffer
*buf
,
883 struct extent_buffer
*cow
,
886 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
894 * Backrefs update rules:
896 * Always use full backrefs for extent pointers in tree block
897 * allocated by tree relocation.
899 * If a shared tree block is no longer referenced by its owner
900 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
901 * use full backrefs for extent pointers in tree block.
903 * If a tree block is been relocating
904 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
905 * use full backrefs for extent pointers in tree block.
906 * The reason for this is some operations (such as drop tree)
907 * are only allowed for blocks use full backrefs.
910 if (btrfs_block_can_be_shared(root
, buf
)) {
911 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
912 btrfs_header_level(buf
), 1,
918 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
923 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
924 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
925 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
930 owner
= btrfs_header_owner(buf
);
931 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
932 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
935 if ((owner
== root
->root_key
.objectid
||
936 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
937 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
938 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
942 if (root
->root_key
.objectid
==
943 BTRFS_TREE_RELOC_OBJECTID
) {
944 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
947 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
951 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
954 if (root
->root_key
.objectid
==
955 BTRFS_TREE_RELOC_OBJECTID
)
956 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
958 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
962 if (new_flags
!= 0) {
963 int level
= btrfs_header_level(buf
);
965 ret
= btrfs_set_disk_extent_flags(trans
,
968 new_flags
, level
, 0);
973 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
974 if (root
->root_key
.objectid
==
975 BTRFS_TREE_RELOC_OBJECTID
)
976 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
978 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
981 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
985 btrfs_clean_tree_block(buf
);
991 static struct extent_buffer
*alloc_tree_block_no_bg_flush(
992 struct btrfs_trans_handle
*trans
,
993 struct btrfs_root
*root
,
995 const struct btrfs_disk_key
*disk_key
,
1000 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1001 struct extent_buffer
*ret
;
1004 * If we are COWing a node/leaf from the extent, chunk, device or free
1005 * space trees, make sure that we do not finish block group creation of
1006 * pending block groups. We do this to avoid a deadlock.
1007 * COWing can result in allocation of a new chunk, and flushing pending
1008 * block groups (btrfs_create_pending_block_groups()) can be triggered
1009 * when finishing allocation of a new chunk. Creation of a pending block
1010 * group modifies the extent, chunk, device and free space trees,
1011 * therefore we could deadlock with ourselves since we are holding a
1012 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1014 * For similar reasons, we also need to delay flushing pending block
1015 * groups when splitting a leaf or node, from one of those trees, since
1016 * we are holding a write lock on it and its parent or when inserting a
1017 * new root node for one of those trees.
1019 if (root
== fs_info
->extent_root
||
1020 root
== fs_info
->chunk_root
||
1021 root
== fs_info
->dev_root
||
1022 root
== fs_info
->free_space_root
)
1023 trans
->can_flush_pending_bgs
= false;
1025 ret
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1026 root
->root_key
.objectid
, disk_key
, level
,
1028 trans
->can_flush_pending_bgs
= true;
1034 * does the dirty work in cow of a single block. The parent block (if
1035 * supplied) is updated to point to the new cow copy. The new buffer is marked
1036 * dirty and returned locked. If you modify the block it needs to be marked
1039 * search_start -- an allocation hint for the new block
1041 * empty_size -- a hint that you plan on doing more cow. This is the size in
1042 * bytes the allocator should try to find free next to the block it returns.
1043 * This is just a hint and may be ignored by the allocator.
1045 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1046 struct btrfs_root
*root
,
1047 struct extent_buffer
*buf
,
1048 struct extent_buffer
*parent
, int parent_slot
,
1049 struct extent_buffer
**cow_ret
,
1050 u64 search_start
, u64 empty_size
)
1052 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1053 struct btrfs_disk_key disk_key
;
1054 struct extent_buffer
*cow
;
1057 int unlock_orig
= 0;
1058 u64 parent_start
= 0;
1060 if (*cow_ret
== buf
)
1063 btrfs_assert_tree_locked(buf
);
1065 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1066 trans
->transid
!= fs_info
->running_transaction
->transid
);
1067 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1068 trans
->transid
!= root
->last_trans
);
1070 level
= btrfs_header_level(buf
);
1073 btrfs_item_key(buf
, &disk_key
, 0);
1075 btrfs_node_key(buf
, &disk_key
, 0);
1077 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1078 parent_start
= parent
->start
;
1080 cow
= alloc_tree_block_no_bg_flush(trans
, root
, parent_start
, &disk_key
,
1081 level
, search_start
, empty_size
);
1083 return PTR_ERR(cow
);
1085 /* cow is set to blocking by btrfs_init_new_buffer */
1087 copy_extent_buffer_full(cow
, buf
);
1088 btrfs_set_header_bytenr(cow
, cow
->start
);
1089 btrfs_set_header_generation(cow
, trans
->transid
);
1090 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1091 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1092 BTRFS_HEADER_FLAG_RELOC
);
1093 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1094 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1096 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1098 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
1100 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1102 btrfs_abort_transaction(trans
, ret
);
1106 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1107 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1109 btrfs_abort_transaction(trans
, ret
);
1114 if (buf
== root
->node
) {
1115 WARN_ON(parent
&& parent
!= buf
);
1116 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1117 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1118 parent_start
= buf
->start
;
1120 atomic_inc(&cow
->refs
);
1121 ret
= tree_mod_log_insert_root(root
->node
, cow
, 1);
1123 rcu_assign_pointer(root
->node
, cow
);
1125 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1127 free_extent_buffer(buf
);
1128 add_root_to_dirty_list(root
);
1130 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1131 tree_mod_log_insert_key(parent
, parent_slot
,
1132 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1133 btrfs_set_node_blockptr(parent
, parent_slot
,
1135 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1137 btrfs_mark_buffer_dirty(parent
);
1139 ret
= tree_mod_log_free_eb(buf
);
1141 btrfs_abort_transaction(trans
, ret
);
1145 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1149 btrfs_tree_unlock(buf
);
1150 free_extent_buffer_stale(buf
);
1151 btrfs_mark_buffer_dirty(cow
);
1157 * returns the logical address of the oldest predecessor of the given root.
1158 * entries older than time_seq are ignored.
1160 static struct tree_mod_elem
*__tree_mod_log_oldest_root(
1161 struct extent_buffer
*eb_root
, u64 time_seq
)
1163 struct tree_mod_elem
*tm
;
1164 struct tree_mod_elem
*found
= NULL
;
1165 u64 root_logical
= eb_root
->start
;
1172 * the very last operation that's logged for a root is the
1173 * replacement operation (if it is replaced at all). this has
1174 * the logical address of the *new* root, making it the very
1175 * first operation that's logged for this root.
1178 tm
= tree_mod_log_search_oldest(eb_root
->fs_info
, root_logical
,
1183 * if there are no tree operation for the oldest root, we simply
1184 * return it. this should only happen if that (old) root is at
1191 * if there's an operation that's not a root replacement, we
1192 * found the oldest version of our root. normally, we'll find a
1193 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1195 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1199 root_logical
= tm
->old_root
.logical
;
1203 /* if there's no old root to return, return what we found instead */
1211 * tm is a pointer to the first operation to rewind within eb. then, all
1212 * previous operations will be rewound (until we reach something older than
1216 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1217 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1220 struct rb_node
*next
;
1221 struct tree_mod_elem
*tm
= first_tm
;
1222 unsigned long o_dst
;
1223 unsigned long o_src
;
1224 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1226 n
= btrfs_header_nritems(eb
);
1227 read_lock(&fs_info
->tree_mod_log_lock
);
1228 while (tm
&& tm
->seq
>= time_seq
) {
1230 * all the operations are recorded with the operator used for
1231 * the modification. as we're going backwards, we do the
1232 * opposite of each operation here.
1235 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1236 BUG_ON(tm
->slot
< n
);
1238 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1239 case MOD_LOG_KEY_REMOVE
:
1240 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1241 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1242 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1246 case MOD_LOG_KEY_REPLACE
:
1247 BUG_ON(tm
->slot
>= n
);
1248 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1249 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1250 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1253 case MOD_LOG_KEY_ADD
:
1254 /* if a move operation is needed it's in the log */
1257 case MOD_LOG_MOVE_KEYS
:
1258 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1259 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1260 memmove_extent_buffer(eb
, o_dst
, o_src
,
1261 tm
->move
.nr_items
* p_size
);
1263 case MOD_LOG_ROOT_REPLACE
:
1265 * this operation is special. for roots, this must be
1266 * handled explicitly before rewinding.
1267 * for non-roots, this operation may exist if the node
1268 * was a root: root A -> child B; then A gets empty and
1269 * B is promoted to the new root. in the mod log, we'll
1270 * have a root-replace operation for B, a tree block
1271 * that is no root. we simply ignore that operation.
1275 next
= rb_next(&tm
->node
);
1278 tm
= rb_entry(next
, struct tree_mod_elem
, node
);
1279 if (tm
->logical
!= first_tm
->logical
)
1282 read_unlock(&fs_info
->tree_mod_log_lock
);
1283 btrfs_set_header_nritems(eb
, n
);
1287 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1288 * is returned. If rewind operations happen, a fresh buffer is returned. The
1289 * returned buffer is always read-locked. If the returned buffer is not the
1290 * input buffer, the lock on the input buffer is released and the input buffer
1291 * is freed (its refcount is decremented).
1293 static struct extent_buffer
*
1294 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1295 struct extent_buffer
*eb
, u64 time_seq
)
1297 struct extent_buffer
*eb_rewin
;
1298 struct tree_mod_elem
*tm
;
1303 if (btrfs_header_level(eb
) == 0)
1306 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1310 btrfs_set_path_blocking(path
);
1311 btrfs_set_lock_blocking_read(eb
);
1313 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1314 BUG_ON(tm
->slot
!= 0);
1315 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1317 btrfs_tree_read_unlock_blocking(eb
);
1318 free_extent_buffer(eb
);
1321 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1322 btrfs_set_header_backref_rev(eb_rewin
,
1323 btrfs_header_backref_rev(eb
));
1324 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1325 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1327 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1329 btrfs_tree_read_unlock_blocking(eb
);
1330 free_extent_buffer(eb
);
1335 btrfs_tree_read_unlock_blocking(eb
);
1336 free_extent_buffer(eb
);
1338 btrfs_tree_read_lock(eb_rewin
);
1339 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1340 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1341 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1347 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1348 * value. If there are no changes, the current root->root_node is returned. If
1349 * anything changed in between, there's a fresh buffer allocated on which the
1350 * rewind operations are done. In any case, the returned buffer is read locked.
1351 * Returns NULL on error (with no locks held).
1353 static inline struct extent_buffer
*
1354 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1356 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1357 struct tree_mod_elem
*tm
;
1358 struct extent_buffer
*eb
= NULL
;
1359 struct extent_buffer
*eb_root
;
1360 u64 eb_root_owner
= 0;
1361 struct extent_buffer
*old
;
1362 struct tree_mod_root
*old_root
= NULL
;
1363 u64 old_generation
= 0;
1367 eb_root
= btrfs_read_lock_root_node(root
);
1368 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1372 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1373 old_root
= &tm
->old_root
;
1374 old_generation
= tm
->generation
;
1375 logical
= old_root
->logical
;
1376 level
= old_root
->level
;
1378 logical
= eb_root
->start
;
1379 level
= btrfs_header_level(eb_root
);
1382 tm
= tree_mod_log_search(fs_info
, logical
, time_seq
);
1383 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1384 btrfs_tree_read_unlock(eb_root
);
1385 free_extent_buffer(eb_root
);
1386 old
= read_tree_block(fs_info
, logical
, 0, level
, NULL
);
1387 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1389 free_extent_buffer(old
);
1391 "failed to read tree block %llu from get_old_root",
1394 eb
= btrfs_clone_extent_buffer(old
);
1395 free_extent_buffer(old
);
1397 } else if (old_root
) {
1398 eb_root_owner
= btrfs_header_owner(eb_root
);
1399 btrfs_tree_read_unlock(eb_root
);
1400 free_extent_buffer(eb_root
);
1401 eb
= alloc_dummy_extent_buffer(fs_info
, logical
);
1403 btrfs_set_lock_blocking_read(eb_root
);
1404 eb
= btrfs_clone_extent_buffer(eb_root
);
1405 btrfs_tree_read_unlock_blocking(eb_root
);
1406 free_extent_buffer(eb_root
);
1411 btrfs_tree_read_lock(eb
);
1413 btrfs_set_header_bytenr(eb
, eb
->start
);
1414 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1415 btrfs_set_header_owner(eb
, eb_root_owner
);
1416 btrfs_set_header_level(eb
, old_root
->level
);
1417 btrfs_set_header_generation(eb
, old_generation
);
1420 __tree_mod_log_rewind(fs_info
, eb
, time_seq
, tm
);
1422 WARN_ON(btrfs_header_level(eb
) != 0);
1423 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1428 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1430 struct tree_mod_elem
*tm
;
1432 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1434 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1435 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1436 level
= tm
->old_root
.level
;
1438 level
= btrfs_header_level(eb_root
);
1440 free_extent_buffer(eb_root
);
1445 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1446 struct btrfs_root
*root
,
1447 struct extent_buffer
*buf
)
1449 if (btrfs_is_testing(root
->fs_info
))
1452 /* Ensure we can see the FORCE_COW bit */
1453 smp_mb__before_atomic();
1456 * We do not need to cow a block if
1457 * 1) this block is not created or changed in this transaction;
1458 * 2) this block does not belong to TREE_RELOC tree;
1459 * 3) the root is not forced COW.
1461 * What is forced COW:
1462 * when we create snapshot during committing the transaction,
1463 * after we've finished copying src root, we must COW the shared
1464 * block to ensure the metadata consistency.
