1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "inode-map.h"
22 /* magic values for the inode_only field in btrfs_log_inode:
24 * LOG_INODE_ALL means to log everything
25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * directory trouble cases
38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39 * log, we must force a full commit before doing an fsync of the directory
40 * where the unlink was done.
41 * ---> record transid of last unlink/rename per directory
45 * rename foo/some_dir foo2/some_dir
47 * fsync foo/some_dir/some_file
49 * The fsync above will unlink the original some_dir without recording
50 * it in its new location (foo2). After a crash, some_dir will be gone
51 * unless the fsync of some_file forces a full commit
53 * 2) we must log any new names for any file or dir that is in the fsync
54 * log. ---> check inode while renaming/linking.
56 * 2a) we must log any new names for any file or dir during rename
57 * when the directory they are being removed from was logged.
58 * ---> check inode and old parent dir during rename
60 * 2a is actually the more important variant. With the extra logging
61 * a crash might unlink the old name without recreating the new one
63 * 3) after a crash, we must go through any directories with a link count
64 * of zero and redo the rm -rf
71 * The directory f1 was fully removed from the FS, but fsync was never
72 * called on f1, only its parent dir. After a crash the rm -rf must
73 * be replayed. This must be able to recurse down the entire
74 * directory tree. The inode link count fixup code takes care of the
79 * stages for the tree walking. The first
80 * stage (0) is to only pin down the blocks we find
81 * the second stage (1) is to make sure that all the inodes
82 * we find in the log are created in the subvolume.
84 * The last stage is to deal with directories and links and extents
85 * and all the other fun semantics
89 LOG_WALK_REPLAY_INODES
,
90 LOG_WALK_REPLAY_DIR_INDEX
,
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
99 struct btrfs_log_ctx
*ctx
);
100 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_path
*path
, u64 objectid
);
103 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
104 struct btrfs_root
*root
,
105 struct btrfs_root
*log
,
106 struct btrfs_path
*path
,
107 u64 dirid
, int del_all
);
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
137 static int start_log_trans(struct btrfs_trans_handle
*trans
,
138 struct btrfs_root
*root
,
139 struct btrfs_log_ctx
*ctx
)
141 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
144 mutex_lock(&root
->log_mutex
);
146 if (root
->log_root
) {
147 if (btrfs_need_log_full_commit(trans
)) {
152 if (!root
->log_start_pid
) {
153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
154 root
->log_start_pid
= current
->pid
;
155 } else if (root
->log_start_pid
!= current
->pid
) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
159 mutex_lock(&fs_info
->tree_log_mutex
);
160 if (!fs_info
->log_root_tree
)
161 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
162 mutex_unlock(&fs_info
->tree_log_mutex
);
166 ret
= btrfs_add_log_tree(trans
, root
);
170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
171 root
->log_start_pid
= current
->pid
;
174 atomic_inc(&root
->log_batch
);
175 atomic_inc(&root
->log_writers
);
177 int index
= root
->log_transid
% 2;
178 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
179 ctx
->log_transid
= root
->log_transid
;
183 mutex_unlock(&root
->log_mutex
);
188 * returns 0 if there was a log transaction running and we were able
189 * to join, or returns -ENOENT if there were not transactions
192 static int join_running_log_trans(struct btrfs_root
*root
)
196 mutex_lock(&root
->log_mutex
);
197 if (root
->log_root
) {
199 atomic_inc(&root
->log_writers
);
201 mutex_unlock(&root
->log_mutex
);
206 * This either makes the current running log transaction wait
207 * until you call btrfs_end_log_trans() or it makes any future
208 * log transactions wait until you call btrfs_end_log_trans()
210 void btrfs_pin_log_trans(struct btrfs_root
*root
)
212 mutex_lock(&root
->log_mutex
);
213 atomic_inc(&root
->log_writers
);
214 mutex_unlock(&root
->log_mutex
);
218 * indicate we're done making changes to the log tree
219 * and wake up anyone waiting to do a sync
221 void btrfs_end_log_trans(struct btrfs_root
*root
)
223 if (atomic_dec_and_test(&root
->log_writers
)) {
224 /* atomic_dec_and_test implies a barrier */
225 cond_wake_up_nomb(&root
->log_writer_wait
);
229 static int btrfs_write_tree_block(struct extent_buffer
*buf
)
231 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
232 buf
->start
+ buf
->len
- 1);
235 static void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
237 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
238 buf
->start
, buf
->start
+ buf
->len
- 1);
242 * the walk control struct is used to pass state down the chain when
243 * processing the log tree. The stage field tells us which part
244 * of the log tree processing we are currently doing. The others
245 * are state fields used for that specific part
247 struct walk_control
{
248 /* should we free the extent on disk when done? This is used
249 * at transaction commit time while freeing a log tree
253 /* should we write out the extent buffer? This is used
254 * while flushing the log tree to disk during a sync
258 /* should we wait for the extent buffer io to finish? Also used
259 * while flushing the log tree to disk for a sync
263 /* pin only walk, we record which extents on disk belong to the
268 /* what stage of the replay code we're currently in */
272 * Ignore any items from the inode currently being processed. Needs
273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 * the LOG_WALK_REPLAY_INODES stage.
276 bool ignore_cur_inode
;
278 /* the root we are currently replaying */
279 struct btrfs_root
*replay_dest
;
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle
*trans
;
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
289 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
290 struct walk_control
*wc
, u64 gen
, int level
);
294 * process_func used to pin down extents, write them or wait on them
296 static int process_one_buffer(struct btrfs_root
*log
,
297 struct extent_buffer
*eb
,
298 struct walk_control
*wc
, u64 gen
, int level
)
300 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
304 * If this fs is mixed then we need to be able to process the leaves to
305 * pin down any logged extents, so we have to read the block.
307 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
308 ret
= btrfs_read_buffer(eb
, gen
, level
, NULL
);
314 ret
= btrfs_pin_extent_for_log_replay(fs_info
, eb
->start
,
317 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
318 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
319 ret
= btrfs_exclude_logged_extents(eb
);
321 btrfs_write_tree_block(eb
);
323 btrfs_wait_tree_block_writeback(eb
);
329 * Item overwrite used by replay and tree logging. eb, slot and key all refer
330 * to the src data we are copying out.
332 * root is the tree we are copying into, and path is a scratch
333 * path for use in this function (it should be released on entry and
334 * will be released on exit).
336 * If the key is already in the destination tree the existing item is
337 * overwritten. If the existing item isn't big enough, it is extended.
338 * If it is too large, it is truncated.
340 * If the key isn't in the destination yet, a new item is inserted.
342 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
343 struct btrfs_root
*root
,
344 struct btrfs_path
*path
,
345 struct extent_buffer
*eb
, int slot
,
346 struct btrfs_key
*key
)
350 u64 saved_i_size
= 0;
351 int save_old_i_size
= 0;
352 unsigned long src_ptr
;
353 unsigned long dst_ptr
;
354 int overwrite_root
= 0;
355 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
357 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
360 item_size
= btrfs_item_size_nr(eb
, slot
);
361 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
363 /* look for the key in the destination tree */
364 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
371 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
373 if (dst_size
!= item_size
)
376 if (item_size
== 0) {
377 btrfs_release_path(path
);
380 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
381 src_copy
= kmalloc(item_size
, GFP_NOFS
);
382 if (!dst_copy
|| !src_copy
) {
383 btrfs_release_path(path
);
389 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
391 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
392 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
394 ret
= memcmp(dst_copy
, src_copy
, item_size
);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
405 btrfs_release_path(path
);
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
414 struct btrfs_inode_item
*item
;
418 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
419 struct btrfs_inode_item
);
420 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
421 item
= btrfs_item_ptr(eb
, slot
,
422 struct btrfs_inode_item
);
423 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode
= btrfs_inode_mode(eb
, item
);
432 btrfs_set_inode_size(eb
, item
, 0);
434 } else if (inode_item
) {
435 struct btrfs_inode_item
*item
;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
443 btrfs_set_inode_nbytes(eb
, item
, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode
= btrfs_inode_mode(eb
, item
);
452 btrfs_set_inode_size(eb
, item
, 0);
455 btrfs_release_path(path
);
456 /* try to insert the key into the destination tree */
457 path
->skip_release_on_error
= 1;
458 ret
= btrfs_insert_empty_item(trans
, root
, path
,
460 path
->skip_release_on_error
= 0;
462 /* make sure any existing item is the correct size */
463 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
465 found_size
= btrfs_item_size_nr(path
->nodes
[0],
467 if (found_size
> item_size
)
468 btrfs_truncate_item(path
, item_size
, 1);
469 else if (found_size
< item_size
)
470 btrfs_extend_item(path
, item_size
- found_size
);
474 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
486 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
487 struct btrfs_inode_item
*src_item
;
488 struct btrfs_inode_item
*dst_item
;
490 src_item
= (struct btrfs_inode_item
*)src_ptr
;
491 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
493 if (btrfs_inode_generation(eb
, src_item
) == 0) {
494 struct extent_buffer
*dst_eb
= path
->nodes
[0];
495 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
504 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
507 struct btrfs_map_token token
;
509 btrfs_init_map_token(&token
, dst_eb
);
510 btrfs_set_token_inode_size(dst_eb
, dst_item
,
516 if (overwrite_root
&&
517 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
518 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
520 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
525 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
528 if (save_old_i_size
) {
529 struct btrfs_inode_item
*dst_item
;
530 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
531 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
534 /* make sure the generation is filled in */
535 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
536 struct btrfs_inode_item
*dst_item
;
537 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
538 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
539 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
544 btrfs_mark_buffer_dirty(path
->nodes
[0]);
545 btrfs_release_path(path
);
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
553 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
556 struct btrfs_key key
;
559 key
.objectid
= objectid
;
560 key
.type
= BTRFS_INODE_ITEM_KEY
;
562 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
);
568 /* replays a single extent in 'eb' at 'slot' with 'key' into the
569 * subvolume 'root'. path is released on entry and should be released
572 * extents in the log tree have not been allocated out of the extent
573 * tree yet. So, this completes the allocation, taking a reference
574 * as required if the extent already exists or creating a new extent
575 * if it isn't in the extent allocation tree yet.
577 * The extent is inserted into the file, dropping any existing extents
578 * from the file that overlap the new one.
580 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
581 struct btrfs_root
*root
,
582 struct btrfs_path
*path
,
583 struct extent_buffer
*eb
, int slot
,
584 struct btrfs_key
*key
)
586 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
589 u64 start
= key
->offset
;
591 struct btrfs_file_extent_item
*item
;
592 struct inode
*inode
= NULL
;
596 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
597 found_type
= btrfs_file_extent_type(eb
, item
);
599 if (found_type
== BTRFS_FILE_EXTENT_REG
||
600 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
601 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
602 extent_end
= start
+ nbytes
;
605 * We don't add to the inodes nbytes if we are prealloc or a
608 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
610 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
611 size
= btrfs_file_extent_ram_bytes(eb
, item
);
612 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
613 extent_end
= ALIGN(start
+ size
,
614 fs_info
->sectorsize
);
620 inode
= read_one_inode(root
, key
->objectid
);
627 * first check to see if we already have this extent in the
628 * file. This must be done before the btrfs_drop_extents run
629 * so we don't try to drop this extent.
631 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
632 btrfs_ino(BTRFS_I(inode
)), start
, 0);
635 (found_type
== BTRFS_FILE_EXTENT_REG
||
636 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
637 struct btrfs_file_extent_item cmp1
;
638 struct btrfs_file_extent_item cmp2
;
639 struct btrfs_file_extent_item
*existing
;
640 struct extent_buffer
*leaf
;
642 leaf
= path
->nodes
[0];
643 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
644 struct btrfs_file_extent_item
);
646 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
648 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
652 * we already have a pointer to this exact extent,
653 * we don't have to do anything
655 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
656 btrfs_release_path(path
);
660 btrfs_release_path(path
);
662 /* drop any overlapping extents */
663 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
667 if (found_type
== BTRFS_FILE_EXTENT_REG
||
668 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
670 unsigned long dest_offset
;
671 struct btrfs_key ins
;
673 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
674 btrfs_fs_incompat(fs_info
, NO_HOLES
))
677 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
681 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
683 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
684 (unsigned long)item
, sizeof(*item
));
686 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
687 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
688 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
689 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
692 * Manually record dirty extent, as here we did a shallow
693 * file extent item copy and skip normal backref update,
694 * but modifying extent tree all by ourselves.
695 * So need to manually record dirty extent for qgroup,
696 * as the owner of the file extent changed from log tree
697 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
699 ret
= btrfs_qgroup_trace_extent(trans
,
700 btrfs_file_extent_disk_bytenr(eb
, item
),
701 btrfs_file_extent_disk_num_bytes(eb
, item
),
706 if (ins
.objectid
> 0) {
707 struct btrfs_ref ref
= { 0 };
710 LIST_HEAD(ordered_sums
);
713 * is this extent already allocated in the extent
714 * allocation tree? If so, just add a reference
716 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
719 btrfs_init_generic_ref(&ref
,
720 BTRFS_ADD_DELAYED_REF
,
721 ins
.objectid
, ins
.offset
, 0);
722 btrfs_init_data_ref(&ref
,
723 root
->root_key
.objectid
,
724 key
->objectid
, offset
);
725 ret
= btrfs_inc_extent_ref(trans
, &ref
);
730 * insert the extent pointer in the extent
733 ret
= btrfs_alloc_logged_file_extent(trans
,
734 root
->root_key
.objectid
,
735 key
->objectid
, offset
, &ins
);
739 btrfs_release_path(path
);
741 if (btrfs_file_extent_compression(eb
, item
)) {
742 csum_start
= ins
.objectid
;
743 csum_end
= csum_start
+ ins
.offset
;
745 csum_start
= ins
.objectid
+
746 btrfs_file_extent_offset(eb
, item
);
747 csum_end
= csum_start
+
748 btrfs_file_extent_num_bytes(eb
, item
);
751 ret
= btrfs_lookup_csums_range(root
->log_root
,
752 csum_start
, csum_end
- 1,
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
805 while (!list_empty(&ordered_sums
)) {
806 struct btrfs_ordered_sum
*sums
;
807 sums
= list_entry(ordered_sums
.next
,
808 struct btrfs_ordered_sum
,
811 ret
= btrfs_del_csums(trans
,
816 ret
= btrfs_csum_file_blocks(trans
,
817 fs_info
->csum_root
, sums
);
818 list_del(&sums
->list
);
824 btrfs_release_path(path
);
826 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
827 /* inline extents are easy, we just overwrite them */
828 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
833 inode_add_bytes(inode
, nbytes
);
835 ret
= btrfs_update_inode(trans
, root
, inode
);
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
850 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
851 struct btrfs_root
*root
,
852 struct btrfs_path
*path
,
853 struct btrfs_inode
*dir
,
854 struct btrfs_dir_item
*di
)
859 struct extent_buffer
*leaf
;
860 struct btrfs_key location
;
863 leaf
= path
->nodes
[0];
865 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
866 name_len
= btrfs_dir_name_len(leaf
, di
);
867 name
= kmalloc(name_len
, GFP_NOFS
);
871 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
872 btrfs_release_path(path
);
874 inode
= read_one_inode(root
, location
.objectid
);
880 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
884 ret
= btrfs_unlink_inode(trans
, root
, dir
, BTRFS_I(inode
), name
,
889 ret
= btrfs_run_delayed_items(trans
);
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
901 static noinline
int inode_in_dir(struct btrfs_root
*root
,
902 struct btrfs_path
*path
,
903 u64 dirid
, u64 objectid
, u64 index
,
904 const char *name
, int name_len
)
906 struct btrfs_dir_item
*di
;
907 struct btrfs_key location
;
910 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
911 index
, name
, name_len
, 0);
912 if (di
&& !IS_ERR(di
)) {
913 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
914 if (location
.objectid
!= objectid
)
918 btrfs_release_path(path
);
920 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
921 if (di
&& !IS_ERR(di
)) {
922 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
923 if (location
.objectid
!= objectid
)
929 btrfs_release_path(path
);
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
943 static noinline
int backref_in_log(struct btrfs_root
*log
,
944 struct btrfs_key
*key
,
946 const char *name
, int namelen
)
948 struct btrfs_path
*path
;
951 path
= btrfs_alloc_path();
955 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
958 } else if (ret
== 1) {
963 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
964 ret
= !!btrfs_find_name_in_ext_backref(path
->nodes
[0],
969 ret
= !!btrfs_find_name_in_backref(path
->nodes
[0],
973 btrfs_free_path(path
);
977 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
978 struct btrfs_root
*root
,
979 struct btrfs_path
*path
,
980 struct btrfs_root
*log_root
,
981 struct btrfs_inode
*dir
,
982 struct btrfs_inode
*inode
,
983 u64 inode_objectid
, u64 parent_objectid
,
984 u64 ref_index
, char *name
, int namelen
,
990 struct extent_buffer
*leaf
;
991 struct btrfs_dir_item
*di
;
992 struct btrfs_key search_key
;
993 struct btrfs_inode_extref
*extref
;
996 /* Search old style refs */
997 search_key
.objectid
= inode_objectid
;
998 search_key
.type
= BTRFS_INODE_REF_KEY
;
999 search_key
.offset
= parent_objectid
;
1000 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1002 struct btrfs_inode_ref
*victim_ref
;
1004 unsigned long ptr_end
;
1006 leaf
= path
->nodes
[0];
1008 /* are we trying to overwrite a back ref for the root directory
1009 * if so, just jump out, we're done
1011 if (search_key
.objectid
== search_key
.offset
)
1014 /* check all the names in this back reference to see
1015 * if they are in the log. if so, we allow them to stay
1016 * otherwise they must be unlinked as a conflict
1018 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1019 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1020 while (ptr
< ptr_end
) {
1021 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1022 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1024 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1028 read_extent_buffer(leaf
, victim_name
,
1029 (unsigned long)(victim_ref
+ 1),
1032 ret
= backref_in_log(log_root
, &search_key
,
1033 parent_objectid
, victim_name
,
1039 inc_nlink(&inode
->vfs_inode
);
1040 btrfs_release_path(path
);
1042 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1043 victim_name
, victim_name_len
);
1047 ret
= btrfs_run_delayed_items(trans
);
1055 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1059 * NOTE: we have searched root tree and checked the
1060 * corresponding ref, it does not need to check again.
