2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
144 #include "net-sysfs.h"
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 static DEFINE_SPINLOCK(ptype_lock
);
153 static DEFINE_SPINLOCK(offload_lock
);
154 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
155 struct list_head ptype_all __read_mostly
; /* Taps */
156 static struct list_head offload_base __read_mostly
;
158 static int netif_rx_internal(struct sk_buff
*skb
);
159 static int call_netdevice_notifiers_info(unsigned long val
,
160 struct net_device
*dev
,
161 struct netdev_notifier_info
*info
);
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
182 DEFINE_RWLOCK(dev_base_lock
);
183 EXPORT_SYMBOL(dev_base_lock
);
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock
);
188 static unsigned int napi_gen_id
= NR_CPUS
;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
191 static seqcount_t devnet_rename_seq
;
193 static inline void dev_base_seq_inc(struct net
*net
)
195 while (++net
->dev_base_seq
== 0)
199 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
201 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
203 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
206 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
208 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
211 static inline void rps_lock(struct softnet_data
*sd
)
214 spin_lock(&sd
->input_pkt_queue
.lock
);
218 static inline void rps_unlock(struct softnet_data
*sd
)
221 spin_unlock(&sd
->input_pkt_queue
.lock
);
225 /* Device list insertion */
226 static void list_netdevice(struct net_device
*dev
)
228 struct net
*net
= dev_net(dev
);
232 write_lock_bh(&dev_base_lock
);
233 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
234 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
235 hlist_add_head_rcu(&dev
->index_hlist
,
236 dev_index_hash(net
, dev
->ifindex
));
237 write_unlock_bh(&dev_base_lock
);
239 dev_base_seq_inc(net
);
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
245 static void unlist_netdevice(struct net_device
*dev
)
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock
);
251 list_del_rcu(&dev
->dev_list
);
252 hlist_del_rcu(&dev
->name_hlist
);
253 hlist_del_rcu(&dev
->index_hlist
);
254 write_unlock_bh(&dev_base_lock
);
256 dev_base_seq_inc(dev_net(dev
));
263 static RAW_NOTIFIER_HEAD(netdev_chain
);
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
271 EXPORT_PER_CPU_SYMBOL(softnet_data
);
273 #ifdef CONFIG_LOCKDEP
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
278 static const unsigned short netdev_lock_type
[] = {
279 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
280 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
281 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
282 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
283 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
284 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
285 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
286 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
287 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
288 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
289 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
290 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
291 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
292 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
293 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
295 static const char *const netdev_lock_name
[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
312 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
313 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
319 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
320 if (netdev_lock_type
[i
] == dev_type
)
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type
) - 1;
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
327 unsigned short dev_type
)
331 i
= netdev_lock_pos(dev_type
);
332 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
333 netdev_lock_name
[i
]);
336 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
340 i
= netdev_lock_pos(dev
->type
);
341 lockdep_set_class_and_name(&dev
->addr_list_lock
,
342 &netdev_addr_lock_key
[i
],
343 netdev_lock_name
[i
]);
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
347 unsigned short dev_type
)
350 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
355 /*******************************************************************************
357 * Protocol management and registration routines
359 *******************************************************************************/
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
378 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
380 if (pt
->type
== htons(ETH_P_ALL
))
381 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
383 return pt
->dev
? &pt
->dev
->ptype_specific
:
384 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
395 * This call does not sleep therefore it can not
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
400 void dev_add_pack(struct packet_type
*pt
)
402 struct list_head
*head
= ptype_head(pt
);
404 spin_lock(&ptype_lock
);
405 list_add_rcu(&pt
->list
, head
);
406 spin_unlock(&ptype_lock
);
408 EXPORT_SYMBOL(dev_add_pack
);
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
423 void __dev_remove_pack(struct packet_type
*pt
)
425 struct list_head
*head
= ptype_head(pt
);
426 struct packet_type
*pt1
;
428 spin_lock(&ptype_lock
);
430 list_for_each_entry(pt1
, head
, list
) {
432 list_del_rcu(&pt
->list
);
437 pr_warn("dev_remove_pack: %p not found\n", pt
);
439 spin_unlock(&ptype_lock
);
441 EXPORT_SYMBOL(__dev_remove_pack
);
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
452 * This call sleeps to guarantee that no CPU is looking at the packet
455 void dev_remove_pack(struct packet_type
*pt
)
457 __dev_remove_pack(pt
);
461 EXPORT_SYMBOL(dev_remove_pack
);
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
476 void dev_add_offload(struct packet_offload
*po
)
478 struct packet_offload
*elem
;
480 spin_lock(&offload_lock
);
481 list_for_each_entry(elem
, &offload_base
, list
) {
482 if (po
->priority
< elem
->priority
)
485 list_add_rcu(&po
->list
, elem
->list
.prev
);
486 spin_unlock(&offload_lock
);
488 EXPORT_SYMBOL(dev_add_offload
);
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
503 static void __dev_remove_offload(struct packet_offload
*po
)
505 struct list_head
*head
= &offload_base
;
506 struct packet_offload
*po1
;
508 spin_lock(&offload_lock
);
510 list_for_each_entry(po1
, head
, list
) {
512 list_del_rcu(&po
->list
);
517 pr_warn("dev_remove_offload: %p not found\n", po
);
519 spin_unlock(&offload_lock
);
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
531 * This call sleeps to guarantee that no CPU is looking at the packet
534 void dev_remove_offload(struct packet_offload
*po
)
536 __dev_remove_offload(po
);
540 EXPORT_SYMBOL(dev_remove_offload
);
542 /******************************************************************************
544 * Device Boot-time Settings Routines
546 ******************************************************************************/
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
560 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
562 struct netdev_boot_setup
*s
;
566 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
567 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
568 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
569 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
570 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
575 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
587 int netdev_boot_setup_check(struct net_device
*dev
)
589 struct netdev_boot_setup
*s
= dev_boot_setup
;
592 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
593 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
594 !strcmp(dev
->name
, s
[i
].name
)) {
595 dev
->irq
= s
[i
].map
.irq
;
596 dev
->base_addr
= s
[i
].map
.base_addr
;
597 dev
->mem_start
= s
[i
].map
.mem_start
;
598 dev
->mem_end
= s
[i
].map
.mem_end
;
604 EXPORT_SYMBOL(netdev_boot_setup_check
);
608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
617 unsigned long netdev_boot_base(const char *prefix
, int unit
)
619 const struct netdev_boot_setup
*s
= dev_boot_setup
;
623 sprintf(name
, "%s%d", prefix
, unit
);
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
629 if (__dev_get_by_name(&init_net
, name
))
632 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
633 if (!strcmp(name
, s
[i
].name
))
634 return s
[i
].map
.base_addr
;
639 * Saves at boot time configured settings for any netdevice.
641 int __init
netdev_boot_setup(char *str
)
646 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
651 memset(&map
, 0, sizeof(map
));
655 map
.base_addr
= ints
[2];
657 map
.mem_start
= ints
[3];
659 map
.mem_end
= ints
[4];
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str
, &map
);
665 __setup("netdev=", netdev_boot_setup
);
667 /*******************************************************************************
669 * Device Interface Subroutines
671 *******************************************************************************/
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
681 int dev_get_iflink(const struct net_device
*dev
)
683 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
684 return dev
->netdev_ops
->ndo_get_iflink(dev
);
688 EXPORT_SYMBOL(dev_get_iflink
);
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
699 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
701 struct ip_tunnel_info
*info
;
703 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
706 info
= skb_tunnel_info_unclone(skb
);
709 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
712 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
717 * __dev_get_by_name - find a device by its name
718 * @net: the applicable net namespace
719 * @name: name to find
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
728 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
730 struct net_device
*dev
;
731 struct hlist_head
*head
= dev_name_hash(net
, name
);
733 hlist_for_each_entry(dev
, head
, name_hlist
)
734 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
739 EXPORT_SYMBOL(__dev_get_by_name
);
742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
753 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
755 struct net_device
*dev
;
756 struct hlist_head
*head
= dev_name_hash(net
, name
);
758 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
759 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
764 EXPORT_SYMBOL(dev_get_by_name_rcu
);
767 * dev_get_by_name - find a device by its name
768 * @net: the applicable net namespace
769 * @name: name to find
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
778 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
780 struct net_device
*dev
;
783 dev
= dev_get_by_name_rcu(net
, name
);
789 EXPORT_SYMBOL(dev_get_by_name
);
792 * __dev_get_by_index - find a device by its ifindex
793 * @net: the applicable net namespace
794 * @ifindex: index of device
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
803 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
805 struct net_device
*dev
;
806 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
808 hlist_for_each_entry(dev
, head
, index_hlist
)
809 if (dev
->ifindex
== ifindex
)
814 EXPORT_SYMBOL(__dev_get_by_index
);
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
827 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
829 struct net_device
*dev
;
830 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
832 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
833 if (dev
->ifindex
== ifindex
)
838 EXPORT_SYMBOL(dev_get_by_index_rcu
);
842 * dev_get_by_index - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
852 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
854 struct net_device
*dev
;
857 dev
= dev_get_by_index_rcu(net
, ifindex
);
863 EXPORT_SYMBOL(dev_get_by_index
);
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
875 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
877 struct net_device
*dev
;
881 seq
= raw_seqcount_begin(&devnet_rename_seq
);
883 dev
= dev_get_by_index_rcu(net
, ifindex
);
889 strcpy(name
, dev
->name
);
891 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
900 * dev_getbyhwaddr_rcu - find a device by its hardware address
901 * @net: the applicable net namespace
902 * @type: media type of device
903 * @ha: hardware address
905 * Search for an interface by MAC address. Returns NULL if the device
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
908 * The returned device has not had its ref count increased
909 * and the caller must therefore be careful about locking
913 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
916 struct net_device
*dev
;
918 for_each_netdev_rcu(net
, dev
)
919 if (dev
->type
== type
&&
920 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
927 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
929 struct net_device
*dev
;
932 for_each_netdev(net
, dev
)
933 if (dev
->type
== type
)
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
940 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
942 struct net_device
*dev
, *ret
= NULL
;
945 for_each_netdev_rcu(net
, dev
)
946 if (dev
->type
== type
) {
954 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
967 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
970 struct net_device
*dev
, *ret
;
975 for_each_netdev(net
, dev
) {
976 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
983 EXPORT_SYMBOL(__dev_get_by_flags
);
986 * dev_valid_name - check if name is okay for network device
989 * Network device names need to be valid file names to
990 * to allow sysfs to work. We also disallow any kind of
993 bool dev_valid_name(const char *name
)
997 if (strlen(name
) >= IFNAMSIZ
)
999 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1003 if (*name
== '/' || *name
== ':' || isspace(*name
))
1009 EXPORT_SYMBOL(dev_valid_name
);
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1026 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1030 const int max_netdevices
= 8*PAGE_SIZE
;
1031 unsigned long *inuse
;
1032 struct net_device
*d
;
1034 p
= strnchr(name
, IFNAMSIZ
-1, '%');
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1041 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1044 /* Use one page as a bit array of possible slots */
1045 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1049 for_each_netdev(net
, d
) {
1050 if (!sscanf(d
->name
, name
, &i
))
1052 if (i
< 0 || i
>= max_netdevices
)
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf
, IFNAMSIZ
, name
, i
);
1057 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1061 i
= find_first_zero_bit(inuse
, max_netdevices
);
1062 free_page((unsigned long) inuse
);
1066 snprintf(buf
, IFNAMSIZ
, name
, i
);
1067 if (!__dev_get_by_name(net
, buf
))
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1078 * dev_alloc_name - allocate a name for a device
1080 * @name: name format string
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1091 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1097 BUG_ON(!dev_net(dev
));
1099 ret
= __dev_alloc_name(net
, name
, buf
);
1101 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1104 EXPORT_SYMBOL(dev_alloc_name
);
1106 static int dev_alloc_name_ns(struct net
*net
,
1107 struct net_device
*dev
,
1113 ret
= __dev_alloc_name(net
, name
, buf
);
1115 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1119 static int dev_get_valid_name(struct net
*net
,
1120 struct net_device
*dev
,
1125 if (!dev_valid_name(name
))
1128 if (strchr(name
, '%'))
1129 return dev_alloc_name_ns(net
, dev
, name
);
1130 else if (__dev_get_by_name(net
, name
))
1132 else if (dev
->name
!= name
)
1133 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1139 * dev_change_name - change name of a device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1143 * Change name of a device, can pass format strings "eth%d".
1146 int dev_change_name(struct net_device
*dev
, const char *newname
)
1148 unsigned char old_assign_type
;
1149 char oldname
[IFNAMSIZ
];
1155 BUG_ON(!dev_net(dev
));
1158 if (dev
->flags
& IFF_UP
)
1161 write_seqcount_begin(&devnet_rename_seq
);
1163 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1164 write_seqcount_end(&devnet_rename_seq
);
1168 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1170 err
= dev_get_valid_name(net
, dev
, newname
);
1172 write_seqcount_end(&devnet_rename_seq
);
1176 if (oldname
[0] && !strchr(oldname
, '%'))
1177 netdev_info(dev
, "renamed from %s\n", oldname
);
1179 old_assign_type
= dev
->name_assign_type
;
1180 dev
->name_assign_type
= NET_NAME_RENAMED
;
1183 ret
= device_rename(&dev
->dev
, dev
->name
);
1185 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1186 dev
->name_assign_type
= old_assign_type
;
1187 write_seqcount_end(&devnet_rename_seq
);
1191 write_seqcount_end(&devnet_rename_seq
);
1193 netdev_adjacent_rename_links(dev
, oldname
);
1195 write_lock_bh(&dev_base_lock
);
1196 hlist_del_rcu(&dev
->name_hlist
);
1197 write_unlock_bh(&dev_base_lock
);
1201 write_lock_bh(&dev_base_lock
);
1202 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1203 write_unlock_bh(&dev_base_lock
);
1205 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1206 ret
= notifier_to_errno(ret
);
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212 write_seqcount_begin(&devnet_rename_seq
);
1213 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1214 memcpy(oldname
, newname
, IFNAMSIZ
);
1215 dev
->name_assign_type
= old_assign_type
;
1216 old_assign_type
= NET_NAME_RENAMED
;
1219 pr_err("%s: name change rollback failed: %d\n",
1228 * dev_set_alias - change ifalias of a device
1230 * @alias: name up to IFALIASZ
1231 * @len: limit of bytes to copy from info
1233 * Set ifalias for a device,
1235 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1241 if (len
>= IFALIASZ
)
1245 kfree(dev
->ifalias
);
1246 dev
->ifalias
= NULL
;
1250 new_ifalias
= krealloc(dev
->ifalias
, len
+ 1, GFP_KERNEL
);
1253 dev
->ifalias
= new_ifalias
;
1255 strlcpy(dev
->ifalias
, alias
, len
+1);
1261 * netdev_features_change - device changes features
1262 * @dev: device to cause notification
1264 * Called to indicate a device has changed features.
1266 void netdev_features_change(struct net_device
*dev
)
1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1270 EXPORT_SYMBOL(netdev_features_change
);
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1280 void netdev_state_change(struct net_device
*dev
)
1282 if (dev
->flags
& IFF_UP
) {
1283 struct netdev_notifier_change_info change_info
;
1285 change_info
.flags_changed
= 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE
, dev
,
1288 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1291 EXPORT_SYMBOL(netdev_state_change
);
1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1303 void netdev_notify_peers(struct net_device
*dev
)
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1309 EXPORT_SYMBOL(netdev_notify_peers
);
1311 static int __dev_open(struct net_device
*dev
)
1313 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1318 if (!netif_device_present(dev
))
1321 /* Block netpoll from trying to do any rx path servicing.
1322 * If we don't do this there is a chance ndo_poll_controller
1323 * or ndo_poll may be running while we open the device
1325 netpoll_poll_disable(dev
);
1327 ret
= call_netdevice_notifiers(NETDEV_PRE_UP
, dev
);
1328 ret
= notifier_to_errno(ret
);
1332 set_bit(__LINK_STATE_START
, &dev
->state
);
1334 if (ops
->ndo_validate_addr
)
1335 ret
= ops
->ndo_validate_addr(dev
);
1337 if (!ret
&& ops
->ndo_open
)
1338 ret
= ops
->ndo_open(dev
);
1340 netpoll_poll_enable(dev
);
1343 clear_bit(__LINK_STATE_START
, &dev
->state
);
1345 dev
->flags
|= IFF_UP
;
1346 dev_set_rx_mode(dev
);
1348 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1355 * dev_open - prepare an interface for use.
1356 * @dev: device to open
1358 * Takes a device from down to up state. The device's private open
1359 * function is invoked and then the multicast lists are loaded. Finally
1360 * the device is moved into the up state and a %NETDEV_UP message is
1361 * sent to the netdev notifier chain.
1363 * Calling this function on an active interface is a nop. On a failure
1364 * a negative errno code is returned.
1366 int dev_open(struct net_device
*dev
)
1370 if (dev
->flags
& IFF_UP
)
1373 ret
= __dev_open(dev
);
1377 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1378 call_netdevice_notifiers(NETDEV_UP
, dev
);
1382 EXPORT_SYMBOL(dev_open
);
1384 static int __dev_close_many(struct list_head
*head
)
1386 struct net_device
*dev
;
1391 list_for_each_entry(dev
, head
, close_list
) {
1392 /* Temporarily disable netpoll until the interface is down */
1393 netpoll_poll_disable(dev
);
1395 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1397 clear_bit(__LINK_STATE_START
, &dev
->state
);
1399 /* Synchronize to scheduled poll. We cannot touch poll list, it
1400 * can be even on different cpu. So just clear netif_running().
1402 * dev->stop() will invoke napi_disable() on all of it's
1403 * napi_struct instances on this device.