1466 if (btrfs_header_generation(buf
) == trans
->transid
&&
1467 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1468 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1469 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1470 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1476 * cows a single block, see __btrfs_cow_block for the real work.
1477 * This version of it has extra checks so that a block isn't COWed more than
1478 * once per transaction, as long as it hasn't been written yet
1480 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1481 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1482 struct extent_buffer
*parent
, int parent_slot
,
1483 struct extent_buffer
**cow_ret
)
1485 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1489 if (test_bit(BTRFS_ROOT_DELETING
, &root
->state
))
1491 "COW'ing blocks on a fs root that's being dropped");
1493 if (trans
->transaction
!= fs_info
->running_transaction
)
1494 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1496 fs_info
->running_transaction
->transid
);
1498 if (trans
->transid
!= fs_info
->generation
)
1499 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1500 trans
->transid
, fs_info
->generation
);
1502 if (!should_cow_block(trans
, root
, buf
)) {
1503 trans
->dirty
= true;
1508 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1511 btrfs_set_lock_blocking_write(parent
);
1512 btrfs_set_lock_blocking_write(buf
);
1515 * Before CoWing this block for later modification, check if it's
1516 * the subtree root and do the delayed subtree trace if needed.
1518 * Also We don't care about the error, as it's handled internally.
1520 btrfs_qgroup_trace_subtree_after_cow(trans
, root
, buf
);
1521 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1522 parent_slot
, cow_ret
, search_start
, 0);
1524 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1530 * helper function for defrag to decide if two blocks pointed to by a
1531 * node are actually close by
1533 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1535 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1537 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1543 * compare two keys in a memcmp fashion
1545 static int comp_keys(const struct btrfs_disk_key
*disk
,
1546 const struct btrfs_key
*k2
)
1548 struct btrfs_key k1
;
1550 btrfs_disk_key_to_cpu(&k1
, disk
);
1552 return btrfs_comp_cpu_keys(&k1
, k2
);
1556 * same as comp_keys only with two btrfs_key's
1558 int __pure
btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
1560 if (k1
->objectid
> k2
->objectid
)
1562 if (k1
->objectid
< k2
->objectid
)
1564 if (k1
->type
> k2
->type
)
1566 if (k1
->type
< k2
->type
)
1568 if (k1
->offset
> k2
->offset
)
1570 if (k1
->offset
< k2
->offset
)
1576 * this is used by the defrag code to go through all the
1577 * leaves pointed to by a node and reallocate them so that
1578 * disk order is close to key order
1580 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1581 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1582 int start_slot
, u64
*last_ret
,
1583 struct btrfs_key
*progress
)
1585 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1586 struct extent_buffer
*cur
;
1589 u64 search_start
= *last_ret
;
1599 int progress_passed
= 0;
1600 struct btrfs_disk_key disk_key
;
1602 parent_level
= btrfs_header_level(parent
);
1604 WARN_ON(trans
->transaction
!= fs_info
->running_transaction
);
1605 WARN_ON(trans
->transid
!= fs_info
->generation
);
1607 parent_nritems
= btrfs_header_nritems(parent
);
1608 blocksize
= fs_info
->nodesize
;
1609 end_slot
= parent_nritems
- 1;
1611 if (parent_nritems
<= 1)
1614 btrfs_set_lock_blocking_write(parent
);
1616 for (i
= start_slot
; i
<= end_slot
; i
++) {
1617 struct btrfs_key first_key
;
1620 btrfs_node_key(parent
, &disk_key
, i
);
1621 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1624 progress_passed
= 1;
1625 blocknr
= btrfs_node_blockptr(parent
, i
);
1626 gen
= btrfs_node_ptr_generation(parent
, i
);
1627 btrfs_node_key_to_cpu(parent
, &first_key
, i
);
1628 if (last_block
== 0)
1629 last_block
= blocknr
;
1632 other
= btrfs_node_blockptr(parent
, i
- 1);
1633 close
= close_blocks(blocknr
, other
, blocksize
);
1635 if (!close
&& i
< end_slot
) {
1636 other
= btrfs_node_blockptr(parent
, i
+ 1);
1637 close
= close_blocks(blocknr
, other
, blocksize
);
1640 last_block
= blocknr
;
1644 cur
= find_extent_buffer(fs_info
, blocknr
);
1646 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1649 if (!cur
|| !uptodate
) {
1651 cur
= read_tree_block(fs_info
, blocknr
, gen
,
1655 return PTR_ERR(cur
);
1656 } else if (!extent_buffer_uptodate(cur
)) {
1657 free_extent_buffer(cur
);
1660 } else if (!uptodate
) {
1661 err
= btrfs_read_buffer(cur
, gen
,
1662 parent_level
- 1,&first_key
);
1664 free_extent_buffer(cur
);
1669 if (search_start
== 0)
1670 search_start
= last_block
;
1672 btrfs_tree_lock(cur
);
1673 btrfs_set_lock_blocking_write(cur
);
1674 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1677 (end_slot
- i
) * blocksize
));
1679 btrfs_tree_unlock(cur
);
1680 free_extent_buffer(cur
);
1683 search_start
= cur
->start
;
1684 last_block
= cur
->start
;
1685 *last_ret
= search_start
;
1686 btrfs_tree_unlock(cur
);
1687 free_extent_buffer(cur
);
1693 * search for key in the extent_buffer. The items start at offset p,
1694 * and they are item_size apart. There are 'max' items in p.
1696 * the slot in the array is returned via slot, and it points to
1697 * the place where you would insert key if it is not found in
1700 * slot may point to max if the key is bigger than all of the keys
1702 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1703 unsigned long p
, int item_size
,
1704 const struct btrfs_key
*key
,
1711 struct btrfs_disk_key
*tmp
= NULL
;
1712 struct btrfs_disk_key unaligned
;
1713 unsigned long offset
;
1715 unsigned long map_start
= 0;
1716 unsigned long map_len
= 0;
1720 btrfs_err(eb
->fs_info
,
1721 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1722 __func__
, low
, high
, eb
->start
,
1723 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1727 while (low
< high
) {
1728 mid
= (low
+ high
) / 2;
1729 offset
= p
+ mid
* item_size
;
1731 if (!kaddr
|| offset
< map_start
||
1732 (offset
+ sizeof(struct btrfs_disk_key
)) >
1733 map_start
+ map_len
) {
1735 err
= map_private_extent_buffer(eb
, offset
,
1736 sizeof(struct btrfs_disk_key
),
1737 &kaddr
, &map_start
, &map_len
);
1740 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1742 } else if (err
== 1) {
1743 read_extent_buffer(eb
, &unaligned
,
1744 offset
, sizeof(unaligned
));
1751 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1754 ret
= comp_keys(tmp
, key
);
1770 * simple bin_search frontend that does the right thing for
1773 int btrfs_bin_search(struct extent_buffer
*eb
, const struct btrfs_key
*key
,
1774 int level
, int *slot
)
1777 return generic_bin_search(eb
,
1778 offsetof(struct btrfs_leaf
, items
),
1779 sizeof(struct btrfs_item
),
1780 key
, btrfs_header_nritems(eb
),
1783 return generic_bin_search(eb
,
1784 offsetof(struct btrfs_node
, ptrs
),
1785 sizeof(struct btrfs_key_ptr
),
1786 key
, btrfs_header_nritems(eb
),
1790 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1792 spin_lock(&root
->accounting_lock
);
1793 btrfs_set_root_used(&root
->root_item
,
1794 btrfs_root_used(&root
->root_item
) + size
);
1795 spin_unlock(&root
->accounting_lock
);
1798 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1800 spin_lock(&root
->accounting_lock
);
1801 btrfs_set_root_used(&root
->root_item
,
1802 btrfs_root_used(&root
->root_item
) - size
);
1803 spin_unlock(&root
->accounting_lock
);
1806 /* given a node and slot number, this reads the blocks it points to. The
1807 * extent buffer is returned with a reference taken (but unlocked).
1809 struct extent_buffer
*btrfs_read_node_slot(struct extent_buffer
*parent
,
1812 int level
= btrfs_header_level(parent
);
1813 struct extent_buffer
*eb
;
1814 struct btrfs_key first_key
;
1816 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1817 return ERR_PTR(-ENOENT
);
1821 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1822 eb
= read_tree_block(parent
->fs_info
, btrfs_node_blockptr(parent
, slot
),
1823 btrfs_node_ptr_generation(parent
, slot
),
1824 level
- 1, &first_key
);
1825 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1826 free_extent_buffer(eb
);
1834 * node level balancing, used to make sure nodes are in proper order for
1835 * item deletion. We balance from the top down, so we have to make sure
1836 * that a deletion won't leave an node completely empty later on.
1838 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1839 struct btrfs_root
*root
,
1840 struct btrfs_path
*path
, int level
)
1842 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1843 struct extent_buffer
*right
= NULL
;
1844 struct extent_buffer
*mid
;
1845 struct extent_buffer
*left
= NULL
;
1846 struct extent_buffer
*parent
= NULL
;
1850 int orig_slot
= path
->slots
[level
];
1855 mid
= path
->nodes
[level
];
1857 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1858 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1859 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1861 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1863 if (level
< BTRFS_MAX_LEVEL
- 1) {
1864 parent
= path
->nodes
[level
+ 1];
1865 pslot
= path
->slots
[level
+ 1];
1869 * deal with the case where there is only one pointer in the root
1870 * by promoting the node below to a root
1873 struct extent_buffer
*child
;
1875 if (btrfs_header_nritems(mid
) != 1)
1878 /* promote the child to a root */
1879 child
= btrfs_read_node_slot(mid
, 0);
1880 if (IS_ERR(child
)) {
1881 ret
= PTR_ERR(child
);
1882 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1886 btrfs_tree_lock(child
);
1887 btrfs_set_lock_blocking_write(child
);
1888 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1890 btrfs_tree_unlock(child
);
1891 free_extent_buffer(child
);
1895 ret
= tree_mod_log_insert_root(root
->node
, child
, 1);
1897 rcu_assign_pointer(root
->node
, child
);
1899 add_root_to_dirty_list(root
);
1900 btrfs_tree_unlock(child
);
1902 path
->locks
[level
] = 0;
1903 path
->nodes
[level
] = NULL
;
1904 btrfs_clean_tree_block(mid
);
1905 btrfs_tree_unlock(mid
);
1906 /* once for the path */
1907 free_extent_buffer(mid
);
1909 root_sub_used(root
, mid
->len
);
1910 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1911 /* once for the root ptr */
1912 free_extent_buffer_stale(mid
);
1915 if (btrfs_header_nritems(mid
) >
1916 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1919 left
= btrfs_read_node_slot(parent
, pslot
- 1);
1924 btrfs_tree_lock(left
);
1925 btrfs_set_lock_blocking_write(left
);
1926 wret
= btrfs_cow_block(trans
, root
, left
,
1927 parent
, pslot
- 1, &left
);
1934 right
= btrfs_read_node_slot(parent
, pslot
+ 1);
1939 btrfs_tree_lock(right
);
1940 btrfs_set_lock_blocking_write(right
);
1941 wret
= btrfs_cow_block(trans
, root
, right
,
1942 parent
, pslot
+ 1, &right
);
1949 /* first, try to make some room in the middle buffer */
1951 orig_slot
+= btrfs_header_nritems(left
);
1952 wret
= push_node_left(trans
, left
, mid
, 1);
1958 * then try to empty the right most buffer into the middle
1961 wret
= push_node_left(trans
, mid
, right
, 1);
1962 if (wret
< 0 && wret
!= -ENOSPC
)
1964 if (btrfs_header_nritems(right
) == 0) {
1965 btrfs_clean_tree_block(right
);
1966 btrfs_tree_unlock(right
);
1967 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
1968 root_sub_used(root
, right
->len
);
1969 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1970 free_extent_buffer_stale(right
);
1973 struct btrfs_disk_key right_key
;
1974 btrfs_node_key(right
, &right_key
, 0);
1975 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
1976 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1978 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1979 btrfs_mark_buffer_dirty(parent
);
1982 if (btrfs_header_nritems(mid
) == 1) {
1984 * we're not allowed to leave a node with one item in the
1985 * tree during a delete. A deletion from lower in the tree
1986 * could try to delete the only pointer in this node.
1987 * So, pull some keys from the left.
1988 * There has to be a left pointer at this point because
1989 * otherwise we would have pulled some pointers from the
1994 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1997 wret
= balance_node_right(trans
, mid
, left
);
2003 wret
= push_node_left(trans
, left
, mid
, 1);
2009 if (btrfs_header_nritems(mid
) == 0) {
2010 btrfs_clean_tree_block(mid
);
2011 btrfs_tree_unlock(mid
);
2012 del_ptr(root
, path
, level
+ 1, pslot
);
2013 root_sub_used(root
, mid
->len
);
2014 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2015 free_extent_buffer_stale(mid
);
2018 /* update the parent key to reflect our changes */
2019 struct btrfs_disk_key mid_key
;
2020 btrfs_node_key(mid
, &mid_key
, 0);
2021 ret
= tree_mod_log_insert_key(parent
, pslot
,
2022 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2024 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2025 btrfs_mark_buffer_dirty(parent
);
2028 /* update the path */
2030 if (btrfs_header_nritems(left
) > orig_slot
) {
2031 atomic_inc(&left
->refs
);
2032 /* left was locked after cow */
2033 path
->nodes
[level
] = left
;
2034 path
->slots
[level
+ 1] -= 1;
2035 path
->slots
[level
] = orig_slot
;
2037 btrfs_tree_unlock(mid
);
2038 free_extent_buffer(mid
);
2041 orig_slot
-= btrfs_header_nritems(left
);
2042 path
->slots
[level
] = orig_slot
;
2045 /* double check we haven't messed things up */
2047 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2051 btrfs_tree_unlock(right
);
2052 free_extent_buffer(right
);
2055 if (path
->nodes
[level
] != left
)
2056 btrfs_tree_unlock(left
);
2057 free_extent_buffer(left
);
2062 /* Node balancing for insertion. Here we only split or push nodes around
2063 * when they are completely full. This is also done top down, so we
2064 * have to be pessimistic.