1064 btrfs_release_path(path
);
1066 /* Same search but for extended refs */
1067 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1068 inode_objectid
, parent_objectid
, 0,
1070 if (!IS_ERR_OR_NULL(extref
)) {
1074 struct inode
*victim_parent
;
1076 leaf
= path
->nodes
[0];
1078 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1079 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1081 while (cur_offset
< item_size
) {
1082 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1084 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1086 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1089 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1092 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1095 search_key
.objectid
= inode_objectid
;
1096 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1097 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1100 ret
= backref_in_log(log_root
, &search_key
,
1101 parent_objectid
, victim_name
,
1107 victim_parent
= read_one_inode(root
,
1109 if (victim_parent
) {
1110 inc_nlink(&inode
->vfs_inode
);
1111 btrfs_release_path(path
);
1113 ret
= btrfs_unlink_inode(trans
, root
,
1114 BTRFS_I(victim_parent
),
1119 ret
= btrfs_run_delayed_items(
1122 iput(victim_parent
);
1131 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1135 btrfs_release_path(path
);
1137 /* look for a conflicting sequence number */
1138 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1139 ref_index
, name
, namelen
, 0);
1140 if (di
&& !IS_ERR(di
)) {
1141 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1145 btrfs_release_path(path
);
1147 /* look for a conflicting name */
1148 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1150 if (di
&& !IS_ERR(di
)) {
1151 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1155 btrfs_release_path(path
);
1160 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1161 u32
*namelen
, char **name
, u64
*index
,
1162 u64
*parent_objectid
)
1164 struct btrfs_inode_extref
*extref
;
1166 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1168 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1169 *name
= kmalloc(*namelen
, GFP_NOFS
);
1173 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1177 *index
= btrfs_inode_extref_index(eb
, extref
);
1178 if (parent_objectid
)
1179 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1184 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1185 u32
*namelen
, char **name
, u64
*index
)
1187 struct btrfs_inode_ref
*ref
;
1189 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1191 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1192 *name
= kmalloc(*namelen
, GFP_NOFS
);
1196 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1199 *index
= btrfs_inode_ref_index(eb
, ref
);
1205 * Take an inode reference item from the log tree and iterate all names from the
1206 * inode reference item in the subvolume tree with the same key (if it exists).
1207 * For any name that is not in the inode reference item from the log tree, do a
1208 * proper unlink of that name (that is, remove its entry from the inode
1209 * reference item and both dir index keys).
1211 static int unlink_old_inode_refs(struct btrfs_trans_handle
*trans
,
1212 struct btrfs_root
*root
,
1213 struct btrfs_path
*path
,
1214 struct btrfs_inode
*inode
,
1215 struct extent_buffer
*log_eb
,
1217 struct btrfs_key
*key
)
1220 unsigned long ref_ptr
;
1221 unsigned long ref_end
;
1222 struct extent_buffer
*eb
;
1225 btrfs_release_path(path
);
1226 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
1234 eb
= path
->nodes
[0];
1235 ref_ptr
= btrfs_item_ptr_offset(eb
, path
->slots
[0]);
1236 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, path
->slots
[0]);
1237 while (ref_ptr
< ref_end
) {
1242 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1243 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1246 parent_id
= key
->offset
;
1247 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1253 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1254 ret
= !!btrfs_find_name_in_ext_backref(log_eb
, log_slot
,
1258 ret
= !!btrfs_find_name_in_backref(log_eb
, log_slot
,
1264 btrfs_release_path(path
);
1265 dir
= read_one_inode(root
, parent_id
);
1271 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
1272 inode
, name
, namelen
);
1282 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1283 ref_ptr
+= sizeof(struct btrfs_inode_extref
);
1285 ref_ptr
+= sizeof(struct btrfs_inode_ref
);
1289 btrfs_release_path(path
);
1293 static int btrfs_inode_ref_exists(struct inode
*inode
, struct inode
*dir
,
1294 const u8 ref_type
, const char *name
,
1297 struct btrfs_key key
;
1298 struct btrfs_path
*path
;
1299 const u64 parent_id
= btrfs_ino(BTRFS_I(dir
));
1302 path
= btrfs_alloc_path();
1306 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
1307 key
.type
= ref_type
;
1308 if (key
.type
== BTRFS_INODE_REF_KEY
)
1309 key
.offset
= parent_id
;
1311 key
.offset
= btrfs_extref_hash(parent_id
, name
, namelen
);
1313 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &key
, path
, 0, 0);
1320 if (key
.type
== BTRFS_INODE_EXTREF_KEY
)
1321 ret
= !!btrfs_find_name_in_ext_backref(path
->nodes
[0],
1322 path
->slots
[0], parent_id
, name
, namelen
);
1324 ret
= !!btrfs_find_name_in_backref(path
->nodes
[0], path
->slots
[0],
1328 btrfs_free_path(path
);
1332 static int add_link(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1333 struct inode
*dir
, struct inode
*inode
, const char *name
,
1334 int namelen
, u64 ref_index
)
1336 struct btrfs_dir_item
*dir_item
;
1337 struct btrfs_key key
;
1338 struct btrfs_path
*path
;
1339 struct inode
*other_inode
= NULL
;
1342 path
= btrfs_alloc_path();
1346 dir_item
= btrfs_lookup_dir_item(NULL
, root
, path
,
1347 btrfs_ino(BTRFS_I(dir
)),
1350 btrfs_release_path(path
);
1352 } else if (IS_ERR(dir_item
)) {
1353 ret
= PTR_ERR(dir_item
);
1358 * Our inode's dentry collides with the dentry of another inode which is
1359 * in the log but not yet processed since it has a higher inode number.
1360 * So delete that other dentry.
1362 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dir_item
, &key
);
1363 btrfs_release_path(path
);
1364 other_inode
= read_one_inode(root
, key
.objectid
);
1369 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
), BTRFS_I(other_inode
),
1374 * If we dropped the link count to 0, bump it so that later the iput()
1375 * on the inode will not free it. We will fixup the link count later.
1377 if (other_inode
->i_nlink
== 0)
1378 inc_nlink(other_inode
);
1380 ret
= btrfs_run_delayed_items(trans
);
1384 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
1385 name
, namelen
, 0, ref_index
);
1388 btrfs_free_path(path
);
1394 * replay one inode back reference item found in the log tree.
1395 * eb, slot and key refer to the buffer and key found in the log tree.
1396 * root is the destination we are replaying into, and path is for temp
1397 * use by this function. (it should be released on return).
1399 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1400 struct btrfs_root
*root
,
1401 struct btrfs_root
*log
,
1402 struct btrfs_path
*path
,
1403 struct extent_buffer
*eb
, int slot
,
1404 struct btrfs_key
*key
)
1406 struct inode
*dir
= NULL
;
1407 struct inode
*inode
= NULL
;
1408 unsigned long ref_ptr
;
1409 unsigned long ref_end
;
1413 int search_done
= 0;
1414 int log_ref_ver
= 0;
1415 u64 parent_objectid
;
1418 int ref_struct_size
;
1420 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1421 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1423 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1424 struct btrfs_inode_extref
*r
;
1426 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1428 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1429 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1431 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1432 parent_objectid
= key
->offset
;
1434 inode_objectid
= key
->objectid
;
1437 * it is possible that we didn't log all the parent directories
1438 * for a given inode. If we don't find the dir, just don't
1439 * copy the back ref in. The link count fixup code will take
1442 dir
= read_one_inode(root
, parent_objectid
);
1448 inode
= read_one_inode(root
, inode_objectid
);
1454 while (ref_ptr
< ref_end
) {
1456 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1457 &ref_index
, &parent_objectid
);
1459 * parent object can change from one array
1463 dir
= read_one_inode(root
, parent_objectid
);
1469 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1475 /* if we already have a perfect match, we're done */
1476 if (!inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1477 btrfs_ino(BTRFS_I(inode
)), ref_index
,
1480 * look for a conflicting back reference in the
1481 * metadata. if we find one we have to unlink that name
1482 * of the file before we add our new link. Later on, we
1483 * overwrite any existing back reference, and we don't
1484 * want to create dangling pointers in the directory.
1488 ret
= __add_inode_ref(trans
, root
, path
, log
,
1493 ref_index
, name
, namelen
,
1503 * If a reference item already exists for this inode
1504 * with the same parent and name, but different index,
1505 * drop it and the corresponding directory index entries
1506 * from the parent before adding the new reference item
1507 * and dir index entries, otherwise we would fail with
1508 * -EEXIST returned from btrfs_add_link() below.
1510 ret
= btrfs_inode_ref_exists(inode
, dir
, key
->type
,
1513 ret
= btrfs_unlink_inode(trans
, root
,
1518 * If we dropped the link count to 0, bump it so
1519 * that later the iput() on the inode will not
1520 * free it. We will fixup the link count later.
1522 if (!ret
&& inode
->i_nlink
== 0)
1528 /* insert our name */
1529 ret
= add_link(trans
, root
, dir
, inode
, name
, namelen
,
1534 btrfs_update_inode(trans
, root
, inode
);
1537 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1547 * Before we overwrite the inode reference item in the subvolume tree
1548 * with the item from the log tree, we must unlink all names from the
1549 * parent directory that are in the subvolume's tree inode reference
1550 * item, otherwise we end up with an inconsistent subvolume tree where
1551 * dir index entries exist for a name but there is no inode reference
1552 * item with the same name.
1554 ret
= unlink_old_inode_refs(trans
, root
, path
, BTRFS_I(inode
), eb
, slot
,
1559 /* finally write the back reference in the inode */
1560 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1562 btrfs_release_path(path
);
1569 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1570 struct btrfs_root
*root
, u64 ino
)
1574 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1581 static int count_inode_extrefs(struct btrfs_root
*root
,
1582 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1586 unsigned int nlink
= 0;
1589 u64 inode_objectid
= btrfs_ino(inode
);
1592 struct btrfs_inode_extref
*extref
;
1593 struct extent_buffer
*leaf
;
1596 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1601 leaf
= path
->nodes
[0];
1602 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1603 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1606 while (cur_offset
< item_size
) {
1607 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1608 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1612 cur_offset
+= name_len
+ sizeof(*extref
);
1616 btrfs_release_path(path
);
1618 btrfs_release_path(path
);
1620 if (ret
< 0 && ret
!= -ENOENT
)
1625 static int count_inode_refs(struct btrfs_root
*root
,
1626 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1629 struct btrfs_key key
;
1630 unsigned int nlink
= 0;
1632 unsigned long ptr_end
;
1634 u64 ino
= btrfs_ino(inode
);
1637 key
.type
= BTRFS_INODE_REF_KEY
;
1638 key
.offset
= (u64
)-1;
1641 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1645 if (path
->slots
[0] == 0)
1650 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1652 if (key
.objectid
!= ino
||
1653 key
.type
!= BTRFS_INODE_REF_KEY
)
1655 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1656 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1658 while (ptr
< ptr_end
) {
1659 struct btrfs_inode_ref
*ref
;
1661 ref
= (struct btrfs_inode_ref
*)ptr
;
1662 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1664 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1668 if (key
.offset
== 0)
1670 if (path
->slots
[0] > 0) {
1675 btrfs_release_path(path
);
1677 btrfs_release_path(path
);
1683 * There are a few corners where the link count of the file can't
1684 * be properly maintained during replay. So, instead of adding
1685 * lots of complexity to the log code, we just scan the backrefs
1686 * for any file that has been through replay.
1688 * The scan will update the link count on the inode to reflect the
1689 * number of back refs found. If it goes down to zero, the iput
1690 * will free the inode.
1692 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1693 struct btrfs_root
*root
,
1694 struct inode
*inode
)
1696 struct btrfs_path
*path
;
1699 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1701 path
= btrfs_alloc_path();
1705 ret
= count_inode_refs(root
, BTRFS_I(inode
), path
);
1711 ret
= count_inode_extrefs(root
, BTRFS_I(inode
), path
);
1719 if (nlink
!= inode
->i_nlink
) {
1720 set_nlink(inode
, nlink
);
1721 btrfs_update_inode(trans
, root
, inode
);
1723 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1725 if (inode
->i_nlink
== 0) {
1726 if (S_ISDIR(inode
->i_mode
)) {
1727 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1732 ret
= insert_orphan_item(trans
, root
, ino
);
1736 btrfs_free_path(path
);
1740 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1741 struct btrfs_root
*root
,
1742 struct btrfs_path
*path
)
1745 struct btrfs_key key
;
1746 struct inode
*inode
;
1748 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1749 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1750 key
.offset
= (u64
)-1;
1752 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1757 if (path
->slots
[0] == 0)
1762 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1763 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1764 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1767 ret
= btrfs_del_item(trans
, root
, path
);
1771 btrfs_release_path(path
);
1772 inode
= read_one_inode(root
, key
.offset
);
1776 ret
= fixup_inode_link_count(trans
, root
, inode
);
1782 * fixup on a directory may create new entries,
1783 * make sure we always look for the highset possible
1786 key
.offset
= (u64
)-1;
1790 btrfs_release_path(path
);
1796 * record a given inode in the fixup dir so we can check its link
1797 * count when replay is done. The link count is incremented here
1798 * so the inode won't go away until we check it
1800 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1801 struct btrfs_root
*root
,
1802 struct btrfs_path
*path
,
1805 struct btrfs_key key
;
1807 struct inode
*inode
;
1809 inode
= read_one_inode(root
, objectid
);
1813 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1814 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1815 key
.offset
= objectid
;
1817 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1819 btrfs_release_path(path
);
1821 if (!inode
->i_nlink
)
1822 set_nlink(inode
, 1);
1825 ret
= btrfs_update_inode(trans
, root
, inode
);
1826 } else if (ret
== -EEXIST
) {
1829 BUG(); /* Logic Error */
1837 * when replaying the log for a directory, we only insert names
1838 * for inodes that actually exist. This means an fsync on a directory
1839 * does not implicitly fsync all the new files in it
1841 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1842 struct btrfs_root
*root
,
1843 u64 dirid
, u64 index
,
1844 char *name
, int name_len
,
1845 struct btrfs_key
*location
)
1847 struct inode
*inode
;
1851 inode
= read_one_inode(root
, location
->objectid
);
1855 dir
= read_one_inode(root
, dirid
);
1861 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1862 name_len
, 1, index
);
1864 /* FIXME, put inode into FIXUP list */
1872 * take a single entry in a log directory item and replay it into
1875 * if a conflicting item exists in the subdirectory already,
1876 * the inode it points to is unlinked and put into the link count
1879 * If a name from the log points to a file or directory that does
1880 * not exist in the FS, it is skipped. fsyncs on directories
1881 * do not force down inodes inside that directory, just changes to the
1882 * names or unlinks in a directory.
1884 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1885 * non-existing inode) and 1 if the name was replayed.