1405 smp_mb__after_atomic(); /* Commit netif_running(). */
1408 dev_deactivate_many(head
);
1410 list_for_each_entry(dev
, head
, close_list
) {
1411 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1414 * Call the device specific close. This cannot fail.
1415 * Only if device is UP
1417 * We allow it to be called even after a DETACH hot-plug
1423 dev
->flags
&= ~IFF_UP
;
1424 netpoll_poll_enable(dev
);
1430 static int __dev_close(struct net_device
*dev
)
1435 list_add(&dev
->close_list
, &single
);
1436 retval
= __dev_close_many(&single
);
1442 int dev_close_many(struct list_head
*head
, bool unlink
)
1444 struct net_device
*dev
, *tmp
;
1446 /* Remove the devices that don't need to be closed */
1447 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1448 if (!(dev
->flags
& IFF_UP
))
1449 list_del_init(&dev
->close_list
);
1451 __dev_close_many(head
);
1453 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1454 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1455 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1457 list_del_init(&dev
->close_list
);
1462 EXPORT_SYMBOL(dev_close_many
);
1465 * dev_close - shutdown an interface.
1466 * @dev: device to shutdown
1468 * This function moves an active device into down state. A
1469 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1473 int dev_close(struct net_device
*dev
)
1475 if (dev
->flags
& IFF_UP
) {
1478 list_add(&dev
->close_list
, &single
);
1479 dev_close_many(&single
, true);
1484 EXPORT_SYMBOL(dev_close
);
1488 * dev_disable_lro - disable Large Receive Offload on a device
1491 * Disable Large Receive Offload (LRO) on a net device. Must be
1492 * called under RTNL. This is needed if received packets may be
1493 * forwarded to another interface.
1495 void dev_disable_lro(struct net_device
*dev
)
1497 struct net_device
*lower_dev
;
1498 struct list_head
*iter
;
1500 dev
->wanted_features
&= ~NETIF_F_LRO
;
1501 netdev_update_features(dev
);
1503 if (unlikely(dev
->features
& NETIF_F_LRO
))
1504 netdev_WARN(dev
, "failed to disable LRO!\n");
1506 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1507 dev_disable_lro(lower_dev
);
1509 EXPORT_SYMBOL(dev_disable_lro
);
1511 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1512 struct net_device
*dev
)
1514 struct netdev_notifier_info info
;
1516 netdev_notifier_info_init(&info
, dev
);
1517 return nb
->notifier_call(nb
, val
, &info
);
1520 static int dev_boot_phase
= 1;
1523 * register_netdevice_notifier - register a network notifier block
1526 * Register a notifier to be called when network device events occur.
1527 * The notifier passed is linked into the kernel structures and must
1528 * not be reused until it has been unregistered. A negative errno code
1529 * is returned on a failure.
1531 * When registered all registration and up events are replayed
1532 * to the new notifier to allow device to have a race free
1533 * view of the network device list.
1536 int register_netdevice_notifier(struct notifier_block
*nb
)
1538 struct net_device
*dev
;
1539 struct net_device
*last
;
1544 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1550 for_each_netdev(net
, dev
) {
1551 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1552 err
= notifier_to_errno(err
);
1556 if (!(dev
->flags
& IFF_UP
))
1559 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1570 for_each_netdev(net
, dev
) {
1574 if (dev
->flags
& IFF_UP
) {
1575 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1577 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1579 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1584 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1587 EXPORT_SYMBOL(register_netdevice_notifier
);
1590 * unregister_netdevice_notifier - unregister a network notifier block
1593 * Unregister a notifier previously registered by
1594 * register_netdevice_notifier(). The notifier is unlinked into the
1595 * kernel structures and may then be reused. A negative errno code
1596 * is returned on a failure.
1598 * After unregistering unregister and down device events are synthesized
1599 * for all devices on the device list to the removed notifier to remove
1600 * the need for special case cleanup code.
1603 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1605 struct net_device
*dev
;
1610 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1615 for_each_netdev(net
, dev
) {
1616 if (dev
->flags
& IFF_UP
) {
1617 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1619 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1621 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1628 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1631 * call_netdevice_notifiers_info - call all network notifier blocks
1632 * @val: value passed unmodified to notifier function
1633 * @dev: net_device pointer passed unmodified to notifier function
1634 * @info: notifier information data
1636 * Call all network notifier blocks. Parameters and return value
1637 * are as for raw_notifier_call_chain().
1640 static int call_netdevice_notifiers_info(unsigned long val
,
1641 struct net_device
*dev
,
1642 struct netdev_notifier_info
*info
)
1645 netdev_notifier_info_init(info
, dev
);
1646 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1650 * call_netdevice_notifiers - call all network notifier blocks
1651 * @val: value passed unmodified to notifier function
1652 * @dev: net_device pointer passed unmodified to notifier function
1654 * Call all network notifier blocks. Parameters and return value
1655 * are as for raw_notifier_call_chain().
1658 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1660 struct netdev_notifier_info info
;
1662 return call_netdevice_notifiers_info(val
, dev
, &info
);
1664 EXPORT_SYMBOL(call_netdevice_notifiers
);
1666 #ifdef CONFIG_NET_INGRESS
1667 static struct static_key ingress_needed __read_mostly
;
1669 void net_inc_ingress_queue(void)
1671 static_key_slow_inc(&ingress_needed
);
1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1675 void net_dec_ingress_queue(void)
1677 static_key_slow_dec(&ingress_needed
);
1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1682 #ifdef CONFIG_NET_EGRESS
1683 static struct static_key egress_needed __read_mostly
;
1685 void net_inc_egress_queue(void)
1687 static_key_slow_inc(&egress_needed
);
1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1691 void net_dec_egress_queue(void)
1693 static_key_slow_dec(&egress_needed
);
1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1698 static struct static_key netstamp_needed __read_mostly
;
1699 #ifdef HAVE_JUMP_LABEL
1700 static atomic_t netstamp_needed_deferred
;
1701 static atomic_t netstamp_wanted
;
1702 static void netstamp_clear(struct work_struct
*work
)
1704 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1707 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1709 static_key_enable(&netstamp_needed
);
1711 static_key_disable(&netstamp_needed
);
1713 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1716 void net_enable_timestamp(void)
1718 #ifdef HAVE_JUMP_LABEL
1722 wanted
= atomic_read(&netstamp_wanted
);
1725 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1728 atomic_inc(&netstamp_needed_deferred
);
1729 schedule_work(&netstamp_work
);
1731 static_key_slow_inc(&netstamp_needed
);
1734 EXPORT_SYMBOL(net_enable_timestamp
);
1736 void net_disable_timestamp(void)
1738 #ifdef HAVE_JUMP_LABEL
1742 wanted
= atomic_read(&netstamp_wanted
);
1745 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1748 atomic_dec(&netstamp_needed_deferred
);
1749 schedule_work(&netstamp_work
);
1751 static_key_slow_dec(&netstamp_needed
);
1754 EXPORT_SYMBOL(net_disable_timestamp
);
1756 static inline void net_timestamp_set(struct sk_buff
*skb
)
1759 if (static_key_false(&netstamp_needed
))
1760 __net_timestamp(skb
);
1763 #define net_timestamp_check(COND, SKB) \
1764 if (static_key_false(&netstamp_needed)) { \
1765 if ((COND) && !(SKB)->tstamp) \
1766 __net_timestamp(SKB); \
1769 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1773 if (!(dev
->flags
& IFF_UP
))
1776 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1777 if (skb
->len
<= len
)
1780 /* if TSO is enabled, we don't care about the length as the packet
1781 * could be forwarded without being segmented before
1783 if (skb_is_gso(skb
))
1788 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1790 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1792 int ret
= ____dev_forward_skb(dev
, skb
);
1795 skb
->protocol
= eth_type_trans(skb
, dev
);
1796 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1801 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1804 * dev_forward_skb - loopback an skb to another netif
1806 * @dev: destination network device
1807 * @skb: buffer to forward
1810 * NET_RX_SUCCESS (no congestion)
1811 * NET_RX_DROP (packet was dropped, but freed)
1813 * dev_forward_skb can be used for injecting an skb from the
1814 * start_xmit function of one device into the receive queue
1815 * of another device.
1817 * The receiving device may be in another namespace, so
1818 * we have to clear all information in the skb that could
1819 * impact namespace isolation.
1821 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1823 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1825 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1827 static inline int deliver_skb(struct sk_buff
*skb
,
1828 struct packet_type
*pt_prev
,
1829 struct net_device
*orig_dev
)
1831 if (unlikely(skb_orphan_frags(skb
, GFP_ATOMIC
)))
1833 atomic_inc(&skb
->users
);
1834 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1837 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1838 struct packet_type
**pt
,
1839 struct net_device
*orig_dev
,
1841 struct list_head
*ptype_list
)
1843 struct packet_type
*ptype
, *pt_prev
= *pt
;
1845 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1846 if (ptype
->type
!= type
)
1849 deliver_skb(skb
, pt_prev
, orig_dev
);
1855 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1857 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1860 if (ptype
->id_match
)
1861 return ptype
->id_match(ptype
, skb
->sk
);
1862 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
1869 * Support routine. Sends outgoing frames to any network
1870 * taps currently in use.
1873 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
1875 struct packet_type
*ptype
;
1876 struct sk_buff
*skb2
= NULL
;
1877 struct packet_type
*pt_prev
= NULL
;
1878 struct list_head
*ptype_list
= &ptype_all
;
1882 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1883 /* Never send packets back to the socket
1884 * they originated from - MvS (miquels@drinkel.ow.org)
1886 if (skb_loop_sk(ptype
, skb
))
1890 deliver_skb(skb2
, pt_prev
, skb
->dev
);
1895 /* need to clone skb, done only once */
1896 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1900 net_timestamp_set(skb2
);
1902 /* skb->nh should be correctly
1903 * set by sender, so that the second statement is
1904 * just protection against buggy protocols.
1906 skb_reset_mac_header(skb2
);
1908 if (skb_network_header(skb2
) < skb2
->data
||
1909 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
1910 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1911 ntohs(skb2
->protocol
),
1913 skb_reset_network_header(skb2
);
1916 skb2
->transport_header
= skb2
->network_header
;
1917 skb2
->pkt_type
= PACKET_OUTGOING
;
1921 if (ptype_list
== &ptype_all
) {
1922 ptype_list
= &dev
->ptype_all
;
1927 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
1930 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
1933 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1934 * @dev: Network device
1935 * @txq: number of queues available
1937 * If real_num_tx_queues is changed the tc mappings may no longer be
1938 * valid. To resolve this verify the tc mapping remains valid and if
1939 * not NULL the mapping. With no priorities mapping to this
1940 * offset/count pair it will no longer be used. In the worst case TC0
1941 * is invalid nothing can be done so disable priority mappings. If is
1942 * expected that drivers will fix this mapping if they can before
1943 * calling netif_set_real_num_tx_queues.
1945 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
1948 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
1950 /* If TC0 is invalidated disable TC mapping */
1951 if (tc
->offset
+ tc
->count
> txq
) {
1952 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1957 /* Invalidated prio to tc mappings set to TC0 */
1958 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
1959 int q
= netdev_get_prio_tc_map(dev
, i
);
1961 tc
= &dev
->tc_to_txq
[q
];
1962 if (tc
->offset
+ tc
->count
> txq
) {
1963 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1965 netdev_set_prio_tc_map(dev
, i
, 0);
1970 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
1973 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
1976 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
1977 if ((txq
- tc
->offset
) < tc
->count
)
1988 static DEFINE_MUTEX(xps_map_mutex
);
1989 #define xmap_dereference(P) \
1990 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1992 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
1995 struct xps_map
*map
= NULL
;
1999 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2003 for (pos
= map
->len
; pos
--;) {
2004 if (map
->queues
[pos
] != index
)
2008 map
->queues
[pos
] = map
->queues
[--map
->len
];
2012 RCU_INIT_POINTER(dev_maps
->cpu_map
[tci
], NULL
);
2013 kfree_rcu(map
, rcu
);
2020 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2021 struct xps_dev_maps
*dev_maps
,
2022 int cpu
, u16 offset
, u16 count
)
2024 int num_tc
= dev
->num_tc
? : 1;
2025 bool active
= false;
2028 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2031 for (i
= count
, j
= offset
; i
--; j
++) {
2032 if (!remove_xps_queue(dev_maps
, cpu
, j
))
2042 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2045 struct xps_dev_maps
*dev_maps
;
2047 bool active
= false;
2049 mutex_lock(&xps_map_mutex
);
2050 dev_maps
= xmap_dereference(dev
->xps_maps
);
2055 for_each_possible_cpu(cpu
)
2056 active
|= remove_xps_queue_cpu(dev
, dev_maps
, cpu
,
2060 RCU_INIT_POINTER(dev
->xps_maps
, NULL
);
2061 kfree_rcu(dev_maps
, rcu
);
2064 for (i
= offset
+ (count
- 1); count
--; i
--)
2065 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, i
),
2069 mutex_unlock(&xps_map_mutex
);
2072 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2074 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2077 static struct xps_map
*expand_xps_map(struct xps_map
*map
,
2080 struct xps_map
*new_map
;
2081 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2084 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2085 if (map
->queues
[pos
] != index
)
2090 /* Need to add queue to this CPU's existing map */
2092 if (pos
< map
->alloc_len
)
2095 alloc_len
= map
->alloc_len
* 2;
2098 /* Need to allocate new map to store queue on this CPU's map */
2099 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2104 for (i
= 0; i
< pos
; i
++)
2105 new_map
->queues
[i
] = map
->queues
[i
];
2106 new_map
->alloc_len
= alloc_len
;
2112 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2115 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2116 int i
, cpu
, tci
, numa_node_id
= -2;
2117 int maps_sz
, num_tc
= 1, tc
= 0;
2118 struct xps_map
*map
, *new_map
;
2119 bool active
= false;
2122 num_tc
= dev
->num_tc
;
2123 tc
= netdev_txq_to_tc(dev
, index
);
2128 maps_sz
= XPS_DEV_MAPS_SIZE(num_tc
);
2129 if (maps_sz
< L1_CACHE_BYTES
)
2130 maps_sz
= L1_CACHE_BYTES
;
2132 mutex_lock(&xps_map_mutex
);
2134 dev_maps
= xmap_dereference(dev
->xps_maps
);
2136 /* allocate memory for queue storage */
2137 for_each_cpu_and(cpu
, cpu_online_mask
, mask
) {
2139 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2140 if (!new_dev_maps
) {
2141 mutex_unlock(&xps_map_mutex
);
2145 tci
= cpu
* num_tc
+ tc
;
2146 map
= dev_maps
? xmap_dereference(dev_maps
->cpu_map
[tci
]) :
2149 map
= expand_xps_map(map
, cpu
, index
);
2153 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2157 goto out_no_new_maps
;
2159 for_each_possible_cpu(cpu
) {
2160 /* copy maps belonging to foreign traffic classes */
2161 for (i
= tc
, tci
= cpu
* num_tc
; dev_maps
&& i
--; tci
++) {
2162 /* fill in the new device map from the old device map */
2163 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2164 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2167 /* We need to explicitly update tci as prevous loop
2168 * could break out early if dev_maps is NULL.
2170 tci
= cpu
* num_tc
+ tc
;
2172 if (cpumask_test_cpu(cpu
, mask
) && cpu_online(cpu
)) {
2173 /* add queue to CPU maps */
2176 map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2177 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2180 if (pos
== map
->len
)
2181 map
->queues
[map
->len
++] = index
;
2183 if (numa_node_id
== -2)
2184 numa_node_id
= cpu_to_node(cpu
);
2185 else if (numa_node_id
!= cpu_to_node(cpu
))
2188 } else if (dev_maps
) {
2189 /* fill in the new device map from the old device map */
2190 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2191 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2194 /* copy maps belonging to foreign traffic classes */
2195 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2196 /* fill in the new device map from the old device map */
2197 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2198 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2202 rcu_assign_pointer(dev
->xps_maps
, new_dev_maps
);
2204 /* Cleanup old maps */
2206 goto out_no_old_maps
;
2208 for_each_possible_cpu(cpu
) {
2209 for (i
= num_tc
, tci
= cpu
* num_tc
; i
--; tci
++) {
2210 new_map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2211 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2212 if (map
&& map
!= new_map
)
2213 kfree_rcu(map
, rcu
);
2217 kfree_rcu(dev_maps
, rcu
);
2220 dev_maps
= new_dev_maps
;
2224 /* update Tx queue numa node */
2225 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2226 (numa_node_id
>= 0) ? numa_node_id
:
2232 /* removes queue from unused CPUs */
2233 for_each_possible_cpu(cpu
) {
2234 for (i
= tc
, tci
= cpu
* num_tc
; i
--; tci
++)
2235 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2236 if (!cpumask_test_cpu(cpu
, mask
) || !cpu_online(cpu
))
2237 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2238 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2239 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2242 /* free map if not active */
2244 RCU_INIT_POINTER(dev
->xps_maps
, NULL
);
2245 kfree_rcu(dev_maps
, rcu
);
2249 mutex_unlock(&xps_map_mutex
);
2253 /* remove any maps that we added */
2254 for_each_possible_cpu(cpu
) {
2255 for (i
= num_tc
, tci
= cpu
* num_tc
; i
--; tci
++) {
2256 new_map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2258 xmap_dereference(dev_maps
->cpu_map
[tci
]) :
2260 if (new_map
&& new_map
!= map
)
2265 mutex_unlock(&xps_map_mutex
);
2267 kfree(new_dev_maps
);
2270 EXPORT_SYMBOL(netif_set_xps_queue
);
2273 void netdev_reset_tc(struct net_device
*dev
)
2276 netif_reset_xps_queues_gt(dev
, 0);
2279 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2280 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2282 EXPORT_SYMBOL(netdev_reset_tc
);
2284 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2286 if (tc
>= dev
->num_tc
)
2290 netif_reset_xps_queues(dev
, offset
, count
);
2292 dev
->tc_to_txq
[tc
].count
= count
;
2293 dev
->tc_to_txq
[tc
].offset
= offset
;
2296 EXPORT_SYMBOL(netdev_set_tc_queue
);
2298 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2300 if (num_tc
> TC_MAX_QUEUE
)
2304 netif_reset_xps_queues_gt(dev
, 0);
2306 dev
->num_tc
= num_tc
;
2309 EXPORT_SYMBOL(netdev_set_num_tc
);
2312 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2313 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2315 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2319 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2322 if (dev
->reg_state
== NETREG_REGISTERED
||
2323 dev
->reg_state
== NETREG_UNREGISTERING
) {
2326 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2332 netif_setup_tc(dev
, txq
);
2334 if (txq
< dev
->real_num_tx_queues
) {
2335 qdisc_reset_all_tx_gt(dev
, txq
);
2337 netif_reset_xps_queues_gt(dev
, txq
);
2342 dev
->real_num_tx_queues
= txq
;
2345 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2349 * netif_set_real_num_rx_queues - set actual number of RX queues used
2350 * @dev: Network device
2351 * @rxq: Actual number of RX queues
2353 * This must be called either with the rtnl_lock held or before
2354 * registration of the net device. Returns 0 on success, or a
2355 * negative error code. If called before registration, it always
2358 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2362 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2365 if (dev
->reg_state
== NETREG_REGISTERED
) {
2368 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2374 dev
->real_num_rx_queues
= rxq
;
2377 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2381 * netif_get_num_default_rss_queues - default number of RSS queues
2383 * This routine should set an upper limit on the number of RSS queues
2384 * used by default by multiqueue devices.