2066 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2067 struct btrfs_root
*root
,
2068 struct btrfs_path
*path
, int level
)
2070 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2071 struct extent_buffer
*right
= NULL
;
2072 struct extent_buffer
*mid
;
2073 struct extent_buffer
*left
= NULL
;
2074 struct extent_buffer
*parent
= NULL
;
2078 int orig_slot
= path
->slots
[level
];
2083 mid
= path
->nodes
[level
];
2084 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2086 if (level
< BTRFS_MAX_LEVEL
- 1) {
2087 parent
= path
->nodes
[level
+ 1];
2088 pslot
= path
->slots
[level
+ 1];
2094 left
= btrfs_read_node_slot(parent
, pslot
- 1);
2098 /* first, try to make some room in the middle buffer */
2102 btrfs_tree_lock(left
);
2103 btrfs_set_lock_blocking_write(left
);
2105 left_nr
= btrfs_header_nritems(left
);
2106 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2109 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2114 wret
= push_node_left(trans
, left
, mid
, 0);
2120 struct btrfs_disk_key disk_key
;
2121 orig_slot
+= left_nr
;
2122 btrfs_node_key(mid
, &disk_key
, 0);
2123 ret
= tree_mod_log_insert_key(parent
, pslot
,
2124 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2126 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2127 btrfs_mark_buffer_dirty(parent
);
2128 if (btrfs_header_nritems(left
) > orig_slot
) {
2129 path
->nodes
[level
] = left
;
2130 path
->slots
[level
+ 1] -= 1;
2131 path
->slots
[level
] = orig_slot
;
2132 btrfs_tree_unlock(mid
);
2133 free_extent_buffer(mid
);
2136 btrfs_header_nritems(left
);
2137 path
->slots
[level
] = orig_slot
;
2138 btrfs_tree_unlock(left
);
2139 free_extent_buffer(left
);
2143 btrfs_tree_unlock(left
);
2144 free_extent_buffer(left
);
2146 right
= btrfs_read_node_slot(parent
, pslot
+ 1);
2151 * then try to empty the right most buffer into the middle
2156 btrfs_tree_lock(right
);
2157 btrfs_set_lock_blocking_write(right
);
2159 right_nr
= btrfs_header_nritems(right
);
2160 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2163 ret
= btrfs_cow_block(trans
, root
, right
,
2169 wret
= balance_node_right(trans
, right
, mid
);
2175 struct btrfs_disk_key disk_key
;
2177 btrfs_node_key(right
, &disk_key
, 0);
2178 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
2179 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2181 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2182 btrfs_mark_buffer_dirty(parent
);
2184 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2185 path
->nodes
[level
] = right
;
2186 path
->slots
[level
+ 1] += 1;
2187 path
->slots
[level
] = orig_slot
-
2188 btrfs_header_nritems(mid
);
2189 btrfs_tree_unlock(mid
);
2190 free_extent_buffer(mid
);
2192 btrfs_tree_unlock(right
);
2193 free_extent_buffer(right
);
2197 btrfs_tree_unlock(right
);
2198 free_extent_buffer(right
);
2204 * readahead one full node of leaves, finding things that are close
2205 * to the block in 'slot', and triggering ra on them.
2207 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
2208 struct btrfs_path
*path
,
2209 int level
, int slot
, u64 objectid
)
2211 struct extent_buffer
*node
;
2212 struct btrfs_disk_key disk_key
;
2217 struct extent_buffer
*eb
;
2225 if (!path
->nodes
[level
])
2228 node
= path
->nodes
[level
];
2230 search
= btrfs_node_blockptr(node
, slot
);
2231 blocksize
= fs_info
->nodesize
;
2232 eb
= find_extent_buffer(fs_info
, search
);
2234 free_extent_buffer(eb
);
2240 nritems
= btrfs_header_nritems(node
);
2244 if (path
->reada
== READA_BACK
) {
2248 } else if (path
->reada
== READA_FORWARD
) {
2253 if (path
->reada
== READA_BACK
&& objectid
) {
2254 btrfs_node_key(node
, &disk_key
, nr
);
2255 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2258 search
= btrfs_node_blockptr(node
, nr
);
2259 if ((search
<= target
&& target
- search
<= 65536) ||
2260 (search
> target
&& search
- target
<= 65536)) {
2261 readahead_tree_block(fs_info
, search
);
2265 if ((nread
> 65536 || nscan
> 32))
2270 static noinline
void reada_for_balance(struct btrfs_fs_info
*fs_info
,
2271 struct btrfs_path
*path
, int level
)
2275 struct extent_buffer
*parent
;
2276 struct extent_buffer
*eb
;
2281 parent
= path
->nodes
[level
+ 1];
2285 nritems
= btrfs_header_nritems(parent
);
2286 slot
= path
->slots
[level
+ 1];
2289 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2290 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2291 eb
= find_extent_buffer(fs_info
, block1
);
2293 * if we get -eagain from btrfs_buffer_uptodate, we
2294 * don't want to return eagain here. That will loop
2297 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2299 free_extent_buffer(eb
);
2301 if (slot
+ 1 < nritems
) {
2302 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2303 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2304 eb
= find_extent_buffer(fs_info
, block2
);
2305 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2307 free_extent_buffer(eb
);
2311 readahead_tree_block(fs_info
, block1
);
2313 readahead_tree_block(fs_info
, block2
);
2318 * when we walk down the tree, it is usually safe to unlock the higher layers
2319 * in the tree. The exceptions are when our path goes through slot 0, because
2320 * operations on the tree might require changing key pointers higher up in the
2323 * callers might also have set path->keep_locks, which tells this code to keep
2324 * the lock if the path points to the last slot in the block. This is part of
2325 * walking through the tree, and selecting the next slot in the higher block.
2327 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2328 * if lowest_unlock is 1, level 0 won't be unlocked
2330 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2331 int lowest_unlock
, int min_write_lock_level
,
2332 int *write_lock_level
)
2335 int skip_level
= level
;
2337 struct extent_buffer
*t
;
2339 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2340 if (!path
->nodes
[i
])
2342 if (!path
->locks
[i
])
2344 if (!no_skips
&& path
->slots
[i
] == 0) {
2348 if (!no_skips
&& path
->keep_locks
) {
2351 nritems
= btrfs_header_nritems(t
);
2352 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2357 if (skip_level
< i
&& i
>= lowest_unlock
)
2361 if (i
>= lowest_unlock
&& i
> skip_level
) {
2362 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2364 if (write_lock_level
&&
2365 i
> min_write_lock_level
&&
2366 i
<= *write_lock_level
) {
2367 *write_lock_level
= i
- 1;
2374 * helper function for btrfs_search_slot. The goal is to find a block
2375 * in cache without setting the path to blocking. If we find the block
2376 * we return zero and the path is unchanged.
2378 * If we can't find the block, we set the path blocking and do some
2379 * reada. -EAGAIN is returned and the search must be repeated.
2382 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
2383 struct extent_buffer
**eb_ret
, int level
, int slot
,
2384 const struct btrfs_key
*key
)
2386 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2389 struct extent_buffer
*b
= *eb_ret
;
2390 struct extent_buffer
*tmp
;
2391 struct btrfs_key first_key
;
2395 blocknr
= btrfs_node_blockptr(b
, slot
);
2396 gen
= btrfs_node_ptr_generation(b
, slot
);
2397 parent_level
= btrfs_header_level(b
);
2398 btrfs_node_key_to_cpu(b
, &first_key
, slot
);
2400 tmp
= find_extent_buffer(fs_info
, blocknr
);
2402 /* first we do an atomic uptodate check */
2403 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2405 * Do extra check for first_key, eb can be stale due to
2406 * being cached, read from scrub, or have multiple
2407 * parents (shared tree blocks).
2409 if (btrfs_verify_level_key(tmp
,
2410 parent_level
- 1, &first_key
, gen
)) {
2411 free_extent_buffer(tmp
);
2418 /* the pages were up to date, but we failed
2419 * the generation number check. Do a full
2420 * read for the generation number that is correct.
2421 * We must do this without dropping locks so
2422 * we can trust our generation number
2424 btrfs_set_path_blocking(p
);
2426 /* now we're allowed to do a blocking uptodate check */
2427 ret
= btrfs_read_buffer(tmp
, gen
, parent_level
- 1, &first_key
);
2432 free_extent_buffer(tmp
);
2433 btrfs_release_path(p
);
2438 * reduce lock contention at high levels
2439 * of the btree by dropping locks before
2440 * we read. Don't release the lock on the current
2441 * level because we need to walk this node to figure
2442 * out which blocks to read.
2444 btrfs_unlock_up_safe(p
, level
+ 1);
2445 btrfs_set_path_blocking(p
);
2447 if (p
->reada
!= READA_NONE
)
2448 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
2451 tmp
= read_tree_block(fs_info
, blocknr
, gen
, parent_level
- 1,
2455 * If the read above didn't mark this buffer up to date,
2456 * it will never end up being up to date. Set ret to EIO now
2457 * and give up so that our caller doesn't loop forever
2460 if (!extent_buffer_uptodate(tmp
))
2462 free_extent_buffer(tmp
);
2467 btrfs_release_path(p
);
2472 * helper function for btrfs_search_slot. This does all of the checks
2473 * for node-level blocks and does any balancing required based on
2476 * If no extra work was required, zero is returned. If we had to
2477 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2481 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2482 struct btrfs_root
*root
, struct btrfs_path
*p
,
2483 struct extent_buffer
*b
, int level
, int ins_len
,
2484 int *write_lock_level
)
2486 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2489 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2490 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
2493 if (*write_lock_level
< level
+ 1) {
2494 *write_lock_level
= level
+ 1;
2495 btrfs_release_path(p
);
2499 btrfs_set_path_blocking(p
);
2500 reada_for_balance(fs_info
, p
, level
);
2501 sret
= split_node(trans
, root
, p
, level
);
2508 b
= p
->nodes
[level
];
2509 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2510 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
2513 if (*write_lock_level
< level
+ 1) {
2514 *write_lock_level
= level
+ 1;
2515 btrfs_release_path(p
);
2519 btrfs_set_path_blocking(p
);
2520 reada_for_balance(fs_info
, p
, level
);
2521 sret
= balance_level(trans
, root
, p
, level
);
2527 b
= p
->nodes
[level
];
2529 btrfs_release_path(p
);
2532 BUG_ON(btrfs_header_nritems(b
) == 1);
2542 static int key_search(struct extent_buffer
*b
, const struct btrfs_key
*key
,
2543 int level
, int *prev_cmp
, int *slot
)
2545 if (*prev_cmp
!= 0) {
2546 *prev_cmp
= btrfs_bin_search(b
, key
, level
, slot
);
2555 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2556 u64 iobjectid
, u64 ioff
, u8 key_type
,
2557 struct btrfs_key
*found_key
)
2560 struct btrfs_key key
;
2561 struct extent_buffer
*eb
;
2566 key
.type
= key_type
;
2567 key
.objectid
= iobjectid
;
2570 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2574 eb
= path
->nodes
[0];
2575 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2576 ret
= btrfs_next_leaf(fs_root
, path
);
2579 eb
= path
->nodes
[0];
2582 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2583 if (found_key
->type
!= key
.type
||
2584 found_key
->objectid
!= key
.objectid
)
2590 static struct extent_buffer
*btrfs_search_slot_get_root(struct btrfs_root
*root
,
2591 struct btrfs_path
*p
,
2592 int write_lock_level
)
2594 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2595 struct extent_buffer
*b
;
2599 /* We try very hard to do read locks on the root */
2600 root_lock
= BTRFS_READ_LOCK
;
2602 if (p
->search_commit_root
) {
2604 * The commit roots are read only so we always do read locks,
2605 * and we always must hold the commit_root_sem when doing
2606 * searches on them, the only exception is send where we don't
2607 * want to block transaction commits for a long time, so
2608 * we need to clone the commit root in order to avoid races
2609 * with transaction commits that create a snapshot of one of
2610 * the roots used by a send operation.
2612 if (p
->need_commit_sem
) {
2613 down_read(&fs_info
->commit_root_sem
);
2614 b
= btrfs_clone_extent_buffer(root
->commit_root
);
2615 up_read(&fs_info
->commit_root_sem
);
2617 return ERR_PTR(-ENOMEM
);
2620 b
= root
->commit_root
;
2621 atomic_inc(&b
->refs
);
2623 level
= btrfs_header_level(b
);
2625 * Ensure that all callers have set skip_locking when
2626 * p->search_commit_root = 1.
2628 ASSERT(p
->skip_locking
== 1);
2633 if (p
->skip_locking
) {
2634 b
= btrfs_root_node(root
);
2635 level
= btrfs_header_level(b
);
2640 * If the level is set to maximum, we can skip trying to get the read
2643 if (write_lock_level
< BTRFS_MAX_LEVEL
) {
2645 * We don't know the level of the root node until we actually
2646 * have it read locked
2648 b
= btrfs_read_lock_root_node(root
);
2649 level
= btrfs_header_level(b
);
2650 if (level
> write_lock_level
)
2653 /* Whoops, must trade for write lock */
2654 btrfs_tree_read_unlock(b
);
2655 free_extent_buffer(b
);
2658 b
= btrfs_lock_root_node(root
);
2659 root_lock
= BTRFS_WRITE_LOCK
;
2661 /* The level might have changed, check again */
2662 level
= btrfs_header_level(b
);
2665 p
->nodes
[level
] = b
;
2666 if (!p
->skip_locking
)
2667 p
->locks
[level
] = root_lock
;
2669 * Callers are responsible for dropping b's references.