1887 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1888 struct btrfs_root
*root
,
1889 struct btrfs_path
*path
,
1890 struct extent_buffer
*eb
,
1891 struct btrfs_dir_item
*di
,
1892 struct btrfs_key
*key
)
1896 struct btrfs_dir_item
*dst_di
;
1897 struct btrfs_key found_key
;
1898 struct btrfs_key log_key
;
1903 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1904 bool name_added
= false;
1906 dir
= read_one_inode(root
, key
->objectid
);
1910 name_len
= btrfs_dir_name_len(eb
, di
);
1911 name
= kmalloc(name_len
, GFP_NOFS
);
1917 log_type
= btrfs_dir_type(eb
, di
);
1918 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1921 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1922 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1927 btrfs_release_path(path
);
1929 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1930 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1932 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1933 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1942 if (IS_ERR_OR_NULL(dst_di
)) {
1943 /* we need a sequence number to insert, so we only
1944 * do inserts for the BTRFS_DIR_INDEX_KEY types
1946 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1951 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1952 /* the existing item matches the logged item */
1953 if (found_key
.objectid
== log_key
.objectid
&&
1954 found_key
.type
== log_key
.type
&&
1955 found_key
.offset
== log_key
.offset
&&
1956 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1957 update_size
= false;
1962 * don't drop the conflicting directory entry if the inode
1963 * for the new entry doesn't exist
1968 ret
= drop_one_dir_item(trans
, root
, path
, BTRFS_I(dir
), dst_di
);
1972 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1975 btrfs_release_path(path
);
1976 if (!ret
&& update_size
) {
1977 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name_len
* 2);
1978 ret
= btrfs_update_inode(trans
, root
, dir
);
1982 if (!ret
&& name_added
)
1988 * Check if the inode reference exists in the log for the given name,
1989 * inode and parent inode
1991 found_key
.objectid
= log_key
.objectid
;
1992 found_key
.type
= BTRFS_INODE_REF_KEY
;
1993 found_key
.offset
= key
->objectid
;
1994 ret
= backref_in_log(root
->log_root
, &found_key
, 0, name
, name_len
);
1998 /* The dentry will be added later. */
2000 update_size
= false;
2004 found_key
.objectid
= log_key
.objectid
;
2005 found_key
.type
= BTRFS_INODE_EXTREF_KEY
;
2006 found_key
.offset
= key
->objectid
;
2007 ret
= backref_in_log(root
->log_root
, &found_key
, key
->objectid
, name
,
2012 /* The dentry will be added later. */
2014 update_size
= false;
2017 btrfs_release_path(path
);
2018 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
2019 name
, name_len
, &log_key
);
2020 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
2024 update_size
= false;
2030 * find all the names in a directory item and reconcile them into
2031 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2032 * one name in a directory item, but the same code gets used for
2033 * both directory index types
2035 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
2036 struct btrfs_root
*root
,
2037 struct btrfs_path
*path
,
2038 struct extent_buffer
*eb
, int slot
,
2039 struct btrfs_key
*key
)
2042 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
2043 struct btrfs_dir_item
*di
;
2046 unsigned long ptr_end
;
2047 struct btrfs_path
*fixup_path
= NULL
;
2049 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2050 ptr_end
= ptr
+ item_size
;
2051 while (ptr
< ptr_end
) {
2052 di
= (struct btrfs_dir_item
*)ptr
;
2053 name_len
= btrfs_dir_name_len(eb
, di
);
2054 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
2057 ptr
= (unsigned long)(di
+ 1);
2061 * If this entry refers to a non-directory (directories can not
2062 * have a link count > 1) and it was added in the transaction
2063 * that was not committed, make sure we fixup the link count of
2064 * the inode it the entry points to. Otherwise something like
2065 * the following would result in a directory pointing to an
2066 * inode with a wrong link that does not account for this dir
2074 * ln testdir/bar testdir/bar_link
2075 * ln testdir/foo testdir/foo_link
2076 * xfs_io -c "fsync" testdir/bar
2080 * mount fs, log replay happens
2082 * File foo would remain with a link count of 1 when it has two
2083 * entries pointing to it in the directory testdir. This would
2084 * make it impossible to ever delete the parent directory has
2085 * it would result in stale dentries that can never be deleted.
2087 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
2088 struct btrfs_key di_key
;
2091 fixup_path
= btrfs_alloc_path();
2098 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2099 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
2106 btrfs_free_path(fixup_path
);
2111 * directory replay has two parts. There are the standard directory
2112 * items in the log copied from the subvolume, and range items
2113 * created in the log while the subvolume was logged.
2115 * The range items tell us which parts of the key space the log
2116 * is authoritative for. During replay, if a key in the subvolume
2117 * directory is in a logged range item, but not actually in the log
2118 * that means it was deleted from the directory before the fsync
2119 * and should be removed.
2121 static noinline
int find_dir_range(struct btrfs_root
*root
,
2122 struct btrfs_path
*path
,
2123 u64 dirid
, int key_type
,
2124 u64
*start_ret
, u64
*end_ret
)
2126 struct btrfs_key key
;
2128 struct btrfs_dir_log_item
*item
;
2132 if (*start_ret
== (u64
)-1)
2135 key
.objectid
= dirid
;
2136 key
.type
= key_type
;
2137 key
.offset
= *start_ret
;
2139 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2143 if (path
->slots
[0] == 0)
2148 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2150 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2154 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2155 struct btrfs_dir_log_item
);
2156 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2158 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
2160 *start_ret
= key
.offset
;
2161 *end_ret
= found_end
;
2166 /* check the next slot in the tree to see if it is a valid item */
2167 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2169 if (path
->slots
[0] >= nritems
) {
2170 ret
= btrfs_next_leaf(root
, path
);
2175 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2177 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2181 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2182 struct btrfs_dir_log_item
);
2183 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2184 *start_ret
= key
.offset
;
2185 *end_ret
= found_end
;
2188 btrfs_release_path(path
);
2193 * this looks for a given directory item in the log. If the directory
2194 * item is not in the log, the item is removed and the inode it points
2197 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
2198 struct btrfs_root
*root
,
2199 struct btrfs_root
*log
,
2200 struct btrfs_path
*path
,
2201 struct btrfs_path
*log_path
,
2203 struct btrfs_key
*dir_key
)
2206 struct extent_buffer
*eb
;
2209 struct btrfs_dir_item
*di
;
2210 struct btrfs_dir_item
*log_di
;
2213 unsigned long ptr_end
;
2215 struct inode
*inode
;
2216 struct btrfs_key location
;
2219 eb
= path
->nodes
[0];
2220 slot
= path
->slots
[0];
2221 item_size
= btrfs_item_size_nr(eb
, slot
);
2222 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2223 ptr_end
= ptr
+ item_size
;
2224 while (ptr
< ptr_end
) {
2225 di
= (struct btrfs_dir_item
*)ptr
;
2226 name_len
= btrfs_dir_name_len(eb
, di
);
2227 name
= kmalloc(name_len
, GFP_NOFS
);
2232 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2235 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2236 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2239 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2240 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2246 if (!log_di
|| log_di
== ERR_PTR(-ENOENT
)) {
2247 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2248 btrfs_release_path(path
);
2249 btrfs_release_path(log_path
);
2250 inode
= read_one_inode(root
, location
.objectid
);
2256 ret
= link_to_fixup_dir(trans
, root
,
2257 path
, location
.objectid
);
2265 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
2266 BTRFS_I(inode
), name
, name_len
);
2268 ret
= btrfs_run_delayed_items(trans
);
2274 /* there might still be more names under this key
2275 * check and repeat if required
2277 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2283 } else if (IS_ERR(log_di
)) {
2285 return PTR_ERR(log_di
);
2287 btrfs_release_path(log_path
);
2290 ptr
= (unsigned long)(di
+ 1);
2295 btrfs_release_path(path
);
2296 btrfs_release_path(log_path
);
2300 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2301 struct btrfs_root
*root
,
2302 struct btrfs_root
*log
,
2303 struct btrfs_path
*path
,
2306 struct btrfs_key search_key
;
2307 struct btrfs_path
*log_path
;
2312 log_path
= btrfs_alloc_path();
2316 search_key
.objectid
= ino
;
2317 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2318 search_key
.offset
= 0;
2320 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2324 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2325 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2326 struct btrfs_key key
;
2327 struct btrfs_dir_item
*di
;
2328 struct btrfs_dir_item
*log_di
;
2332 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2333 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2338 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2339 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2341 while (cur
< total_size
) {
2342 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2343 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2344 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2347 name
= kmalloc(name_len
, GFP_NOFS
);
2352 read_extent_buffer(path
->nodes
[0], name
,
2353 (unsigned long)(di
+ 1), name_len
);
2355 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2357 btrfs_release_path(log_path
);
2359 /* Doesn't exist in log tree, so delete it. */
2360 btrfs_release_path(path
);
2361 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2362 name
, name_len
, -1);
2369 ret
= btrfs_delete_one_dir_name(trans
, root
,
2373 btrfs_release_path(path
);
2378 if (IS_ERR(log_di
)) {
2379 ret
= PTR_ERR(log_di
);
2383 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2386 ret
= btrfs_next_leaf(root
, path
);
2392 btrfs_free_path(log_path
);
2393 btrfs_release_path(path
);
2399 * deletion replay happens before we copy any new directory items
2400 * out of the log or out of backreferences from inodes. It
2401 * scans the log to find ranges of keys that log is authoritative for,
2402 * and then scans the directory to find items in those ranges that are
2403 * not present in the log.
2405 * Anything we don't find in the log is unlinked and removed from the
2408 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2409 struct btrfs_root
*root
,
2410 struct btrfs_root
*log
,
2411 struct btrfs_path
*path
,
2412 u64 dirid
, int del_all
)
2416 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2418 struct btrfs_key dir_key
;
2419 struct btrfs_key found_key
;
2420 struct btrfs_path
*log_path
;
2423 dir_key
.objectid
= dirid
;
2424 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2425 log_path
= btrfs_alloc_path();
2429 dir
= read_one_inode(root
, dirid
);
2430 /* it isn't an error if the inode isn't there, that can happen
2431 * because we replay the deletes before we copy in the inode item
2435 btrfs_free_path(log_path
);
2443 range_end
= (u64
)-1;
2445 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2446 &range_start
, &range_end
);
2451 dir_key
.offset
= range_start
;
2454 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2459 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2460 if (path
->slots
[0] >= nritems
) {
2461 ret
= btrfs_next_leaf(root
, path
);
2467 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2469 if (found_key
.objectid
!= dirid
||
2470 found_key
.type
!= dir_key
.type
)
2473 if (found_key
.offset
> range_end
)
2476 ret
= check_item_in_log(trans
, root
, log
, path
,
2481 if (found_key
.offset
== (u64
)-1)
2483 dir_key
.offset
= found_key
.offset
+ 1;
2485 btrfs_release_path(path
);
2486 if (range_end
== (u64
)-1)
2488 range_start
= range_end
+ 1;
2493 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2494 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2495 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2496 btrfs_release_path(path
);
2500 btrfs_release_path(path
);
2501 btrfs_free_path(log_path
);
2507 * the process_func used to replay items from the log tree. This
2508 * gets called in two different stages. The first stage just looks
2509 * for inodes and makes sure they are all copied into the subvolume.
2511 * The second stage copies all the other item types from the log into
2512 * the subvolume. The two stage approach is slower, but gets rid of
2513 * lots of complexity around inodes referencing other inodes that exist
2514 * only in the log (references come from either directory items or inode
2517 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2518 struct walk_control
*wc
, u64 gen
, int level
)
2521 struct btrfs_path
*path
;
2522 struct btrfs_root
*root
= wc
->replay_dest
;
2523 struct btrfs_key key
;
2527 ret
= btrfs_read_buffer(eb
, gen
, level
, NULL
);
2531 level
= btrfs_header_level(eb
);
2536 path
= btrfs_alloc_path();
2540 nritems
= btrfs_header_nritems(eb
);
2541 for (i
= 0; i
< nritems
; i
++) {
2542 btrfs_item_key_to_cpu(eb
, &key
, i
);
2544 /* inode keys are done during the first stage */
2545 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2546 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2547 struct btrfs_inode_item
*inode_item
;
2550 inode_item
= btrfs_item_ptr(eb
, i
,
2551 struct btrfs_inode_item
);
2553 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2554 * and never got linked before the fsync, skip it, as
2555 * replaying it is pointless since it would be deleted
2556 * later. We skip logging tmpfiles, but it's always
2557 * possible we are replaying a log created with a kernel
2558 * that used to log tmpfiles.
2560 if (btrfs_inode_nlink(eb
, inode_item
) == 0) {
2561 wc
->ignore_cur_inode
= true;
2564 wc
->ignore_cur_inode
= false;
2566 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2567 path
, key
.objectid
);
2570 mode
= btrfs_inode_mode(eb
, inode_item
);
2571 if (S_ISDIR(mode
)) {
2572 ret
= replay_dir_deletes(wc
->trans
,
2573 root
, log
, path
, key
.objectid
, 0);
2577 ret
= overwrite_item(wc
->trans
, root
, path
,
2583 * Before replaying extents, truncate the inode to its
2584 * size. We need to do it now and not after log replay
2585 * because before an fsync we can have prealloc extents
2586 * added beyond the inode's i_size. If we did it after,
2587 * through orphan cleanup for example, we would drop
2588 * those prealloc extents just after replaying them.
2590 if (S_ISREG(mode
)) {
2591 struct inode
*inode
;
2594 inode
= read_one_inode(root
, key
.objectid
);
2599 from
= ALIGN(i_size_read(inode
),
2600 root
->fs_info
->sectorsize
);
2601 ret
= btrfs_drop_extents(wc
->trans
, root
, inode
,
2604 /* Update the inode's nbytes. */
2605 ret
= btrfs_update_inode(wc
->trans
,
2613 ret
= link_to_fixup_dir(wc
->trans
, root
,
2614 path
, key
.objectid
);
2619 if (wc
->ignore_cur_inode
)
2622 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2623 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2624 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2630 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2633 /* these keys are simply copied */
2634 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2635 ret
= overwrite_item(wc
->trans
, root
, path
,
2639 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2640 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2641 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2643 if (ret
&& ret
!= -ENOENT
)
2646 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2647 ret
= replay_one_extent(wc
->trans
, root
, path
,
2651 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2652 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2658 btrfs_free_path(path
);
2662 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2663 struct btrfs_root
*root
,
2664 struct btrfs_path
*path
, int *level
,
2665 struct walk_control
*wc
)
2667 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2671 struct extent_buffer
*next
;
2672 struct extent_buffer
*cur
;
2673 struct extent_buffer
*parent
;
2677 while (*level
> 0) {
2678 struct btrfs_key first_key
;
2680 cur
= path
->nodes
[*level
];
2682 WARN_ON(btrfs_header_level(cur
) != *level
);
2684 if (path
->slots
[*level
] >=
2685 btrfs_header_nritems(cur
))
2688 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2689 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2690 btrfs_node_key_to_cpu(cur
, &first_key
, path
->slots
[*level
]);
2691 blocksize
= fs_info
->nodesize
;
2693 parent
= path
->nodes
[*level
];
2694 root_owner
= btrfs_header_owner(parent
);
2696 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2698 return PTR_ERR(next
);
2701 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
,
2704 free_extent_buffer(next
);
2708 path
->slots
[*level
]++;
2710 ret
= btrfs_read_buffer(next
, ptr_gen
,
2711 *level
- 1, &first_key
);
2713 free_extent_buffer(next
);
2718 btrfs_tree_lock(next
);
2719 btrfs_set_lock_blocking_write(next
);
2720 btrfs_clean_tree_block(next
);
2721 btrfs_wait_tree_block_writeback(next
);
2722 btrfs_tree_unlock(next
);
2724 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2725 clear_extent_buffer_dirty(next
);
2728 WARN_ON(root_owner
!=
2729 BTRFS_TREE_LOG_OBJECTID
);
2730 ret
= btrfs_pin_reserved_extent(fs_info
,
2733 free_extent_buffer(next
);
2737 free_extent_buffer(next
);
2740 ret
= btrfs_read_buffer(next
, ptr_gen
, *level
- 1, &first_key
);
2742 free_extent_buffer(next
);
2746 if (path
->nodes
[*level
-1])
2747 free_extent_buffer(path
->nodes
[*level
-1]);
2748 path
->nodes
[*level
-1] = next
;
2749 *level
= btrfs_header_level(next
);
2750 path
->slots
[*level
] = 0;
2753 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2759 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2760 struct btrfs_root
*root
,
2761 struct btrfs_path
*path
, int *level
,
2762 struct walk_control
*wc
)
2764 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2770 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2771 slot
= path
->slots
[i
];
2772 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2775 WARN_ON(*level
== 0);
2778 struct extent_buffer
*parent
;
2779 if (path
->nodes
[*level
] == root
->node
)
2780 parent
= path
->nodes
[*level
];
2782 parent
= path
->nodes
[*level
+ 1];
2784 root_owner
= btrfs_header_owner(parent
);
2785 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2786 btrfs_header_generation(path
->nodes
[*level
]),
2792 struct extent_buffer
*next
;
2794 next
= path
->nodes
[*level
];
2797 btrfs_tree_lock(next
);
2798 btrfs_set_lock_blocking_write(next
);
2799 btrfs_clean_tree_block(next
);
2800 btrfs_wait_tree_block_writeback(next
);
2801 btrfs_tree_unlock(next
);
2803 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2804 clear_extent_buffer_dirty(next
);
2807 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2808 ret
= btrfs_pin_reserved_extent(fs_info
,
2809 path
->nodes
[*level
]->start
,
2810 path
->nodes
[*level
]->len
);
2814 free_extent_buffer(path
->nodes
[*level
]);
2815 path
->nodes
[*level
] = NULL
;
2823 * drop the reference count on the tree rooted at 'snap'. This traverses
2824 * the tree freeing any blocks that have a ref count of zero after being
2827 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2828 struct btrfs_root
*log
, struct walk_control
*wc
)
2830 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2834 struct btrfs_path
*path
;
2837 path
= btrfs_alloc_path();
2841 level
= btrfs_header_level(log
->node
);
2843 path
->nodes
[level
] = log
->node
;
2844 atomic_inc(&log
->node
->refs
);
2845 path
->slots
[level
] = 0;
2848 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2856 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2865 /* was the root node processed? if not, catch it here */
2866 if (path
->nodes
[orig_level
]) {
2867 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2868 btrfs_header_generation(path
->nodes
[orig_level
]),
2873 struct extent_buffer
*next
;
2875 next
= path
->nodes
[orig_level
];
2878 btrfs_tree_lock(next
);
2879 btrfs_set_lock_blocking_write(next
);
2880 btrfs_clean_tree_block(next
);
2881 btrfs_wait_tree_block_writeback(next
);
2882 btrfs_tree_unlock(next
);
2884 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2885 clear_extent_buffer_dirty(next
);
2888 ret
= btrfs_pin_reserved_extent(fs_info
, next
->start
,
2896 btrfs_free_path(path
);
2901 * helper function to update the item for a given subvolumes log root
2902 * in the tree of log roots
2904 static int update_log_root(struct btrfs_trans_handle
*trans
,
2905 struct btrfs_root
*log
,
2906 struct btrfs_root_item
*root_item
)
2908 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2911 if (log
->log_transid
== 1) {
2912 /* insert root item on the first sync */
2913 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2914 &log
->root_key
, root_item
);
2916 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2917 &log
->root_key
, root_item
);
2922 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2925 int index
= transid
% 2;
2928 * we only allow two pending log transactions at a time,
2929 * so we know that if ours is more than 2 older than the
2930 * current transaction, we're done
2933 prepare_to_wait(&root
->log_commit_wait
[index
],
2934 &wait
, TASK_UNINTERRUPTIBLE
);
2936 if (!(root
->log_transid_committed
< transid
&&
2937 atomic_read(&root
->log_commit
[index
])))
2940 mutex_unlock(&root
->log_mutex
);
2942 mutex_lock(&root
->log_mutex
);
2944 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2947 static void wait_for_writer(struct btrfs_root
*root
)
2952 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2953 TASK_UNINTERRUPTIBLE
);
2954 if (!atomic_read(&root
->log_writers
))
2957 mutex_unlock(&root
->log_mutex
);
2959 mutex_lock(&root
->log_mutex
);
2961 finish_wait(&root
->log_writer_wait
, &wait
);
2964 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2965 struct btrfs_log_ctx
*ctx
)
2970 mutex_lock(&root
->log_mutex
);
2971 list_del_init(&ctx
->list
);
2972 mutex_unlock(&root
->log_mutex
);
2976 * Invoked in log mutex context, or be sure there is no other task which
2977 * can access the list.