2386 int netif_get_num_default_rss_queues(void)
2388 return is_kdump_kernel() ?
2389 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2391 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2393 static void __netif_reschedule(struct Qdisc
*q
)
2395 struct softnet_data
*sd
;
2396 unsigned long flags
;
2398 local_irq_save(flags
);
2399 sd
= this_cpu_ptr(&softnet_data
);
2400 q
->next_sched
= NULL
;
2401 *sd
->output_queue_tailp
= q
;
2402 sd
->output_queue_tailp
= &q
->next_sched
;
2403 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2404 local_irq_restore(flags
);
2407 void __netif_schedule(struct Qdisc
*q
)
2409 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2410 __netif_reschedule(q
);
2412 EXPORT_SYMBOL(__netif_schedule
);
2414 struct dev_kfree_skb_cb
{
2415 enum skb_free_reason reason
;
2418 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2420 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2423 void netif_schedule_queue(struct netdev_queue
*txq
)
2426 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2427 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2429 __netif_schedule(q
);
2433 EXPORT_SYMBOL(netif_schedule_queue
);
2435 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2437 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2441 q
= rcu_dereference(dev_queue
->qdisc
);
2442 __netif_schedule(q
);
2446 EXPORT_SYMBOL(netif_tx_wake_queue
);
2448 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2450 unsigned long flags
;
2452 if (likely(atomic_read(&skb
->users
) == 1)) {
2454 atomic_set(&skb
->users
, 0);
2455 } else if (likely(!atomic_dec_and_test(&skb
->users
))) {
2458 get_kfree_skb_cb(skb
)->reason
= reason
;
2459 local_irq_save(flags
);
2460 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2461 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2462 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2463 local_irq_restore(flags
);
2465 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2467 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2469 if (in_irq() || irqs_disabled())
2470 __dev_kfree_skb_irq(skb
, reason
);
2474 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2478 * netif_device_detach - mark device as removed
2479 * @dev: network device
2481 * Mark device as removed from system and therefore no longer available.
2483 void netif_device_detach(struct net_device
*dev
)
2485 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2486 netif_running(dev
)) {
2487 netif_tx_stop_all_queues(dev
);
2490 EXPORT_SYMBOL(netif_device_detach
);
2493 * netif_device_attach - mark device as attached
2494 * @dev: network device
2496 * Mark device as attached from system and restart if needed.
2498 void netif_device_attach(struct net_device
*dev
)
2500 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2501 netif_running(dev
)) {
2502 netif_tx_wake_all_queues(dev
);
2503 __netdev_watchdog_up(dev
);
2506 EXPORT_SYMBOL(netif_device_attach
);
2509 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2510 * to be used as a distribution range.
2512 u16
__skb_tx_hash(const struct net_device
*dev
, struct sk_buff
*skb
,
2513 unsigned int num_tx_queues
)
2517 u16 qcount
= num_tx_queues
;
2519 if (skb_rx_queue_recorded(skb
)) {
2520 hash
= skb_get_rx_queue(skb
);
2521 while (unlikely(hash
>= num_tx_queues
))
2522 hash
-= num_tx_queues
;
2527 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2529 qoffset
= dev
->tc_to_txq
[tc
].offset
;
2530 qcount
= dev
->tc_to_txq
[tc
].count
;
2533 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2535 EXPORT_SYMBOL(__skb_tx_hash
);
2537 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2539 static const netdev_features_t null_features
;
2540 struct net_device
*dev
= skb
->dev
;
2541 const char *name
= "";
2543 if (!net_ratelimit())
2547 if (dev
->dev
.parent
)
2548 name
= dev_driver_string(dev
->dev
.parent
);
2550 name
= netdev_name(dev
);
2552 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2553 "gso_type=%d ip_summed=%d\n",
2554 name
, dev
? &dev
->features
: &null_features
,
2555 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2556 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2557 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2561 * Invalidate hardware checksum when packet is to be mangled, and
2562 * complete checksum manually on outgoing path.
2564 int skb_checksum_help(struct sk_buff
*skb
)
2567 int ret
= 0, offset
;
2569 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2570 goto out_set_summed
;
2572 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2573 skb_warn_bad_offload(skb
);
2577 /* Before computing a checksum, we should make sure no frag could
2578 * be modified by an external entity : checksum could be wrong.
2580 if (skb_has_shared_frag(skb
)) {
2581 ret
= __skb_linearize(skb
);
2586 offset
= skb_checksum_start_offset(skb
);
2587 BUG_ON(offset
>= skb_headlen(skb
));
2588 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2590 offset
+= skb
->csum_offset
;
2591 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2593 if (skb_cloned(skb
) &&
2594 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2595 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2600 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2602 skb
->ip_summed
= CHECKSUM_NONE
;
2606 EXPORT_SYMBOL(skb_checksum_help
);
2608 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
2610 __be16 type
= skb
->protocol
;
2612 /* Tunnel gso handlers can set protocol to ethernet. */
2613 if (type
== htons(ETH_P_TEB
)) {
2616 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
2619 eth
= (struct ethhdr
*)skb_mac_header(skb
);
2620 type
= eth
->h_proto
;
2623 return __vlan_get_protocol(skb
, type
, depth
);
2627 * skb_mac_gso_segment - mac layer segmentation handler.
2628 * @skb: buffer to segment
2629 * @features: features for the output path (see dev->features)
2631 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
2632 netdev_features_t features
)
2634 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
2635 struct packet_offload
*ptype
;
2636 int vlan_depth
= skb
->mac_len
;
2637 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
2639 if (unlikely(!type
))
2640 return ERR_PTR(-EINVAL
);
2642 __skb_pull(skb
, vlan_depth
);
2645 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
2646 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
2647 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
2653 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
2657 EXPORT_SYMBOL(skb_mac_gso_segment
);
2660 /* openvswitch calls this on rx path, so we need a different check.
2662 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
2665 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
2666 skb
->ip_summed
!= CHECKSUM_NONE
;
2668 return skb
->ip_summed
== CHECKSUM_NONE
;
2672 * __skb_gso_segment - Perform segmentation on skb.
2673 * @skb: buffer to segment
2674 * @features: features for the output path (see dev->features)
2675 * @tx_path: whether it is called in TX path
2677 * This function segments the given skb and returns a list of segments.
2679 * It may return NULL if the skb requires no segmentation. This is
2680 * only possible when GSO is used for verifying header integrity.
2682 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2684 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
2685 netdev_features_t features
, bool tx_path
)
2687 struct sk_buff
*segs
;
2689 if (unlikely(skb_needs_check(skb
, tx_path
))) {
2692 /* We're going to init ->check field in TCP or UDP header */
2693 err
= skb_cow_head(skb
, 0);
2695 return ERR_PTR(err
);
2698 /* Only report GSO partial support if it will enable us to
2699 * support segmentation on this frame without needing additional
2702 if (features
& NETIF_F_GSO_PARTIAL
) {
2703 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
2704 struct net_device
*dev
= skb
->dev
;
2706 partial_features
|= dev
->features
& dev
->gso_partial_features
;
2707 if (!skb_gso_ok(skb
, features
| partial_features
))
2708 features
&= ~NETIF_F_GSO_PARTIAL
;
2711 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
2712 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
2714 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
2715 SKB_GSO_CB(skb
)->encap_level
= 0;
2717 skb_reset_mac_header(skb
);
2718 skb_reset_mac_len(skb
);
2720 segs
= skb_mac_gso_segment(skb
, features
);
2722 if (unlikely(skb_needs_check(skb
, tx_path
)))
2723 skb_warn_bad_offload(skb
);
2727 EXPORT_SYMBOL(__skb_gso_segment
);
2729 /* Take action when hardware reception checksum errors are detected. */
2731 void netdev_rx_csum_fault(struct net_device
*dev
)
2733 if (net_ratelimit()) {
2734 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
2738 EXPORT_SYMBOL(netdev_rx_csum_fault
);
2741 /* Actually, we should eliminate this check as soon as we know, that:
2742 * 1. IOMMU is present and allows to map all the memory.
2743 * 2. No high memory really exists on this machine.
2746 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
2748 #ifdef CONFIG_HIGHMEM
2751 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
2752 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2753 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2755 if (PageHighMem(skb_frag_page(frag
)))
2760 if (PCI_DMA_BUS_IS_PHYS
) {
2761 struct device
*pdev
= dev
->dev
.parent
;
2765 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2766 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2767 dma_addr_t addr
= page_to_phys(skb_frag_page(frag
));
2769 if (!pdev
->dma_mask
|| addr
+ PAGE_SIZE
- 1 > *pdev
->dma_mask
)
2777 /* If MPLS offload request, verify we are testing hardware MPLS features
2778 * instead of standard features for the netdev.
2780 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2781 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
2782 netdev_features_t features
,
2785 if (eth_p_mpls(type
))
2786 features
&= skb
->dev
->mpls_features
;
2791 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
2792 netdev_features_t features
,
2799 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
2800 netdev_features_t features
)
2805 type
= skb_network_protocol(skb
, &tmp
);
2806 features
= net_mpls_features(skb
, features
, type
);
2808 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
2809 !can_checksum_protocol(features
, type
)) {
2810 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
2812 if (illegal_highdma(skb
->dev
, skb
))
2813 features
&= ~NETIF_F_SG
;
2818 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
2819 struct net_device
*dev
,
2820 netdev_features_t features
)
2824 EXPORT_SYMBOL(passthru_features_check
);
2826 static netdev_features_t
dflt_features_check(const struct sk_buff
*skb
,
2827 struct net_device
*dev
,
2828 netdev_features_t features
)
2830 return vlan_features_check(skb
, features
);
2833 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
2834 struct net_device
*dev
,
2835 netdev_features_t features
)
2837 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
2839 if (gso_segs
> dev
->gso_max_segs
)
2840 return features
& ~NETIF_F_GSO_MASK
;
2842 /* Support for GSO partial features requires software
2843 * intervention before we can actually process the packets
2844 * so we need to strip support for any partial features now
2845 * and we can pull them back in after we have partially
2846 * segmented the frame.
2848 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
2849 features
&= ~dev
->gso_partial_features
;
2851 /* Make sure to clear the IPv4 ID mangling feature if the
2852 * IPv4 header has the potential to be fragmented.
2854 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
2855 struct iphdr
*iph
= skb
->encapsulation
?
2856 inner_ip_hdr(skb
) : ip_hdr(skb
);
2858 if (!(iph
->frag_off
& htons(IP_DF
)))
2859 features
&= ~NETIF_F_TSO_MANGLEID
;
2865 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
2867 struct net_device
*dev
= skb
->dev
;
2868 netdev_features_t features
= dev
->features
;
2870 if (skb_is_gso(skb
))
2871 features
= gso_features_check(skb
, dev
, features
);
2873 /* If encapsulation offload request, verify we are testing
2874 * hardware encapsulation features instead of standard
2875 * features for the netdev
2877 if (skb
->encapsulation
)
2878 features
&= dev
->hw_enc_features
;
2880 if (skb_vlan_tagged(skb
))
2881 features
= netdev_intersect_features(features
,
2882 dev
->vlan_features
|
2883 NETIF_F_HW_VLAN_CTAG_TX
|
2884 NETIF_F_HW_VLAN_STAG_TX
);
2886 if (dev
->netdev_ops
->ndo_features_check
)
2887 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
2890 features
&= dflt_features_check(skb
, dev
, features
);
2892 return harmonize_features(skb
, features
);
2894 EXPORT_SYMBOL(netif_skb_features
);
2896 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
2897 struct netdev_queue
*txq
, bool more
)
2902 if (!list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
))
2903 dev_queue_xmit_nit(skb
, dev
);
2906 trace_net_dev_start_xmit(skb
, dev
);
2907 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
2908 trace_net_dev_xmit(skb
, rc
, dev
, len
);
2913 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
2914 struct netdev_queue
*txq
, int *ret
)
2916 struct sk_buff
*skb
= first
;
2917 int rc
= NETDEV_TX_OK
;
2920 struct sk_buff
*next
= skb
->next
;
2923 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
2924 if (unlikely(!dev_xmit_complete(rc
))) {
2930 if (netif_xmit_stopped(txq
) && skb
) {
2931 rc
= NETDEV_TX_BUSY
;
2941 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
2942 netdev_features_t features
)
2944 if (skb_vlan_tag_present(skb
) &&
2945 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
2946 skb
= __vlan_hwaccel_push_inside(skb
);
2950 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
)
2952 netdev_features_t features
;
2954 features
= netif_skb_features(skb
);
2955 skb
= validate_xmit_vlan(skb
, features
);
2959 if (netif_needs_gso(skb
, features
)) {
2960 struct sk_buff
*segs
;
2962 segs
= skb_gso_segment(skb
, features
);
2970 if (skb_needs_linearize(skb
, features
) &&
2971 __skb_linearize(skb
))
2974 /* If packet is not checksummed and device does not
2975 * support checksumming for this protocol, complete
2976 * checksumming here.
2978 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2979 if (skb
->encapsulation
)
2980 skb_set_inner_transport_header(skb
,
2981 skb_checksum_start_offset(skb
));
2983 skb_set_transport_header(skb
,
2984 skb_checksum_start_offset(skb
));
2985 if (!(features
& NETIF_F_CSUM_MASK
) &&
2986 skb_checksum_help(skb
))
2996 atomic_long_inc(&dev
->tx_dropped
);
3000 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
)
3002 struct sk_buff
*next
, *head
= NULL
, *tail
;
3004 for (; skb
!= NULL
; skb
= next
) {
3008 /* in case skb wont be segmented, point to itself */
3011 skb
= validate_xmit_skb(skb
, dev
);
3019 /* If skb was segmented, skb->prev points to
3020 * the last segment. If not, it still contains skb.
3026 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3028 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3030 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3032 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3034 /* To get more precise estimation of bytes sent on wire,
3035 * we add to pkt_len the headers size of all segments
3037 if (shinfo
->gso_size
) {
3038 unsigned int hdr_len
;
3039 u16 gso_segs
= shinfo
->gso_segs
;
3041 /* mac layer + network layer */
3042 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3044 /* + transport layer */
3045 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
3046 hdr_len
+= tcp_hdrlen(skb
);
3048 hdr_len
+= sizeof(struct udphdr
);
3050 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3051 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3054 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3058 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3059 struct net_device
*dev
,
3060 struct netdev_queue
*txq
)
3062 spinlock_t
*root_lock
= qdisc_lock(q
);
3063 struct sk_buff
*to_free
= NULL
;
3067 qdisc_calculate_pkt_len(skb
, q
);
3069 * Heuristic to force contended enqueues to serialize on a
3070 * separate lock before trying to get qdisc main lock.
3071 * This permits qdisc->running owner to get the lock more
3072 * often and dequeue packets faster.
3074 contended
= qdisc_is_running(q
);
3075 if (unlikely(contended
))
3076 spin_lock(&q
->busylock
);
3078 spin_lock(root_lock
);
3079 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3080 __qdisc_drop(skb
, &to_free
);
3082 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3083 qdisc_run_begin(q
)) {
3085 * This is a work-conserving queue; there are no old skbs
3086 * waiting to be sent out; and the qdisc is not running -
3087 * xmit the skb directly.
