drm/panfrost: perfcnt: Reserve/use the AS attached to the perfcnt MMU context
[linux/fpc-iii.git] / fs / btrfs / volumes.h
blob409f4816fb89c458e9dec591b0951d79816dd7d1
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
9 #include <linux/bio.h>
10 #include <linux/sort.h>
11 #include <linux/btrfs.h>
12 #include "async-thread.h"
14 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
16 extern struct mutex uuid_mutex;
18 #define BTRFS_STRIPE_LEN SZ_64K
20 struct buffer_head;
22 struct btrfs_io_geometry {
23 /* remaining bytes before crossing a stripe */
24 u64 len;
25 /* offset of logical address in chunk */
26 u64 offset;
27 /* length of single IO stripe */
28 u64 stripe_len;
29 /* number of stripe where address falls */
30 u64 stripe_nr;
31 /* offset of address in stripe */
32 u64 stripe_offset;
33 /* offset of raid56 stripe into the chunk */
34 u64 raid56_stripe_offset;
38 * Use sequence counter to get consistent device stat data on
39 * 32-bit processors.
41 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
42 #include <linux/seqlock.h>
43 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
44 #define btrfs_device_data_ordered_init(device) \
45 seqcount_init(&device->data_seqcount)
46 #else
47 #define btrfs_device_data_ordered_init(device) do { } while (0)
48 #endif
50 #define BTRFS_DEV_STATE_WRITEABLE (0)
51 #define BTRFS_DEV_STATE_IN_FS_METADATA (1)
52 #define BTRFS_DEV_STATE_MISSING (2)
53 #define BTRFS_DEV_STATE_REPLACE_TGT (3)
54 #define BTRFS_DEV_STATE_FLUSH_SENT (4)
56 struct btrfs_device {
57 struct list_head dev_list; /* device_list_mutex */
58 struct list_head dev_alloc_list; /* chunk mutex */
59 struct list_head post_commit_list; /* chunk mutex */
60 struct btrfs_fs_devices *fs_devices;
61 struct btrfs_fs_info *fs_info;
63 struct rcu_string *name;
65 u64 generation;
67 struct block_device *bdev;
69 /* the mode sent to blkdev_get */
70 fmode_t mode;
72 unsigned long dev_state;
73 blk_status_t last_flush_error;
75 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
76 seqcount_t data_seqcount;
77 #endif
79 /* the internal btrfs device id */
80 u64 devid;
82 /* size of the device in memory */
83 u64 total_bytes;
85 /* size of the device on disk */
86 u64 disk_total_bytes;
88 /* bytes used */
89 u64 bytes_used;
91 /* optimal io alignment for this device */
92 u32 io_align;
94 /* optimal io width for this device */
95 u32 io_width;
96 /* type and info about this device */
97 u64 type;
99 /* minimal io size for this device */
100 u32 sector_size;
102 /* physical drive uuid (or lvm uuid) */
103 u8 uuid[BTRFS_UUID_SIZE];
106 * size of the device on the current transaction
108 * This variant is update when committing the transaction,
109 * and protected by chunk mutex
111 u64 commit_total_bytes;
113 /* bytes used on the current transaction */
114 u64 commit_bytes_used;
116 /* for sending down flush barriers */
117 struct bio *flush_bio;
118 struct completion flush_wait;
120 /* per-device scrub information */
121 struct scrub_ctx *scrub_ctx;
123 /* readahead state */
124 atomic_t reada_in_flight;
125 u64 reada_next;
126 struct reada_zone *reada_curr_zone;
127 struct radix_tree_root reada_zones;
128 struct radix_tree_root reada_extents;
130 /* disk I/O failure stats. For detailed description refer to
131 * enum btrfs_dev_stat_values in ioctl.h */
132 int dev_stats_valid;
134 /* Counter to record the change of device stats */
135 atomic_t dev_stats_ccnt;
136 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
138 struct extent_io_tree alloc_state;
140 struct completion kobj_unregister;
141 /* For sysfs/FSID/devinfo/devid/ */
142 struct kobject devid_kobj;
146 * If we read those variants at the context of their own lock, we needn't
147 * use the following helpers, reading them directly is safe.
149 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
150 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
151 static inline u64 \
152 btrfs_device_get_##name(const struct btrfs_device *dev) \
154 u64 size; \
155 unsigned int seq; \
157 do { \
158 seq = read_seqcount_begin(&dev->data_seqcount); \
159 size = dev->name; \
160 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
161 return size; \
164 static inline void \
165 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
167 preempt_disable(); \
168 write_seqcount_begin(&dev->data_seqcount); \
169 dev->name = size; \
170 write_seqcount_end(&dev->data_seqcount); \
171 preempt_enable(); \
173 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
174 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
175 static inline u64 \
176 btrfs_device_get_##name(const struct btrfs_device *dev) \
178 u64 size; \
180 preempt_disable(); \
181 size = dev->name; \
182 preempt_enable(); \
183 return size; \
186 static inline void \
187 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
189 preempt_disable(); \
190 dev->name = size; \
191 preempt_enable(); \
193 #else
194 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
195 static inline u64 \
196 btrfs_device_get_##name(const struct btrfs_device *dev) \
198 return dev->name; \
201 static inline void \
202 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
204 dev->name = size; \
206 #endif
208 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
209 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
210 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
212 struct btrfs_fs_devices {
213 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
214 u8 metadata_uuid[BTRFS_FSID_SIZE];
215 bool fsid_change;
216 struct list_head fs_list;
218 u64 num_devices;
219 u64 open_devices;
220 u64 rw_devices;
221 u64 missing_devices;
222 u64 total_rw_bytes;
223 u64 total_devices;
225 /* Highest generation number of seen devices */
226 u64 latest_generation;
228 struct block_device *latest_bdev;
230 /* all of the devices in the FS, protected by a mutex
231 * so we can safely walk it to write out the supers without
232 * worrying about add/remove by the multi-device code.