2979 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2980 int index
, int error
)
2982 struct btrfs_log_ctx
*ctx
;
2983 struct btrfs_log_ctx
*safe
;
2985 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2986 list_del_init(&ctx
->list
);
2987 ctx
->log_ret
= error
;
2990 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2994 * btrfs_sync_log does sends a given tree log down to the disk and
2995 * updates the super blocks to record it. When this call is done,
2996 * you know that any inodes previously logged are safely on disk only
2999 * Any other return value means you need to call btrfs_commit_transaction.
3000 * Some of the edge cases for fsyncing directories that have had unlinks
3001 * or renames done in the past mean that sometimes the only safe
3002 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3003 * that has happened.
3005 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
3006 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
3012 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3013 struct btrfs_root
*log
= root
->log_root
;
3014 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
3015 struct btrfs_root_item new_root_item
;
3016 int log_transid
= 0;
3017 struct btrfs_log_ctx root_log_ctx
;
3018 struct blk_plug plug
;
3020 mutex_lock(&root
->log_mutex
);
3021 log_transid
= ctx
->log_transid
;
3022 if (root
->log_transid_committed
>= log_transid
) {
3023 mutex_unlock(&root
->log_mutex
);
3024 return ctx
->log_ret
;
3027 index1
= log_transid
% 2;
3028 if (atomic_read(&root
->log_commit
[index1
])) {
3029 wait_log_commit(root
, log_transid
);
3030 mutex_unlock(&root
->log_mutex
);
3031 return ctx
->log_ret
;
3033 ASSERT(log_transid
== root
->log_transid
);
3034 atomic_set(&root
->log_commit
[index1
], 1);
3036 /* wait for previous tree log sync to complete */
3037 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
3038 wait_log_commit(root
, log_transid
- 1);
3041 int batch
= atomic_read(&root
->log_batch
);
3042 /* when we're on an ssd, just kick the log commit out */
3043 if (!btrfs_test_opt(fs_info
, SSD
) &&
3044 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
3045 mutex_unlock(&root
->log_mutex
);
3046 schedule_timeout_uninterruptible(1);
3047 mutex_lock(&root
->log_mutex
);
3049 wait_for_writer(root
);
3050 if (batch
== atomic_read(&root
->log_batch
))
3054 /* bail out if we need to do a full commit */
3055 if (btrfs_need_log_full_commit(trans
)) {
3057 mutex_unlock(&root
->log_mutex
);
3061 if (log_transid
% 2 == 0)
3062 mark
= EXTENT_DIRTY
;
3066 /* we start IO on all the marked extents here, but we don't actually
3067 * wait for them until later.
3069 blk_start_plug(&plug
);
3070 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
3072 blk_finish_plug(&plug
);
3073 btrfs_abort_transaction(trans
, ret
);
3074 btrfs_set_log_full_commit(trans
);
3075 mutex_unlock(&root
->log_mutex
);
3080 * We _must_ update under the root->log_mutex in order to make sure we
3081 * have a consistent view of the log root we are trying to commit at
3084 * We _must_ copy this into a local copy, because we are not holding the
3085 * log_root_tree->log_mutex yet. This is important because when we
3086 * commit the log_root_tree we must have a consistent view of the
3087 * log_root_tree when we update the super block to point at the
3088 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3089 * with the commit and possibly point at the new block which we may not
3092 btrfs_set_root_node(&log
->root_item
, log
->node
);
3093 memcpy(&new_root_item
, &log
->root_item
, sizeof(new_root_item
));
3095 root
->log_transid
++;
3096 log
->log_transid
= root
->log_transid
;
3097 root
->log_start_pid
= 0;
3099 * IO has been started, blocks of the log tree have WRITTEN flag set
3100 * in their headers. new modifications of the log will be written to
3101 * new positions. so it's safe to allow log writers to go in.
3103 mutex_unlock(&root
->log_mutex
);
3105 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
3107 mutex_lock(&log_root_tree
->log_mutex
);
3108 atomic_inc(&log_root_tree
->log_batch
);
3109 atomic_inc(&log_root_tree
->log_writers
);
3111 index2
= log_root_tree
->log_transid
% 2;
3112 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
3113 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
3115 mutex_unlock(&log_root_tree
->log_mutex
);
3117 mutex_lock(&log_root_tree
->log_mutex
);
3120 * Now we are safe to update the log_root_tree because we're under the
3121 * log_mutex, and we're a current writer so we're holding the commit
3122 * open until we drop the log_mutex.
3124 ret
= update_log_root(trans
, log
, &new_root_item
);
3126 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
3127 /* atomic_dec_and_test implies a barrier */
3128 cond_wake_up_nomb(&log_root_tree
->log_writer_wait
);
3132 if (!list_empty(&root_log_ctx
.list
))
3133 list_del_init(&root_log_ctx
.list
);
3135 blk_finish_plug(&plug
);
3136 btrfs_set_log_full_commit(trans
);
3138 if (ret
!= -ENOSPC
) {
3139 btrfs_abort_transaction(trans
, ret
);
3140 mutex_unlock(&log_root_tree
->log_mutex
);
3143 btrfs_wait_tree_log_extents(log
, mark
);
3144 mutex_unlock(&log_root_tree
->log_mutex
);
3149 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
3150 blk_finish_plug(&plug
);
3151 list_del_init(&root_log_ctx
.list
);
3152 mutex_unlock(&log_root_tree
->log_mutex
);
3153 ret
= root_log_ctx
.log_ret
;
3157 index2
= root_log_ctx
.log_transid
% 2;
3158 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
3159 blk_finish_plug(&plug
);
3160 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3161 wait_log_commit(log_root_tree
,
3162 root_log_ctx
.log_transid
);
3163 mutex_unlock(&log_root_tree
->log_mutex
);
3165 ret
= root_log_ctx
.log_ret
;
3168 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
3169 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
3171 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
3172 wait_log_commit(log_root_tree
,
3173 root_log_ctx
.log_transid
- 1);
3176 wait_for_writer(log_root_tree
);
3179 * now that we've moved on to the tree of log tree roots,
3180 * check the full commit flag again
3182 if (btrfs_need_log_full_commit(trans
)) {
3183 blk_finish_plug(&plug
);
3184 btrfs_wait_tree_log_extents(log
, mark
);
3185 mutex_unlock(&log_root_tree
->log_mutex
);
3187 goto out_wake_log_root
;
3190 ret
= btrfs_write_marked_extents(fs_info
,
3191 &log_root_tree
->dirty_log_pages
,
3192 EXTENT_DIRTY
| EXTENT_NEW
);
3193 blk_finish_plug(&plug
);
3195 btrfs_set_log_full_commit(trans
);
3196 btrfs_abort_transaction(trans
, ret
);
3197 mutex_unlock(&log_root_tree
->log_mutex
);
3198 goto out_wake_log_root
;
3200 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3202 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
3203 EXTENT_NEW
| EXTENT_DIRTY
);
3205 btrfs_set_log_full_commit(trans
);
3206 mutex_unlock(&log_root_tree
->log_mutex
);
3207 goto out_wake_log_root
;
3210 btrfs_set_super_log_root(fs_info
->super_for_commit
,
3211 log_root_tree
->node
->start
);
3212 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
3213 btrfs_header_level(log_root_tree
->node
));
3215 log_root_tree
->log_transid
++;
3216 mutex_unlock(&log_root_tree
->log_mutex
);
3219 * Nobody else is going to jump in and write the ctree
3220 * super here because the log_commit atomic below is protecting
3221 * us. We must be called with a transaction handle pinning
3222 * the running transaction open, so a full commit can't hop
3223 * in and cause problems either.
3225 ret
= write_all_supers(fs_info
, 1);
3227 btrfs_set_log_full_commit(trans
);
3228 btrfs_abort_transaction(trans
, ret
);
3229 goto out_wake_log_root
;
3232 mutex_lock(&root
->log_mutex
);
3233 if (root
->last_log_commit
< log_transid
)
3234 root
->last_log_commit
= log_transid
;
3235 mutex_unlock(&root
->log_mutex
);
3238 mutex_lock(&log_root_tree
->log_mutex
);
3239 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
3241 log_root_tree
->log_transid_committed
++;
3242 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
3243 mutex_unlock(&log_root_tree
->log_mutex
);
3246 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3247 * all the updates above are seen by the woken threads. It might not be
3248 * necessary, but proving that seems to be hard.
3250 cond_wake_up(&log_root_tree
->log_commit_wait
[index2
]);
3252 mutex_lock(&root
->log_mutex
);
3253 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
3254 root
->log_transid_committed
++;
3255 atomic_set(&root
->log_commit
[index1
], 0);
3256 mutex_unlock(&root
->log_mutex
);
3259 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3260 * all the updates above are seen by the woken threads. It might not be
3261 * necessary, but proving that seems to be hard.
3263 cond_wake_up(&root
->log_commit_wait
[index1
]);
3267 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3268 struct btrfs_root
*log
)
3271 struct walk_control wc
= {
3273 .process_func
= process_one_buffer
3276 ret
= walk_log_tree(trans
, log
, &wc
);
3279 btrfs_abort_transaction(trans
, ret
);
3281 btrfs_handle_fs_error(log
->fs_info
, ret
, NULL
);
3284 clear_extent_bits(&log
->dirty_log_pages
, 0, (u64
)-1,
3285 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
);
3286 free_extent_buffer(log
->node
);
3291 * free all the extents used by the tree log. This should be called
3292 * at commit time of the full transaction
3294 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3296 if (root
->log_root
) {
3297 free_log_tree(trans
, root
->log_root
);
3298 root
->log_root
= NULL
;
3303 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3304 struct btrfs_fs_info
*fs_info
)
3306 if (fs_info
->log_root_tree
) {
3307 free_log_tree(trans
, fs_info
->log_root_tree
);
3308 fs_info
->log_root_tree
= NULL
;
3314 * Check if an inode was logged in the current transaction. We can't always rely
3315 * on an inode's logged_trans value, because it's an in-memory only field and
3316 * therefore not persisted. This means that its value is lost if the inode gets
3317 * evicted and loaded again from disk (in which case it has a value of 0, and
3318 * certainly it is smaller then any possible transaction ID), when that happens
3319 * the full_sync flag is set in the inode's runtime flags, so on that case we
3320 * assume eviction happened and ignore the logged_trans value, assuming the
3321 * worst case, that the inode was logged before in the current transaction.
3323 static bool inode_logged(struct btrfs_trans_handle
*trans
,
3324 struct btrfs_inode
*inode
)
3326 if (inode
->logged_trans
== trans
->transid
)
3329 if (inode
->last_trans
== trans
->transid
&&
3330 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
) &&
3331 !test_bit(BTRFS_FS_LOG_RECOVERING
, &trans
->fs_info
->flags
))
3338 * If both a file and directory are logged, and unlinks or renames are
3339 * mixed in, we have a few interesting corners:
3341 * create file X in dir Y
3342 * link file X to X.link in dir Y
3344 * unlink file X but leave X.link
3347 * After a crash we would expect only X.link to exist. But file X
3348 * didn't get fsync'd again so the log has back refs for X and X.link.
3350 * We solve this by removing directory entries and inode backrefs from the
3351 * log when a file that was logged in the current transaction is
3352 * unlinked. Any later fsync will include the updated log entries, and
3353 * we'll be able to reconstruct the proper directory items from backrefs.
3355 * This optimizations allows us to avoid relogging the entire inode
3356 * or the entire directory.
3358 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3359 struct btrfs_root
*root
,
3360 const char *name
, int name_len
,
3361 struct btrfs_inode
*dir
, u64 index
)
3363 struct btrfs_root
*log
;
3364 struct btrfs_dir_item
*di
;
3365 struct btrfs_path
*path
;
3369 u64 dir_ino
= btrfs_ino(dir
);
3371 if (!inode_logged(trans
, dir
))
3374 ret
= join_running_log_trans(root
);
3378 mutex_lock(&dir
->log_mutex
);
3380 log
= root
->log_root
;
3381 path
= btrfs_alloc_path();
3387 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3388 name
, name_len
, -1);
3394 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3395 bytes_del
+= name_len
;
3401 btrfs_release_path(path
);
3402 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3403 index
, name
, name_len
, -1);
3409 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3410 bytes_del
+= name_len
;
3417 /* update the directory size in the log to reflect the names
3421 struct btrfs_key key
;
3423 key
.objectid
= dir_ino
;
3425 key
.type
= BTRFS_INODE_ITEM_KEY
;
3426 btrfs_release_path(path
);
3428 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3434 struct btrfs_inode_item
*item
;
3437 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3438 struct btrfs_inode_item
);
3439 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3440 if (i_size
> bytes_del
)
3441 i_size
-= bytes_del
;
3444 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3445 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3448 btrfs_release_path(path
);
3451 btrfs_free_path(path
);
3453 mutex_unlock(&dir
->log_mutex
);
3454 if (ret
== -ENOSPC
) {
3455 btrfs_set_log_full_commit(trans
);
3458 btrfs_abort_transaction(trans
, ret
);
3460 btrfs_end_log_trans(root
);
3465 /* see comments for btrfs_del_dir_entries_in_log */
3466 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3467 struct btrfs_root
*root
,
3468 const char *name
, int name_len
,
3469 struct btrfs_inode
*inode
, u64 dirid
)
3471 struct btrfs_root
*log
;
3475 if (!inode_logged(trans
, inode
))
3478 ret
= join_running_log_trans(root
);
3481 log
= root
->log_root
;
3482 mutex_lock(&inode
->log_mutex
);
3484 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3486 mutex_unlock(&inode
->log_mutex
);
3487 if (ret
== -ENOSPC
) {
3488 btrfs_set_log_full_commit(trans
);
3490 } else if (ret
< 0 && ret
!= -ENOENT
)
3491 btrfs_abort_transaction(trans
, ret
);
3492 btrfs_end_log_trans(root
);
3498 * creates a range item in the log for 'dirid'. first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3502 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3503 struct btrfs_root
*log
,
3504 struct btrfs_path
*path
,
3505 int key_type
, u64 dirid
,
3506 u64 first_offset
, u64 last_offset
)
3509 struct btrfs_key key
;
3510 struct btrfs_dir_log_item
*item
;
3512 key
.objectid
= dirid
;
3513 key
.offset
= first_offset
;
3514 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3515 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3517 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3518 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3522 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3523 struct btrfs_dir_log_item
);
3524 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3525 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3526 btrfs_release_path(path
);
3531 * log all the items included in the current transaction for a given
3532 * directory. This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3535 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3536 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3537 struct btrfs_path
*path
,
3538 struct btrfs_path
*dst_path
, int key_type
,
3539 struct btrfs_log_ctx
*ctx
,
3540 u64 min_offset
, u64
*last_offset_ret
)
3542 struct btrfs_key min_key
;
3543 struct btrfs_root
*log
= root
->log_root
;
3544 struct extent_buffer
*src
;
3549 u64 first_offset
= min_offset
;
3550 u64 last_offset
= (u64
)-1;
3551 u64 ino
= btrfs_ino(inode
);
3553 log
= root
->log_root
;
3555 min_key
.objectid
= ino
;
3556 min_key
.type
= key_type
;
3557 min_key
.offset
= min_offset
;
3559 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3562 * we didn't find anything from this transaction, see if there
3563 * is anything at all
3565 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3566 min_key
.objectid
= ino
;
3567 min_key
.type
= key_type
;
3568 min_key
.offset
= (u64
)-1;
3569 btrfs_release_path(path
);
3570 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3572 btrfs_release_path(path
);
3575 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3577 /* if ret == 0 there are items for this type,
3578 * create a range to tell us the last key of this type.