2676 * btrfs_search_slot - look for a key in a tree and perform necessary
2677 * modifications to preserve tree invariants.
2679 * @trans: Handle of transaction, used when modifying the tree
2680 * @p: Holds all btree nodes along the search path
2681 * @root: The root node of the tree
2682 * @key: The key we are looking for
2683 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2684 * deletions it's -1. 0 for plain searches
2685 * @cow: boolean should CoW operations be performed. Must always be 1
2686 * when modifying the tree.
2688 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2689 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2691 * If @key is found, 0 is returned and you can find the item in the leaf level
2692 * of the path (level 0)
2694 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2695 * points to the slot where it should be inserted
2697 * If an error is encountered while searching the tree a negative error number
2700 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2701 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2702 int ins_len
, int cow
)
2704 struct extent_buffer
*b
;
2709 int lowest_unlock
= 1;
2710 /* everything at write_lock_level or lower must be write locked */
2711 int write_lock_level
= 0;
2712 u8 lowest_level
= 0;
2713 int min_write_lock_level
;
2716 lowest_level
= p
->lowest_level
;
2717 WARN_ON(lowest_level
&& ins_len
> 0);
2718 WARN_ON(p
->nodes
[0] != NULL
);
2719 BUG_ON(!cow
&& ins_len
);
2724 /* when we are removing items, we might have to go up to level
2725 * two as we update tree pointers Make sure we keep write
2726 * for those levels as well
2728 write_lock_level
= 2;
2729 } else if (ins_len
> 0) {
2731 * for inserting items, make sure we have a write lock on
2732 * level 1 so we can update keys
2734 write_lock_level
= 1;
2738 write_lock_level
= -1;
2740 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2741 write_lock_level
= BTRFS_MAX_LEVEL
;
2743 min_write_lock_level
= write_lock_level
;
2747 b
= btrfs_search_slot_get_root(root
, p
, write_lock_level
);
2756 level
= btrfs_header_level(b
);
2759 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2762 * if we don't really need to cow this block
2763 * then we don't want to set the path blocking,
2764 * so we test it here
2766 if (!should_cow_block(trans
, root
, b
)) {
2767 trans
->dirty
= true;
2772 * must have write locks on this node and the
2775 if (level
> write_lock_level
||
2776 (level
+ 1 > write_lock_level
&&
2777 level
+ 1 < BTRFS_MAX_LEVEL
&&
2778 p
->nodes
[level
+ 1])) {
2779 write_lock_level
= level
+ 1;
2780 btrfs_release_path(p
);
2784 btrfs_set_path_blocking(p
);
2786 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2789 err
= btrfs_cow_block(trans
, root
, b
,
2790 p
->nodes
[level
+ 1],
2791 p
->slots
[level
+ 1], &b
);
2798 p
->nodes
[level
] = b
;
2800 * Leave path with blocking locks to avoid massive
2801 * lock context switch, this is made on purpose.
2805 * we have a lock on b and as long as we aren't changing
2806 * the tree, there is no way to for the items in b to change.
2807 * It is safe to drop the lock on our parent before we
2808 * go through the expensive btree search on b.
2810 * If we're inserting or deleting (ins_len != 0), then we might
2811 * be changing slot zero, which may require changing the parent.
2812 * So, we can't drop the lock until after we know which slot
2813 * we're operating on.
2815 if (!ins_len
&& !p
->keep_locks
) {
2818 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2819 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2824 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2829 p
->slots
[level
] = slot
;
2831 btrfs_leaf_free_space(b
) < ins_len
) {
2832 if (write_lock_level
< 1) {
2833 write_lock_level
= 1;
2834 btrfs_release_path(p
);
2838 btrfs_set_path_blocking(p
);
2839 err
= split_leaf(trans
, root
, key
,
2840 p
, ins_len
, ret
== 0);
2848 if (!p
->search_for_split
)
2849 unlock_up(p
, level
, lowest_unlock
,
2850 min_write_lock_level
, NULL
);
2853 if (ret
&& slot
> 0) {
2857 p
->slots
[level
] = slot
;
2858 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
, ins_len
,
2866 b
= p
->nodes
[level
];
2867 slot
= p
->slots
[level
];
2870 * Slot 0 is special, if we change the key we have to update
2871 * the parent pointer which means we must have a write lock on
2874 if (slot
== 0 && ins_len
&& write_lock_level
< level
+ 1) {
2875 write_lock_level
= level
+ 1;
2876 btrfs_release_path(p
);
2880 unlock_up(p
, level
, lowest_unlock
, min_write_lock_level
,
2883 if (level
== lowest_level
) {
2889 err
= read_block_for_search(root
, p
, &b
, level
, slot
, key
);
2897 if (!p
->skip_locking
) {
2898 level
= btrfs_header_level(b
);
2899 if (level
<= write_lock_level
) {
2900 if (!btrfs_try_tree_write_lock(b
)) {
2901 btrfs_set_path_blocking(p
);
2904 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2906 if (!btrfs_tree_read_lock_atomic(b
)) {
2907 btrfs_set_path_blocking(p
);
2908 btrfs_tree_read_lock(b
);
2910 p
->locks
[level
] = BTRFS_READ_LOCK
;
2912 p
->nodes
[level
] = b
;
2918 * we don't really know what they plan on doing with the path
2919 * from here on, so for now just mark it as blocking
2921 if (!p
->leave_spinning
)
2922 btrfs_set_path_blocking(p
);
2923 if (ret
< 0 && !p
->skip_release_on_error
)
2924 btrfs_release_path(p
);
2929 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2930 * current state of the tree together with the operations recorded in the tree
2931 * modification log to search for the key in a previous version of this tree, as
2932 * denoted by the time_seq parameter.
2934 * Naturally, there is no support for insert, delete or cow operations.
2936 * The resulting path and return value will be set up as if we called
2937 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2939 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2940 struct btrfs_path
*p
, u64 time_seq
)
2942 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2943 struct extent_buffer
*b
;
2948 int lowest_unlock
= 1;
2949 u8 lowest_level
= 0;
2952 lowest_level
= p
->lowest_level
;
2953 WARN_ON(p
->nodes
[0] != NULL
);
2955 if (p
->search_commit_root
) {
2957 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2961 b
= get_old_root(root
, time_seq
);
2966 level
= btrfs_header_level(b
);
2967 p
->locks
[level
] = BTRFS_READ_LOCK
;
2972 level
= btrfs_header_level(b
);
2973 p
->nodes
[level
] = b
;
2976 * we have a lock on b and as long as we aren't changing
2977 * the tree, there is no way to for the items in b to change.
2978 * It is safe to drop the lock on our parent before we
2979 * go through the expensive btree search on b.
2981 btrfs_unlock_up_safe(p
, level
+ 1);
2984 * Since we can unwind ebs we want to do a real search every
2988 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2993 p
->slots
[level
] = slot
;
2994 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2998 if (ret
&& slot
> 0) {
3002 p
->slots
[level
] = slot
;
3003 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3005 if (level
== lowest_level
) {
3011 err
= read_block_for_search(root
, p
, &b
, level
, slot
, key
);
3019 level
= btrfs_header_level(b
);
3020 if (!btrfs_tree_read_lock_atomic(b
)) {
3021 btrfs_set_path_blocking(p
);
3022 btrfs_tree_read_lock(b
);
3024 b
= tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
3029 p
->locks
[level
] = BTRFS_READ_LOCK
;
3030 p
->nodes
[level
] = b
;
3034 if (!p
->leave_spinning
)
3035 btrfs_set_path_blocking(p
);
3037 btrfs_release_path(p
);
3043 * helper to use instead of search slot if no exact match is needed but
3044 * instead the next or previous item should be returned.
3045 * When find_higher is true, the next higher item is returned, the next lower
3047 * When return_any and find_higher are both true, and no higher item is found,
3048 * return the next lower instead.
3049 * When return_any is true and find_higher is false, and no lower item is found,
3050 * return the next higher instead.
3051 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3054 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3055 const struct btrfs_key
*key
,
3056 struct btrfs_path
*p
, int find_higher
,
3060 struct extent_buffer
*leaf
;
3063 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3067 * a return value of 1 means the path is at the position where the
3068 * item should be inserted. Normally this is the next bigger item,
3069 * but in case the previous item is the last in a leaf, path points
3070 * to the first free slot in the previous leaf, i.e. at an invalid
3076 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3077 ret
= btrfs_next_leaf(root
, p
);
3083 * no higher item found, return the next
3088 btrfs_release_path(p
);
3092 if (p
->slots
[0] == 0) {
3093 ret
= btrfs_prev_leaf(root
, p
);
3098 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3105 * no lower item found, return the next
3110 btrfs_release_path(p
);
3120 * adjust the pointers going up the tree, starting at level
3121 * making sure the right key of each node is points to 'key'.
3122 * This is used after shifting pointers to the left, so it stops
3123 * fixing up pointers when a given leaf/node is not in slot 0 of the
3127 static void fixup_low_keys(struct btrfs_path
*path
,
3128 struct btrfs_disk_key
*key
, int level
)
3131 struct extent_buffer
*t
;
3134 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3135 int tslot
= path
->slots
[i
];
3137 if (!path
->nodes
[i
])
3140 ret
= tree_mod_log_insert_key(t
, tslot
, MOD_LOG_KEY_REPLACE
,
3143 btrfs_set_node_key(t
, key
, tslot
);
3144 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3153 * This function isn't completely safe. It's the caller's responsibility
3154 * that the new key won't break the order
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3157 struct btrfs_path
*path
,
3158 const struct btrfs_key
*new_key
)
3160 struct btrfs_disk_key disk_key
;
3161 struct extent_buffer
*eb
;
3164 eb
= path
->nodes
[0];
3165 slot
= path
->slots
[0];
3167 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3168 if (unlikely(comp_keys(&disk_key
, new_key
) >= 0)) {
3170 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3171 slot
, btrfs_disk_key_objectid(&disk_key
),
3172 btrfs_disk_key_type(&disk_key
),
3173 btrfs_disk_key_offset(&disk_key
),
3174 new_key
->objectid
, new_key
->type
,
3176 btrfs_print_leaf(eb
);
3180 if (slot
< btrfs_header_nritems(eb
) - 1) {
3181 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3182 if (unlikely(comp_keys(&disk_key
, new_key
) <= 0)) {
3184 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3185 slot
, btrfs_disk_key_objectid(&disk_key
),
3186 btrfs_disk_key_type(&disk_key
),
3187 btrfs_disk_key_offset(&disk_key
),
3188 new_key
->objectid
, new_key
->type
,
3190 btrfs_print_leaf(eb
);
3195 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3196 btrfs_set_item_key(eb
, &disk_key
, slot
);
3197 btrfs_mark_buffer_dirty(eb
);
3199 fixup_low_keys(path
, &disk_key
, 1);
3203 * try to push data from one node into the next node left in the
3206 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3207 * error, and > 0 if there was no room in the left hand block.
3209 static int push_node_left(struct btrfs_trans_handle
*trans
,
3210 struct extent_buffer
*dst
,
3211 struct extent_buffer
*src
, int empty
)
3213 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3219 src_nritems
= btrfs_header_nritems(src
);
3220 dst_nritems
= btrfs_header_nritems(dst
);
3221 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3222 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3223 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3225 if (!empty
&& src_nritems
<= 8)
3228 if (push_items
<= 0)
3232 push_items
= min(src_nritems
, push_items
);
3233 if (push_items
< src_nritems
) {
3234 /* leave at least 8 pointers in the node if
3235 * we aren't going to empty it
3237 if (src_nritems
- push_items
< 8) {
3238 if (push_items
<= 8)
3244 push_items
= min(src_nritems
- 8, push_items
);
3246 ret
= tree_mod_log_eb_copy(dst
, src
, dst_nritems
, 0, push_items
);
3248 btrfs_abort_transaction(trans
, ret
);
3251 copy_extent_buffer(dst
, src
,
3252 btrfs_node_key_ptr_offset(dst_nritems
),
3253 btrfs_node_key_ptr_offset(0),
3254 push_items
* sizeof(struct btrfs_key_ptr
));
3256 if (push_items
< src_nritems
) {
3258 * Don't call tree_mod_log_insert_move here, key removal was
3259 * already fully logged by tree_mod_log_eb_copy above.
3261 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3262 btrfs_node_key_ptr_offset(push_items
),
3263 (src_nritems
- push_items
) *
3264 sizeof(struct btrfs_key_ptr
));
3266 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3267 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3268 btrfs_mark_buffer_dirty(src
);
3269 btrfs_mark_buffer_dirty(dst
);
3275 * try to push data from one node into the next node right in the
3278 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3279 * error, and > 0 if there was no room in the right hand block.