233 * Scrubbing super can kick off supers writing by holding
234 * this mutex lock.
236 struct mutex device_list_mutex;
238 /* List of all devices, protected by device_list_mutex */
239 struct list_head devices;
242 * Devices which can satisfy space allocation. Protected by
243 * chunk_mutex
245 struct list_head alloc_list;
247 struct btrfs_fs_devices *seed;
248 bool seeding;
250 int opened;
252 /* set when we find or add a device that doesn't have the
253 * nonrot flag set
255 bool rotating;
257 struct btrfs_fs_info *fs_info;
258 /* sysfs kobjects */
259 struct kobject fsid_kobj;
260 struct kobject *devices_kobj;
261 struct completion kobj_unregister;
264 #define BTRFS_BIO_INLINE_CSUM_SIZE 64
266 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
267 - sizeof(struct btrfs_chunk)) \
268 / sizeof(struct btrfs_stripe) + 1)
270 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
271 - 2 * sizeof(struct btrfs_disk_key) \
272 - 2 * sizeof(struct btrfs_chunk)) \
273 / sizeof(struct btrfs_stripe) + 1)
276 * we need the mirror number and stripe index to be passed around
277 * the call chain while we are processing end_io (especially errors).
278 * Really, what we need is a btrfs_bio structure that has this info
279 * and is properly sized with its stripe array, but we're not there
280 * quite yet. We have our own btrfs bioset, and all of the bios
281 * we allocate are actually btrfs_io_bios. We'll cram as much of
282 * struct btrfs_bio as we can into this over time.
284 struct btrfs_io_bio {
285 unsigned int mirror_num;
286 unsigned int stripe_index;
287 u64 logical;
288 u8 *csum;
289 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
290 struct bvec_iter iter;
292 * This member must come last, bio_alloc_bioset will allocate enough
293 * bytes for entire btrfs_io_bio but relies on bio being last.
295 struct bio bio;
298 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
300 return container_of(bio, struct btrfs_io_bio, bio);
303 static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
305 if (io_bio->csum != io_bio->csum_inline) {
306 kfree(io_bio->csum);
307 io_bio->csum = NULL;
311 struct btrfs_bio_stripe {
312 struct btrfs_device *dev;
313 u64 physical;
314 u64 length; /* only used for discard mappings */
317 struct btrfs_bio {
318 refcount_t refs;
319 atomic_t stripes_pending;
320 struct btrfs_fs_info *fs_info;
321 u64 map_type; /* get from map_lookup->type */
322 bio_end_io_t *end_io;
323 struct bio *orig_bio;
324 void *private;
325 atomic_t error;
326 int max_errors;
327 int num_stripes;
328 int mirror_num;
329 int num_tgtdevs;
330 int *tgtdev_map;
332 * logical block numbers for the start of each stripe
333 * The last one or two are p/q. These are sorted,
334 * so raid_map[0] is the start of our full stripe
336 u64 *raid_map;
337 struct btrfs_bio_stripe stripes[];
340 struct btrfs_device_info {
341 struct btrfs_device *dev;
342 u64 dev_offset;
343 u64 max_avail;
344 u64 total_avail;
347 struct btrfs_raid_attr {
348 u8 sub_stripes; /* sub_stripes info for map */
349 u8 dev_stripes; /* stripes per dev */
350 u8 devs_max; /* max devs to use */
351 u8 devs_min; /* min devs needed */
352 u8 tolerated_failures; /* max tolerated fail devs */
353 u8 devs_increment; /* ndevs has to be a multiple of this */
354 u8 ncopies; /* how many copies to data has */
355 u8 nparity; /* number of stripes worth of bytes to store
356 * parity information */
357 u8 mindev_error; /* error code if min devs requisite is unmet */
358 const char raid_name[8]; /* name of the raid */
359 u64 bg_flag; /* block group flag of the raid */
362 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
364 struct map_lookup {
365 u64 type;
366 int io_align;
367 int io_width;
368 u64 stripe_len;
369 int num_stripes;
370 int sub_stripes;
371 int verified_stripes; /* For mount time dev extent verification */
372 struct btrfs_bio_stripe stripes[];
375 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
376 (sizeof(struct btrfs_bio_stripe) * (n)))
378 struct btrfs_balance_args;
379 struct btrfs_balance_progress;
380 struct btrfs_balance_control {
381 struct btrfs_balance_args data;
382 struct btrfs_balance_args meta;
383 struct btrfs_balance_args sys;
385 u64 flags;
387 struct btrfs_balance_progress stat;
390 enum btrfs_map_op {
391 BTRFS_MAP_READ,
392 BTRFS_MAP_WRITE,
393 BTRFS_MAP_DISCARD,
394 BTRFS_MAP_GET_READ_MIRRORS,
397 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
399 switch (bio_op(bio)) {
400 case REQ_OP_DISCARD:
401 return BTRFS_MAP_DISCARD;
402 case REQ_OP_WRITE:
403 return BTRFS_MAP_WRITE;
404 default:
405 WARN_ON_ONCE(1);
406 /* fall through */
407 case REQ_OP_READ:
408 return BTRFS_MAP_READ;
412 void btrfs_get_bbio(struct btrfs_bio *bbio);
413 void btrfs_put_bbio(struct btrfs_bio *bbio);
414 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
415 u64 logical, u64 *length,
416 struct btrfs_bio **bbio_ret, int mirror_num);
417 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
418 u64 logical, u64 *length,
419 struct btrfs_bio **bbio_ret);
420 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
421 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
422 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
423 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
424 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
425 void btrfs_mapping_tree_free(struct extent_map_tree *tree);
426 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
427 int mirror_num);
428 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