3579 * otherwise, there are no items in this directory after
3580 * *min_offset, and we create a range to indicate that.
3583 struct btrfs_key tmp
;
3584 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3586 if (key_type
== tmp
.type
)
3587 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3592 /* go backward to find any previous key */
3593 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3595 struct btrfs_key tmp
;
3596 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3597 if (key_type
== tmp
.type
) {
3598 first_offset
= tmp
.offset
;
3599 ret
= overwrite_item(trans
, log
, dst_path
,
3600 path
->nodes
[0], path
->slots
[0],
3608 btrfs_release_path(path
);
3611 * Find the first key from this transaction again. See the note for
3612 * log_new_dir_dentries, if we're logging a directory recursively we
3613 * won't be holding its i_mutex, which means we can modify the directory
3614 * while we're logging it. If we remove an entry between our first
3615 * search and this search we'll not find the key again and can just
3618 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3623 * we have a block from this transaction, log every item in it
3624 * from our directory
3627 struct btrfs_key tmp
;
3628 src
= path
->nodes
[0];
3629 nritems
= btrfs_header_nritems(src
);
3630 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3631 struct btrfs_dir_item
*di
;
3633 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3635 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3637 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3645 * We must make sure that when we log a directory entry,
3646 * the corresponding inode, after log replay, has a
3647 * matching link count. For example:
3653 * xfs_io -c "fsync" mydir
3655 * <mount fs and log replay>
3657 * Would result in a fsync log that when replayed, our
3658 * file inode would have a link count of 1, but we get
3659 * two directory entries pointing to the same inode.
3660 * After removing one of the names, it would not be
3661 * possible to remove the other name, which resulted
3662 * always in stale file handle errors, and would not
3663 * be possible to rmdir the parent directory, since
3664 * its i_size could never decrement to the value
3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3667 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3668 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3670 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3671 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3672 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3673 ctx
->log_new_dentries
= true;
3675 path
->slots
[0] = nritems
;
3678 * look ahead to the next item and see if it is also
3679 * from this directory and from this transaction
3681 ret
= btrfs_next_leaf(root
, path
);
3684 last_offset
= (u64
)-1;
3689 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3690 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3691 last_offset
= (u64
)-1;
3694 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3695 ret
= overwrite_item(trans
, log
, dst_path
,
3696 path
->nodes
[0], path
->slots
[0],
3701 last_offset
= tmp
.offset
;
3706 btrfs_release_path(path
);
3707 btrfs_release_path(dst_path
);
3710 *last_offset_ret
= last_offset
;
3712 * insert the log range keys to indicate where the log
3715 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3716 ino
, first_offset
, last_offset
);
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3735 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3736 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3737 struct btrfs_path
*path
,
3738 struct btrfs_path
*dst_path
,
3739 struct btrfs_log_ctx
*ctx
)
3744 int key_type
= BTRFS_DIR_ITEM_KEY
;
3750 ret
= log_dir_items(trans
, root
, inode
, path
, dst_path
, key_type
,
3751 ctx
, min_key
, &max_key
);
3754 if (max_key
== (u64
)-1)
3756 min_key
= max_key
+ 1;
3759 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3760 key_type
= BTRFS_DIR_INDEX_KEY
;
3767 * a helper function to drop items from the log before we relog an
3768 * inode. max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3772 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3773 struct btrfs_root
*log
,
3774 struct btrfs_path
*path
,
3775 u64 objectid
, int max_key_type
)
3778 struct btrfs_key key
;
3779 struct btrfs_key found_key
;
3782 key
.objectid
= objectid
;
3783 key
.type
= max_key_type
;
3784 key
.offset
= (u64
)-1;
3787 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3788 BUG_ON(ret
== 0); /* Logic error */
3792 if (path
->slots
[0] == 0)
3796 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3799 if (found_key
.objectid
!= objectid
)
3802 found_key
.offset
= 0;
3804 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3809 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3810 path
->slots
[0] - start_slot
+ 1);
3812 * If start slot isn't 0 then we don't need to re-search, we've
3813 * found the last guy with the objectid in this tree.
3815 if (ret
|| start_slot
!= 0)
3817 btrfs_release_path(path
);
3819 btrfs_release_path(path
);
3825 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3826 struct extent_buffer
*leaf
,
3827 struct btrfs_inode_item
*item
,
3828 struct inode
*inode
, int log_inode_only
,
3831 struct btrfs_map_token token
;
3833 btrfs_init_map_token(&token
, leaf
);
3835 if (log_inode_only
) {
3836 /* set the generation to zero so the recover code
3837 * can tell the difference between an logging
3838 * just to say 'this inode exists' and a logging
3839 * to say 'update this inode with these values'
3841 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3842 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3844 btrfs_set_token_inode_generation(leaf
, item
,
3845 BTRFS_I(inode
)->generation
,
3847 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3850 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3851 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3852 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3853 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3855 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3856 inode
->i_atime
.tv_sec
, &token
);
3857 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3858 inode
->i_atime
.tv_nsec
, &token
);
3860 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3861 inode
->i_mtime
.tv_sec
, &token
);
3862 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3863 inode
->i_mtime
.tv_nsec
, &token
);
3865 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3866 inode
->i_ctime
.tv_sec
, &token
);
3867 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3868 inode
->i_ctime
.tv_nsec
, &token
);
3870 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3873 btrfs_set_token_inode_sequence(leaf
, item
,
3874 inode_peek_iversion(inode
), &token
);
3875 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3876 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3877 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3878 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3881 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3882 struct btrfs_root
*log
, struct btrfs_path
*path
,
3883 struct btrfs_inode
*inode
)
3885 struct btrfs_inode_item
*inode_item
;
3888 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3889 &inode
->location
, sizeof(*inode_item
));
3890 if (ret
&& ret
!= -EEXIST
)
3892 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3893 struct btrfs_inode_item
);
3894 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
3896 btrfs_release_path(path
);
3900 static int log_csums(struct btrfs_trans_handle
*trans
,
3901 struct btrfs_root
*log_root
,
3902 struct btrfs_ordered_sum
*sums
)
3907 * Due to extent cloning, we might have logged a csum item that covers a
3908 * subrange of a cloned extent, and later we can end up logging a csum
3909 * item for a larger subrange of the same extent or the entire range.
3910 * This would leave csum items in the log tree that cover the same range
3911 * and break the searches for checksums in the log tree, resulting in
3912 * some checksums missing in the fs/subvolume tree. So just delete (or
3913 * trim and adjust) any existing csum items in the log for this range.
3915 ret
= btrfs_del_csums(trans
, log_root
, sums
->bytenr
, sums
->len
);
3919 return btrfs_csum_file_blocks(trans
, log_root
, sums
);
3922 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3923 struct btrfs_inode
*inode
,
3924 struct btrfs_path
*dst_path
,
3925 struct btrfs_path
*src_path
,
3926 int start_slot
, int nr
, int inode_only
,
3929 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3930 unsigned long src_offset
;
3931 unsigned long dst_offset
;
3932 struct btrfs_root
*log
= inode
->root
->log_root
;
3933 struct btrfs_file_extent_item
*extent
;
3934 struct btrfs_inode_item
*inode_item
;
3935 struct extent_buffer
*src
= src_path
->nodes
[0];
3937 struct btrfs_key
*ins_keys
;
3941 struct list_head ordered_sums
;
3942 int skip_csum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
3944 INIT_LIST_HEAD(&ordered_sums
);
3946 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3947 nr
* sizeof(u32
), GFP_NOFS
);
3951 ins_sizes
= (u32
*)ins_data
;
3952 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3954 for (i
= 0; i
< nr
; i
++) {
3955 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3956 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3958 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3959 ins_keys
, ins_sizes
, nr
);
3965 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3966 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3967 dst_path
->slots
[0]);
3969 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3971 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3972 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3974 struct btrfs_inode_item
);
3975 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3977 inode_only
== LOG_INODE_EXISTS
,
3980 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3981 src_offset
, ins_sizes
[i
]);
3984 /* take a reference on file data extents so that truncates
3985 * or deletes of this inode don't have to relog the inode
3988 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3991 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3992 struct btrfs_file_extent_item
);
3994 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3997 found_type
= btrfs_file_extent_type(src
, extent
);
3998 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
4000 ds
= btrfs_file_extent_disk_bytenr(src
,
4002 /* ds == 0 is a hole */
4006 dl
= btrfs_file_extent_disk_num_bytes(src
,
4008 cs
= btrfs_file_extent_offset(src
, extent
);
4009 cl
= btrfs_file_extent_num_bytes(src
,
4011 if (btrfs_file_extent_compression(src
,
4017 ret
= btrfs_lookup_csums_range(
4019 ds
+ cs
, ds
+ cs
+ cl
- 1,
4022 btrfs_release_path(dst_path
);
4030 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
4031 btrfs_release_path(dst_path
);
4035 * we have to do this after the loop above to avoid changing the
4036 * log tree while trying to change the log tree.
4039 while (!list_empty(&ordered_sums
)) {
4040 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4041 struct btrfs_ordered_sum
,
4044 ret
= log_csums(trans
, log
, sums
);
4045 list_del(&sums
->list
);
4052 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
4054 struct extent_map
*em1
, *em2
;
4056 em1
= list_entry(a
, struct extent_map
, list
);
4057 em2
= list_entry(b
, struct extent_map
, list
);
4059 if (em1
->start
< em2
->start
)
4061 else if (em1
->start
> em2
->start
)
4066 static int log_extent_csums(struct btrfs_trans_handle
*trans
,
4067 struct btrfs_inode
*inode
,
4068 struct btrfs_root
*log_root
,
4069 const struct extent_map
*em
)
4073 LIST_HEAD(ordered_sums
);
4076 if (inode
->flags
& BTRFS_INODE_NODATASUM
||
4077 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
4078 em
->block_start
== EXTENT_MAP_HOLE
)
4081 /* If we're compressed we have to save the entire range of csums. */
4082 if (em
->compress_type
) {
4084 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4086 csum_offset
= em
->mod_start
- em
->start
;
4087 csum_len
= em
->mod_len
;
4090 /* block start is already adjusted for the file extent offset. */
4091 ret
= btrfs_lookup_csums_range(trans
->fs_info
->csum_root
,
4092 em
->block_start
+ csum_offset
,
4093 em
->block_start
+ csum_offset
+
4094 csum_len
- 1, &ordered_sums
, 0);
4098 while (!list_empty(&ordered_sums
)) {
4099 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4100 struct btrfs_ordered_sum
,
4103 ret
= log_csums(trans
, log_root
, sums
);
4104 list_del(&sums
->list
);
4111 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4112 struct btrfs_inode
*inode
, struct btrfs_root
*root
,
4113 const struct extent_map
*em
,
4114 struct btrfs_path
*path
,
4115 struct btrfs_log_ctx
*ctx
)
4117 struct btrfs_root
*log
= root
->log_root
;
4118 struct btrfs_file_extent_item
*fi
;
4119 struct extent_buffer
*leaf
;
4120 struct btrfs_map_token token
;
4121 struct btrfs_key key
;
4122 u64 extent_offset
= em
->start
- em
->orig_start
;
4125 int extent_inserted
= 0;
4127 ret
= log_extent_csums(trans
, inode
, log
, em
);
4131 ret
= __btrfs_drop_extents(trans
, log
, &inode
->vfs_inode
, path
, em
->start
,
4132 em
->start
+ em
->len
, NULL
, 0, 1,
4133 sizeof(*fi
), &extent_inserted
);
4137 if (!extent_inserted
) {
4138 key
.objectid
= btrfs_ino(inode
);
4139 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4140 key
.offset
= em
->start
;
4142 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4147 leaf
= path
->nodes
[0];
4148 btrfs_init_map_token(&token
, leaf
);
4149 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4150 struct btrfs_file_extent_item
);
4152 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4154 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4155 btrfs_set_token_file_extent_type(leaf
, fi
,
4156 BTRFS_FILE_EXTENT_PREALLOC
,
4159 btrfs_set_token_file_extent_type(leaf
, fi
,
4160 BTRFS_FILE_EXTENT_REG
,
4163 block_len
= max(em
->block_len
, em
->orig_block_len
);
4164 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4165 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4168 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4170 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4171 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4173 extent_offset
, &token
);
4174 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4177 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4178 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4182 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4183 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4184 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4185 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4187 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4188 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4189 btrfs_mark_buffer_dirty(leaf
);
4191 btrfs_release_path(path
);
4197 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4198 * lose them after doing a fast fsync and replaying the log. We scan the
4199 * subvolume's root instead of iterating the inode's extent map tree because
4200 * otherwise we can log incorrect extent items based on extent map conversion.
4201 * That can happen due to the fact that extent maps are merged when they
4202 * are not in the extent map tree's list of modified extents.
4204 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle
*trans
,
4205 struct btrfs_inode
*inode
,
4206 struct btrfs_path
*path
)
4208 struct btrfs_root
*root
= inode
->root
;
4209 struct btrfs_key key
;
4210 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4211 const u64 ino
= btrfs_ino(inode
);
4212 struct btrfs_path
*dst_path
= NULL
;
4213 bool dropped_extents
= false;
4218 if (!(inode
->flags
& BTRFS_INODE_PREALLOC
))
4222 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4223 key
.offset
= i_size
;
4224 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4229 struct extent_buffer
*leaf
= path
->nodes
[0];
4230 int slot
= path
->slots
[0];
4232 if (slot
>= btrfs_header_nritems(leaf
)) {
4234 ret
= copy_items(trans
, inode
, dst_path
, path
,
4235 start_slot
, ins_nr
, 1, 0);
4240 ret
= btrfs_next_leaf(root
, path
);
4250 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4251 if (key
.objectid
> ino
)
4253 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
4254 key
.type
< BTRFS_EXTENT_DATA_KEY
||
4255 key
.offset
< i_size
) {
4259 if (!dropped_extents
) {
4261 * Avoid logging extent items logged in past fsync calls
4262 * and leading to duplicate keys in the log tree.
4265 ret
= btrfs_truncate_inode_items(trans
,
4269 BTRFS_EXTENT_DATA_KEY
);
4270 } while (ret
== -EAGAIN
);
4273 dropped_extents
= true;
4280 dst_path
= btrfs_alloc_path();
4288 ret
= copy_items(trans
, inode
, dst_path
, path
,
4289 start_slot
, ins_nr
, 1, 0);
4294 btrfs_release_path(path
);
4295 btrfs_free_path(dst_path
);
4299 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4300 struct btrfs_root
*root
,
4301 struct btrfs_inode
*inode
,
4302 struct btrfs_path
*path
,
4303 struct btrfs_log_ctx
*ctx
,
4307 struct extent_map
*em
, *n
;
4308 struct list_head extents
;
4309 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4314 INIT_LIST_HEAD(&extents
);
4316 write_lock(&tree
->lock
);
4317 test_gen
= root
->fs_info
->last_trans_committed
;
4319 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4321 * Skip extents outside our logging range. It's important to do
4322 * it for correctness because if we don't ignore them, we may
4323 * log them before their ordered extent completes, and therefore
4324 * we could log them without logging their respective checksums
4325 * (the checksum items are added to the csum tree at the very
4326 * end of btrfs_finish_ordered_io()). Also leave such extents
4327 * outside of our range in the list, since we may have another
4328 * ranged fsync in the near future that needs them. If an extent
4329 * outside our range corresponds to a hole, log it to avoid
4330 * leaving gaps between extents (fsck will complain when we are
4331 * not using the NO_HOLES feature).