3281 * this will only push up to 1/2 the contents of the left node over
3283 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3284 struct extent_buffer
*dst
,
3285 struct extent_buffer
*src
)
3287 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3294 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3295 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3297 src_nritems
= btrfs_header_nritems(src
);
3298 dst_nritems
= btrfs_header_nritems(dst
);
3299 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3300 if (push_items
<= 0)
3303 if (src_nritems
< 4)
3306 max_push
= src_nritems
/ 2 + 1;
3307 /* don't try to empty the node */
3308 if (max_push
>= src_nritems
)
3311 if (max_push
< push_items
)
3312 push_items
= max_push
;
3314 ret
= tree_mod_log_insert_move(dst
, push_items
, 0, dst_nritems
);
3316 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3317 btrfs_node_key_ptr_offset(0),
3319 sizeof(struct btrfs_key_ptr
));
3321 ret
= tree_mod_log_eb_copy(dst
, src
, 0, src_nritems
- push_items
,
3324 btrfs_abort_transaction(trans
, ret
);
3327 copy_extent_buffer(dst
, src
,
3328 btrfs_node_key_ptr_offset(0),
3329 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3330 push_items
* sizeof(struct btrfs_key_ptr
));
3332 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3333 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3335 btrfs_mark_buffer_dirty(src
);
3336 btrfs_mark_buffer_dirty(dst
);
3342 * helper function to insert a new root level in the tree.
3343 * A new node is allocated, and a single item is inserted to
3344 * point to the existing root
3346 * returns zero on success or < 0 on failure.
3348 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3349 struct btrfs_root
*root
,
3350 struct btrfs_path
*path
, int level
)
3352 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3354 struct extent_buffer
*lower
;
3355 struct extent_buffer
*c
;
3356 struct extent_buffer
*old
;
3357 struct btrfs_disk_key lower_key
;
3360 BUG_ON(path
->nodes
[level
]);
3361 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3363 lower
= path
->nodes
[level
-1];
3365 btrfs_item_key(lower
, &lower_key
, 0);
3367 btrfs_node_key(lower
, &lower_key
, 0);
3369 c
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &lower_key
, level
,
3370 root
->node
->start
, 0);
3374 root_add_used(root
, fs_info
->nodesize
);
3376 btrfs_set_header_nritems(c
, 1);
3377 btrfs_set_node_key(c
, &lower_key
, 0);
3378 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3379 lower_gen
= btrfs_header_generation(lower
);
3380 WARN_ON(lower_gen
!= trans
->transid
);
3382 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3384 btrfs_mark_buffer_dirty(c
);
3387 ret
= tree_mod_log_insert_root(root
->node
, c
, 0);
3389 rcu_assign_pointer(root
->node
, c
);
3391 /* the super has an extra ref to root->node */
3392 free_extent_buffer(old
);
3394 add_root_to_dirty_list(root
);
3395 atomic_inc(&c
->refs
);
3396 path
->nodes
[level
] = c
;
3397 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3398 path
->slots
[level
] = 0;
3403 * worker function to insert a single pointer in a node.
3404 * the node should have enough room for the pointer already
3406 * slot and level indicate where you want the key to go, and
3407 * blocknr is the block the key points to.
3409 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3410 struct btrfs_path
*path
,
3411 struct btrfs_disk_key
*key
, u64 bytenr
,
3412 int slot
, int level
)
3414 struct extent_buffer
*lower
;
3418 BUG_ON(!path
->nodes
[level
]);
3419 btrfs_assert_tree_locked(path
->nodes
[level
]);
3420 lower
= path
->nodes
[level
];
3421 nritems
= btrfs_header_nritems(lower
);
3422 BUG_ON(slot
> nritems
);
3423 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(trans
->fs_info
));
3424 if (slot
!= nritems
) {
3426 ret
= tree_mod_log_insert_move(lower
, slot
+ 1, slot
,
3430 memmove_extent_buffer(lower
,
3431 btrfs_node_key_ptr_offset(slot
+ 1),
3432 btrfs_node_key_ptr_offset(slot
),
3433 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3436 ret
= tree_mod_log_insert_key(lower
, slot
, MOD_LOG_KEY_ADD
,
3440 btrfs_set_node_key(lower
, key
, slot
);
3441 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3442 WARN_ON(trans
->transid
== 0);
3443 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3444 btrfs_set_header_nritems(lower
, nritems
+ 1);
3445 btrfs_mark_buffer_dirty(lower
);
3449 * split the node at the specified level in path in two.
3450 * The path is corrected to point to the appropriate node after the split
3452 * Before splitting this tries to make some room in the node by pushing
3453 * left and right, if either one works, it returns right away.
3455 * returns 0 on success and < 0 on failure
3457 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3458 struct btrfs_root
*root
,
3459 struct btrfs_path
*path
, int level
)
3461 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3462 struct extent_buffer
*c
;
3463 struct extent_buffer
*split
;
3464 struct btrfs_disk_key disk_key
;
3469 c
= path
->nodes
[level
];
3470 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3471 if (c
== root
->node
) {
3473 * trying to split the root, lets make a new one
3475 * tree mod log: We don't log_removal old root in
3476 * insert_new_root, because that root buffer will be kept as a
3477 * normal node. We are going to log removal of half of the
3478 * elements below with tree_mod_log_eb_copy. We're holding a
3479 * tree lock on the buffer, which is why we cannot race with
3480 * other tree_mod_log users.
3482 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3486 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3487 c
= path
->nodes
[level
];
3488 if (!ret
&& btrfs_header_nritems(c
) <
3489 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3495 c_nritems
= btrfs_header_nritems(c
);
3496 mid
= (c_nritems
+ 1) / 2;
3497 btrfs_node_key(c
, &disk_key
, mid
);
3499 split
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &disk_key
, level
,
3502 return PTR_ERR(split
);
3504 root_add_used(root
, fs_info
->nodesize
);
3505 ASSERT(btrfs_header_level(c
) == level
);
3507 ret
= tree_mod_log_eb_copy(split
, c
, 0, mid
, c_nritems
- mid
);
3509 btrfs_abort_transaction(trans
, ret
);
3512 copy_extent_buffer(split
, c
,
3513 btrfs_node_key_ptr_offset(0),
3514 btrfs_node_key_ptr_offset(mid
),
3515 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3516 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3517 btrfs_set_header_nritems(c
, mid
);
3520 btrfs_mark_buffer_dirty(c
);
3521 btrfs_mark_buffer_dirty(split
);
3523 insert_ptr(trans
, path
, &disk_key
, split
->start
,
3524 path
->slots
[level
+ 1] + 1, level
+ 1);
3526 if (path
->slots
[level
] >= mid
) {
3527 path
->slots
[level
] -= mid
;
3528 btrfs_tree_unlock(c
);
3529 free_extent_buffer(c
);
3530 path
->nodes
[level
] = split
;
3531 path
->slots
[level
+ 1] += 1;
3533 btrfs_tree_unlock(split
);
3534 free_extent_buffer(split
);
3540 * how many bytes are required to store the items in a leaf. start
3541 * and nr indicate which items in the leaf to check. This totals up the
3542 * space used both by the item structs and the item data
3544 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3546 struct btrfs_item
*start_item
;
3547 struct btrfs_item
*end_item
;
3548 struct btrfs_map_token token
;
3550 int nritems
= btrfs_header_nritems(l
);
3551 int end
= min(nritems
, start
+ nr
) - 1;
3555 btrfs_init_map_token(&token
, l
);
3556 start_item
= btrfs_item_nr(start
);
3557 end_item
= btrfs_item_nr(end
);
3558 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3559 btrfs_token_item_size(l
, start_item
, &token
);
3560 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3561 data_len
+= sizeof(struct btrfs_item
) * nr
;
3562 WARN_ON(data_len
< 0);
3567 * The space between the end of the leaf items and
3568 * the start of the leaf data. IOW, how much room
3569 * the leaf has left for both items and data
3571 noinline
int btrfs_leaf_free_space(struct extent_buffer
*leaf
)
3573 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3574 int nritems
= btrfs_header_nritems(leaf
);
3577 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3580 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3583 leaf_space_used(leaf
, 0, nritems
), nritems
);
3589 * min slot controls the lowest index we're willing to push to the
3590 * right. We'll push up to and including min_slot, but no lower
3592 static noinline
int __push_leaf_right(struct btrfs_path
*path
,
3593 int data_size
, int empty
,
3594 struct extent_buffer
*right
,
3595 int free_space
, u32 left_nritems
,
3598 struct btrfs_fs_info
*fs_info
= right
->fs_info
;
3599 struct extent_buffer
*left
= path
->nodes
[0];
3600 struct extent_buffer
*upper
= path
->nodes
[1];
3601 struct btrfs_map_token token
;
3602 struct btrfs_disk_key disk_key
;
3607 struct btrfs_item
*item
;
3616 nr
= max_t(u32
, 1, min_slot
);
3618 if (path
->slots
[0] >= left_nritems
)
3619 push_space
+= data_size
;
3621 slot
= path
->slots
[1];
3622 i
= left_nritems
- 1;
3624 item
= btrfs_item_nr(i
);
3626 if (!empty
&& push_items
> 0) {
3627 if (path
->slots
[0] > i
)
3629 if (path
->slots
[0] == i
) {
3630 int space
= btrfs_leaf_free_space(left
);
3632 if (space
+ push_space
* 2 > free_space
)
3637 if (path
->slots
[0] == i
)
3638 push_space
+= data_size
;
3640 this_item_size
= btrfs_item_size(left
, item
);
3641 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3645 push_space
+= this_item_size
+ sizeof(*item
);
3651 if (push_items
== 0)
3654 WARN_ON(!empty
&& push_items
== left_nritems
);
3656 /* push left to right */
3657 right_nritems
= btrfs_header_nritems(right
);
3659 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3660 push_space
-= leaf_data_end(left
);
3662 /* make room in the right data area */
3663 data_end
= leaf_data_end(right
);
3664 memmove_extent_buffer(right
,
3665 BTRFS_LEAF_DATA_OFFSET
+ data_end
- push_space
,
3666 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
3667 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3669 /* copy from the left data area */
3670 copy_extent_buffer(right
, left
, BTRFS_LEAF_DATA_OFFSET
+
3671 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3672 BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(left
),
3675 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3676 btrfs_item_nr_offset(0),
3677 right_nritems
* sizeof(struct btrfs_item
));
3679 /* copy the items from left to right */
3680 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3681 btrfs_item_nr_offset(left_nritems
- push_items
),
3682 push_items
* sizeof(struct btrfs_item
));
3684 /* update the item pointers */
3685 btrfs_init_map_token(&token
, right
);
3686 right_nritems
+= push_items
;
3687 btrfs_set_header_nritems(right
, right_nritems
);
3688 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3689 for (i
= 0; i
< right_nritems
; i
++) {
3690 item
= btrfs_item_nr(i
);
3691 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3692 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3695 left_nritems
-= push_items
;
3696 btrfs_set_header_nritems(left
, left_nritems
);
3699 btrfs_mark_buffer_dirty(left
);
3701 btrfs_clean_tree_block(left
);
3703 btrfs_mark_buffer_dirty(right
);
3705 btrfs_item_key(right
, &disk_key
, 0);
3706 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3707 btrfs_mark_buffer_dirty(upper
);
3709 /* then fixup the leaf pointer in the path */
3710 if (path
->slots
[0] >= left_nritems
) {
3711 path
->slots
[0] -= left_nritems
;
3712 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3713 btrfs_clean_tree_block(path
->nodes
[0]);
3714 btrfs_tree_unlock(path
->nodes
[0]);
3715 free_extent_buffer(path
->nodes
[0]);
3716 path
->nodes
[0] = right
;
3717 path
->slots
[1] += 1;
3719 btrfs_tree_unlock(right
);
3720 free_extent_buffer(right
);
3725 btrfs_tree_unlock(right
);
3726 free_extent_buffer(right
);
3731 * push some data in the path leaf to the right, trying to free up at
3732 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3734 * returns 1 if the push failed because the other node didn't have enough
3735 * room, 0 if everything worked out and < 0 if there were major errors.
3737 * this will push starting from min_slot to the end of the leaf. It won't
3738 * push any slot lower than min_slot
3740 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3741 *root
, struct btrfs_path
*path
,
3742 int min_data_size
, int data_size
,
3743 int empty
, u32 min_slot
)
3745 struct extent_buffer
*left
= path
->nodes
[0];
3746 struct extent_buffer
*right
;
3747 struct extent_buffer
*upper
;
3753 if (!path
->nodes
[1])
3756 slot
= path
->slots
[1];
3757 upper
= path
->nodes
[1];
3758 if (slot
>= btrfs_header_nritems(upper
) - 1)
3761 btrfs_assert_tree_locked(path
->nodes
[1]);
3763 right
= btrfs_read_node_slot(upper
, slot
+ 1);
3765 * slot + 1 is not valid or we fail to read the right node,
3766 * no big deal, just return.