3090 qdisc_bstats_update(q
, skb
);
3092 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3093 if (unlikely(contended
)) {
3094 spin_unlock(&q
->busylock
);
3101 rc
= NET_XMIT_SUCCESS
;
3103 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3104 if (qdisc_run_begin(q
)) {
3105 if (unlikely(contended
)) {
3106 spin_unlock(&q
->busylock
);
3112 spin_unlock(root_lock
);
3113 if (unlikely(to_free
))
3114 kfree_skb_list(to_free
);
3115 if (unlikely(contended
))
3116 spin_unlock(&q
->busylock
);
3120 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3121 static void skb_update_prio(struct sk_buff
*skb
)
3123 struct netprio_map
*map
= rcu_dereference_bh(skb
->dev
->priomap
);
3125 if (!skb
->priority
&& skb
->sk
&& map
) {
3126 unsigned int prioidx
=
3127 sock_cgroup_prioidx(&skb
->sk
->sk_cgrp_data
);
3129 if (prioidx
< map
->priomap_len
)
3130 skb
->priority
= map
->priomap
[prioidx
];
3134 #define skb_update_prio(skb)
3137 DEFINE_PER_CPU(int, xmit_recursion
);
3138 EXPORT_SYMBOL(xmit_recursion
);
3141 * dev_loopback_xmit - loop back @skb
3142 * @net: network namespace this loopback is happening in
3143 * @sk: sk needed to be a netfilter okfn
3144 * @skb: buffer to transmit
3146 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3148 skb_reset_mac_header(skb
);
3149 __skb_pull(skb
, skb_network_offset(skb
));
3150 skb
->pkt_type
= PACKET_LOOPBACK
;
3151 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3152 WARN_ON(!skb_dst(skb
));
3157 EXPORT_SYMBOL(dev_loopback_xmit
);
3159 #ifdef CONFIG_NET_EGRESS
3160 static struct sk_buff
*
3161 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3163 struct tcf_proto
*cl
= rcu_dereference_bh(dev
->egress_cl_list
);
3164 struct tcf_result cl_res
;
3169 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3170 qdisc_bstats_cpu_update(cl
->q
, skb
);
3172 switch (tc_classify(skb
, cl
, &cl_res
, false)) {
3174 case TC_ACT_RECLASSIFY
:
3175 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3178 qdisc_qstats_cpu_drop(cl
->q
);
3179 *ret
= NET_XMIT_DROP
;
3184 *ret
= NET_XMIT_SUCCESS
;
3187 case TC_ACT_REDIRECT
:
3188 /* No need to push/pop skb's mac_header here on egress! */
3189 skb_do_redirect(skb
);
3190 *ret
= NET_XMIT_SUCCESS
;
3198 #endif /* CONFIG_NET_EGRESS */
3200 static inline int get_xps_queue(struct net_device
*dev
, struct sk_buff
*skb
)
3203 struct xps_dev_maps
*dev_maps
;
3204 struct xps_map
*map
;
3205 int queue_index
= -1;
3208 dev_maps
= rcu_dereference(dev
->xps_maps
);
3210 unsigned int tci
= skb
->sender_cpu
- 1;
3214 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3217 map
= rcu_dereference(dev_maps
->cpu_map
[tci
]);
3220 queue_index
= map
->queues
[0];
3222 queue_index
= map
->queues
[reciprocal_scale(skb_get_hash(skb
),
3224 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3236 static u16
__netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
)
3238 struct sock
*sk
= skb
->sk
;
3239 int queue_index
= sk_tx_queue_get(sk
);
3241 if (queue_index
< 0 || skb
->ooo_okay
||
3242 queue_index
>= dev
->real_num_tx_queues
) {
3243 int new_index
= get_xps_queue(dev
, skb
);
3246 new_index
= skb_tx_hash(dev
, skb
);
3248 if (queue_index
!= new_index
&& sk
&&
3250 rcu_access_pointer(sk
->sk_dst_cache
))
3251 sk_tx_queue_set(sk
, new_index
);
3253 queue_index
= new_index
;
3259 struct netdev_queue
*netdev_pick_tx(struct net_device
*dev
,
3260 struct sk_buff
*skb
,
3263 int queue_index
= 0;
3266 u32 sender_cpu
= skb
->sender_cpu
- 1;
3268 if (sender_cpu
>= (u32
)NR_CPUS
)
3269 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3272 if (dev
->real_num_tx_queues
!= 1) {
3273 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3275 if (ops
->ndo_select_queue
)
3276 queue_index
= ops
->ndo_select_queue(dev
, skb
, accel_priv
,
3279 queue_index
= __netdev_pick_tx(dev
, skb
);
3282 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3285 skb_set_queue_mapping(skb
, queue_index
);
3286 return netdev_get_tx_queue(dev
, queue_index
);
3290 * __dev_queue_xmit - transmit a buffer
3291 * @skb: buffer to transmit
3292 * @accel_priv: private data used for L2 forwarding offload
3294 * Queue a buffer for transmission to a network device. The caller must
3295 * have set the device and priority and built the buffer before calling
3296 * this function. The function can be called from an interrupt.
3298 * A negative errno code is returned on a failure. A success does not
3299 * guarantee the frame will be transmitted as it may be dropped due
3300 * to congestion or traffic shaping.
3302 * -----------------------------------------------------------------------------------
3303 * I notice this method can also return errors from the queue disciplines,
3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3307 * Regardless of the return value, the skb is consumed, so it is currently
3308 * difficult to retry a send to this method. (You can bump the ref count
3309 * before sending to hold a reference for retry if you are careful.)
3311 * When calling this method, interrupts MUST be enabled. This is because
3312 * the BH enable code must have IRQs enabled so that it will not deadlock.
3315 static int __dev_queue_xmit(struct sk_buff
*skb
, void *accel_priv
)
3317 struct net_device
*dev
= skb
->dev
;
3318 struct netdev_queue
*txq
;
3322 skb_reset_mac_header(skb
);
3324 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3325 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3327 /* Disable soft irqs for various locks below. Also
3328 * stops preemption for RCU.
3332 skb_update_prio(skb
);
3334 qdisc_pkt_len_init(skb
);
3335 #ifdef CONFIG_NET_CLS_ACT
3336 skb
->tc_at_ingress
= 0;
3337 # ifdef CONFIG_NET_EGRESS
3338 if (static_key_false(&egress_needed
)) {
3339 skb
= sch_handle_egress(skb
, &rc
, dev
);
3345 /* If device/qdisc don't need skb->dst, release it right now while
3346 * its hot in this cpu cache.
3348 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3353 txq
= netdev_pick_tx(dev
, skb
, accel_priv
);
3354 q
= rcu_dereference_bh(txq
->qdisc
);
3356 trace_net_dev_queue(skb
);
3358 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3362 /* The device has no queue. Common case for software devices:
3363 * loopback, all the sorts of tunnels...
3365 * Really, it is unlikely that netif_tx_lock protection is necessary
3366 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3368 * However, it is possible, that they rely on protection
3371 * Check this and shot the lock. It is not prone from deadlocks.
3372 *Either shot noqueue qdisc, it is even simpler 8)
3374 if (dev
->flags
& IFF_UP
) {
3375 int cpu
= smp_processor_id(); /* ok because BHs are off */
3377 if (txq
->xmit_lock_owner
!= cpu
) {
3378 if (unlikely(__this_cpu_read(xmit_recursion
) >
3379 XMIT_RECURSION_LIMIT
))
3380 goto recursion_alert
;
3382 skb
= validate_xmit_skb(skb
, dev
);
3386 HARD_TX_LOCK(dev
, txq
, cpu
);
3388 if (!netif_xmit_stopped(txq
)) {
3389 __this_cpu_inc(xmit_recursion
);
3390 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3391 __this_cpu_dec(xmit_recursion
);
3392 if (dev_xmit_complete(rc
)) {
3393 HARD_TX_UNLOCK(dev
, txq
);
3397 HARD_TX_UNLOCK(dev
, txq
);
3398 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3401 /* Recursion is detected! It is possible,
3405 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 rcu_read_unlock_bh();
3413 atomic_long_inc(&dev
->tx_dropped
);
3414 kfree_skb_list(skb
);
3417 rcu_read_unlock_bh();
3421 int dev_queue_xmit(struct sk_buff
*skb
)
3423 return __dev_queue_xmit(skb
, NULL
);
3425 EXPORT_SYMBOL(dev_queue_xmit
);
3427 int dev_queue_xmit_accel(struct sk_buff
*skb
, void *accel_priv
)
3429 return __dev_queue_xmit(skb
, accel_priv
);
3431 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3434 /*************************************************************************
3436 *************************************************************************/
3438 int netdev_max_backlog __read_mostly
= 1000;
3439 EXPORT_SYMBOL(netdev_max_backlog
);
3441 int netdev_tstamp_prequeue __read_mostly
= 1;
3442 int netdev_budget __read_mostly
= 300;
3443 int weight_p __read_mostly
= 64; /* old backlog weight */
3444 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3445 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3446 int dev_rx_weight __read_mostly
= 64;
3447 int dev_tx_weight __read_mostly
= 64;
3449 /* Called with irq disabled */
3450 static inline void ____napi_schedule(struct softnet_data
*sd
,
3451 struct napi_struct
*napi
)
3453 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3454 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3459 /* One global table that all flow-based protocols share. */
3460 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3461 EXPORT_SYMBOL(rps_sock_flow_table
);
3462 u32 rps_cpu_mask __read_mostly
;
3463 EXPORT_SYMBOL(rps_cpu_mask
);
3465 struct static_key rps_needed __read_mostly
;
3466 EXPORT_SYMBOL(rps_needed
);
3467 struct static_key rfs_needed __read_mostly
;
3468 EXPORT_SYMBOL(rfs_needed
);
3470 static struct rps_dev_flow
*
3471 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3472 struct rps_dev_flow
*rflow
, u16 next_cpu
)
3474 if (next_cpu
< nr_cpu_ids
) {
3475 #ifdef CONFIG_RFS_ACCEL
3476 struct netdev_rx_queue
*rxqueue
;
3477 struct rps_dev_flow_table
*flow_table
;
3478 struct rps_dev_flow
*old_rflow
;
3483 /* Should we steer this flow to a different hardware queue? */
3484 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
3485 !(dev
->features
& NETIF_F_NTUPLE
))
3487 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
3488 if (rxq_index
== skb_get_rx_queue(skb
))
3491 rxqueue
= dev
->_rx
+ rxq_index
;
3492 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3495 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
3496 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
3497 rxq_index
, flow_id
);
3501 rflow
= &flow_table
->flows
[flow_id
];
3503 if (old_rflow
->filter
== rflow
->filter
)
3504 old_rflow
->filter
= RPS_NO_FILTER
;
3508 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
3511 rflow
->cpu
= next_cpu
;
3516 * get_rps_cpu is called from netif_receive_skb and returns the target
3517 * CPU from the RPS map of the receiving queue for a given skb.
3518 * rcu_read_lock must be held on entry.
3520 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3521 struct rps_dev_flow
**rflowp
)
3523 const struct rps_sock_flow_table
*sock_flow_table
;
3524 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
3525 struct rps_dev_flow_table
*flow_table
;
3526 struct rps_map
*map
;
3531 if (skb_rx_queue_recorded(skb
)) {
3532 u16 index
= skb_get_rx_queue(skb
);
3534 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
3535 WARN_ONCE(dev
->real_num_rx_queues
> 1,
3536 "%s received packet on queue %u, but number "
3537 "of RX queues is %u\n",
3538 dev
->name
, index
, dev
->real_num_rx_queues
);
3544 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3546 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3547 map
= rcu_dereference(rxqueue
->rps_map
);
3548 if (!flow_table
&& !map
)
3551 skb_reset_network_header(skb
);
3552 hash
= skb_get_hash(skb
);
3556 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
3557 if (flow_table
&& sock_flow_table
) {
3558 struct rps_dev_flow
*rflow
;
3562 /* First check into global flow table if there is a match */
3563 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
3564 if ((ident
^ hash
) & ~rps_cpu_mask
)
3567 next_cpu
= ident
& rps_cpu_mask
;
3569 /* OK, now we know there is a match,
3570 * we can look at the local (per receive queue) flow table
3572 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
3576 * If the desired CPU (where last recvmsg was done) is
3577 * different from current CPU (one in the rx-queue flow
3578 * table entry), switch if one of the following holds:
3579 * - Current CPU is unset (>= nr_cpu_ids).
3580 * - Current CPU is offline.
3581 * - The current CPU's queue tail has advanced beyond the
3582 * last packet that was enqueued using this table entry.
3583 * This guarantees that all previous packets for the flow
3584 * have been dequeued, thus preserving in order delivery.
3586 if (unlikely(tcpu
!= next_cpu
) &&
3587 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
3588 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
3589 rflow
->last_qtail
)) >= 0)) {
3591 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
3594 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
3604 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
3605 if (cpu_online(tcpu
)) {
3615 #ifdef CONFIG_RFS_ACCEL
3618 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619 * @dev: Device on which the filter was set
3620 * @rxq_index: RX queue index
3621 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3624 * Drivers that implement ndo_rx_flow_steer() should periodically call
3625 * this function for each installed filter and remove the filters for
3626 * which it returns %true.
3628 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
3629 u32 flow_id
, u16 filter_id
)
3631 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
3632 struct rps_dev_flow_table
*flow_table
;
3633 struct rps_dev_flow
*rflow
;
3638 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3639 if (flow_table
&& flow_id
<= flow_table
->mask
) {
3640 rflow
= &flow_table
->flows
[flow_id
];
3641 cpu
= ACCESS_ONCE(rflow
->cpu
);
3642 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
3643 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
3644 rflow
->last_qtail
) <
3645 (int)(10 * flow_table
->mask
)))
3651 EXPORT_SYMBOL(rps_may_expire_flow
);
3653 #endif /* CONFIG_RFS_ACCEL */
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data
)
3658 struct softnet_data
*sd
= data
;
3660 ____napi_schedule(sd
, &sd
->backlog
);
3664 #endif /* CONFIG_RPS */
3667 * Check if this softnet_data structure is another cpu one
3668 * If yes, queue it to our IPI list and return 1
3671 static int rps_ipi_queued(struct softnet_data
*sd
)
3674 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
3677 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
3678 mysd
->rps_ipi_list
= sd
;
3680 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3683 #endif /* CONFIG_RPS */
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
3691 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694 struct sd_flow_limit
*fl
;
3695 struct softnet_data
*sd
;
3696 unsigned int old_flow
, new_flow
;
3698 if (qlen
< (netdev_max_backlog
>> 1))
3701 sd
= this_cpu_ptr(&softnet_data
);
3704 fl
= rcu_dereference(sd
->flow_limit
);
3706 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
3707 old_flow
= fl
->history
[fl
->history_head
];
3708 fl
->history
[fl
->history_head
] = new_flow
;
3711 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
3713 if (likely(fl
->buckets
[old_flow
]))
3714 fl
->buckets
[old_flow
]--;
3716 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
3728 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729 * queue (may be a remote CPU queue).
3731 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
3732 unsigned int *qtail
)
3734 struct softnet_data
*sd
;
3735 unsigned long flags
;
3738 sd
= &per_cpu(softnet_data
, cpu
);
3740 local_irq_save(flags
);
3743 if (!netif_running(skb
->dev
))
3745 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
3746 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
3749 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
3750 input_queue_tail_incr_save(sd
, qtail
);
3752 local_irq_restore(flags
);
3753 return NET_RX_SUCCESS
;
3756 /* Schedule NAPI for backlog device
3757 * We can use non atomic operation since we own the queue lock
3759 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
3760 if (!rps_ipi_queued(sd
))
3761 ____napi_schedule(sd
, &sd
->backlog
);
3770 local_irq_restore(flags
);
3772 atomic_long_inc(&skb
->dev
->rx_dropped
);
3777 static int netif_rx_internal(struct sk_buff
*skb
)
3781 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
3783 trace_netif_rx(skb
);
3785 if (static_key_false(&rps_needed
)) {
3786 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
3792 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
3794 cpu
= smp_processor_id();
3796 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
3805 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
3812 * netif_rx - post buffer to the network code
3813 * @skb: buffer to post
3815 * This function receives a packet from a device driver and queues it for
3816 * the upper (protocol) levels to process. It always succeeds. The buffer
3817 * may be dropped during processing for congestion control or by the
3821 * NET_RX_SUCCESS (no congestion)
3822 * NET_RX_DROP (packet was dropped)
3826 int netif_rx(struct sk_buff
*skb
)
3828 trace_netif_rx_entry(skb
);
3830 return netif_rx_internal(skb
);
3832 EXPORT_SYMBOL(netif_rx
);
3834 int netif_rx_ni(struct sk_buff
*skb
)
3838 trace_netif_rx_ni_entry(skb
);
3841 err
= netif_rx_internal(skb
);
3842 if (local_softirq_pending())
3848 EXPORT_SYMBOL(netif_rx_ni
);
3850 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
3852 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
3854 if (sd
->completion_queue
) {
3855 struct sk_buff
*clist
;
3857 local_irq_disable();
3858 clist
= sd
->completion_queue
;
3859 sd
->completion_queue
= NULL
;
3863 struct sk_buff
*skb
= clist
;
3865 clist
= clist
->next
;
3867 WARN_ON(atomic_read(&skb
->users
));
3868 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
3869 trace_consume_skb(skb
);
3871 trace_kfree_skb(skb
, net_tx_action
);
3873 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
3876 __kfree_skb_defer(skb
);
3879 __kfree_skb_flush();
3882 if (sd
->output_queue
) {
3885 local_irq_disable();
3886 head
= sd
->output_queue
;
3887 sd
->output_queue
= NULL
;
3888 sd
->output_queue_tailp
= &sd
->output_queue
;
3892 struct Qdisc
*q
= head
;
3893 spinlock_t
*root_lock
;
3895 head
= head
->next_sched
;
3897 root_lock
= qdisc_lock(q
);
3898 spin_lock(root_lock
);
3899 /* We need to make sure head->next_sched is read
3900 * before clearing __QDISC_STATE_SCHED
3902 smp_mb__before_atomic();
3903 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
3905 spin_unlock(root_lock
);
3910 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3911 /* This hook is defined here for ATM LANE */
3912 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
3913 unsigned char *addr
) __read_mostly
;
3914 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
3917 static inline struct sk_buff
*
3918 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
3919 struct net_device
*orig_dev
)
3921 #ifdef CONFIG_NET_CLS_ACT
3922 struct tcf_proto
*cl
= rcu_dereference_bh(skb
->dev
->ingress_cl_list
);
3923 struct tcf_result cl_res
;
3925 /* If there's at least one ingress present somewhere (so
3926 * we get here via enabled static key), remaining devices
3927 * that are not configured with an ingress qdisc will bail
3933 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
3937 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3938 skb
->tc_at_ingress
= 1;
3939 qdisc_bstats_cpu_update(cl
->q
, skb
);
3941 switch (tc_classify(skb
, cl
, &cl_res
, false)) {
3943 case TC_ACT_RECLASSIFY
:
3944 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3947 qdisc_qstats_cpu_drop(cl
->q
);
3954 case TC_ACT_REDIRECT
:
3955 /* skb_mac_header check was done by cls/act_bpf, so
3956 * we can safely push the L2 header back before
3957 * redirecting to another netdev
3959 __skb_push(skb
, skb
->mac_len
);
3960 skb_do_redirect(skb
);
3965 #endif /* CONFIG_NET_CLS_ACT */
3970 * netdev_is_rx_handler_busy - check if receive handler is registered
3971 * @dev: device to check
3973 * Check if a receive handler is already registered for a given device.