4333 if ((em
->start
> end
|| em
->start
+ em
->len
<= start
) &&
4334 em
->block_start
!= EXTENT_MAP_HOLE
)
4337 list_del_init(&em
->list
);
4339 * Just an arbitrary number, this can be really CPU intensive
4340 * once we start getting a lot of extents, and really once we
4341 * have a bunch of extents we just want to commit since it will
4344 if (++num
> 32768) {
4345 list_del_init(&tree
->modified_extents
);
4350 if (em
->generation
<= test_gen
)
4353 /* We log prealloc extents beyond eof later. */
4354 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) &&
4355 em
->start
>= i_size_read(&inode
->vfs_inode
))
4358 /* Need a ref to keep it from getting evicted from cache */
4359 refcount_inc(&em
->refs
);
4360 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4361 list_add_tail(&em
->list
, &extents
);
4365 list_sort(NULL
, &extents
, extent_cmp
);
4367 while (!list_empty(&extents
)) {
4368 em
= list_entry(extents
.next
, struct extent_map
, list
);
4370 list_del_init(&em
->list
);
4373 * If we had an error we just need to delete everybody from our
4377 clear_em_logging(tree
, em
);
4378 free_extent_map(em
);
4382 write_unlock(&tree
->lock
);
4384 ret
= log_one_extent(trans
, inode
, root
, em
, path
, ctx
);
4385 write_lock(&tree
->lock
);
4386 clear_em_logging(tree
, em
);
4387 free_extent_map(em
);
4389 WARN_ON(!list_empty(&extents
));
4390 write_unlock(&tree
->lock
);
4392 btrfs_release_path(path
);
4394 ret
= btrfs_log_prealloc_extents(trans
, inode
, path
);
4399 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
4400 struct btrfs_path
*path
, u64
*size_ret
)
4402 struct btrfs_key key
;
4405 key
.objectid
= btrfs_ino(inode
);
4406 key
.type
= BTRFS_INODE_ITEM_KEY
;
4409 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4412 } else if (ret
> 0) {
4415 struct btrfs_inode_item
*item
;
4417 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4418 struct btrfs_inode_item
);
4419 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4421 * If the in-memory inode's i_size is smaller then the inode
4422 * size stored in the btree, return the inode's i_size, so
4423 * that we get a correct inode size after replaying the log
4424 * when before a power failure we had a shrinking truncate
4425 * followed by addition of a new name (rename / new hard link).
4426 * Otherwise return the inode size from the btree, to avoid
4427 * data loss when replaying a log due to previously doing a
4428 * write that expands the inode's size and logging a new name
4429 * immediately after.
4431 if (*size_ret
> inode
->vfs_inode
.i_size
)
4432 *size_ret
= inode
->vfs_inode
.i_size
;
4435 btrfs_release_path(path
);
4440 * At the moment we always log all xattrs. This is to figure out at log replay
4441 * time which xattrs must have their deletion replayed. If a xattr is missing
4442 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4443 * because if a xattr is deleted, the inode is fsynced and a power failure
4444 * happens, causing the log to be replayed the next time the fs is mounted,
4445 * we want the xattr to not exist anymore (same behaviour as other filesystems
4446 * with a journal, ext3/4, xfs, f2fs, etc).
4448 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4449 struct btrfs_root
*root
,
4450 struct btrfs_inode
*inode
,
4451 struct btrfs_path
*path
,
4452 struct btrfs_path
*dst_path
)
4455 struct btrfs_key key
;
4456 const u64 ino
= btrfs_ino(inode
);
4461 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4464 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4469 int slot
= path
->slots
[0];
4470 struct extent_buffer
*leaf
= path
->nodes
[0];
4471 int nritems
= btrfs_header_nritems(leaf
);
4473 if (slot
>= nritems
) {
4475 ret
= copy_items(trans
, inode
, dst_path
, path
,
4476 start_slot
, ins_nr
, 1, 0);
4481 ret
= btrfs_next_leaf(root
, path
);
4489 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4490 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4500 ret
= copy_items(trans
, inode
, dst_path
, path
,
4501 start_slot
, ins_nr
, 1, 0);
4510 * When using the NO_HOLES feature if we punched a hole that causes the
4511 * deletion of entire leafs or all the extent items of the first leaf (the one
4512 * that contains the inode item and references) we may end up not processing
4513 * any extents, because there are no leafs with a generation matching the
4514 * current transaction that have extent items for our inode. So we need to find
4515 * if any holes exist and then log them. We also need to log holes after any
4516 * truncate operation that changes the inode's size.
4518 static int btrfs_log_holes(struct btrfs_trans_handle
*trans
,
4519 struct btrfs_root
*root
,
4520 struct btrfs_inode
*inode
,
4521 struct btrfs_path
*path
)
4523 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4524 struct btrfs_key key
;
4525 const u64 ino
= btrfs_ino(inode
);
4526 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4527 u64 prev_extent_end
= 0;
4530 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
) || i_size
== 0)
4534 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4537 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4542 struct btrfs_file_extent_item
*extent
;
4543 struct extent_buffer
*leaf
= path
->nodes
[0];
4546 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
4547 ret
= btrfs_next_leaf(root
, path
);
4554 leaf
= path
->nodes
[0];
4557 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4558 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4561 /* We have a hole, log it. */
4562 if (prev_extent_end
< key
.offset
) {
4563 const u64 hole_len
= key
.offset
- prev_extent_end
;
4566 * Release the path to avoid deadlocks with other code
4567 * paths that search the root while holding locks on
4568 * leafs from the log root.
4570 btrfs_release_path(path
);
4571 ret
= btrfs_insert_file_extent(trans
, root
->log_root
,
4572 ino
, prev_extent_end
, 0,
4573 0, hole_len
, 0, hole_len
,
4579 * Search for the same key again in the root. Since it's
4580 * an extent item and we are holding the inode lock, the
4581 * key must still exist. If it doesn't just emit warning
4582 * and return an error to fall back to a transaction
4585 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4588 if (WARN_ON(ret
> 0))
4590 leaf
= path
->nodes
[0];
4593 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4594 struct btrfs_file_extent_item
);
4595 if (btrfs_file_extent_type(leaf
, extent
) ==
4596 BTRFS_FILE_EXTENT_INLINE
) {
4597 len
= btrfs_file_extent_ram_bytes(leaf
, extent
);
4598 prev_extent_end
= ALIGN(key
.offset
+ len
,
4599 fs_info
->sectorsize
);
4601 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4602 prev_extent_end
= key
.offset
+ len
;
4609 if (prev_extent_end
< i_size
) {
4612 btrfs_release_path(path
);
4613 hole_len
= ALIGN(i_size
- prev_extent_end
, fs_info
->sectorsize
);
4614 ret
= btrfs_insert_file_extent(trans
, root
->log_root
,
4615 ino
, prev_extent_end
, 0, 0,
4616 hole_len
, 0, hole_len
,
4626 * When we are logging a new inode X, check if it doesn't have a reference that
4627 * matches the reference from some other inode Y created in a past transaction
4628 * and that was renamed in the current transaction. If we don't do this, then at
4629 * log replay time we can lose inode Y (and all its files if it's a directory):
4632 * echo "hello world" > /mnt/x/foobar
4635 * mkdir /mnt/x # or touch /mnt/x
4636 * xfs_io -c fsync /mnt/x
4638 * mount fs, trigger log replay
4640 * After the log replay procedure, we would lose the first directory and all its
4641 * files (file foobar).
4642 * For the case where inode Y is not a directory we simply end up losing it:
4644 * echo "123" > /mnt/foo
4646 * mv /mnt/foo /mnt/bar
4647 * echo "abc" > /mnt/foo
4648 * xfs_io -c fsync /mnt/foo
4651 * We also need this for cases where a snapshot entry is replaced by some other
4652 * entry (file or directory) otherwise we end up with an unreplayable log due to
4653 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4654 * if it were a regular entry:
4657 * btrfs subvolume snapshot /mnt /mnt/x/snap
4658 * btrfs subvolume delete /mnt/x/snap
4661 * fsync /mnt/x or fsync some new file inside it
4664 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4665 * the same transaction.
4667 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4669 const struct btrfs_key
*key
,
4670 struct btrfs_inode
*inode
,
4671 u64
*other_ino
, u64
*other_parent
)
4674 struct btrfs_path
*search_path
;
4677 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4679 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4681 search_path
= btrfs_alloc_path();
4684 search_path
->search_commit_root
= 1;
4685 search_path
->skip_locking
= 1;
4687 while (cur_offset
< item_size
) {
4691 unsigned long name_ptr
;
4692 struct btrfs_dir_item
*di
;
4694 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4695 struct btrfs_inode_ref
*iref
;
4697 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4698 parent
= key
->offset
;
4699 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4700 name_ptr
= (unsigned long)(iref
+ 1);
4701 this_len
= sizeof(*iref
) + this_name_len
;
4703 struct btrfs_inode_extref
*extref
;
4705 extref
= (struct btrfs_inode_extref
*)(ptr
+
4707 parent
= btrfs_inode_extref_parent(eb
, extref
);
4708 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4709 name_ptr
= (unsigned long)&extref
->name
;
4710 this_len
= sizeof(*extref
) + this_name_len
;
4713 if (this_name_len
> name_len
) {
4716 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4721 name_len
= this_name_len
;
4725 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4726 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
4727 parent
, name
, this_name_len
, 0);
4728 if (di
&& !IS_ERR(di
)) {
4729 struct btrfs_key di_key
;
4731 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4733 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4734 if (di_key
.objectid
!= key
->objectid
) {
4736 *other_ino
= di_key
.objectid
;
4737 *other_parent
= parent
;
4745 } else if (IS_ERR(di
)) {
4749 btrfs_release_path(search_path
);
4751 cur_offset
+= this_len
;
4755 btrfs_free_path(search_path
);
4760 struct btrfs_ino_list
{
4763 struct list_head list
;
4766 static int log_conflicting_inodes(struct btrfs_trans_handle
*trans
,
4767 struct btrfs_root
*root
,
4768 struct btrfs_path
*path
,
4769 struct btrfs_log_ctx
*ctx
,
4770 u64 ino
, u64 parent
)
4772 struct btrfs_ino_list
*ino_elem
;
4773 LIST_HEAD(inode_list
);
4776 ino_elem
= kmalloc(sizeof(*ino_elem
), GFP_NOFS
);
4779 ino_elem
->ino
= ino
;
4780 ino_elem
->parent
= parent
;
4781 list_add_tail(&ino_elem
->list
, &inode_list
);
4783 while (!list_empty(&inode_list
)) {
4784 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4785 struct btrfs_key key
;
4786 struct inode
*inode
;
4788 ino_elem
= list_first_entry(&inode_list
, struct btrfs_ino_list
,
4790 ino
= ino_elem
->ino
;
4791 parent
= ino_elem
->parent
;
4792 list_del(&ino_elem
->list
);
4797 btrfs_release_path(path
);
4800 key
.type
= BTRFS_INODE_ITEM_KEY
;
4802 inode
= btrfs_iget(fs_info
->sb
, &key
, root
);
4804 * If the other inode that had a conflicting dir entry was
4805 * deleted in the current transaction, we need to log its parent
4808 if (IS_ERR(inode
)) {
4809 ret
= PTR_ERR(inode
);
4810 if (ret
== -ENOENT
) {
4811 key
.objectid
= parent
;
4812 inode
= btrfs_iget(fs_info
->sb
, &key
, root
);
4813 if (IS_ERR(inode
)) {
4814 ret
= PTR_ERR(inode
);
4816 ret
= btrfs_log_inode(trans
, root
,
4818 LOG_OTHER_INODE_ALL
,
4820 btrfs_add_delayed_iput(inode
);
4826 * If the inode was already logged skip it - otherwise we can
4827 * hit an infinite loop. Example:
4829 * From the commit root (previous transaction) we have the
4832 * inode 257 a directory
4833 * inode 258 with references "zz" and "zz_link" on inode 257
4834 * inode 259 with reference "a" on inode 257
4836 * And in the current (uncommitted) transaction we have:
4838 * inode 257 a directory, unchanged
4839 * inode 258 with references "a" and "a2" on inode 257
4840 * inode 259 with reference "zz_link" on inode 257
4841 * inode 261 with reference "zz" on inode 257
4843 * When logging inode 261 the following infinite loop could
4844 * happen if we don't skip already logged inodes:
4846 * - we detect inode 258 as a conflicting inode, with inode 261
4847 * on reference "zz", and log it;
4849 * - we detect inode 259 as a conflicting inode, with inode 258
4850 * on reference "a", and log it;
4852 * - we detect inode 258 as a conflicting inode, with inode 259
4853 * on reference "zz_link", and log it - again! After this we
4854 * repeat the above steps forever.
4856 spin_lock(&BTRFS_I(inode
)->lock
);
4858 * Check the inode's logged_trans only instead of
4859 * btrfs_inode_in_log(). This is because the last_log_commit of
4860 * the inode is not updated when we only log that it exists and
4861 * and it has the full sync bit set (see btrfs_log_inode()).
4863 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
) {
4864 spin_unlock(&BTRFS_I(inode
)->lock
);
4865 btrfs_add_delayed_iput(inode
);
4868 spin_unlock(&BTRFS_I(inode
)->lock
);
4870 * We are safe logging the other inode without acquiring its
4871 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4872 * are safe against concurrent renames of the other inode as
4873 * well because during a rename we pin the log and update the
4874 * log with the new name before we unpin it.
4876 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(inode
),
4877 LOG_OTHER_INODE
, 0, LLONG_MAX
, ctx
);
4879 btrfs_add_delayed_iput(inode
);
4884 key
.type
= BTRFS_INODE_REF_KEY
;
4886 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4888 btrfs_add_delayed_iput(inode
);
4893 struct extent_buffer
*leaf
= path
->nodes
[0];
4894 int slot
= path
->slots
[0];
4896 u64 other_parent
= 0;
4898 if (slot
>= btrfs_header_nritems(leaf
)) {
4899 ret
= btrfs_next_leaf(root
, path
);
4902 } else if (ret
> 0) {
4909 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4910 if (key
.objectid
!= ino
||
4911 (key
.type
!= BTRFS_INODE_REF_KEY
&&
4912 key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
4917 ret
= btrfs_check_ref_name_override(leaf
, slot
, &key
,
4918 BTRFS_I(inode
), &other_ino
,
4923 ino_elem
= kmalloc(sizeof(*ino_elem
), GFP_NOFS
);
4928 ino_elem
->ino
= other_ino
;
4929 ino_elem
->parent
= other_parent
;
4930 list_add_tail(&ino_elem
->list
, &inode_list
);
4935 btrfs_add_delayed_iput(inode
);
4941 /* log a single inode in the tree log.
4942 * At least one parent directory for this inode must exist in the tree
4943 * or be logged already.
4945 * Any items from this inode changed by the current transaction are copied
4946 * to the log tree. An extra reference is taken on any extents in this
4947 * file, allowing us to avoid a whole pile of corner cases around logging
4948 * blocks that have been removed from the tree.
4950 * See LOG_INODE_ALL and related defines for a description of what inode_only
4953 * This handles both files and directories.
4955 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4956 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
4960 struct btrfs_log_ctx
*ctx
)
4962 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4963 struct btrfs_path
*path
;
4964 struct btrfs_path
*dst_path
;
4965 struct btrfs_key min_key
;
4966 struct btrfs_key max_key
;
4967 struct btrfs_root
*log
= root
->log_root
;
4971 int ins_start_slot
= 0;
4973 bool fast_search
= false;
4974 u64 ino
= btrfs_ino(inode
);
4975 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
4976 u64 logged_isize
= 0;
4977 bool need_log_inode_item
= true;
4978 bool xattrs_logged
= false;
4979 bool recursive_logging
= false;
4981 path
= btrfs_alloc_path();
4984 dst_path
= btrfs_alloc_path();
4986 btrfs_free_path(path
);
4990 min_key
.objectid
= ino
;
4991 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4994 max_key
.objectid
= ino
;
4997 /* today the code can only do partial logging of directories */
4998 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4999 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5000 &inode
->runtime_flags
) &&
5001 inode_only
>= LOG_INODE_EXISTS
))
5002 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
5004 max_key
.type
= (u8
)-1;
5005 max_key
.offset
= (u64
)-1;
5008 * Only run delayed items if we are a dir or a new file.