3771 btrfs_tree_lock(right
);
3772 btrfs_set_lock_blocking_write(right
);
3774 free_space
= btrfs_leaf_free_space(right
);
3775 if (free_space
< data_size
)
3778 /* cow and double check */
3779 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3784 free_space
= btrfs_leaf_free_space(right
);
3785 if (free_space
< data_size
)
3788 left_nritems
= btrfs_header_nritems(left
);
3789 if (left_nritems
== 0)
3792 if (path
->slots
[0] == left_nritems
&& !empty
) {
3793 /* Key greater than all keys in the leaf, right neighbor has
3794 * enough room for it and we're not emptying our leaf to delete
3795 * it, therefore use right neighbor to insert the new item and
3796 * no need to touch/dirty our left leaf. */
3797 btrfs_tree_unlock(left
);
3798 free_extent_buffer(left
);
3799 path
->nodes
[0] = right
;
3805 return __push_leaf_right(path
, min_data_size
, empty
,
3806 right
, free_space
, left_nritems
, min_slot
);
3808 btrfs_tree_unlock(right
);
3809 free_extent_buffer(right
);
3814 * push some data in the path leaf to the left, trying to free up at
3815 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3817 * max_slot can put a limit on how far into the leaf we'll push items. The
3818 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3821 static noinline
int __push_leaf_left(struct btrfs_path
*path
, int data_size
,
3822 int empty
, struct extent_buffer
*left
,
3823 int free_space
, u32 right_nritems
,
3826 struct btrfs_fs_info
*fs_info
= left
->fs_info
;
3827 struct btrfs_disk_key disk_key
;
3828 struct extent_buffer
*right
= path
->nodes
[0];
3832 struct btrfs_item
*item
;
3833 u32 old_left_nritems
;
3837 u32 old_left_item_size
;
3838 struct btrfs_map_token token
;
3841 nr
= min(right_nritems
, max_slot
);
3843 nr
= min(right_nritems
- 1, max_slot
);
3845 for (i
= 0; i
< nr
; i
++) {
3846 item
= btrfs_item_nr(i
);
3848 if (!empty
&& push_items
> 0) {
3849 if (path
->slots
[0] < i
)
3851 if (path
->slots
[0] == i
) {
3852 int space
= btrfs_leaf_free_space(right
);
3854 if (space
+ push_space
* 2 > free_space
)
3859 if (path
->slots
[0] == i
)
3860 push_space
+= data_size
;
3862 this_item_size
= btrfs_item_size(right
, item
);
3863 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3867 push_space
+= this_item_size
+ sizeof(*item
);
3870 if (push_items
== 0) {
3874 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3876 /* push data from right to left */
3877 copy_extent_buffer(left
, right
,
3878 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3879 btrfs_item_nr_offset(0),
3880 push_items
* sizeof(struct btrfs_item
));
3882 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3883 btrfs_item_offset_nr(right
, push_items
- 1);
3885 copy_extent_buffer(left
, right
, BTRFS_LEAF_DATA_OFFSET
+
3886 leaf_data_end(left
) - push_space
,
3887 BTRFS_LEAF_DATA_OFFSET
+
3888 btrfs_item_offset_nr(right
, push_items
- 1),
3890 old_left_nritems
= btrfs_header_nritems(left
);
3891 BUG_ON(old_left_nritems
<= 0);
3893 btrfs_init_map_token(&token
, left
);
3894 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3895 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3898 item
= btrfs_item_nr(i
);
3900 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3901 btrfs_set_token_item_offset(left
, item
,
3902 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
),
3905 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3907 /* fixup right node */
3908 if (push_items
> right_nritems
)
3909 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3912 if (push_items
< right_nritems
) {
3913 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3914 leaf_data_end(right
);
3915 memmove_extent_buffer(right
, BTRFS_LEAF_DATA_OFFSET
+
3916 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3917 BTRFS_LEAF_DATA_OFFSET
+
3918 leaf_data_end(right
), push_space
);
3920 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3921 btrfs_item_nr_offset(push_items
),
3922 (btrfs_header_nritems(right
) - push_items
) *
3923 sizeof(struct btrfs_item
));
3926 btrfs_init_map_token(&token
, right
);
3927 right_nritems
-= push_items
;
3928 btrfs_set_header_nritems(right
, right_nritems
);
3929 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3930 for (i
= 0; i
< right_nritems
; i
++) {
3931 item
= btrfs_item_nr(i
);
3933 push_space
= push_space
- btrfs_token_item_size(right
,
3935 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3938 btrfs_mark_buffer_dirty(left
);
3940 btrfs_mark_buffer_dirty(right
);
3942 btrfs_clean_tree_block(right
);
3944 btrfs_item_key(right
, &disk_key
, 0);
3945 fixup_low_keys(path
, &disk_key
, 1);
3947 /* then fixup the leaf pointer in the path */
3948 if (path
->slots
[0] < push_items
) {
3949 path
->slots
[0] += old_left_nritems
;
3950 btrfs_tree_unlock(path
->nodes
[0]);
3951 free_extent_buffer(path
->nodes
[0]);
3952 path
->nodes
[0] = left
;
3953 path
->slots
[1] -= 1;
3955 btrfs_tree_unlock(left
);
3956 free_extent_buffer(left
);
3957 path
->slots
[0] -= push_items
;
3959 BUG_ON(path
->slots
[0] < 0);
3962 btrfs_tree_unlock(left
);
3963 free_extent_buffer(left
);
3968 * push some data in the path leaf to the left, trying to free up at
3969 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3971 * max_slot can put a limit on how far into the leaf we'll push items. The
3972 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3975 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3976 *root
, struct btrfs_path
*path
, int min_data_size
,
3977 int data_size
, int empty
, u32 max_slot
)
3979 struct extent_buffer
*right
= path
->nodes
[0];
3980 struct extent_buffer
*left
;
3986 slot
= path
->slots
[1];
3989 if (!path
->nodes
[1])
3992 right_nritems
= btrfs_header_nritems(right
);
3993 if (right_nritems
== 0)
3996 btrfs_assert_tree_locked(path
->nodes
[1]);
3998 left
= btrfs_read_node_slot(path
->nodes
[1], slot
- 1);
4000 * slot - 1 is not valid or we fail to read the left node,
4001 * no big deal, just return.
4006 btrfs_tree_lock(left
);
4007 btrfs_set_lock_blocking_write(left
);
4009 free_space
= btrfs_leaf_free_space(left
);
4010 if (free_space
< data_size
) {
4015 /* cow and double check */
4016 ret
= btrfs_cow_block(trans
, root
, left
,
4017 path
->nodes
[1], slot
- 1, &left
);
4019 /* we hit -ENOSPC, but it isn't fatal here */
4025 free_space
= btrfs_leaf_free_space(left
);
4026 if (free_space
< data_size
) {
4031 return __push_leaf_left(path
, min_data_size
,
4032 empty
, left
, free_space
, right_nritems
,
4035 btrfs_tree_unlock(left
);
4036 free_extent_buffer(left
);
4041 * split the path's leaf in two, making sure there is at least data_size
4042 * available for the resulting leaf level of the path.
4044 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4045 struct btrfs_path
*path
,
4046 struct extent_buffer
*l
,
4047 struct extent_buffer
*right
,
4048 int slot
, int mid
, int nritems
)
4050 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4054 struct btrfs_disk_key disk_key
;
4055 struct btrfs_map_token token
;
4057 nritems
= nritems
- mid
;
4058 btrfs_set_header_nritems(right
, nritems
);
4059 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(l
);
4061 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4062 btrfs_item_nr_offset(mid
),
4063 nritems
* sizeof(struct btrfs_item
));
4065 copy_extent_buffer(right
, l
,
4066 BTRFS_LEAF_DATA_OFFSET
+ BTRFS_LEAF_DATA_SIZE(fs_info
) -
4067 data_copy_size
, BTRFS_LEAF_DATA_OFFSET
+
4068 leaf_data_end(l
), data_copy_size
);
4070 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_end_nr(l
, mid
);
4072 btrfs_init_map_token(&token
, right
);
4073 for (i
= 0; i
< nritems
; i
++) {
4074 struct btrfs_item
*item
= btrfs_item_nr(i
);
4077 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4078 btrfs_set_token_item_offset(right
, item
,
4079 ioff
+ rt_data_off
, &token
);
4082 btrfs_set_header_nritems(l
, mid
);
4083 btrfs_item_key(right
, &disk_key
, 0);
4084 insert_ptr(trans
, path
, &disk_key
, right
->start
, path
->slots
[1] + 1, 1);
4086 btrfs_mark_buffer_dirty(right
);
4087 btrfs_mark_buffer_dirty(l
);
4088 BUG_ON(path
->slots
[0] != slot
);
4091 btrfs_tree_unlock(path
->nodes
[0]);
4092 free_extent_buffer(path
->nodes
[0]);
4093 path
->nodes
[0] = right
;
4094 path
->slots
[0] -= mid
;
4095 path
->slots
[1] += 1;
4097 btrfs_tree_unlock(right
);
4098 free_extent_buffer(right
);
4101 BUG_ON(path
->slots
[0] < 0);
4105 * double splits happen when we need to insert a big item in the middle
4106 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4107 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4110 * We avoid this by trying to push the items on either side of our target
4111 * into the adjacent leaves. If all goes well we can avoid the double split
4114 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4115 struct btrfs_root
*root
,
4116 struct btrfs_path
*path
,
4123 int space_needed
= data_size
;
4125 slot
= path
->slots
[0];
4126 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4127 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
4130 * try to push all the items after our slot into the
4133 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4140 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4142 * our goal is to get our slot at the start or end of a leaf. If
4143 * we've done so we're done
4145 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4148 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
4151 /* try to push all the items before our slot into the next leaf */
4152 slot
= path
->slots
[0];
4153 space_needed
= data_size
;
4155 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
4156 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4169 * split the path's leaf in two, making sure there is at least data_size
4170 * available for the resulting leaf level of the path.
4172 * returns 0 if all went well and < 0 on failure.
4174 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4175 struct btrfs_root
*root
,
4176 const struct btrfs_key
*ins_key
,
4177 struct btrfs_path
*path
, int data_size
,
4180 struct btrfs_disk_key disk_key
;
4181 struct extent_buffer
*l
;
4185 struct extent_buffer
*right
;
4186 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4190 int num_doubles
= 0;
4191 int tried_avoid_double
= 0;
4194 slot
= path
->slots
[0];
4195 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4196 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
4199 /* first try to make some room by pushing left and right */
4200 if (data_size
&& path
->nodes
[1]) {
4201 int space_needed
= data_size
;
4203 if (slot
< btrfs_header_nritems(l
))
4204 space_needed
-= btrfs_leaf_free_space(l
);
4206 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4207 space_needed
, 0, 0);
4211 space_needed
= data_size
;
4213 space_needed
-= btrfs_leaf_free_space(l
);
4214 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4215 space_needed
, 0, (u32
)-1);
4221 /* did the pushes work? */
4222 if (btrfs_leaf_free_space(l
) >= data_size
)
4226 if (!path
->nodes
[1]) {
4227 ret
= insert_new_root(trans
, root
, path
, 1);
4234 slot
= path
->slots
[0];
4235 nritems
= btrfs_header_nritems(l
);
4236 mid
= (nritems
+ 1) / 2;
4240 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4241 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4242 if (slot
>= nritems
) {
4246 if (mid
!= nritems
&&
4247 leaf_space_used(l
, mid
, nritems
- mid
) +
4248 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4249 if (data_size
&& !tried_avoid_double
)
4250 goto push_for_double
;
4256 if (leaf_space_used(l
, 0, mid
) + data_size
>
4257 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4258 if (!extend
&& data_size
&& slot
== 0) {
4260 } else if ((extend
|| !data_size
) && slot
== 0) {
4264 if (mid
!= nritems
&&
4265 leaf_space_used(l
, mid
, nritems
- mid
) +
4266 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4267 if (data_size
&& !tried_avoid_double
)
4268 goto push_for_double
;
4276 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4278 btrfs_item_key(l
, &disk_key
, mid
);
4280 right
= alloc_tree_block_no_bg_flush(trans
, root
, 0, &disk_key
, 0,
4283 return PTR_ERR(right
);
4285 root_add_used(root
, fs_info
->nodesize
);
4289 btrfs_set_header_nritems(right
, 0);
4290 insert_ptr(trans
, path
, &disk_key
,
4291 right
->start
, path
->slots
[1] + 1, 1);
4292 btrfs_tree_unlock(path
->nodes
[0]);
4293 free_extent_buffer(path
->nodes
[0]);
4294 path
->nodes
[0] = right
;
4296 path
->slots
[1] += 1;
4298 btrfs_set_header_nritems(right
, 0);
4299 insert_ptr(trans
, path
, &disk_key
,
4300 right
->start
, path
->slots
[1], 1);
4301 btrfs_tree_unlock(path
->nodes
[0]);
4302 free_extent_buffer(path
->nodes
[0]);
4303 path
->nodes
[0] = right
;
4305 if (path
->slots
[1] == 0)
4306 fixup_low_keys(path
, &disk_key
, 1);
4309 * We create a new leaf 'right' for the required ins_len and
4310 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4311 * the content of ins_len to 'right'.