3974 * Return true if there one.
3976 * The caller must hold the rtnl_mutex.
3978 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
3981 return dev
&& rtnl_dereference(dev
->rx_handler
);
3983 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
3986 * netdev_rx_handler_register - register receive handler
3987 * @dev: device to register a handler for
3988 * @rx_handler: receive handler to register
3989 * @rx_handler_data: data pointer that is used by rx handler
3991 * Register a receive handler for a device. This handler will then be
3992 * called from __netif_receive_skb. A negative errno code is returned
3995 * The caller must hold the rtnl_mutex.
3997 * For a general description of rx_handler, see enum rx_handler_result.
3999 int netdev_rx_handler_register(struct net_device
*dev
,
4000 rx_handler_func_t
*rx_handler
,
4001 void *rx_handler_data
)
4003 if (netdev_is_rx_handler_busy(dev
))
4006 /* Note: rx_handler_data must be set before rx_handler */
4007 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4008 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4015 * netdev_rx_handler_unregister - unregister receive handler
4016 * @dev: device to unregister a handler from
4018 * Unregister a receive handler from a device.
4020 * The caller must hold the rtnl_mutex.
4022 void netdev_rx_handler_unregister(struct net_device
*dev
)
4026 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4027 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 * section has a guarantee to see a non NULL rx_handler_data
4032 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4037 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038 * the special handling of PFMEMALLOC skbs.
4040 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4042 switch (skb
->protocol
) {
4043 case htons(ETH_P_ARP
):
4044 case htons(ETH_P_IP
):
4045 case htons(ETH_P_IPV6
):
4046 case htons(ETH_P_8021Q
):
4047 case htons(ETH_P_8021AD
):
4054 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4055 int *ret
, struct net_device
*orig_dev
)
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058 if (nf_hook_ingress_active(skb
)) {
4062 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4067 ingress_retval
= nf_hook_ingress(skb
);
4069 return ingress_retval
;
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4075 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
)
4077 struct packet_type
*ptype
, *pt_prev
;
4078 rx_handler_func_t
*rx_handler
;
4079 struct net_device
*orig_dev
;
4080 bool deliver_exact
= false;
4081 int ret
= NET_RX_DROP
;
4084 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4086 trace_netif_receive_skb(skb
);
4088 orig_dev
= skb
->dev
;
4090 skb_reset_network_header(skb
);
4091 if (!skb_transport_header_was_set(skb
))
4092 skb_reset_transport_header(skb
);
4093 skb_reset_mac_len(skb
);
4098 skb
->skb_iif
= skb
->dev
->ifindex
;
4100 __this_cpu_inc(softnet_data
.processed
);
4102 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4103 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4104 skb
= skb_vlan_untag(skb
);
4109 if (skb_skip_tc_classify(skb
))
4115 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4117 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4121 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4123 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4128 #ifdef CONFIG_NET_INGRESS
4129 if (static_key_false(&ingress_needed
)) {
4130 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4134 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4140 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4143 if (skb_vlan_tag_present(skb
)) {
4145 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4148 if (vlan_do_receive(&skb
))
4150 else if (unlikely(!skb
))
4154 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4157 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4160 switch (rx_handler(&skb
)) {
4161 case RX_HANDLER_CONSUMED
:
4162 ret
= NET_RX_SUCCESS
;
4164 case RX_HANDLER_ANOTHER
:
4166 case RX_HANDLER_EXACT
:
4167 deliver_exact
= true;
4168 case RX_HANDLER_PASS
:
4175 if (unlikely(skb_vlan_tag_present(skb
))) {
4176 if (skb_vlan_tag_get_id(skb
))
4177 skb
->pkt_type
= PACKET_OTHERHOST
;
4178 /* Note: we might in the future use prio bits
4179 * and set skb->priority like in vlan_do_receive()
4180 * For the time being, just ignore Priority Code Point
4185 type
= skb
->protocol
;
4187 /* deliver only exact match when indicated */
4188 if (likely(!deliver_exact
)) {
4189 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4190 &ptype_base
[ntohs(type
) &
4194 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4195 &orig_dev
->ptype_specific
);
4197 if (unlikely(skb
->dev
!= orig_dev
)) {
4198 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4199 &skb
->dev
->ptype_specific
);
4203 if (unlikely(skb_orphan_frags(skb
, GFP_ATOMIC
)))
4206 ret
= pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4210 atomic_long_inc(&skb
->dev
->rx_dropped
);
4212 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4214 /* Jamal, now you will not able to escape explaining
4215 * me how you were going to use this. :-)
4224 static int __netif_receive_skb(struct sk_buff
*skb
)
4228 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
4229 unsigned long pflags
= current
->flags
;
4232 * PFMEMALLOC skbs are special, they should
4233 * - be delivered to SOCK_MEMALLOC sockets only
4234 * - stay away from userspace
4235 * - have bounded memory usage
4237 * Use PF_MEMALLOC as this saves us from propagating the allocation
4238 * context down to all allocation sites.
4240 current
->flags
|= PF_MEMALLOC
;
4241 ret
= __netif_receive_skb_core(skb
, true);
4242 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
4244 ret
= __netif_receive_skb_core(skb
, false);
4249 static int netif_receive_skb_internal(struct sk_buff
*skb
)
4253 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4255 if (skb_defer_rx_timestamp(skb
))
4256 return NET_RX_SUCCESS
;
4261 if (static_key_false(&rps_needed
)) {
4262 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4263 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4266 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4272 ret
= __netif_receive_skb(skb
);
4278 * netif_receive_skb - process receive buffer from network
4279 * @skb: buffer to process
4281 * netif_receive_skb() is the main receive data processing function.
4282 * It always succeeds. The buffer may be dropped during processing
4283 * for congestion control or by the protocol layers.
4285 * This function may only be called from softirq context and interrupts
4286 * should be enabled.
4288 * Return values (usually ignored):
4289 * NET_RX_SUCCESS: no congestion
4290 * NET_RX_DROP: packet was dropped
4292 int netif_receive_skb(struct sk_buff
*skb
)
4294 trace_netif_receive_skb_entry(skb
);
4296 return netif_receive_skb_internal(skb
);
4298 EXPORT_SYMBOL(netif_receive_skb
);
4300 DEFINE_PER_CPU(struct work_struct
, flush_works
);
4302 /* Network device is going away, flush any packets still pending */
4303 static void flush_backlog(struct work_struct
*work
)
4305 struct sk_buff
*skb
, *tmp
;
4306 struct softnet_data
*sd
;
4309 sd
= this_cpu_ptr(&softnet_data
);
4311 local_irq_disable();
4313 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
4314 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
4315 __skb_unlink(skb
, &sd
->input_pkt_queue
);
4317 input_queue_head_incr(sd
);
4323 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
4324 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
4325 __skb_unlink(skb
, &sd
->process_queue
);
4327 input_queue_head_incr(sd
);
4333 static void flush_all_backlogs(void)
4339 for_each_online_cpu(cpu
)
4340 queue_work_on(cpu
, system_highpri_wq
,
4341 per_cpu_ptr(&flush_works
, cpu
));
4343 for_each_online_cpu(cpu
)
4344 flush_work(per_cpu_ptr(&flush_works
, cpu
));
4349 static int napi_gro_complete(struct sk_buff
*skb
)
4351 struct packet_offload
*ptype
;
4352 __be16 type
= skb
->protocol
;
4353 struct list_head
*head
= &offload_base
;
4356 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
4358 if (NAPI_GRO_CB(skb
)->count
== 1) {
4359 skb_shinfo(skb
)->gso_size
= 0;
4364 list_for_each_entry_rcu(ptype
, head
, list
) {
4365 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
4368 err
= ptype
->callbacks
.gro_complete(skb
, 0);
4374 WARN_ON(&ptype
->list
== head
);
4376 return NET_RX_SUCCESS
;
4380 return netif_receive_skb_internal(skb
);
4383 /* napi->gro_list contains packets ordered by age.
4384 * youngest packets at the head of it.
4385 * Complete skbs in reverse order to reduce latencies.
4387 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
4389 struct sk_buff
*skb
, *prev
= NULL
;
4391 /* scan list and build reverse chain */
4392 for (skb
= napi
->gro_list
; skb
!= NULL
; skb
= skb
->next
) {
4397 for (skb
= prev
; skb
; skb
= prev
) {
4400 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
4404 napi_gro_complete(skb
);
4408 napi
->gro_list
= NULL
;
4410 EXPORT_SYMBOL(napi_gro_flush
);
4412 static void gro_list_prepare(struct napi_struct
*napi
, struct sk_buff
*skb
)
4415 unsigned int maclen
= skb
->dev
->hard_header_len
;
4416 u32 hash
= skb_get_hash_raw(skb
);
4418 for (p
= napi
->gro_list
; p
; p
= p
->next
) {
4419 unsigned long diffs
;
4421 NAPI_GRO_CB(p
)->flush
= 0;
4423 if (hash
!= skb_get_hash_raw(p
)) {
4424 NAPI_GRO_CB(p
)->same_flow
= 0;
4428 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
4429 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
4430 diffs
|= skb_metadata_dst_cmp(p
, skb
);
4431 if (maclen
== ETH_HLEN
)
4432 diffs
|= compare_ether_header(skb_mac_header(p
),
4433 skb_mac_header(skb
));
4435 diffs
= memcmp(skb_mac_header(p
),
4436 skb_mac_header(skb
),
4438 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
4442 static void skb_gro_reset_offset(struct sk_buff
*skb
)
4444 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
4445 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
4447 NAPI_GRO_CB(skb
)->data_offset
= 0;
4448 NAPI_GRO_CB(skb
)->frag0
= NULL
;
4449 NAPI_GRO_CB(skb
)->frag0_len
= 0;
4451 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
4453 !PageHighMem(skb_frag_page(frag0
))) {
4454 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
4455 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
4456 skb_frag_size(frag0
),
4457 skb
->end
- skb
->tail
);
4461 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
4463 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
4465 BUG_ON(skb
->end
- skb
->tail
< grow
);
4467 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
4469 skb
->data_len
-= grow
;
4472 pinfo
->frags
[0].page_offset
+= grow
;
4473 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
4475 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
4476 skb_frag_unref(skb
, 0);
4477 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
4478 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
4482 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
4484 struct sk_buff
**pp
= NULL
;
4485 struct packet_offload
*ptype
;
4486 __be16 type
= skb
->protocol
;
4487 struct list_head
*head
= &offload_base
;
4489 enum gro_result ret
;
4492 if (!(skb
->dev
->features
& NETIF_F_GRO
))
4498 gro_list_prepare(napi
, skb
);
4501 list_for_each_entry_rcu(ptype
, head
, list
) {
4502 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
4505 skb_set_network_header(skb
, skb_gro_offset(skb
));
4506 skb_reset_mac_len(skb
);
4507 NAPI_GRO_CB(skb
)->same_flow
= 0;
4508 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
4509 NAPI_GRO_CB(skb
)->free
= 0;
4510 NAPI_GRO_CB(skb
)->encap_mark
= 0;
4511 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
4512 NAPI_GRO_CB(skb
)->is_fou
= 0;
4513 NAPI_GRO_CB(skb
)->is_atomic
= 1;
4514 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
4516 /* Setup for GRO checksum validation */
4517 switch (skb
->ip_summed
) {
4518 case CHECKSUM_COMPLETE
:
4519 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
4520 NAPI_GRO_CB(skb
)->csum_valid
= 1;
4521 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
4523 case CHECKSUM_UNNECESSARY
:
4524 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
4525 NAPI_GRO_CB(skb
)->csum_valid
= 0;
4528 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
4529 NAPI_GRO_CB(skb
)->csum_valid
= 0;
4532 pp
= ptype
->callbacks
.gro_receive(&napi
->gro_list
, skb
);
4537 if (&ptype
->list
== head
)
4540 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
4545 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
4546 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
4549 struct sk_buff
*nskb
= *pp
;
4553 napi_gro_complete(nskb
);
4560 if (NAPI_GRO_CB(skb
)->flush
)
4563 if (unlikely(napi
->gro_count
>= MAX_GRO_SKBS
)) {
4564 struct sk_buff
*nskb
= napi
->gro_list
;
4566 /* locate the end of the list to select the 'oldest' flow */
4567 while (nskb
->next
) {
4573 napi_gro_complete(nskb
);
4577 NAPI_GRO_CB(skb
)->count
= 1;
4578 NAPI_GRO_CB(skb
)->age
= jiffies
;
4579 NAPI_GRO_CB(skb
)->last
= skb
;
4580 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
4581 skb
->next
= napi
->gro_list
;
4582 napi
->gro_list
= skb
;
4586 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
4588 gro_pull_from_frag0(skb
, grow
);
4597 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
4599 struct list_head
*offload_head
= &offload_base
;
4600 struct packet_offload
*ptype
;
4602 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
4603 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
4609 EXPORT_SYMBOL(gro_find_receive_by_type
);
4611 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
4613 struct list_head
*offload_head
= &offload_base
;
4614 struct packet_offload
*ptype
;
4616 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
4617 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
4623 EXPORT_SYMBOL(gro_find_complete_by_type
);
4625 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
4629 if (netif_receive_skb_internal(skb
))
4637 case GRO_MERGED_FREE
:
4638 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
) {
4641 kmem_cache_free(skbuff_head_cache
, skb
);
4656 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
4658 skb_mark_napi_id(skb
, napi
);
4659 trace_napi_gro_receive_entry(skb
);
4661 skb_gro_reset_offset(skb
);
4663 return napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
4665 EXPORT_SYMBOL(napi_gro_receive
);
4667 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
4669 if (unlikely(skb
->pfmemalloc
)) {
4673 __skb_pull(skb
, skb_headlen(skb
));
4674 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4675 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
4677 skb
->dev
= napi
->dev
;
4679 skb
->encapsulation
= 0;
4680 skb_shinfo(skb
)->gso_type
= 0;
4681 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
4687 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
4689 struct sk_buff
*skb
= napi
->skb
;
4692 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
4695 skb_mark_napi_id(skb
, napi
);
4700 EXPORT_SYMBOL(napi_get_frags
);
4702 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
4703 struct sk_buff
*skb
,
4709 __skb_push(skb
, ETH_HLEN
);
4710 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
4711 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
4716 case GRO_MERGED_FREE
:
4717 napi_reuse_skb(napi
, skb
);
4728 /* Upper GRO stack assumes network header starts at gro_offset=0
4729 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4730 * We copy ethernet header into skb->data to have a common layout.
4732 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
4734 struct sk_buff
*skb
= napi
->skb
;
4735 const struct ethhdr
*eth
;
4736 unsigned int hlen
= sizeof(*eth
);
4740 skb_reset_mac_header(skb
);
4741 skb_gro_reset_offset(skb
);
4743 eth
= skb_gro_header_fast(skb
, 0);
4744 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
4745 eth
= skb_gro_header_slow(skb
, hlen
, 0);
4746 if (unlikely(!eth
)) {
4747 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4748 __func__
, napi
->dev
->name
);
4749 napi_reuse_skb(napi
, skb
);
4753 gro_pull_from_frag0(skb
, hlen
);
4754 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
4755 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
4757 __skb_pull(skb
, hlen
);
4760 * This works because the only protocols we care about don't require
4762 * We'll fix it up properly in napi_frags_finish()
4764 skb
->protocol
= eth
->h_proto
;
4769 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
4771 struct sk_buff
*skb
= napi_frags_skb(napi
);
4776 trace_napi_gro_frags_entry(skb
);
4778 return napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
4780 EXPORT_SYMBOL(napi_gro_frags
);
4782 /* Compute the checksum from gro_offset and return the folded value
4783 * after adding in any pseudo checksum.
4785 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
4790 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
4792 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4793 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
4795 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
4796 !skb
->csum_complete_sw
)
4797 netdev_rx_csum_fault(skb
->dev
);
4800 NAPI_GRO_CB(skb
)->csum
= wsum
;
4801 NAPI_GRO_CB(skb
)->csum_valid
= 1;
4805 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
4808 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4809 * Note: called with local irq disabled, but exits with local irq enabled.
4811 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
4814 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
4817 sd
->rps_ipi_list
= NULL
;
4821 /* Send pending IPI's to kick RPS processing on remote cpus. */
4823 struct softnet_data
*next
= remsd
->rps_ipi_next
;
4825 if (cpu_online(remsd
->cpu
))
4826 smp_call_function_single_async(remsd
->cpu
,
4835 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
4838 return sd
->rps_ipi_list
!= NULL
;
4844 static int process_backlog(struct napi_struct
*napi
, int quota
)
4846 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
4850 /* Check if we have pending ipi, its better to send them now,
4851 * not waiting net_rx_action() end.