5009 * Otherwise commit the delayed inode only, which is needed in
5010 * order for the log replay code to mark inodes for link count
5011 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5013 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
5014 inode
->generation
> fs_info
->last_trans_committed
)
5015 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
5017 ret
= btrfs_commit_inode_delayed_inode(inode
);
5020 btrfs_free_path(path
);
5021 btrfs_free_path(dst_path
);
5025 if (inode_only
== LOG_OTHER_INODE
|| inode_only
== LOG_OTHER_INODE_ALL
) {
5026 recursive_logging
= true;
5027 if (inode_only
== LOG_OTHER_INODE
)
5028 inode_only
= LOG_INODE_EXISTS
;
5030 inode_only
= LOG_INODE_ALL
;
5031 mutex_lock_nested(&inode
->log_mutex
, SINGLE_DEPTH_NESTING
);
5033 mutex_lock(&inode
->log_mutex
);
5037 * a brute force approach to making sure we get the most uptodate
5038 * copies of everything.
5040 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5041 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
5043 if (inode_only
== LOG_INODE_EXISTS
)
5044 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
5045 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
5047 if (inode_only
== LOG_INODE_EXISTS
) {
5049 * Make sure the new inode item we write to the log has
5050 * the same isize as the current one (if it exists).
5051 * This is necessary to prevent data loss after log
5052 * replay, and also to prevent doing a wrong expanding
5053 * truncate - for e.g. create file, write 4K into offset
5054 * 0, fsync, write 4K into offset 4096, add hard link,
5055 * fsync some other file (to sync log), power fail - if
5056 * we use the inode's current i_size, after log replay
5057 * we get a 8Kb file, with the last 4Kb extent as a hole
5058 * (zeroes), as if an expanding truncate happened,
5059 * instead of getting a file of 4Kb only.
5061 err
= logged_inode_size(log
, inode
, path
, &logged_isize
);
5065 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5066 &inode
->runtime_flags
)) {
5067 if (inode_only
== LOG_INODE_EXISTS
) {
5068 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
5069 ret
= drop_objectid_items(trans
, log
, path
, ino
,
5072 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5073 &inode
->runtime_flags
);
5074 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
5075 &inode
->runtime_flags
);
5077 ret
= btrfs_truncate_inode_items(trans
,
5078 log
, &inode
->vfs_inode
, 0, 0);
5083 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
5084 &inode
->runtime_flags
) ||
5085 inode_only
== LOG_INODE_EXISTS
) {
5086 if (inode_only
== LOG_INODE_ALL
)
5088 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
5089 ret
= drop_objectid_items(trans
, log
, path
, ino
,
5092 if (inode_only
== LOG_INODE_ALL
)
5105 ret
= btrfs_search_forward(root
, &min_key
,
5106 path
, trans
->transid
);
5114 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5115 if (min_key
.objectid
!= ino
)
5117 if (min_key
.type
> max_key
.type
)
5120 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
5121 need_log_inode_item
= false;
5123 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
5124 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
5125 inode
->generation
== trans
->transid
&&
5126 !recursive_logging
) {
5128 u64 other_parent
= 0;
5130 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
5131 path
->slots
[0], &min_key
, inode
,
5132 &other_ino
, &other_parent
);
5136 } else if (ret
> 0 && ctx
&&
5137 other_ino
!= btrfs_ino(BTRFS_I(ctx
->inode
))) {
5142 ins_start_slot
= path
->slots
[0];
5144 ret
= copy_items(trans
, inode
, dst_path
, path
,
5154 err
= log_conflicting_inodes(trans
, root
, path
,
5155 ctx
, other_ino
, other_parent
);
5158 btrfs_release_path(path
);
5163 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5164 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
5167 ret
= copy_items(trans
, inode
, dst_path
, path
,
5169 ins_nr
, inode_only
, logged_isize
);
5178 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
5181 } else if (!ins_nr
) {
5182 ins_start_slot
= path
->slots
[0];
5187 ret
= copy_items(trans
, inode
, dst_path
, path
,
5188 ins_start_slot
, ins_nr
, inode_only
,
5195 ins_start_slot
= path
->slots
[0];
5198 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5200 if (path
->slots
[0] < nritems
) {
5201 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
5206 ret
= copy_items(trans
, inode
, dst_path
, path
,
5208 ins_nr
, inode_only
, logged_isize
);
5215 btrfs_release_path(path
);
5217 if (min_key
.offset
< (u64
)-1) {
5219 } else if (min_key
.type
< max_key
.type
) {
5227 ret
= copy_items(trans
, inode
, dst_path
, path
,
5228 ins_start_slot
, ins_nr
, inode_only
,
5237 btrfs_release_path(path
);
5238 btrfs_release_path(dst_path
);
5239 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
5242 xattrs_logged
= true;
5243 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
5244 btrfs_release_path(path
);
5245 btrfs_release_path(dst_path
);
5246 err
= btrfs_log_holes(trans
, root
, inode
, path
);
5251 btrfs_release_path(path
);
5252 btrfs_release_path(dst_path
);
5253 if (need_log_inode_item
) {
5254 err
= log_inode_item(trans
, log
, dst_path
, inode
);
5255 if (!err
&& !xattrs_logged
) {
5256 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
,
5258 btrfs_release_path(path
);
5264 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
5270 } else if (inode_only
== LOG_INODE_ALL
) {
5271 struct extent_map
*em
, *n
;
5273 write_lock(&em_tree
->lock
);
5275 * We can't just remove every em if we're called for a ranged
5276 * fsync - that is, one that doesn't cover the whole possible
5277 * file range (0 to LLONG_MAX). This is because we can have
5278 * em's that fall outside the range we're logging and therefore
5279 * their ordered operations haven't completed yet
5280 * (btrfs_finish_ordered_io() not invoked yet). This means we
5281 * didn't get their respective file extent item in the fs/subvol
5282 * tree yet, and need to let the next fast fsync (one which
5283 * consults the list of modified extent maps) find the em so
5284 * that it logs a matching file extent item and waits for the
5285 * respective ordered operation to complete (if it's still
5288 * Removing every em outside the range we're logging would make
5289 * the next fast fsync not log their matching file extent items,
5290 * therefore making us lose data after a log replay.
5292 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
5294 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
5296 if (em
->mod_start
>= start
&& mod_end
<= end
)
5297 list_del_init(&em
->list
);
5299 write_unlock(&em_tree
->lock
);
5302 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5303 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
5312 * Don't update last_log_commit if we logged that an inode exists after
5313 * it was loaded to memory (full_sync bit set).
5314 * This is to prevent data loss when we do a write to the inode, then
5315 * the inode gets evicted after all delalloc was flushed, then we log
5316 * it exists (due to a rename for example) and then fsync it. This last
5317 * fsync would do nothing (not logging the extents previously written).
5319 spin_lock(&inode
->lock
);
5320 inode
->logged_trans
= trans
->transid
;
5321 if (inode_only
!= LOG_INODE_EXISTS
||
5322 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
))
5323 inode
->last_log_commit
= inode
->last_sub_trans
;
5324 spin_unlock(&inode
->lock
);
5326 mutex_unlock(&inode
->log_mutex
);
5328 btrfs_free_path(path
);
5329 btrfs_free_path(dst_path
);
5334 * Check if we must fallback to a transaction commit when logging an inode.
5335 * This must be called after logging the inode and is used only in the context
5336 * when fsyncing an inode requires the need to log some other inode - in which
5337 * case we can't lock the i_mutex of each other inode we need to log as that
5338 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5339 * log inodes up or down in the hierarchy) or rename operations for example. So
5340 * we take the log_mutex of the inode after we have logged it and then check for
5341 * its last_unlink_trans value - this is safe because any task setting
5342 * last_unlink_trans must take the log_mutex and it must do this before it does
5343 * the actual unlink operation, so if we do this check before a concurrent task
5344 * sets last_unlink_trans it means we've logged a consistent version/state of
5345 * all the inode items, otherwise we are not sure and must do a transaction
5346 * commit (the concurrent task might have only updated last_unlink_trans before
5347 * we logged the inode or it might have also done the unlink).
5349 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5350 struct btrfs_inode
*inode
)
5352 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5355 mutex_lock(&inode
->log_mutex
);
5356 if (inode
->last_unlink_trans
> fs_info
->last_trans_committed
) {
5358 * Make sure any commits to the log are forced to be full
5361 btrfs_set_log_full_commit(trans
);
5364 mutex_unlock(&inode
->log_mutex
);
5370 * follow the dentry parent pointers up the chain and see if any
5371 * of the directories in it require a full commit before they can
5372 * be logged. Returns zero if nothing special needs to be done or 1 if
5373 * a full commit is required.
5375 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5376 struct btrfs_inode
*inode
,
5377 struct dentry
*parent
,
5378 struct super_block
*sb
,
5382 struct dentry
*old_parent
= NULL
;
5385 * for regular files, if its inode is already on disk, we don't
5386 * have to worry about the parents at all. This is because
5387 * we can use the last_unlink_trans field to record renames
5388 * and other fun in this file.
5390 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5391 inode
->generation
<= last_committed
&&
5392 inode
->last_unlink_trans
<= last_committed
)
5395 if (!S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5396 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5398 inode
= BTRFS_I(d_inode(parent
));
5402 if (btrfs_must_commit_transaction(trans
, inode
)) {
5407 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5410 if (IS_ROOT(parent
)) {
5411 inode
= BTRFS_I(d_inode(parent
));
5412 if (btrfs_must_commit_transaction(trans
, inode
))
5417 parent
= dget_parent(parent
);
5419 old_parent
= parent
;
5420 inode
= BTRFS_I(d_inode(parent
));
5428 struct btrfs_dir_list
{
5430 struct list_head list
;
5434 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5435 * details about the why it is needed.
5436 * This is a recursive operation - if an existing dentry corresponds to a
5437 * directory, that directory's new entries are logged too (same behaviour as
5438 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5439 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5440 * complains about the following circular lock dependency / possible deadlock:
5444 * lock(&type->i_mutex_dir_key#3/2);
5445 * lock(sb_internal#2);
5446 * lock(&type->i_mutex_dir_key#3/2);
5447 * lock(&sb->s_type->i_mutex_key#14);
5449 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5450 * sb_start_intwrite() in btrfs_start_transaction().
5451 * Not locking i_mutex of the inodes is still safe because:
5453 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5454 * that while logging the inode new references (names) are added or removed
5455 * from the inode, leaving the logged inode item with a link count that does
5456 * not match the number of logged inode reference items. This is fine because
5457 * at log replay time we compute the real number of links and correct the
5458 * link count in the inode item (see replay_one_buffer() and
5459 * link_to_fixup_dir());
5461 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5462 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5463 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5464 * has a size that doesn't match the sum of the lengths of all the logged
5465 * names. This does not result in a problem because if a dir_item key is
5466 * logged but its matching dir_index key is not logged, at log replay time we
5467 * don't use it to replay the respective name (see replay_one_name()). On the
5468 * other hand if only the dir_index key ends up being logged, the respective
5469 * name is added to the fs/subvol tree with both the dir_item and dir_index
5470 * keys created (see replay_one_name()).
5471 * The directory's inode item with a wrong i_size is not a problem as well,
5472 * since we don't use it at log replay time to set the i_size in the inode
5473 * item of the fs/subvol tree (see overwrite_item()).
5475 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5476 struct btrfs_root
*root
,
5477 struct btrfs_inode
*start_inode
,
5478 struct btrfs_log_ctx
*ctx
)
5480 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5481 struct btrfs_root
*log
= root
->log_root
;
5482 struct btrfs_path
*path
;
5483 LIST_HEAD(dir_list
);
5484 struct btrfs_dir_list
*dir_elem
;
5487 path
= btrfs_alloc_path();
5491 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5493 btrfs_free_path(path
);
5496 dir_elem
->ino
= btrfs_ino(start_inode
);
5497 list_add_tail(&dir_elem
->list
, &dir_list
);
5499 while (!list_empty(&dir_list
)) {
5500 struct extent_buffer
*leaf
;
5501 struct btrfs_key min_key
;
5505 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5508 goto next_dir_inode
;
5510 min_key
.objectid
= dir_elem
->ino
;
5511 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5514 btrfs_release_path(path
);
5515 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5517 goto next_dir_inode
;
5518 } else if (ret
> 0) {
5520 goto next_dir_inode
;
5524 leaf
= path
->nodes
[0];
5525 nritems
= btrfs_header_nritems(leaf
);
5526 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5527 struct btrfs_dir_item
*di
;
5528 struct btrfs_key di_key
;
5529 struct inode
*di_inode
;
5530 struct btrfs_dir_list
*new_dir_elem
;
5531 int log_mode
= LOG_INODE_EXISTS
;
5534 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5535 if (min_key
.objectid
!= dir_elem
->ino
||
5536 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5537 goto next_dir_inode
;
5539 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5540 type
= btrfs_dir_type(leaf
, di
);
5541 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5542 type
!= BTRFS_FT_DIR
)
5544 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5545 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5548 btrfs_release_path(path
);
5549 di_inode
= btrfs_iget(fs_info
->sb
, &di_key
, root
);
5550 if (IS_ERR(di_inode
)) {
5551 ret
= PTR_ERR(di_inode
);
5552 goto next_dir_inode
;
5555 if (btrfs_inode_in_log(BTRFS_I(di_inode
), trans
->transid
)) {
5556 btrfs_add_delayed_iput(di_inode
);
5560 ctx
->log_new_dentries
= false;
5561 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5562 log_mode
= LOG_INODE_ALL
;
5563 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(di_inode
),
5564 log_mode
, 0, LLONG_MAX
, ctx
);
5566 btrfs_must_commit_transaction(trans
, BTRFS_I(di_inode
)))
5568 btrfs_add_delayed_iput(di_inode
);
5570 goto next_dir_inode
;
5571 if (ctx
->log_new_dentries
) {
5572 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5574 if (!new_dir_elem
) {
5576 goto next_dir_inode
;
5578 new_dir_elem
->ino
= di_key
.objectid
;
5579 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5584 ret
= btrfs_next_leaf(log
, path
);
5586 goto next_dir_inode
;
5587 } else if (ret
> 0) {
5589 goto next_dir_inode
;
5593 if (min_key
.offset
< (u64
)-1) {
5598 list_del(&dir_elem
->list
);
5602 btrfs_free_path(path
);
5606 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5607 struct btrfs_inode
*inode
,
5608 struct btrfs_log_ctx
*ctx
)
5610 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5612 struct btrfs_path
*path
;
5613 struct btrfs_key key
;
5614 struct btrfs_root
*root
= inode
->root
;
5615 const u64 ino
= btrfs_ino(inode
);
5617 path
= btrfs_alloc_path();
5620 path
->skip_locking
= 1;
5621 path
->search_commit_root
= 1;
5624 key
.type
= BTRFS_INODE_REF_KEY
;
5626 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5631 struct extent_buffer
*leaf
= path
->nodes
[0];
5632 int slot
= path
->slots
[0];
5637 if (slot
>= btrfs_header_nritems(leaf
)) {
5638 ret
= btrfs_next_leaf(root
, path
);
5646 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5647 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5648 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5651 item_size
= btrfs_item_size_nr(leaf
, slot
);
5652 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5653 while (cur_offset
< item_size
) {
5654 struct btrfs_key inode_key
;
5655 struct inode
*dir_inode
;
5657 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5658 inode_key
.offset
= 0;
5660 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5661 struct btrfs_inode_extref
*extref
;
5663 extref
= (struct btrfs_inode_extref
*)
5665 inode_key
.objectid
= btrfs_inode_extref_parent(
5667 cur_offset
+= sizeof(*extref
);
5668 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5671 inode_key
.objectid
= key
.offset
;
5672 cur_offset
= item_size
;
5675 dir_inode
= btrfs_iget(fs_info
->sb
, &inode_key
, root
);
5677 * If the parent inode was deleted, return an error to
5678 * fallback to a transaction commit. This is to prevent
5679 * getting an inode that was moved from one parent A to
5680 * a parent B, got its former parent A deleted and then
5681 * it got fsync'ed, from existing at both parents after
5682 * a log replay (and the old parent still existing).