4316 copy_for_split(trans
, path
, l
, right
, slot
, mid
, nritems
);
4319 BUG_ON(num_doubles
!= 0);
4327 push_for_double_split(trans
, root
, path
, data_size
);
4328 tried_avoid_double
= 1;
4329 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
4334 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4335 struct btrfs_root
*root
,
4336 struct btrfs_path
*path
, int ins_len
)
4338 struct btrfs_key key
;
4339 struct extent_buffer
*leaf
;
4340 struct btrfs_file_extent_item
*fi
;
4345 leaf
= path
->nodes
[0];
4346 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4348 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4349 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4351 if (btrfs_leaf_free_space(leaf
) >= ins_len
)
4354 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4355 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4356 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4357 struct btrfs_file_extent_item
);
4358 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4360 btrfs_release_path(path
);
4362 path
->keep_locks
= 1;
4363 path
->search_for_split
= 1;
4364 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4365 path
->search_for_split
= 0;
4372 leaf
= path
->nodes
[0];
4373 /* if our item isn't there, return now */
4374 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4377 /* the leaf has changed, it now has room. return now */
4378 if (btrfs_leaf_free_space(path
->nodes
[0]) >= ins_len
)
4381 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4382 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4383 struct btrfs_file_extent_item
);
4384 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4388 btrfs_set_path_blocking(path
);
4389 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4393 path
->keep_locks
= 0;
4394 btrfs_unlock_up_safe(path
, 1);
4397 path
->keep_locks
= 0;
4401 static noinline
int split_item(struct btrfs_path
*path
,
4402 const struct btrfs_key
*new_key
,
4403 unsigned long split_offset
)
4405 struct extent_buffer
*leaf
;
4406 struct btrfs_item
*item
;
4407 struct btrfs_item
*new_item
;
4413 struct btrfs_disk_key disk_key
;
4415 leaf
= path
->nodes
[0];
4416 BUG_ON(btrfs_leaf_free_space(leaf
) < sizeof(struct btrfs_item
));
4418 btrfs_set_path_blocking(path
);
4420 item
= btrfs_item_nr(path
->slots
[0]);
4421 orig_offset
= btrfs_item_offset(leaf
, item
);
4422 item_size
= btrfs_item_size(leaf
, item
);
4424 buf
= kmalloc(item_size
, GFP_NOFS
);
4428 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4429 path
->slots
[0]), item_size
);
4431 slot
= path
->slots
[0] + 1;
4432 nritems
= btrfs_header_nritems(leaf
);
4433 if (slot
!= nritems
) {
4434 /* shift the items */
4435 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4436 btrfs_item_nr_offset(slot
),
4437 (nritems
- slot
) * sizeof(struct btrfs_item
));
4440 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4441 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4443 new_item
= btrfs_item_nr(slot
);
4445 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4446 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4448 btrfs_set_item_offset(leaf
, item
,
4449 orig_offset
+ item_size
- split_offset
);
4450 btrfs_set_item_size(leaf
, item
, split_offset
);
4452 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4454 /* write the data for the start of the original item */
4455 write_extent_buffer(leaf
, buf
,
4456 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4459 /* write the data for the new item */
4460 write_extent_buffer(leaf
, buf
+ split_offset
,
4461 btrfs_item_ptr_offset(leaf
, slot
),
4462 item_size
- split_offset
);
4463 btrfs_mark_buffer_dirty(leaf
);
4465 BUG_ON(btrfs_leaf_free_space(leaf
) < 0);
4471 * This function splits a single item into two items,
4472 * giving 'new_key' to the new item and splitting the
4473 * old one at split_offset (from the start of the item).
4475 * The path may be released by this operation. After
4476 * the split, the path is pointing to the old item. The
4477 * new item is going to be in the same node as the old one.
4479 * Note, the item being split must be smaller enough to live alone on
4480 * a tree block with room for one extra struct btrfs_item
4482 * This allows us to split the item in place, keeping a lock on the
4483 * leaf the entire time.
4485 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4486 struct btrfs_root
*root
,
4487 struct btrfs_path
*path
,
4488 const struct btrfs_key
*new_key
,
4489 unsigned long split_offset
)
4492 ret
= setup_leaf_for_split(trans
, root
, path
,
4493 sizeof(struct btrfs_item
));
4497 ret
= split_item(path
, new_key
, split_offset
);
4502 * This function duplicate a item, giving 'new_key' to the new item.
4503 * It guarantees both items live in the same tree leaf and the new item
4504 * is contiguous with the original item.
4506 * This allows us to split file extent in place, keeping a lock on the
4507 * leaf the entire time.
4509 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4510 struct btrfs_root
*root
,
4511 struct btrfs_path
*path
,
4512 const struct btrfs_key
*new_key
)
4514 struct extent_buffer
*leaf
;
4518 leaf
= path
->nodes
[0];
4519 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4520 ret
= setup_leaf_for_split(trans
, root
, path
,
4521 item_size
+ sizeof(struct btrfs_item
));
4526 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4527 item_size
, item_size
+
4528 sizeof(struct btrfs_item
), 1);
4529 leaf
= path
->nodes
[0];
4530 memcpy_extent_buffer(leaf
,
4531 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4532 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4538 * make the item pointed to by the path smaller. new_size indicates
4539 * how small to make it, and from_end tells us if we just chop bytes
4540 * off the end of the item or if we shift the item to chop bytes off
4543 void btrfs_truncate_item(struct btrfs_path
*path
, u32 new_size
, int from_end
)
4546 struct extent_buffer
*leaf
;
4547 struct btrfs_item
*item
;
4549 unsigned int data_end
;
4550 unsigned int old_data_start
;
4551 unsigned int old_size
;
4552 unsigned int size_diff
;
4554 struct btrfs_map_token token
;
4556 leaf
= path
->nodes
[0];
4557 slot
= path
->slots
[0];
4559 old_size
= btrfs_item_size_nr(leaf
, slot
);
4560 if (old_size
== new_size
)
4563 nritems
= btrfs_header_nritems(leaf
);
4564 data_end
= leaf_data_end(leaf
);
4566 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4568 size_diff
= old_size
- new_size
;
4571 BUG_ON(slot
>= nritems
);
4574 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4576 /* first correct the data pointers */
4577 btrfs_init_map_token(&token
, leaf
);
4578 for (i
= slot
; i
< nritems
; i
++) {
4580 item
= btrfs_item_nr(i
);
4582 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4583 btrfs_set_token_item_offset(leaf
, item
,
4584 ioff
+ size_diff
, &token
);
4587 /* shift the data */
4589 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4590 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4591 data_end
, old_data_start
+ new_size
- data_end
);
4593 struct btrfs_disk_key disk_key
;
4596 btrfs_item_key(leaf
, &disk_key
, slot
);
4598 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4600 struct btrfs_file_extent_item
*fi
;
4602 fi
= btrfs_item_ptr(leaf
, slot
,
4603 struct btrfs_file_extent_item
);
4604 fi
= (struct btrfs_file_extent_item
*)(
4605 (unsigned long)fi
- size_diff
);
4607 if (btrfs_file_extent_type(leaf
, fi
) ==
4608 BTRFS_FILE_EXTENT_INLINE
) {
4609 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4610 memmove_extent_buffer(leaf
, ptr
,
4612 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4616 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4617 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4618 data_end
, old_data_start
- data_end
);
4620 offset
= btrfs_disk_key_offset(&disk_key
);
4621 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4622 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4624 fixup_low_keys(path
, &disk_key
, 1);
4627 item
= btrfs_item_nr(slot
);
4628 btrfs_set_item_size(leaf
, item
, new_size
);
4629 btrfs_mark_buffer_dirty(leaf
);
4631 if (btrfs_leaf_free_space(leaf
) < 0) {
4632 btrfs_print_leaf(leaf
);
4638 * make the item pointed to by the path bigger, data_size is the added size.
4640 void btrfs_extend_item(struct btrfs_path
*path
, u32 data_size
)
4643 struct extent_buffer
*leaf
;
4644 struct btrfs_item
*item
;
4646 unsigned int data_end
;
4647 unsigned int old_data
;
4648 unsigned int old_size
;
4650 struct btrfs_map_token token
;
4652 leaf
= path
->nodes
[0];
4654 nritems
= btrfs_header_nritems(leaf
);
4655 data_end
= leaf_data_end(leaf
);
4657 if (btrfs_leaf_free_space(leaf
) < data_size
) {
4658 btrfs_print_leaf(leaf
);
4661 slot
= path
->slots
[0];
4662 old_data
= btrfs_item_end_nr(leaf
, slot
);
4665 if (slot
>= nritems
) {
4666 btrfs_print_leaf(leaf
);
4667 btrfs_crit(leaf
->fs_info
, "slot %d too large, nritems %d",
4673 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4675 /* first correct the data pointers */
4676 btrfs_init_map_token(&token
, leaf
);
4677 for (i
= slot
; i
< nritems
; i
++) {
4679 item
= btrfs_item_nr(i
);
4681 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4682 btrfs_set_token_item_offset(leaf
, item
,
4683 ioff
- data_size
, &token
);
4686 /* shift the data */
4687 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4688 data_end
- data_size
, BTRFS_LEAF_DATA_OFFSET
+
4689 data_end
, old_data
- data_end
);
4691 data_end
= old_data
;
4692 old_size
= btrfs_item_size_nr(leaf
, slot
);
4693 item
= btrfs_item_nr(slot
);
4694 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4695 btrfs_mark_buffer_dirty(leaf
);
4697 if (btrfs_leaf_free_space(leaf
) < 0) {
4698 btrfs_print_leaf(leaf
);
4704 * this is a helper for btrfs_insert_empty_items, the main goal here is
4705 * to save stack depth by doing the bulk of the work in a function
4706 * that doesn't call btrfs_search_slot
4708 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4709 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4710 u32 total_data
, u32 total_size
, int nr
)
4712 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4713 struct btrfs_item
*item
;
4716 unsigned int data_end
;
4717 struct btrfs_disk_key disk_key
;
4718 struct extent_buffer
*leaf
;
4720 struct btrfs_map_token token
;
4722 if (path
->slots
[0] == 0) {
4723 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4724 fixup_low_keys(path
, &disk_key
, 1);
4726 btrfs_unlock_up_safe(path
, 1);
4728 leaf
= path
->nodes
[0];
4729 slot
= path
->slots
[0];
4731 nritems
= btrfs_header_nritems(leaf
);
4732 data_end
= leaf_data_end(leaf
);
4734 if (btrfs_leaf_free_space(leaf
) < total_size
) {
4735 btrfs_print_leaf(leaf
);
4736 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4737 total_size
, btrfs_leaf_free_space(leaf
));
4741 btrfs_init_map_token(&token
, leaf
);
4742 if (slot
!= nritems
) {
4743 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4745 if (old_data
< data_end
) {
4746 btrfs_print_leaf(leaf
);
4747 btrfs_crit(fs_info
, "slot %d old_data %d data_end %d",
4748 slot
, old_data
, data_end
);
4752 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4754 /* first correct the data pointers */
4755 for (i
= slot
; i
< nritems
; i
++) {
4758 item
= btrfs_item_nr(i
);
4759 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4760 btrfs_set_token_item_offset(leaf
, item
,
4761 ioff
- total_data
, &token
);
4763 /* shift the items */
4764 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4765 btrfs_item_nr_offset(slot
),
4766 (nritems
- slot
) * sizeof(struct btrfs_item
));
4768 /* shift the data */
4769 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4770 data_end
- total_data
, BTRFS_LEAF_DATA_OFFSET
+
4771 data_end
, old_data
- data_end
);
4772 data_end
= old_data
;
4775 /* setup the item for the new data */
4776 for (i
= 0; i
< nr
; i
++) {
4777 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4778 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4779 item
= btrfs_item_nr(slot
+ i
);
4780 btrfs_set_token_item_offset(leaf
, item
,
4781 data_end
- data_size
[i
], &token
);
4782 data_end
-= data_size
[i
];
4783 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4786 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4787 btrfs_mark_buffer_dirty(leaf
);
4789 if (btrfs_leaf_free_space(leaf
) < 0) {
4790 btrfs_print_leaf(leaf
);
4796 * Given a key and some data, insert items into the tree.
4797 * This does all the path init required, making room in the tree if needed.
4799 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4800 struct btrfs_root
*root
,
4801 struct btrfs_path
*path
,
4802 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4811 for (i
= 0; i
< nr
; i
++)
4812 total_data
+= data_size
[i
];
4814 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4815 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4821 slot
= path
->slots
[0];
4824 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4825 total_data
, total_size
, nr
);
4830 * Given a key and some data, insert an item into the tree.
4831 * This does all the path init required, making room in the tree if needed.
4833 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4834 const struct btrfs_key
*cpu_key
, void *data
,
4838 struct btrfs_path
*path
;
4839 struct extent_buffer
*leaf
;
4842 path
= btrfs_alloc_path();
4845 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4847 leaf
= path
->nodes
[0];
4848 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4849 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4850 btrfs_mark_buffer_dirty(leaf
);
4852 btrfs_free_path(path
);
4857 * delete the pointer from a given node.
4859 * the tree should have been previously balanced so the deletion does not
4862 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4863 int level
, int slot
)
4865 struct extent_buffer
*parent
= path
->nodes
[level
];
4869 nritems
= btrfs_header_nritems(parent
);
4870 if (slot
!= nritems
- 1) {
4872 ret
= tree_mod_log_insert_move(parent
, slot
, slot
+ 1,
4873 nritems
- slot
- 1);
4876 memmove_extent_buffer(parent
,
4877 btrfs_node_key_ptr_offset(slot
),
4878 btrfs_node_key_ptr_offset(slot
+ 1),
4879 sizeof(struct btrfs_key_ptr
) *
4880 (nritems
- slot
- 1));
4882 ret
= tree_mod_log_insert_key(parent
, slot
, MOD_LOG_KEY_REMOVE
,
4888 btrfs_set_header_nritems(parent
, nritems
);
4889 if (nritems
== 0 && parent
== root
->node
) {
4890 BUG_ON(btrfs_header_level(root
->node
) != 1);
4891 /* just turn the root into a leaf and break */
4892 btrfs_set_header_level(root
->node
, 0);
4893 } else if (slot
== 0) {
4894 struct btrfs_disk_key disk_key
;
4896 btrfs_node_key(parent
, &disk_key
, 0);
4897 fixup_low_keys(path
, &disk_key
, level
+ 1);
4899 btrfs_mark_buffer_dirty(parent
);
4903 * a helper function to delete the leaf pointed to by path->slots[1] and
4906 * This deletes the pointer in path->nodes[1] and frees the leaf
4907 * block extent. zero is returned if it all worked out, < 0 otherwise.
4909 * The path must have already been setup for deleting the leaf, including
4910 * all the proper balancing. path->nodes[1] must be locked.