4853 if (sd_has_rps_ipi_waiting(sd
)) {
4854 local_irq_disable();
4855 net_rps_action_and_irq_enable(sd
);
4858 napi
->weight
= dev_rx_weight
;
4860 struct sk_buff
*skb
;
4862 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
4864 __netif_receive_skb(skb
);
4866 input_queue_head_incr(sd
);
4867 if (++work
>= quota
)
4872 local_irq_disable();
4874 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
4876 * Inline a custom version of __napi_complete().
4877 * only current cpu owns and manipulates this napi,
4878 * and NAPI_STATE_SCHED is the only possible flag set
4880 * We can use a plain write instead of clear_bit(),
4881 * and we dont need an smp_mb() memory barrier.
4886 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
4887 &sd
->process_queue
);
4897 * __napi_schedule - schedule for receive
4898 * @n: entry to schedule
4900 * The entry's receive function will be scheduled to run.
4901 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4903 void __napi_schedule(struct napi_struct
*n
)
4905 unsigned long flags
;
4907 local_irq_save(flags
);
4908 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
4909 local_irq_restore(flags
);
4911 EXPORT_SYMBOL(__napi_schedule
);
4914 * napi_schedule_prep - check if napi can be scheduled
4917 * Test if NAPI routine is already running, and if not mark
4918 * it as running. This is used as a condition variable
4919 * insure only one NAPI poll instance runs. We also make
4920 * sure there is no pending NAPI disable.
4922 bool napi_schedule_prep(struct napi_struct
*n
)
4924 unsigned long val
, new;
4927 val
= READ_ONCE(n
->state
);
4928 if (unlikely(val
& NAPIF_STATE_DISABLE
))
4930 new = val
| NAPIF_STATE_SCHED
;
4932 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4933 * This was suggested by Alexander Duyck, as compiler
4934 * emits better code than :
4935 * if (val & NAPIF_STATE_SCHED)
4936 * new |= NAPIF_STATE_MISSED;
4938 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
4940 } while (cmpxchg(&n
->state
, val
, new) != val
);
4942 return !(val
& NAPIF_STATE_SCHED
);
4944 EXPORT_SYMBOL(napi_schedule_prep
);
4947 * __napi_schedule_irqoff - schedule for receive
4948 * @n: entry to schedule
4950 * Variant of __napi_schedule() assuming hard irqs are masked
4952 void __napi_schedule_irqoff(struct napi_struct
*n
)
4954 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
4956 EXPORT_SYMBOL(__napi_schedule_irqoff
);
4958 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
4960 unsigned long flags
, val
, new;
4963 * 1) Don't let napi dequeue from the cpu poll list
4964 * just in case its running on a different cpu.
4965 * 2) If we are busy polling, do nothing here, we have
4966 * the guarantee we will be called later.
4968 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
4969 NAPIF_STATE_IN_BUSY_POLL
)))
4973 unsigned long timeout
= 0;
4976 timeout
= n
->dev
->gro_flush_timeout
;
4979 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
4980 HRTIMER_MODE_REL_PINNED
);
4982 napi_gro_flush(n
, false);
4984 if (unlikely(!list_empty(&n
->poll_list
))) {
4985 /* If n->poll_list is not empty, we need to mask irqs */
4986 local_irq_save(flags
);
4987 list_del_init(&n
->poll_list
);
4988 local_irq_restore(flags
);
4992 val
= READ_ONCE(n
->state
);
4994 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
4996 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
4998 /* If STATE_MISSED was set, leave STATE_SCHED set,
4999 * because we will call napi->poll() one more time.
5000 * This C code was suggested by Alexander Duyck to help gcc.
5002 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
5004 } while (cmpxchg(&n
->state
, val
, new) != val
);
5006 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
5013 EXPORT_SYMBOL(napi_complete_done
);
5015 /* must be called under rcu_read_lock(), as we dont take a reference */
5016 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
5018 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
5019 struct napi_struct
*napi
;
5021 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
5022 if (napi
->napi_id
== napi_id
)
5028 #if defined(CONFIG_NET_RX_BUSY_POLL)
5030 #define BUSY_POLL_BUDGET 8
5032 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
5036 /* Busy polling means there is a high chance device driver hard irq
5037 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5038 * set in napi_schedule_prep().
5039 * Since we are about to call napi->poll() once more, we can safely
5040 * clear NAPI_STATE_MISSED.
5042 * Note: x86 could use a single "lock and ..." instruction
5043 * to perform these two clear_bit()
5045 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
5046 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
5050 /* All we really want here is to re-enable device interrupts.
5051 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5053 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
5054 netpoll_poll_unlock(have_poll_lock
);
5055 if (rc
== BUSY_POLL_BUDGET
)
5056 __napi_schedule(napi
);
5058 if (local_softirq_pending())
5062 bool sk_busy_loop(struct sock
*sk
, int nonblock
)
5064 unsigned long end_time
= !nonblock
? sk_busy_loop_end_time(sk
) : 0;
5065 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
5066 void *have_poll_lock
= NULL
;
5067 struct napi_struct
*napi
;
5076 napi
= napi_by_id(sk
->sk_napi_id
);
5085 unsigned long val
= READ_ONCE(napi
->state
);
5087 /* If multiple threads are competing for this napi,
5088 * we avoid dirtying napi->state as much as we can.
5090 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
5091 NAPIF_STATE_IN_BUSY_POLL
))
5093 if (cmpxchg(&napi
->state
, val
,
5094 val
| NAPIF_STATE_IN_BUSY_POLL
|
5095 NAPIF_STATE_SCHED
) != val
)
5097 have_poll_lock
= netpoll_poll_lock(napi
);
5098 napi_poll
= napi
->poll
;
5100 rc
= napi_poll(napi
, BUSY_POLL_BUDGET
);
5101 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
5104 __NET_ADD_STATS(sock_net(sk
),
5105 LINUX_MIB_BUSYPOLLRXPACKETS
, rc
);
5108 if (nonblock
|| !skb_queue_empty(&sk
->sk_receive_queue
) ||
5109 busy_loop_timeout(end_time
))
5112 if (unlikely(need_resched())) {
5114 busy_poll_stop(napi
, have_poll_lock
);
5118 rc
= !skb_queue_empty(&sk
->sk_receive_queue
);
5119 if (rc
|| busy_loop_timeout(end_time
))
5126 busy_poll_stop(napi
, have_poll_lock
);
5128 rc
= !skb_queue_empty(&sk
->sk_receive_queue
);
5133 EXPORT_SYMBOL(sk_busy_loop
);
5135 #endif /* CONFIG_NET_RX_BUSY_POLL */
5137 static void napi_hash_add(struct napi_struct
*napi
)
5139 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
5140 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
5143 spin_lock(&napi_hash_lock
);
5145 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5147 if (unlikely(++napi_gen_id
< NR_CPUS
+ 1))
5148 napi_gen_id
= NR_CPUS
+ 1;
5149 } while (napi_by_id(napi_gen_id
));
5150 napi
->napi_id
= napi_gen_id
;
5152 hlist_add_head_rcu(&napi
->napi_hash_node
,
5153 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
5155 spin_unlock(&napi_hash_lock
);
5158 /* Warning : caller is responsible to make sure rcu grace period
5159 * is respected before freeing memory containing @napi
5161 bool napi_hash_del(struct napi_struct
*napi
)
5163 bool rcu_sync_needed
= false;
5165 spin_lock(&napi_hash_lock
);
5167 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
5168 rcu_sync_needed
= true;
5169 hlist_del_rcu(&napi
->napi_hash_node
);
5171 spin_unlock(&napi_hash_lock
);
5172 return rcu_sync_needed
;
5174 EXPORT_SYMBOL_GPL(napi_hash_del
);
5176 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
5178 struct napi_struct
*napi
;
5180 napi
= container_of(timer
, struct napi_struct
, timer
);
5182 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5183 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5185 if (napi
->gro_list
&& !napi_disable_pending(napi
) &&
5186 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
5187 __napi_schedule_irqoff(napi
);
5189 return HRTIMER_NORESTART
;
5192 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
5193 int (*poll
)(struct napi_struct
*, int), int weight
)
5195 INIT_LIST_HEAD(&napi
->poll_list
);
5196 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
5197 napi
->timer
.function
= napi_watchdog
;
5198 napi
->gro_count
= 0;
5199 napi
->gro_list
= NULL
;
5202 if (weight
> NAPI_POLL_WEIGHT
)
5203 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5205 napi
->weight
= weight
;
5206 list_add(&napi
->dev_list
, &dev
->napi_list
);
5208 #ifdef CONFIG_NETPOLL
5209 napi
->poll_owner
= -1;
5211 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
5212 napi_hash_add(napi
);
5214 EXPORT_SYMBOL(netif_napi_add
);
5216 void napi_disable(struct napi_struct
*n
)
5219 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
5221 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
5223 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
5226 hrtimer_cancel(&n
->timer
);
5228 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
5230 EXPORT_SYMBOL(napi_disable
);
5232 /* Must be called in process context */
5233 void netif_napi_del(struct napi_struct
*napi
)
5236 if (napi_hash_del(napi
))
5238 list_del_init(&napi
->dev_list
);
5239 napi_free_frags(napi
);
5241 kfree_skb_list(napi
->gro_list
);
5242 napi
->gro_list
= NULL
;
5243 napi
->gro_count
= 0;
5245 EXPORT_SYMBOL(netif_napi_del
);
5247 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
5252 list_del_init(&n
->poll_list
);
5254 have
= netpoll_poll_lock(n
);
5258 /* This NAPI_STATE_SCHED test is for avoiding a race
5259 * with netpoll's poll_napi(). Only the entity which
5260 * obtains the lock and sees NAPI_STATE_SCHED set will
5261 * actually make the ->poll() call. Therefore we avoid
5262 * accidentally calling ->poll() when NAPI is not scheduled.
5265 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
5266 work
= n
->poll(n
, weight
);
5267 trace_napi_poll(n
, work
, weight
);
5270 WARN_ON_ONCE(work
> weight
);
5272 if (likely(work
< weight
))
5275 /* Drivers must not modify the NAPI state if they
5276 * consume the entire weight. In such cases this code
5277 * still "owns" the NAPI instance and therefore can
5278 * move the instance around on the list at-will.
5280 if (unlikely(napi_disable_pending(n
))) {
5286 /* flush too old packets
5287 * If HZ < 1000, flush all packets.
5289 napi_gro_flush(n
, HZ
>= 1000);
5292 /* Some drivers may have called napi_schedule
5293 * prior to exhausting their budget.
5295 if (unlikely(!list_empty(&n
->poll_list
))) {
5296 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5297 n
->dev
? n
->dev
->name
: "backlog");
5301 list_add_tail(&n
->poll_list
, repoll
);
5304 netpoll_poll_unlock(have
);
5309 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
5311 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
5312 unsigned long time_limit
= jiffies
+ 2;
5313 int budget
= netdev_budget
;
5317 local_irq_disable();
5318 list_splice_init(&sd
->poll_list
, &list
);
5322 struct napi_struct
*n
;
5324 if (list_empty(&list
)) {
5325 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
5330 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
5331 budget
-= napi_poll(n
, &repoll
);
5333 /* If softirq window is exhausted then punt.
5334 * Allow this to run for 2 jiffies since which will allow
5335 * an average latency of 1.5/HZ.
5337 if (unlikely(budget
<= 0 ||
5338 time_after_eq(jiffies
, time_limit
))) {
5344 local_irq_disable();
5346 list_splice_tail_init(&sd
->poll_list
, &list
);
5347 list_splice_tail(&repoll
, &list
);
5348 list_splice(&list
, &sd
->poll_list
);
5349 if (!list_empty(&sd
->poll_list
))
5350 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
5352 net_rps_action_and_irq_enable(sd
);
5354 __kfree_skb_flush();
5357 struct netdev_adjacent
{
5358 struct net_device
*dev
;
5360 /* upper master flag, there can only be one master device per list */
5363 /* counter for the number of times this device was added to us */
5366 /* private field for the users */
5369 struct list_head list
;
5370 struct rcu_head rcu
;
5373 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
5374 struct list_head
*adj_list
)
5376 struct netdev_adjacent
*adj
;
5378 list_for_each_entry(adj
, adj_list
, list
) {
5379 if (adj
->dev
== adj_dev
)
5385 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
5387 struct net_device
*dev
= data
;
5389 return upper_dev
== dev
;
5393 * netdev_has_upper_dev - Check if device is linked to an upper device
5395 * @upper_dev: upper device to check
5397 * Find out if a device is linked to specified upper device and return true
5398 * in case it is. Note that this checks only immediate upper device,
5399 * not through a complete stack of devices. The caller must hold the RTNL lock.
5401 bool netdev_has_upper_dev(struct net_device
*dev
,
5402 struct net_device
*upper_dev
)
5406 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
5409 EXPORT_SYMBOL(netdev_has_upper_dev
);
5412 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5414 * @upper_dev: upper device to check
5416 * Find out if a device is linked to specified upper device and return true
5417 * in case it is. Note that this checks the entire upper device chain.
5418 * The caller must hold rcu lock.
5421 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
5422 struct net_device
*upper_dev
)
5424 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
5427 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
5430 * netdev_has_any_upper_dev - Check if device is linked to some device
5433 * Find out if a device is linked to an upper device and return true in case
5434 * it is. The caller must hold the RTNL lock.
5436 static bool netdev_has_any_upper_dev(struct net_device
*dev
)
5440 return !list_empty(&dev
->adj_list
.upper
);
5444 * netdev_master_upper_dev_get - Get master upper device
5447 * Find a master upper device and return pointer to it or NULL in case
5448 * it's not there. The caller must hold the RTNL lock.
5450 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
5452 struct netdev_adjacent
*upper
;
5456 if (list_empty(&dev
->adj_list
.upper
))
5459 upper
= list_first_entry(&dev
->adj_list
.upper
,
5460 struct netdev_adjacent
, list
);
5461 if (likely(upper
->master
))
5465 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
5468 * netdev_has_any_lower_dev - Check if device is linked to some device
5471 * Find out if a device is linked to a lower device and return true in case
5472 * it is. The caller must hold the RTNL lock.
5474 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
5478 return !list_empty(&dev
->adj_list
.lower
);
5481 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
5483 struct netdev_adjacent
*adj
;
5485 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
5487 return adj
->private;
5489 EXPORT_SYMBOL(netdev_adjacent_get_private
);
5492 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5494 * @iter: list_head ** of the current position
5496 * Gets the next device from the dev's upper list, starting from iter
5497 * position. The caller must hold RCU read lock.
5499 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
5500 struct list_head
**iter
)
5502 struct netdev_adjacent
*upper
;
5504 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5506 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5508 if (&upper
->list
== &dev
->adj_list
.upper
)
5511 *iter
= &upper
->list
;
5515 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
5517 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
5518 struct list_head
**iter
)
5520 struct netdev_adjacent
*upper
;
5522 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5524 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5526 if (&upper
->list
== &dev
->adj_list
.upper
)
5529 *iter
= &upper
->list
;
5534 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
5535 int (*fn
)(struct net_device
*dev
,
5539 struct net_device
*udev
;
5540 struct list_head
*iter
;
5543 for (iter
= &dev
->adj_list
.upper
,
5544 udev
= netdev_next_upper_dev_rcu(dev
, &iter
);
5546 udev
= netdev_next_upper_dev_rcu(dev
, &iter
)) {
5547 /* first is the upper device itself */
5548 ret
= fn(udev
, data
);
5552 /* then look at all of its upper devices */
5553 ret
= netdev_walk_all_upper_dev_rcu(udev
, fn
, data
);
5560 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
5563 * netdev_lower_get_next_private - Get the next ->private from the
5564 * lower neighbour list
5566 * @iter: list_head ** of the current position
5568 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5569 * list, starting from iter position. The caller must hold either hold the
5570 * RTNL lock or its own locking that guarantees that the neighbour lower
5571 * list will remain unchanged.
5573 void *netdev_lower_get_next_private(struct net_device
*dev
,
5574 struct list_head
**iter
)
5576 struct netdev_adjacent
*lower
;
5578 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
5580 if (&lower
->list
== &dev
->adj_list
.lower
)
5583 *iter
= lower
->list
.next
;
5585 return lower
->private;
5587 EXPORT_SYMBOL(netdev_lower_get_next_private
);
5590 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5591 * lower neighbour list, RCU
5594 * @iter: list_head ** of the current position
5596 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5597 * list, starting from iter position. The caller must hold RCU read lock.
5599 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
5600 struct list_head
**iter
)
5602 struct netdev_adjacent
*lower
;
5604 WARN_ON_ONCE(!rcu_read_lock_held());
5606 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5608 if (&lower
->list
== &dev
->adj_list
.lower
)
5611 *iter
= &lower
->list
;
5613 return lower
->private;
5615 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
5618 * netdev_lower_get_next - Get the next device from the lower neighbour
5621 * @iter: list_head ** of the current position
5623 * Gets the next netdev_adjacent from the dev's lower neighbour
5624 * list, starting from iter position. The caller must hold RTNL lock or
5625 * its own locking that guarantees that the neighbour lower
5626 * list will remain unchanged.