429 fmode_t flags, void *holder);
430 struct btrfs_device *btrfs_scan_one_device(const char *path,
431 fmode_t flags, void *holder);
432 int btrfs_forget_devices(const char *path);
433 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
434 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
435 void btrfs_assign_next_active_device(struct btrfs_device *device,
436 struct btrfs_device *this_dev);
437 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
438 u64 devid,
439 const char *devpath);
440 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
441 const u64 *devid,
442 const u8 *uuid);
443 void btrfs_free_device(struct btrfs_device *device);
444 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
445 const char *device_path, u64 devid);
446 void __exit btrfs_cleanup_fs_uuids(void);
447 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
448 int btrfs_grow_device(struct btrfs_trans_handle *trans,
449 struct btrfs_device *device, u64 new_size);
450 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
451 u64 devid, u8 *uuid, u8 *fsid, bool seed);
452 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
453 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
454 int btrfs_balance(struct btrfs_fs_info *fs_info,
455 struct btrfs_balance_control *bctl,
456 struct btrfs_ioctl_balance_args *bargs);
457 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
458 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
459 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
460 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
461 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
462 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
463 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
464 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
465 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
466 u64 *start, u64 *max_avail);
467 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
468 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
469 struct btrfs_ioctl_get_dev_stats *stats);
470 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
471 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
472 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
473 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
474 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
475 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
476 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
477 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
478 u64 logical, u64 len);
479 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
480 u64 logical);
481 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
482 u64 chunk_offset, u64 chunk_size);
483 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
484 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
485 u64 logical, u64 length);
487 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
488 int index)
490 atomic_inc(dev->dev_stat_values + index);
492 * This memory barrier orders stores updating statistics before stores
493 * updating dev_stats_ccnt.
495 * It pairs with smp_rmb() in btrfs_run_dev_stats().
497 smp_mb__before_atomic();
498 atomic_inc(&dev->dev_stats_ccnt);
501 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
502 int index)
504 return atomic_read(dev->dev_stat_values + index);
507 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
508 int index)
510 int ret;
512 ret = atomic_xchg(dev->dev_stat_values + index, 0);
514 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
515 * - RMW operations that have a return value are fully ordered;
517 * This implicit memory barriers is paired with the smp_rmb in
518 * btrfs_run_dev_stats
520 atomic_inc(&dev->dev_stats_ccnt);
521 return ret;
524 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
525 int index, unsigned long val)
527 atomic_set(dev->dev_stat_values + index, val);
529 * This memory barrier orders stores updating statistics before stores
530 * updating dev_stats_ccnt.
532 * It pairs with smp_rmb() in btrfs_run_dev_stats().
534 smp_mb__before_atomic();
535 atomic_inc(&dev->dev_stats_ccnt);
539 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
540 * can be used as index to access btrfs_raid_array[].
542 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
544 if (flags & BTRFS_BLOCK_GROUP_RAID10)
545 return BTRFS_RAID_RAID10;
546 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
547 return BTRFS_RAID_RAID1;
548 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
549 return BTRFS_RAID_RAID1C3;
550 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
551 return BTRFS_RAID_RAID1C4;
552 else if (flags & BTRFS_BLOCK_GROUP_DUP)
553 return BTRFS_RAID_DUP;
554 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
555 return BTRFS_RAID_RAID0;
556 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
557 return BTRFS_RAID_RAID5;
558 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
559 return BTRFS_RAID_RAID6;
561 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
564 void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
566 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
567 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
568 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
569 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
570 struct btrfs_device *failing_dev);
572 int btrfs_bg_type_to_factor(u64 flags);
573 const char *btrfs_bg_type_to_raid_name(u64 flags);
574 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
576 #endif