4912 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4913 struct btrfs_root
*root
,
4914 struct btrfs_path
*path
,
4915 struct extent_buffer
*leaf
)
4917 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4918 del_ptr(root
, path
, 1, path
->slots
[1]);
4921 * btrfs_free_extent is expensive, we want to make sure we
4922 * aren't holding any locks when we call it
4924 btrfs_unlock_up_safe(path
, 0);
4926 root_sub_used(root
, leaf
->len
);
4928 atomic_inc(&leaf
->refs
);
4929 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4930 free_extent_buffer_stale(leaf
);
4933 * delete the item at the leaf level in path. If that empties
4934 * the leaf, remove it from the tree
4936 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4937 struct btrfs_path
*path
, int slot
, int nr
)
4939 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4940 struct extent_buffer
*leaf
;
4941 struct btrfs_item
*item
;
4949 leaf
= path
->nodes
[0];
4950 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4952 for (i
= 0; i
< nr
; i
++)
4953 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4955 nritems
= btrfs_header_nritems(leaf
);
4957 if (slot
+ nr
!= nritems
) {
4958 int data_end
= leaf_data_end(leaf
);
4959 struct btrfs_map_token token
;
4961 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4963 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
4964 last_off
- data_end
);
4966 btrfs_init_map_token(&token
, leaf
);
4967 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4970 item
= btrfs_item_nr(i
);
4971 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4972 btrfs_set_token_item_offset(leaf
, item
,
4973 ioff
+ dsize
, &token
);
4976 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4977 btrfs_item_nr_offset(slot
+ nr
),
4978 sizeof(struct btrfs_item
) *
4979 (nritems
- slot
- nr
));
4981 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4984 /* delete the leaf if we've emptied it */
4986 if (leaf
== root
->node
) {
4987 btrfs_set_header_level(leaf
, 0);
4989 btrfs_set_path_blocking(path
);
4990 btrfs_clean_tree_block(leaf
);
4991 btrfs_del_leaf(trans
, root
, path
, leaf
);
4994 int used
= leaf_space_used(leaf
, 0, nritems
);
4996 struct btrfs_disk_key disk_key
;
4998 btrfs_item_key(leaf
, &disk_key
, 0);
4999 fixup_low_keys(path
, &disk_key
, 1);
5002 /* delete the leaf if it is mostly empty */
5003 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
5004 /* push_leaf_left fixes the path.
5005 * make sure the path still points to our leaf
5006 * for possible call to del_ptr below
5008 slot
= path
->slots
[1];
5009 atomic_inc(&leaf
->refs
);
5011 btrfs_set_path_blocking(path
);
5012 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5014 if (wret
< 0 && wret
!= -ENOSPC
)
5017 if (path
->nodes
[0] == leaf
&&
5018 btrfs_header_nritems(leaf
)) {
5019 wret
= push_leaf_right(trans
, root
, path
, 1,
5021 if (wret
< 0 && wret
!= -ENOSPC
)
5025 if (btrfs_header_nritems(leaf
) == 0) {
5026 path
->slots
[1] = slot
;
5027 btrfs_del_leaf(trans
, root
, path
, leaf
);
5028 free_extent_buffer(leaf
);
5031 /* if we're still in the path, make sure
5032 * we're dirty. Otherwise, one of the
5033 * push_leaf functions must have already
5034 * dirtied this buffer
5036 if (path
->nodes
[0] == leaf
)
5037 btrfs_mark_buffer_dirty(leaf
);
5038 free_extent_buffer(leaf
);
5041 btrfs_mark_buffer_dirty(leaf
);
5048 * search the tree again to find a leaf with lesser keys
5049 * returns 0 if it found something or 1 if there are no lesser leaves.
5050 * returns < 0 on io errors.
5052 * This may release the path, and so you may lose any locks held at the
5055 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5057 struct btrfs_key key
;
5058 struct btrfs_disk_key found_key
;
5061 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5063 if (key
.offset
> 0) {
5065 } else if (key
.type
> 0) {
5067 key
.offset
= (u64
)-1;
5068 } else if (key
.objectid
> 0) {
5071 key
.offset
= (u64
)-1;
5076 btrfs_release_path(path
);
5077 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5080 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5081 ret
= comp_keys(&found_key
, &key
);
5083 * We might have had an item with the previous key in the tree right
5084 * before we released our path. And after we released our path, that
5085 * item might have been pushed to the first slot (0) of the leaf we
5086 * were holding due to a tree balance. Alternatively, an item with the
5087 * previous key can exist as the only element of a leaf (big fat item).
5088 * Therefore account for these 2 cases, so that our callers (like
5089 * btrfs_previous_item) don't miss an existing item with a key matching
5090 * the previous key we computed above.
5098 * A helper function to walk down the tree starting at min_key, and looking
5099 * for nodes or leaves that are have a minimum transaction id.
5100 * This is used by the btree defrag code, and tree logging
5102 * This does not cow, but it does stuff the starting key it finds back
5103 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5104 * key and get a writable path.
5106 * This honors path->lowest_level to prevent descent past a given level
5109 * min_trans indicates the oldest transaction that you are interested
5110 * in walking through. Any nodes or leaves older than min_trans are
5111 * skipped over (without reading them).
5113 * returns zero if something useful was found, < 0 on error and 1 if there
5114 * was nothing in the tree that matched the search criteria.
5116 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5117 struct btrfs_path
*path
,
5120 struct extent_buffer
*cur
;
5121 struct btrfs_key found_key
;
5127 int keep_locks
= path
->keep_locks
;
5129 path
->keep_locks
= 1;
5131 cur
= btrfs_read_lock_root_node(root
);
5132 level
= btrfs_header_level(cur
);
5133 WARN_ON(path
->nodes
[level
]);
5134 path
->nodes
[level
] = cur
;
5135 path
->locks
[level
] = BTRFS_READ_LOCK
;
5137 if (btrfs_header_generation(cur
) < min_trans
) {
5142 nritems
= btrfs_header_nritems(cur
);
5143 level
= btrfs_header_level(cur
);
5144 sret
= btrfs_bin_search(cur
, min_key
, level
, &slot
);
5150 /* at the lowest level, we're done, setup the path and exit */
5151 if (level
== path
->lowest_level
) {
5152 if (slot
>= nritems
)
5155 path
->slots
[level
] = slot
;
5156 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5159 if (sret
&& slot
> 0)
5162 * check this node pointer against the min_trans parameters.
5163 * If it is too old, old, skip to the next one.
5165 while (slot
< nritems
) {
5168 gen
= btrfs_node_ptr_generation(cur
, slot
);
5169 if (gen
< min_trans
) {
5177 * we didn't find a candidate key in this node, walk forward
5178 * and find another one
5180 if (slot
>= nritems
) {
5181 path
->slots
[level
] = slot
;
5182 btrfs_set_path_blocking(path
);
5183 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5186 btrfs_release_path(path
);
5192 /* save our key for returning back */
5193 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5194 path
->slots
[level
] = slot
;
5195 if (level
== path
->lowest_level
) {
5199 btrfs_set_path_blocking(path
);
5200 cur
= btrfs_read_node_slot(cur
, slot
);
5206 btrfs_tree_read_lock(cur
);
5208 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5209 path
->nodes
[level
- 1] = cur
;
5210 unlock_up(path
, level
, 1, 0, NULL
);
5213 path
->keep_locks
= keep_locks
;
5215 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5216 btrfs_set_path_blocking(path
);
5217 memcpy(min_key
, &found_key
, sizeof(found_key
));
5223 * this is similar to btrfs_next_leaf, but does not try to preserve
5224 * and fixup the path. It looks for and returns the next key in the
5225 * tree based on the current path and the min_trans parameters.
5227 * 0 is returned if another key is found, < 0 if there are any errors
5228 * and 1 is returned if there are no higher keys in the tree
5230 * path->keep_locks should be set to 1 on the search made before
5231 * calling this function.
5233 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5234 struct btrfs_key
*key
, int level
, u64 min_trans
)
5237 struct extent_buffer
*c
;
5239 WARN_ON(!path
->keep_locks
&& !path
->skip_locking
);
5240 while (level
< BTRFS_MAX_LEVEL
) {
5241 if (!path
->nodes
[level
])
5244 slot
= path
->slots
[level
] + 1;
5245 c
= path
->nodes
[level
];
5247 if (slot
>= btrfs_header_nritems(c
)) {
5250 struct btrfs_key cur_key
;
5251 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5252 !path
->nodes
[level
+ 1])
5255 if (path
->locks
[level
+ 1] || path
->skip_locking
) {
5260 slot
= btrfs_header_nritems(c
) - 1;
5262 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5264 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5266 orig_lowest
= path
->lowest_level
;
5267 btrfs_release_path(path
);
5268 path
->lowest_level
= level
;
5269 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5271 path
->lowest_level
= orig_lowest
;
5275 c
= path
->nodes
[level
];
5276 slot
= path
->slots
[level
];
5283 btrfs_item_key_to_cpu(c
, key
, slot
);
5285 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5287 if (gen
< min_trans
) {
5291 btrfs_node_key_to_cpu(c
, key
, slot
);
5299 * search the tree again to find a leaf with greater keys
5300 * returns 0 if it found something or 1 if there are no greater leaves.
5301 * returns < 0 on io errors.
5303 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5305 return btrfs_next_old_leaf(root
, path
, 0);
5308 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5313 struct extent_buffer
*c
;
5314 struct extent_buffer
*next
;
5315 struct btrfs_key key
;
5318 int old_spinning
= path
->leave_spinning
;
5319 int next_rw_lock
= 0;
5321 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5325 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5330 btrfs_release_path(path
);
5332 path
->keep_locks
= 1;
5333 path
->leave_spinning
= 1;
5336 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5338 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5339 path
->keep_locks
= 0;
5344 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5346 * by releasing the path above we dropped all our locks. A balance
5347 * could have added more items next to the key that used to be
5348 * at the very end of the block. So, check again here and
5349 * advance the path if there are now more items available.
5351 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5358 * So the above check misses one case:
5359 * - after releasing the path above, someone has removed the item that
5360 * used to be at the very end of the block, and balance between leafs
5361 * gets another one with bigger key.offset to replace it.
5363 * This one should be returned as well, or we can get leaf corruption
5364 * later(esp. in __btrfs_drop_extents()).
5366 * And a bit more explanation about this check,
5367 * with ret > 0, the key isn't found, the path points to the slot
5368 * where it should be inserted, so the path->slots[0] item must be the
5371 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5376 while (level
< BTRFS_MAX_LEVEL
) {
5377 if (!path
->nodes
[level
]) {
5382 slot
= path
->slots
[level
] + 1;
5383 c
= path
->nodes
[level
];
5384 if (slot
>= btrfs_header_nritems(c
)) {
5386 if (level
== BTRFS_MAX_LEVEL
) {
5394 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5395 free_extent_buffer(next
);
5399 next_rw_lock
= path
->locks
[level
];
5400 ret
= read_block_for_search(root
, path
, &next
, level
,
5406 btrfs_release_path(path
);
5410 if (!path
->skip_locking
) {
5411 ret
= btrfs_try_tree_read_lock(next
);
5412 if (!ret
&& time_seq
) {
5414 * If we don't get the lock, we may be racing
5415 * with push_leaf_left, holding that lock while
5416 * itself waiting for the leaf we've currently
5417 * locked. To solve this situation, we give up
5418 * on our lock and cycle.
5420 free_extent_buffer(next
);
5421 btrfs_release_path(path
);
5426 btrfs_set_path_blocking(path
);
5427 btrfs_tree_read_lock(next
);
5429 next_rw_lock
= BTRFS_READ_LOCK
;
5433 path
->slots
[level
] = slot
;
5436 c
= path
->nodes
[level
];
5437 if (path
->locks
[level
])
5438 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5440 free_extent_buffer(c
);
5441 path
->nodes
[level
] = next
;
5442 path
->slots
[level
] = 0;
5443 if (!path
->skip_locking
)
5444 path
->locks
[level
] = next_rw_lock
;
5448 ret
= read_block_for_search(root
, path
, &next
, level
,
5454 btrfs_release_path(path
);
5458 if (!path
->skip_locking
) {
5459 ret
= btrfs_try_tree_read_lock(next
);
5461 btrfs_set_path_blocking(path
);
5462 btrfs_tree_read_lock(next
);
5464 next_rw_lock
= BTRFS_READ_LOCK
;
5469 unlock_up(path
, 0, 1, 0, NULL
);
5470 path
->leave_spinning
= old_spinning
;
5472 btrfs_set_path_blocking(path
);
5478 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5479 * searching until it gets past min_objectid or finds an item of 'type'
5481 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5483 int btrfs_previous_item(struct btrfs_root
*root
,
5484 struct btrfs_path
*path
, u64 min_objectid
,
5487 struct btrfs_key found_key
;
5488 struct extent_buffer
*leaf
;
5493 if (path
->slots
[0] == 0) {
5494 btrfs_set_path_blocking(path
);
5495 ret
= btrfs_prev_leaf(root
, path
);
5501 leaf
= path
->nodes
[0];
5502 nritems
= btrfs_header_nritems(leaf
);
5505 if (path
->slots
[0] == nritems
)
5508 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5509 if (found_key
.objectid
< min_objectid
)
5511 if (found_key
.type
== type
)
5513 if (found_key
.objectid
== min_objectid
&&
5514 found_key
.type
< type
)
5521 * search in extent tree to find a previous Metadata/Data extent item with
5524 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5526 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5527 struct btrfs_path
*path
, u64 min_objectid
)
5529 struct btrfs_key found_key
;
5530 struct extent_buffer
*leaf
;
5535 if (path
->slots
[0] == 0) {
5536 btrfs_set_path_blocking(path
);
5537 ret
= btrfs_prev_leaf(root
, path
);
5543 leaf
= path
->nodes
[0];
5544 nritems
= btrfs_header_nritems(leaf
);
5547 if (path
->slots
[0] == nritems
)
5550 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5551 if (found_key
.objectid
< min_objectid
)
5553 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5554 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5556 if (found_key
.objectid
== min_objectid
&&
5557 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)