5628 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
5630 struct netdev_adjacent
*lower
;
5632 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
5634 if (&lower
->list
== &dev
->adj_list
.lower
)
5637 *iter
= lower
->list
.next
;
5641 EXPORT_SYMBOL(netdev_lower_get_next
);
5643 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
5644 struct list_head
**iter
)
5646 struct netdev_adjacent
*lower
;
5648 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
5650 if (&lower
->list
== &dev
->adj_list
.lower
)
5653 *iter
= &lower
->list
;
5658 int netdev_walk_all_lower_dev(struct net_device
*dev
,
5659 int (*fn
)(struct net_device
*dev
,
5663 struct net_device
*ldev
;
5664 struct list_head
*iter
;
5667 for (iter
= &dev
->adj_list
.lower
,
5668 ldev
= netdev_next_lower_dev(dev
, &iter
);
5670 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
5671 /* first is the lower device itself */
5672 ret
= fn(ldev
, data
);
5676 /* then look at all of its lower devices */
5677 ret
= netdev_walk_all_lower_dev(ldev
, fn
, data
);
5684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
5686 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
5687 struct list_head
**iter
)
5689 struct netdev_adjacent
*lower
;
5691 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5692 if (&lower
->list
== &dev
->adj_list
.lower
)
5695 *iter
= &lower
->list
;
5700 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
5701 int (*fn
)(struct net_device
*dev
,
5705 struct net_device
*ldev
;
5706 struct list_head
*iter
;
5709 for (iter
= &dev
->adj_list
.lower
,
5710 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
);
5712 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
)) {
5713 /* first is the lower device itself */
5714 ret
= fn(ldev
, data
);
5718 /* then look at all of its lower devices */
5719 ret
= netdev_walk_all_lower_dev_rcu(ldev
, fn
, data
);
5726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
5729 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5730 * lower neighbour list, RCU
5734 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5735 * list. The caller must hold RCU read lock.
5737 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
5739 struct netdev_adjacent
*lower
;
5741 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
5742 struct netdev_adjacent
, list
);
5744 return lower
->private;
5747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
5750 * netdev_master_upper_dev_get_rcu - Get master upper device
5753 * Find a master upper device and return pointer to it or NULL in case
5754 * it's not there. The caller must hold the RCU read lock.
5756 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
5758 struct netdev_adjacent
*upper
;
5760 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
5761 struct netdev_adjacent
, list
);
5762 if (upper
&& likely(upper
->master
))
5766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
5768 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
5769 struct net_device
*adj_dev
,
5770 struct list_head
*dev_list
)
5772 char linkname
[IFNAMSIZ
+7];
5774 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
5775 "upper_%s" : "lower_%s", adj_dev
->name
);
5776 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
5779 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
5781 struct list_head
*dev_list
)
5783 char linkname
[IFNAMSIZ
+7];
5785 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
5786 "upper_%s" : "lower_%s", name
);
5787 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
5790 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
5791 struct net_device
*adj_dev
,
5792 struct list_head
*dev_list
)
5794 return (dev_list
== &dev
->adj_list
.upper
||
5795 dev_list
== &dev
->adj_list
.lower
) &&
5796 net_eq(dev_net(dev
), dev_net(adj_dev
));
5799 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
5800 struct net_device
*adj_dev
,
5801 struct list_head
*dev_list
,
5802 void *private, bool master
)
5804 struct netdev_adjacent
*adj
;
5807 adj
= __netdev_find_adj(adj_dev
, dev_list
);
5811 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5812 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
5817 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
5822 adj
->master
= master
;
5824 adj
->private = private;
5827 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5828 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
5830 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
5831 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
5836 /* Ensure that master link is always the first item in list. */
5838 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
5839 &(adj_dev
->dev
.kobj
), "master");
5841 goto remove_symlinks
;
5843 list_add_rcu(&adj
->list
, dev_list
);
5845 list_add_tail_rcu(&adj
->list
, dev_list
);
5851 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
5852 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
5860 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
5861 struct net_device
*adj_dev
,
5863 struct list_head
*dev_list
)
5865 struct netdev_adjacent
*adj
;
5867 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5868 dev
->name
, adj_dev
->name
, ref_nr
);
5870 adj
= __netdev_find_adj(adj_dev
, dev_list
);
5873 pr_err("Adjacency does not exist for device %s from %s\n",
5874 dev
->name
, adj_dev
->name
);
5879 if (adj
->ref_nr
> ref_nr
) {
5880 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5881 dev
->name
, adj_dev
->name
, ref_nr
,
5882 adj
->ref_nr
- ref_nr
);
5883 adj
->ref_nr
-= ref_nr
;
5888 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
5890 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
5891 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
5893 list_del_rcu(&adj
->list
);
5894 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5895 adj_dev
->name
, dev
->name
, adj_dev
->name
);
5897 kfree_rcu(adj
, rcu
);
5900 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
5901 struct net_device
*upper_dev
,
5902 struct list_head
*up_list
,
5903 struct list_head
*down_list
,
5904 void *private, bool master
)
5908 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
5913 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
5916 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
5923 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
5924 struct net_device
*upper_dev
,
5926 struct list_head
*up_list
,
5927 struct list_head
*down_list
)
5929 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
5930 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
5933 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
5934 struct net_device
*upper_dev
,
5935 void *private, bool master
)
5937 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
5938 &dev
->adj_list
.upper
,
5939 &upper_dev
->adj_list
.lower
,
5943 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
5944 struct net_device
*upper_dev
)
5946 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
5947 &dev
->adj_list
.upper
,
5948 &upper_dev
->adj_list
.lower
);
5951 static int __netdev_upper_dev_link(struct net_device
*dev
,
5952 struct net_device
*upper_dev
, bool master
,
5953 void *upper_priv
, void *upper_info
)
5955 struct netdev_notifier_changeupper_info changeupper_info
;
5960 if (dev
== upper_dev
)
5963 /* To prevent loops, check if dev is not upper device to upper_dev. */
5964 if (netdev_has_upper_dev(upper_dev
, dev
))
5967 if (netdev_has_upper_dev(dev
, upper_dev
))
5970 if (master
&& netdev_master_upper_dev_get(dev
))
5973 changeupper_info
.upper_dev
= upper_dev
;
5974 changeupper_info
.master
= master
;
5975 changeupper_info
.linking
= true;
5976 changeupper_info
.upper_info
= upper_info
;
5978 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
, dev
,
5979 &changeupper_info
.info
);
5980 ret
= notifier_to_errno(ret
);
5984 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
5989 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
, dev
,
5990 &changeupper_info
.info
);
5991 ret
= notifier_to_errno(ret
);
5998 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6004 * netdev_upper_dev_link - Add a link to the upper device
6006 * @upper_dev: new upper device
6008 * Adds a link to device which is upper to this one. The caller must hold
6009 * the RTNL lock. On a failure a negative errno code is returned.
6010 * On success the reference counts are adjusted and the function
6013 int netdev_upper_dev_link(struct net_device
*dev
,
6014 struct net_device
*upper_dev
)
6016 return __netdev_upper_dev_link(dev
, upper_dev
, false, NULL
, NULL
);
6018 EXPORT_SYMBOL(netdev_upper_dev_link
);
6021 * netdev_master_upper_dev_link - Add a master link to the upper device
6023 * @upper_dev: new upper device
6024 * @upper_priv: upper device private
6025 * @upper_info: upper info to be passed down via notifier
6027 * Adds a link to device which is upper to this one. In this case, only
6028 * one master upper device can be linked, although other non-master devices
6029 * might be linked as well. The caller must hold the RTNL lock.
6030 * On a failure a negative errno code is returned. On success the reference
6031 * counts are adjusted and the function returns zero.
6033 int netdev_master_upper_dev_link(struct net_device
*dev
,
6034 struct net_device
*upper_dev
,
6035 void *upper_priv
, void *upper_info
)
6037 return __netdev_upper_dev_link(dev
, upper_dev
, true,
6038 upper_priv
, upper_info
);
6040 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
6043 * netdev_upper_dev_unlink - Removes a link to upper device
6045 * @upper_dev: new upper device
6047 * Removes a link to device which is upper to this one. The caller must hold
6050 void netdev_upper_dev_unlink(struct net_device
*dev
,
6051 struct net_device
*upper_dev
)
6053 struct netdev_notifier_changeupper_info changeupper_info
;
6057 changeupper_info
.upper_dev
= upper_dev
;
6058 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
6059 changeupper_info
.linking
= false;
6061 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
, dev
,
6062 &changeupper_info
.info
);
6064 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6066 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
, dev
,
6067 &changeupper_info
.info
);
6069 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
6072 * netdev_bonding_info_change - Dispatch event about slave change
6074 * @bonding_info: info to dispatch
6076 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6077 * The caller must hold the RTNL lock.
6079 void netdev_bonding_info_change(struct net_device
*dev
,
6080 struct netdev_bonding_info
*bonding_info
)
6082 struct netdev_notifier_bonding_info info
;
6084 memcpy(&info
.bonding_info
, bonding_info
,
6085 sizeof(struct netdev_bonding_info
));
6086 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
, dev
,
6089 EXPORT_SYMBOL(netdev_bonding_info_change
);
6091 static void netdev_adjacent_add_links(struct net_device
*dev
)
6093 struct netdev_adjacent
*iter
;
6095 struct net
*net
= dev_net(dev
);
6097 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6098 if (!net_eq(net
, dev_net(iter
->dev
)))
6100 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6101 &iter
->dev
->adj_list
.lower
);
6102 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
6103 &dev
->adj_list
.upper
);
6106 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6107 if (!net_eq(net
, dev_net(iter
->dev
)))
6109 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6110 &iter
->dev
->adj_list
.upper
);
6111 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
6112 &dev
->adj_list
.lower
);
6116 static void netdev_adjacent_del_links(struct net_device
*dev
)
6118 struct netdev_adjacent
*iter
;
6120 struct net
*net
= dev_net(dev
);
6122 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6123 if (!net_eq(net
, dev_net(iter
->dev
)))
6125 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
6126 &iter
->dev
->adj_list
.lower
);
6127 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
6128 &dev
->adj_list
.upper
);
6131 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6132 if (!net_eq(net
, dev_net(iter
->dev
)))
6134 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
6135 &iter
->dev
->adj_list
.upper
);
6136 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
6137 &dev
->adj_list
.lower
);
6141 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
6143 struct netdev_adjacent
*iter
;
6145 struct net
*net
= dev_net(dev
);
6147 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6148 if (!net_eq(net
, dev_net(iter
->dev
)))
6150 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
6151 &iter
->dev
->adj_list
.lower
);
6152 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6153 &iter
->dev
->adj_list
.lower
);
6156 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6157 if (!net_eq(net
, dev_net(iter
->dev
)))
6159 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
6160 &iter
->dev
->adj_list
.upper
);
6161 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6162 &iter
->dev
->adj_list
.upper
);
6166 void *netdev_lower_dev_get_private(struct net_device
*dev
,
6167 struct net_device
*lower_dev
)
6169 struct netdev_adjacent
*lower
;
6173 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
6177 return lower
->private;
6179 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
6182 int dev_get_nest_level(struct net_device
*dev
)
6184 struct net_device
*lower
= NULL
;
6185 struct list_head
*iter
;
6191 netdev_for_each_lower_dev(dev
, lower
, iter
) {
6192 nest
= dev_get_nest_level(lower
);
6193 if (max_nest
< nest
)
6197 return max_nest
+ 1;
6199 EXPORT_SYMBOL(dev_get_nest_level
);
6202 * netdev_lower_change - Dispatch event about lower device state change
6203 * @lower_dev: device
6204 * @lower_state_info: state to dispatch
6206 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6207 * The caller must hold the RTNL lock.
6209 void netdev_lower_state_changed(struct net_device
*lower_dev
,
6210 void *lower_state_info
)
6212 struct netdev_notifier_changelowerstate_info changelowerstate_info
;
6215 changelowerstate_info
.lower_state_info
= lower_state_info
;
6216 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
, lower_dev
,
6217 &changelowerstate_info
.info
);
6219 EXPORT_SYMBOL(netdev_lower_state_changed
);
6221 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
6223 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6225 if (ops
->ndo_change_rx_flags
)
6226 ops
->ndo_change_rx_flags(dev
, flags
);
6229 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
6231 unsigned int old_flags
= dev
->flags
;
6237 dev
->flags
|= IFF_PROMISC
;
6238 dev
->promiscuity
+= inc
;
6239 if (dev
->promiscuity
== 0) {
6242 * If inc causes overflow, untouch promisc and return error.
6245 dev
->flags
&= ~IFF_PROMISC
;
6247 dev
->promiscuity
-= inc
;
6248 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6253 if (dev
->flags
!= old_flags
) {
6254 pr_info("device %s %s promiscuous mode\n",
6256 dev
->flags
& IFF_PROMISC
? "entered" : "left");
6257 if (audit_enabled
) {
6258 current_uid_gid(&uid
, &gid
);
6259 audit_log(current
->audit_context
, GFP_ATOMIC
,
6260 AUDIT_ANOM_PROMISCUOUS
,
6261 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6262 dev
->name
, (dev
->flags
& IFF_PROMISC
),
6263 (old_flags
& IFF_PROMISC
),
6264 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
6265 from_kuid(&init_user_ns
, uid
),
6266 from_kgid(&init_user_ns
, gid
),
6267 audit_get_sessionid(current
));
6270 dev_change_rx_flags(dev
, IFF_PROMISC
);
6273 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
6278 * dev_set_promiscuity - update promiscuity count on a device
6282 * Add or remove promiscuity from a device. While the count in the device
6283 * remains above zero the interface remains promiscuous. Once it hits zero
6284 * the device reverts back to normal filtering operation. A negative inc
6285 * value is used to drop promiscuity on the device.
6286 * Return 0 if successful or a negative errno code on error.
6288 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
6290 unsigned int old_flags
= dev
->flags
;
6293 err
= __dev_set_promiscuity(dev
, inc
, true);
6296 if (dev
->flags
!= old_flags
)
6297 dev_set_rx_mode(dev
);
6300 EXPORT_SYMBOL(dev_set_promiscuity
);
6302 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
6304 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
6308 dev
->flags
|= IFF_ALLMULTI
;
6309 dev
->allmulti
+= inc
;
6310 if (dev
->allmulti
== 0) {
6313 * If inc causes overflow, untouch allmulti and return error.
6316 dev
->flags
&= ~IFF_ALLMULTI
;
6318 dev
->allmulti
-= inc
;
6319 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6324 if (dev
->flags
^ old_flags
) {
6325 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
6326 dev_set_rx_mode(dev
);
6328 __dev_notify_flags(dev
, old_flags
,
6329 dev
->gflags
^ old_gflags
);
6335 * dev_set_allmulti - update allmulti count on a device
6339 * Add or remove reception of all multicast frames to a device. While the
6340 * count in the device remains above zero the interface remains listening
6341 * to all interfaces. Once it hits zero the device reverts back to normal
6342 * filtering operation. A negative @inc value is used to drop the counter
6343 * when releasing a resource needing all multicasts.
6344 * Return 0 if successful or a negative errno code on error.
6347 int dev_set_allmulti(struct net_device
*dev
, int inc
)
6349 return __dev_set_allmulti(dev
, inc
, true);
6351 EXPORT_SYMBOL(dev_set_allmulti
);
6354 * Upload unicast and multicast address lists to device and
6355 * configure RX filtering. When the device doesn't support unicast
6356 * filtering it is put in promiscuous mode while unicast addresses
6359 void __dev_set_rx_mode(struct net_device
*dev
)
6361 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6363 /* dev_open will call this function so the list will stay sane. */
6364 if (!(dev
->flags
&IFF_UP
))
6367 if (!netif_device_present(dev
))
6370 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
6371 /* Unicast addresses changes may only happen under the rtnl,
6372 * therefore calling __dev_set_promiscuity here is safe.
6374 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
6375 __dev_set_promiscuity(dev
, 1, false);
6376 dev
->uc_promisc
= true;
6377 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
6378 __dev_set_promiscuity(dev
, -1, false);
6379 dev
->uc_promisc
= false;
6383 if (ops
->ndo_set_rx_mode
)
6384 ops
->ndo_set_rx_mode(dev
);
6387 void dev_set_rx_mode(struct net_device
*dev
)
6389 netif_addr_lock_bh(dev
);
6390 __dev_set_rx_mode(dev
);
6391 netif_addr_unlock_bh(dev
);
6395 * dev_get_flags - get flags reported to userspace
6398 * Get the combination of flag bits exported through APIs to userspace.
6400 unsigned int dev_get_flags(const struct net_device
*dev
)
6404 flags
= (dev
->flags
& ~(IFF_PROMISC
|
6409 (dev
->gflags
& (IFF_PROMISC
|
6412 if (netif_running(dev
)) {
6413 if (netif_oper_up(dev
))
6414 flags
|= IFF_RUNNING
;
6415 if (netif_carrier_ok(dev
))
6416 flags
|= IFF_LOWER_UP
;
6417 if (netif_dormant(dev
))
6418 flags
|= IFF_DORMANT
;
6423 EXPORT_SYMBOL(dev_get_flags
);
6425 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
)
6427 unsigned int old_flags
= dev
->flags
;
6433 * Set the flags on our device.
6436 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
6437 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
6439 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
6443 * Load in the correct multicast list now the flags have changed.
6446 if ((old_flags
^ flags
) & IFF_MULTICAST
)
6447 dev_change_rx_flags(dev
, IFF_MULTICAST
);
6449 dev_set_rx_mode(dev
);
6452 * Have we downed the interface. We handle IFF_UP ourselves
6453 * according to user attempts to set it, rather than blindly
6458 if ((old_flags
^ flags
) & IFF_UP
)
6459 ret
= ((old_flags
& IFF_UP
) ? __dev_close
: __dev_open
)(dev
);
6461 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
6462 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
6463 unsigned int old_flags
= dev
->flags
;
6465 dev
->gflags
^= IFF_PROMISC
;
6467 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
6468 if (dev
->flags
!= old_flags
)
6469 dev_set_rx_mode(dev
);
6472 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6473 * is important. Some (broken) drivers set IFF_PROMISC, when
6474 * IFF_ALLMULTI is requested not asking us and not reporting.