5689 * mv /mnt/B/bar /mnt/A/bar
5690 * mv -T /mnt/A /mnt/B
5694 * If we ignore the old parent B which got deleted,
5695 * after a log replay we would have file bar linked
5696 * at both parents and the old parent B would still
5699 if (IS_ERR(dir_inode
)) {
5700 ret
= PTR_ERR(dir_inode
);
5705 ctx
->log_new_dentries
= false;
5706 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(dir_inode
),
5707 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5709 btrfs_must_commit_transaction(trans
, BTRFS_I(dir_inode
)))
5711 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5712 ret
= log_new_dir_dentries(trans
, root
,
5713 BTRFS_I(dir_inode
), ctx
);
5714 btrfs_add_delayed_iput(dir_inode
);
5722 btrfs_free_path(path
);
5726 static int log_new_ancestors(struct btrfs_trans_handle
*trans
,
5727 struct btrfs_root
*root
,
5728 struct btrfs_path
*path
,
5729 struct btrfs_log_ctx
*ctx
)
5731 struct btrfs_key found_key
;
5733 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
5736 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5737 const u64 last_committed
= fs_info
->last_trans_committed
;
5738 struct extent_buffer
*leaf
= path
->nodes
[0];
5739 int slot
= path
->slots
[0];
5740 struct btrfs_key search_key
;
5741 struct inode
*inode
;
5744 btrfs_release_path(path
);
5746 search_key
.objectid
= found_key
.offset
;
5747 search_key
.type
= BTRFS_INODE_ITEM_KEY
;
5748 search_key
.offset
= 0;
5749 inode
= btrfs_iget(fs_info
->sb
, &search_key
, root
);
5751 return PTR_ERR(inode
);
5753 if (BTRFS_I(inode
)->generation
> last_committed
)
5754 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(inode
),
5757 btrfs_add_delayed_iput(inode
);
5761 if (search_key
.objectid
== BTRFS_FIRST_FREE_OBJECTID
)
5764 search_key
.type
= BTRFS_INODE_REF_KEY
;
5765 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
5769 leaf
= path
->nodes
[0];
5770 slot
= path
->slots
[0];
5771 if (slot
>= btrfs_header_nritems(leaf
)) {
5772 ret
= btrfs_next_leaf(root
, path
);
5777 leaf
= path
->nodes
[0];
5778 slot
= path
->slots
[0];
5781 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5782 if (found_key
.objectid
!= search_key
.objectid
||
5783 found_key
.type
!= BTRFS_INODE_REF_KEY
)
5789 static int log_new_ancestors_fast(struct btrfs_trans_handle
*trans
,
5790 struct btrfs_inode
*inode
,
5791 struct dentry
*parent
,
5792 struct btrfs_log_ctx
*ctx
)
5794 struct btrfs_root
*root
= inode
->root
;
5795 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5796 struct dentry
*old_parent
= NULL
;
5797 struct super_block
*sb
= inode
->vfs_inode
.i_sb
;
5801 if (!parent
|| d_really_is_negative(parent
) ||
5805 inode
= BTRFS_I(d_inode(parent
));
5806 if (root
!= inode
->root
)
5809 if (inode
->generation
> fs_info
->last_trans_committed
) {
5810 ret
= btrfs_log_inode(trans
, root
, inode
,
5811 LOG_INODE_EXISTS
, 0, LLONG_MAX
, ctx
);
5815 if (IS_ROOT(parent
))
5818 parent
= dget_parent(parent
);
5820 old_parent
= parent
;
5827 static int log_all_new_ancestors(struct btrfs_trans_handle
*trans
,
5828 struct btrfs_inode
*inode
,
5829 struct dentry
*parent
,
5830 struct btrfs_log_ctx
*ctx
)
5832 struct btrfs_root
*root
= inode
->root
;
5833 const u64 ino
= btrfs_ino(inode
);
5834 struct btrfs_path
*path
;
5835 struct btrfs_key search_key
;
5839 * For a single hard link case, go through a fast path that does not
5840 * need to iterate the fs/subvolume tree.
5842 if (inode
->vfs_inode
.i_nlink
< 2)
5843 return log_new_ancestors_fast(trans
, inode
, parent
, ctx
);
5845 path
= btrfs_alloc_path();
5849 search_key
.objectid
= ino
;
5850 search_key
.type
= BTRFS_INODE_REF_KEY
;
5851 search_key
.offset
= 0;
5853 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
5860 struct extent_buffer
*leaf
= path
->nodes
[0];
5861 int slot
= path
->slots
[0];
5862 struct btrfs_key found_key
;
5864 if (slot
>= btrfs_header_nritems(leaf
)) {
5865 ret
= btrfs_next_leaf(root
, path
);
5873 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5874 if (found_key
.objectid
!= ino
||
5875 found_key
.type
> BTRFS_INODE_EXTREF_KEY
)
5879 * Don't deal with extended references because they are rare
5880 * cases and too complex to deal with (we would need to keep
5881 * track of which subitem we are processing for each item in
5882 * this loop, etc). So just return some error to fallback to
5883 * a transaction commit.
5885 if (found_key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5891 * Logging ancestors needs to do more searches on the fs/subvol
5892 * tree, so it releases the path as needed to avoid deadlocks.
5893 * Keep track of the last inode ref key and resume from that key
5894 * after logging all new ancestors for the current hard link.
5896 memcpy(&search_key
, &found_key
, sizeof(search_key
));
5898 ret
= log_new_ancestors(trans
, root
, path
, ctx
);
5901 btrfs_release_path(path
);
5906 btrfs_free_path(path
);
5911 * helper function around btrfs_log_inode to make sure newly created
5912 * parent directories also end up in the log. A minimal inode and backref
5913 * only logging is done of any parent directories that are older than
5914 * the last committed transaction
5916 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5917 struct btrfs_inode
*inode
,
5918 struct dentry
*parent
,
5922 struct btrfs_log_ctx
*ctx
)
5924 struct btrfs_root
*root
= inode
->root
;
5925 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5926 struct super_block
*sb
;
5928 u64 last_committed
= fs_info
->last_trans_committed
;
5929 bool log_dentries
= false;
5931 sb
= inode
->vfs_inode
.i_sb
;
5933 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5939 * The prev transaction commit doesn't complete, we need do
5940 * full commit by ourselves.
5942 if (fs_info
->last_trans_log_full_commit
>
5943 fs_info
->last_trans_committed
) {
5948 if (btrfs_root_refs(&root
->root_item
) == 0) {
5953 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
, sb
,
5959 * Skip already logged inodes or inodes corresponding to tmpfiles
5960 * (since logging them is pointless, a link count of 0 means they
5961 * will never be accessible).
5963 if (btrfs_inode_in_log(inode
, trans
->transid
) ||
5964 inode
->vfs_inode
.i_nlink
== 0) {
5965 ret
= BTRFS_NO_LOG_SYNC
;
5969 ret
= start_log_trans(trans
, root
, ctx
);
5973 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5978 * for regular files, if its inode is already on disk, we don't
5979 * have to worry about the parents at all. This is because
5980 * we can use the last_unlink_trans field to record renames
5981 * and other fun in this file.
5983 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5984 inode
->generation
<= last_committed
&&
5985 inode
->last_unlink_trans
<= last_committed
) {
5990 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
&& ctx
->log_new_dentries
)
5991 log_dentries
= true;
5994 * On unlink we must make sure all our current and old parent directory
5995 * inodes are fully logged. This is to prevent leaving dangling
5996 * directory index entries in directories that were our parents but are
5997 * not anymore. Not doing this results in old parent directory being
5998 * impossible to delete after log replay (rmdir will always fail with
5999 * error -ENOTEMPTY).
6005 * ln testdir/foo testdir/bar
6007 * unlink testdir/bar
6008 * xfs_io -c fsync testdir/foo
6010 * mount fs, triggers log replay
6012 * If we don't log the parent directory (testdir), after log replay the
6013 * directory still has an entry pointing to the file inode using the bar
6014 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6015 * the file inode has a link count of 1.
6021 * ln foo testdir/foo2
6022 * ln foo testdir/foo3
6024 * unlink testdir/foo3
6025 * xfs_io -c fsync foo
6027 * mount fs, triggers log replay
6029 * Similar as the first example, after log replay the parent directory
6030 * testdir still has an entry pointing to the inode file with name foo3
6031 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6032 * and has a link count of 2.
6034 if (inode
->last_unlink_trans
> last_committed
) {
6035 ret
= btrfs_log_all_parents(trans
, inode
, ctx
);
6040 ret
= log_all_new_ancestors(trans
, inode
, parent
, ctx
);
6045 ret
= log_new_dir_dentries(trans
, root
, inode
, ctx
);
6050 btrfs_set_log_full_commit(trans
);
6055 btrfs_remove_log_ctx(root
, ctx
);
6056 btrfs_end_log_trans(root
);
6062 * it is not safe to log dentry if the chunk root has added new
6063 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6064 * If this returns 1, you must commit the transaction to safely get your
6067 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
6068 struct dentry
*dentry
,
6071 struct btrfs_log_ctx
*ctx
)
6073 struct dentry
*parent
= dget_parent(dentry
);
6076 ret
= btrfs_log_inode_parent(trans
, BTRFS_I(d_inode(dentry
)), parent
,
6077 start
, end
, LOG_INODE_ALL
, ctx
);
6084 * should be called during mount to recover any replay any log trees
6087 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
6090 struct btrfs_path
*path
;
6091 struct btrfs_trans_handle
*trans
;
6092 struct btrfs_key key
;
6093 struct btrfs_key found_key
;
6094 struct btrfs_key tmp_key
;
6095 struct btrfs_root
*log
;
6096 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
6097 struct walk_control wc
= {
6098 .process_func
= process_one_buffer
,
6099 .stage
= LOG_WALK_PIN_ONLY
,
6102 path
= btrfs_alloc_path();
6106 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
6108 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
6109 if (IS_ERR(trans
)) {
6110 ret
= PTR_ERR(trans
);
6117 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
6119 btrfs_handle_fs_error(fs_info
, ret
,
6120 "Failed to pin buffers while recovering log root tree.");
6125 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
6126 key
.offset
= (u64
)-1;
6127 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6130 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
6133 btrfs_handle_fs_error(fs_info
, ret
,
6134 "Couldn't find tree log root.");
6138 if (path
->slots
[0] == 0)
6142 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
6144 btrfs_release_path(path
);
6145 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
6148 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
6151 btrfs_handle_fs_error(fs_info
, ret
,
6152 "Couldn't read tree log root.");
6156 tmp_key
.objectid
= found_key
.offset
;
6157 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6158 tmp_key
.offset
= (u64
)-1;
6160 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
6161 if (IS_ERR(wc
.replay_dest
)) {
6162 ret
= PTR_ERR(wc
.replay_dest
);
6165 * We didn't find the subvol, likely because it was
6166 * deleted. This is ok, simply skip this log and go to
6169 * We need to exclude the root because we can't have
6170 * other log replays overwriting this log as we'll read
6171 * it back in a few more times. This will keep our
6172 * block from being modified, and we'll just bail for
6173 * each subsequent pass.
6176 ret
= btrfs_pin_extent_for_log_replay(fs_info
,
6179 free_extent_buffer(log
->node
);
6180 free_extent_buffer(log
->commit_root
);
6185 btrfs_handle_fs_error(fs_info
, ret
,
6186 "Couldn't read target root for tree log recovery.");
6190 wc
.replay_dest
->log_root
= log
;
6191 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
6192 ret
= walk_log_tree(trans
, log
, &wc
);
6194 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
6195 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
6199 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
6200 struct btrfs_root
*root
= wc
.replay_dest
;
6202 btrfs_release_path(path
);
6205 * We have just replayed everything, and the highest
6206 * objectid of fs roots probably has changed in case
6207 * some inode_item's got replayed.
6209 * root->objectid_mutex is not acquired as log replay
6210 * could only happen during mount.
6212 ret
= btrfs_find_highest_objectid(root
,
6213 &root
->highest_objectid
);
6216 wc
.replay_dest
->log_root
= NULL
;
6217 free_extent_buffer(log
->node
);
6218 free_extent_buffer(log
->commit_root
);
6224 if (found_key
.offset
== 0)
6226 key
.offset
= found_key
.offset
- 1;
6228 btrfs_release_path(path
);
6230 /* step one is to pin it all, step two is to replay just inodes */
6233 wc
.process_func
= replay_one_buffer
;
6234 wc
.stage
= LOG_WALK_REPLAY_INODES
;
6237 /* step three is to replay everything */
6238 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
6243 btrfs_free_path(path
);
6245 /* step 4: commit the transaction, which also unpins the blocks */
6246 ret
= btrfs_commit_transaction(trans
);
6250 free_extent_buffer(log_root_tree
->node
);
6251 log_root_tree
->log_root
= NULL
;
6252 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
6253 kfree(log_root_tree
);
6258 btrfs_end_transaction(wc
.trans
);
6259 btrfs_free_path(path
);
6264 * there are some corner cases where we want to force a full
6265 * commit instead of allowing a directory to be logged.
6267 * They revolve around files there were unlinked from the directory, and
6268 * this function updates the parent directory so that a full commit is
6269 * properly done if it is fsync'd later after the unlinks are done.
6271 * Must be called before the unlink operations (updates to the subvolume tree,
6272 * inodes, etc) are done.
6274 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
6275 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
6279 * when we're logging a file, if it hasn't been renamed
6280 * or unlinked, and its inode is fully committed on disk,
6281 * we don't have to worry about walking up the directory chain
6282 * to log its parents.
6284 * So, we use the last_unlink_trans field to put this transid
6285 * into the file. When the file is logged we check it and
6286 * don't log the parents if the file is fully on disk.
6288 mutex_lock(&inode
->log_mutex
);
6289 inode
->last_unlink_trans
= trans
->transid
;
6290 mutex_unlock(&inode
->log_mutex
);
6293 * if this directory was already logged any new
6294 * names for this file/dir will get recorded
6296 if (dir
->logged_trans
== trans
->transid
)
6300 * if the inode we're about to unlink was logged,
6301 * the log will be properly updated for any new names
6303 if (inode
->logged_trans
== trans
->transid
)
6307 * when renaming files across directories, if the directory
6308 * there we're unlinking from gets fsync'd later on, there's
6309 * no way to find the destination directory later and fsync it
6310 * properly. So, we have to be conservative and force commits
6311 * so the new name gets discovered.
6316 /* we can safely do the unlink without any special recording */
6320 mutex_lock(&dir
->log_mutex
);
6321 dir
->last_unlink_trans
= trans
->transid
;
6322 mutex_unlock(&dir
->log_mutex
);
6326 * Make sure that if someone attempts to fsync the parent directory of a deleted
6327 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6328 * that after replaying the log tree of the parent directory's root we will not
6329 * see the snapshot anymore and at log replay time we will not see any log tree
6330 * corresponding to the deleted snapshot's root, which could lead to replaying
6331 * it after replaying the log tree of the parent directory (which would replay
6332 * the snapshot delete operation).
6334 * Must be called before the actual snapshot destroy operation (updates to the
6335 * parent root and tree of tree roots trees, etc) are done.
6337 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
6338 struct btrfs_inode
*dir
)
6340 mutex_lock(&dir
->log_mutex
);
6341 dir
->last_unlink_trans
= trans
->transid
;
6342 mutex_unlock(&dir
->log_mutex
);
6346 * Call this after adding a new name for a file and it will properly
6347 * update the log to reflect the new name.
6349 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6350 * true (because it's not used).
6352 * Return value depends on whether @sync_log is true or false.
6353 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6354 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6356 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6357 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6358 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6359 * committed (without attempting to sync the log).
6361 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
6362 struct btrfs_inode
*inode
, struct btrfs_inode
*old_dir
,
6363 struct dentry
*parent
,
6364 bool sync_log
, struct btrfs_log_ctx
*ctx
)
6366 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
6370 * this will force the logging code to walk the dentry chain
6373 if (!S_ISDIR(inode
->vfs_inode
.i_mode
))
6374 inode
->last_unlink_trans
= trans
->transid
;
6377 * if this inode hasn't been logged and directory we're renaming it
6378 * from hasn't been logged, we don't need to log it
6380 if (inode
->logged_trans
<= fs_info
->last_trans_committed
&&
6381 (!old_dir
|| old_dir
->logged_trans
<= fs_info
->last_trans_committed
))
6382 return sync_log
? BTRFS_DONT_NEED_TRANS_COMMIT
:
6383 BTRFS_DONT_NEED_LOG_SYNC
;
6386 struct btrfs_log_ctx ctx2
;
6388 btrfs_init_log_ctx(&ctx2
, &inode
->vfs_inode
);
6389 ret
= btrfs_log_inode_parent(trans
, inode
, parent
, 0, LLONG_MAX
,
6390 LOG_INODE_EXISTS
, &ctx2
);
6391 if (ret
== BTRFS_NO_LOG_SYNC
)
6392 return BTRFS_DONT_NEED_TRANS_COMMIT
;
6394 return BTRFS_NEED_TRANS_COMMIT
;
6396 ret
= btrfs_sync_log(trans
, inode
->root
, &ctx2
);
6398 return BTRFS_NEED_TRANS_COMMIT
;
6399 return BTRFS_DONT_NEED_TRANS_COMMIT
;
6403 ret
= btrfs_log_inode_parent(trans
, inode
, parent
, 0, LLONG_MAX
,
6404 LOG_INODE_EXISTS
, ctx
);
6405 if (ret
== BTRFS_NO_LOG_SYNC
)
6406 return BTRFS_DONT_NEED_LOG_SYNC
;
6408 return BTRFS_NEED_TRANS_COMMIT
;
6410 return BTRFS_NEED_LOG_SYNC
;