6476 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
6477 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
6479 dev
->gflags
^= IFF_ALLMULTI
;
6480 __dev_set_allmulti(dev
, inc
, false);
6486 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
6487 unsigned int gchanges
)
6489 unsigned int changes
= dev
->flags
^ old_flags
;
6492 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
6494 if (changes
& IFF_UP
) {
6495 if (dev
->flags
& IFF_UP
)
6496 call_netdevice_notifiers(NETDEV_UP
, dev
);
6498 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
6501 if (dev
->flags
& IFF_UP
&&
6502 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
6503 struct netdev_notifier_change_info change_info
;
6505 change_info
.flags_changed
= changes
;
6506 call_netdevice_notifiers_info(NETDEV_CHANGE
, dev
,
6512 * dev_change_flags - change device settings
6514 * @flags: device state flags
6516 * Change settings on device based state flags. The flags are
6517 * in the userspace exported format.
6519 int dev_change_flags(struct net_device
*dev
, unsigned int flags
)
6522 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
6524 ret
= __dev_change_flags(dev
, flags
);
6528 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
6529 __dev_notify_flags(dev
, old_flags
, changes
);
6532 EXPORT_SYMBOL(dev_change_flags
);
6534 static int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
6536 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6538 if (ops
->ndo_change_mtu
)
6539 return ops
->ndo_change_mtu(dev
, new_mtu
);
6546 * dev_set_mtu - Change maximum transfer unit
6548 * @new_mtu: new transfer unit
6550 * Change the maximum transfer size of the network device.
6552 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
6556 if (new_mtu
== dev
->mtu
)
6559 /* MTU must be positive, and in range */
6560 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
6561 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6562 dev
->name
, new_mtu
, dev
->min_mtu
);
6566 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
6567 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6568 dev
->name
, new_mtu
, dev
->max_mtu
);
6572 if (!netif_device_present(dev
))
6575 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
6576 err
= notifier_to_errno(err
);
6580 orig_mtu
= dev
->mtu
;
6581 err
= __dev_set_mtu(dev
, new_mtu
);
6584 err
= call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
6585 err
= notifier_to_errno(err
);
6587 /* setting mtu back and notifying everyone again,
6588 * so that they have a chance to revert changes.
6590 __dev_set_mtu(dev
, orig_mtu
);
6591 call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
6596 EXPORT_SYMBOL(dev_set_mtu
);
6599 * dev_set_group - Change group this device belongs to
6601 * @new_group: group this device should belong to
6603 void dev_set_group(struct net_device
*dev
, int new_group
)
6605 dev
->group
= new_group
;
6607 EXPORT_SYMBOL(dev_set_group
);
6610 * dev_set_mac_address - Change Media Access Control Address
6614 * Change the hardware (MAC) address of the device
6616 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
)
6618 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6621 if (!ops
->ndo_set_mac_address
)
6623 if (sa
->sa_family
!= dev
->type
)
6625 if (!netif_device_present(dev
))
6627 err
= ops
->ndo_set_mac_address(dev
, sa
);
6630 dev
->addr_assign_type
= NET_ADDR_SET
;
6631 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
6632 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
6635 EXPORT_SYMBOL(dev_set_mac_address
);
6638 * dev_change_carrier - Change device carrier
6640 * @new_carrier: new value
6642 * Change device carrier
6644 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
6646 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6648 if (!ops
->ndo_change_carrier
)
6650 if (!netif_device_present(dev
))
6652 return ops
->ndo_change_carrier(dev
, new_carrier
);
6654 EXPORT_SYMBOL(dev_change_carrier
);
6657 * dev_get_phys_port_id - Get device physical port ID
6661 * Get device physical port ID
6663 int dev_get_phys_port_id(struct net_device
*dev
,
6664 struct netdev_phys_item_id
*ppid
)
6666 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6668 if (!ops
->ndo_get_phys_port_id
)
6670 return ops
->ndo_get_phys_port_id(dev
, ppid
);
6672 EXPORT_SYMBOL(dev_get_phys_port_id
);
6675 * dev_get_phys_port_name - Get device physical port name
6678 * @len: limit of bytes to copy to name
6680 * Get device physical port name
6682 int dev_get_phys_port_name(struct net_device
*dev
,
6683 char *name
, size_t len
)
6685 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6687 if (!ops
->ndo_get_phys_port_name
)
6689 return ops
->ndo_get_phys_port_name(dev
, name
, len
);
6691 EXPORT_SYMBOL(dev_get_phys_port_name
);
6694 * dev_change_proto_down - update protocol port state information
6696 * @proto_down: new value
6698 * This info can be used by switch drivers to set the phys state of the
6701 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
6703 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6705 if (!ops
->ndo_change_proto_down
)
6707 if (!netif_device_present(dev
))
6709 return ops
->ndo_change_proto_down(dev
, proto_down
);
6711 EXPORT_SYMBOL(dev_change_proto_down
);
6714 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6716 * @fd: new program fd or negative value to clear
6717 * @flags: xdp-related flags
6719 * Set or clear a bpf program for a device
6721 int dev_change_xdp_fd(struct net_device
*dev
, int fd
, u32 flags
)
6723 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6724 struct bpf_prog
*prog
= NULL
;
6725 struct netdev_xdp xdp
;
6733 if (flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) {
6734 memset(&xdp
, 0, sizeof(xdp
));
6735 xdp
.command
= XDP_QUERY_PROG
;
6737 err
= ops
->ndo_xdp(dev
, &xdp
);
6740 if (xdp
.prog_attached
)
6744 prog
= bpf_prog_get_type(fd
, BPF_PROG_TYPE_XDP
);
6746 return PTR_ERR(prog
);
6749 memset(&xdp
, 0, sizeof(xdp
));
6750 xdp
.command
= XDP_SETUP_PROG
;
6753 err
= ops
->ndo_xdp(dev
, &xdp
);
6754 if (err
< 0 && prog
)
6759 EXPORT_SYMBOL(dev_change_xdp_fd
);
6762 * dev_new_index - allocate an ifindex
6763 * @net: the applicable net namespace
6765 * Returns a suitable unique value for a new device interface
6766 * number. The caller must hold the rtnl semaphore or the
6767 * dev_base_lock to be sure it remains unique.
6769 static int dev_new_index(struct net
*net
)
6771 int ifindex
= net
->ifindex
;
6776 if (!__dev_get_by_index(net
, ifindex
))
6777 return net
->ifindex
= ifindex
;
6781 /* Delayed registration/unregisteration */
6782 static LIST_HEAD(net_todo_list
);
6783 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
6785 static void net_set_todo(struct net_device
*dev
)
6787 list_add_tail(&dev
->todo_list
, &net_todo_list
);
6788 dev_net(dev
)->dev_unreg_count
++;
6791 static void rollback_registered_many(struct list_head
*head
)
6793 struct net_device
*dev
, *tmp
;
6794 LIST_HEAD(close_head
);
6796 BUG_ON(dev_boot_phase
);
6799 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
6800 /* Some devices call without registering
6801 * for initialization unwind. Remove those
6802 * devices and proceed with the remaining.
6804 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
6805 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6809 list_del(&dev
->unreg_list
);
6812 dev
->dismantle
= true;
6813 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
6816 /* If device is running, close it first. */
6817 list_for_each_entry(dev
, head
, unreg_list
)
6818 list_add_tail(&dev
->close_list
, &close_head
);
6819 dev_close_many(&close_head
, true);
6821 list_for_each_entry(dev
, head
, unreg_list
) {
6822 /* And unlink it from device chain. */
6823 unlist_netdevice(dev
);
6825 dev
->reg_state
= NETREG_UNREGISTERING
;
6827 flush_all_backlogs();
6831 list_for_each_entry(dev
, head
, unreg_list
) {
6832 struct sk_buff
*skb
= NULL
;
6834 /* Shutdown queueing discipline. */
6838 /* Notify protocols, that we are about to destroy
6839 * this device. They should clean all the things.
6841 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
6843 if (!dev
->rtnl_link_ops
||
6844 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
6845 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U,
6849 * Flush the unicast and multicast chains
6854 if (dev
->netdev_ops
->ndo_uninit
)
6855 dev
->netdev_ops
->ndo_uninit(dev
);
6858 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
6860 /* Notifier chain MUST detach us all upper devices. */
6861 WARN_ON(netdev_has_any_upper_dev(dev
));
6862 WARN_ON(netdev_has_any_lower_dev(dev
));
6864 /* Remove entries from kobject tree */
6865 netdev_unregister_kobject(dev
);
6867 /* Remove XPS queueing entries */
6868 netif_reset_xps_queues_gt(dev
, 0);
6874 list_for_each_entry(dev
, head
, unreg_list
)
6878 static void rollback_registered(struct net_device
*dev
)
6882 list_add(&dev
->unreg_list
, &single
);
6883 rollback_registered_many(&single
);
6887 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
6888 struct net_device
*upper
, netdev_features_t features
)
6890 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
6891 netdev_features_t feature
;
6894 for_each_netdev_feature(&upper_disables
, feature_bit
) {
6895 feature
= __NETIF_F_BIT(feature_bit
);
6896 if (!(upper
->wanted_features
& feature
)
6897 && (features
& feature
)) {
6898 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
6899 &feature
, upper
->name
);
6900 features
&= ~feature
;
6907 static void netdev_sync_lower_features(struct net_device
*upper
,
6908 struct net_device
*lower
, netdev_features_t features
)
6910 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
6911 netdev_features_t feature
;
6914 for_each_netdev_feature(&upper_disables
, feature_bit
) {
6915 feature
= __NETIF_F_BIT(feature_bit
);
6916 if (!(features
& feature
) && (lower
->features
& feature
)) {
6917 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
6918 &feature
, lower
->name
);
6919 lower
->wanted_features
&= ~feature
;
6920 netdev_update_features(lower
);
6922 if (unlikely(lower
->features
& feature
))
6923 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
6924 &feature
, lower
->name
);
6929 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
6930 netdev_features_t features
)
6932 /* Fix illegal checksum combinations */
6933 if ((features
& NETIF_F_HW_CSUM
) &&
6934 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
6935 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
6936 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
6939 /* TSO requires that SG is present as well. */
6940 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
6941 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
6942 features
&= ~NETIF_F_ALL_TSO
;
6945 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
6946 !(features
& NETIF_F_IP_CSUM
)) {
6947 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
6948 features
&= ~NETIF_F_TSO
;
6949 features
&= ~NETIF_F_TSO_ECN
;
6952 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
6953 !(features
& NETIF_F_IPV6_CSUM
)) {
6954 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
6955 features
&= ~NETIF_F_TSO6
;
6958 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6959 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
6960 features
&= ~NETIF_F_TSO_MANGLEID
;
6962 /* TSO ECN requires that TSO is present as well. */
6963 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
6964 features
&= ~NETIF_F_TSO_ECN
;
6966 /* Software GSO depends on SG. */
6967 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
6968 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
6969 features
&= ~NETIF_F_GSO
;
6972 /* UFO needs SG and checksumming */
6973 if (features
& NETIF_F_UFO
) {
6974 /* maybe split UFO into V4 and V6? */
6975 if (!(features
& NETIF_F_HW_CSUM
) &&
6976 ((features
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
)) !=
6977 (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
))) {
6979 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6980 features
&= ~NETIF_F_UFO
;
6983 if (!(features
& NETIF_F_SG
)) {
6985 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6986 features
&= ~NETIF_F_UFO
;
6990 /* GSO partial features require GSO partial be set */
6991 if ((features
& dev
->gso_partial_features
) &&
6992 !(features
& NETIF_F_GSO_PARTIAL
)) {
6994 "Dropping partially supported GSO features since no GSO partial.\n");
6995 features
&= ~dev
->gso_partial_features
;
7001 int __netdev_update_features(struct net_device
*dev
)
7003 struct net_device
*upper
, *lower
;
7004 netdev_features_t features
;
7005 struct list_head
*iter
;
7010 features
= netdev_get_wanted_features(dev
);
7012 if (dev
->netdev_ops
->ndo_fix_features
)
7013 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
7015 /* driver might be less strict about feature dependencies */
7016 features
= netdev_fix_features(dev
, features
);
7018 /* some features can't be enabled if they're off an an upper device */
7019 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
7020 features
= netdev_sync_upper_features(dev
, upper
, features
);
7022 if (dev
->features
== features
)
7025 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
7026 &dev
->features
, &features
);
7028 if (dev
->netdev_ops
->ndo_set_features
)
7029 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
7033 if (unlikely(err
< 0)) {
7035 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7036 err
, &features
, &dev
->features
);
7037 /* return non-0 since some features might have changed and
7038 * it's better to fire a spurious notification than miss it
7044 /* some features must be disabled on lower devices when disabled
7045 * on an upper device (think: bonding master or bridge)
7047 netdev_for_each_lower_dev(dev
, lower
, iter
)
7048 netdev_sync_lower_features(dev
, lower
, features
);
7051 dev
->features
= features
;
7053 return err
< 0 ? 0 : 1;
7057 * netdev_update_features - recalculate device features
7058 * @dev: the device to check
7060 * Recalculate dev->features set and send notifications if it
7061 * has changed. Should be called after driver or hardware dependent
7062 * conditions might have changed that influence the features.
7064 void netdev_update_features(struct net_device
*dev
)
7066 if (__netdev_update_features(dev
))
7067 netdev_features_change(dev
);
7069 EXPORT_SYMBOL(netdev_update_features
);
7072 * netdev_change_features - recalculate device features
7073 * @dev: the device to check
7075 * Recalculate dev->features set and send notifications even
7076 * if they have not changed. Should be called instead of
7077 * netdev_update_features() if also dev->vlan_features might
7078 * have changed to allow the changes to be propagated to stacked
7081 void netdev_change_features(struct net_device
*dev
)
7083 __netdev_update_features(dev
);
7084 netdev_features_change(dev
);
7086 EXPORT_SYMBOL(netdev_change_features
);
7089 * netif_stacked_transfer_operstate - transfer operstate
7090 * @rootdev: the root or lower level device to transfer state from
7091 * @dev: the device to transfer operstate to
7093 * Transfer operational state from root to device. This is normally
7094 * called when a stacking relationship exists between the root
7095 * device and the device(a leaf device).
7097 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
7098 struct net_device
*dev
)
7100 if (rootdev
->operstate
== IF_OPER_DORMANT
)
7101 netif_dormant_on(dev
);
7103 netif_dormant_off(dev
);
7105 if (netif_carrier_ok(rootdev
)) {
7106 if (!netif_carrier_ok(dev
))
7107 netif_carrier_on(dev
);
7109 if (netif_carrier_ok(dev
))
7110 netif_carrier_off(dev
);
7113 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
7116 static int netif_alloc_rx_queues(struct net_device
*dev
)
7118 unsigned int i
, count
= dev
->num_rx_queues
;
7119 struct netdev_rx_queue
*rx
;
7120 size_t sz
= count
* sizeof(*rx
);
7124 rx
= kzalloc(sz
, GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
7132 for (i
= 0; i
< count
; i
++)
7138 static void netdev_init_one_queue(struct net_device
*dev
,
7139 struct netdev_queue
*queue
, void *_unused
)
7141 /* Initialize queue lock */
7142 spin_lock_init(&queue
->_xmit_lock
);
7143 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
7144 queue
->xmit_lock_owner
= -1;
7145 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
7148 dql_init(&queue
->dql
, HZ
);
7152 static void netif_free_tx_queues(struct net_device
*dev
)
7157 static int netif_alloc_netdev_queues(struct net_device
*dev
)
7159 unsigned int count
= dev
->num_tx_queues
;
7160 struct netdev_queue
*tx
;
7161 size_t sz
= count
* sizeof(*tx
);
7163 if (count
< 1 || count
> 0xffff)
7166 tx
= kzalloc(sz
, GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
7174 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
7175 spin_lock_init(&dev
->tx_global_lock
);
7180 void netif_tx_stop_all_queues(struct net_device
*dev
)
7184 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
7185 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
7187 netif_tx_stop_queue(txq
);
7190 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
7193 * register_netdevice - register a network device
7194 * @dev: device to register
7196 * Take a completed network device structure and add it to the kernel
7197 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7198 * chain. 0 is returned on success. A negative errno code is returned
7199 * on a failure to set up the device, or if the name is a duplicate.
7201 * Callers must hold the rtnl semaphore. You may want
7202 * register_netdev() instead of this.
7205 * The locking appears insufficient to guarantee two parallel registers
7206 * will not get the same name.
7209 int register_netdevice(struct net_device
*dev
)
7212 struct net
*net
= dev_net(dev
);
7214 BUG_ON(dev_boot_phase
);
7219 /* When net_device's are persistent, this will be fatal. */
7220 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
7223 spin_lock_init(&dev
->addr_list_lock
);
7224 netdev_set_addr_lockdep_class(dev
);
7226 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
7230 /* Init, if this function is available */
7231 if (dev
->netdev_ops
->ndo_init
) {
7232 ret
= dev
->netdev_ops
->ndo_init(dev
);
7240 if (((dev
->hw_features
| dev
->features
) &
7241 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
7242 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
7243 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
7244 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
7251 dev
->ifindex
= dev_new_index(net
);
7252 else if (__dev_get_by_index(net
, dev
->ifindex
))
7255 /* Transfer changeable features to wanted_features and enable
7256 * software offloads (GSO and GRO).
7258 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
7259 dev
->features
|= NETIF_F_SOFT_FEATURES
;
7260 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
7262 if (!(dev
->flags
& IFF_LOOPBACK
))
7263 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
7265 /* If IPv4 TCP segmentation offload is supported we should also
7266 * allow the device to enable segmenting the frame with the option
7267 * of ignoring a static IP ID value. This doesn't enable the
7268 * feature itself but allows the user to enable it later.
7270 if (dev
->hw_features
& NETIF_F_TSO
)
7271 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
7272 if (dev
->vlan_features
& NETIF_F_TSO
)
7273 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
7274 if (dev
->mpls_features
& NETIF_F_TSO
)
7275 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
7276 if (dev
->hw_enc_features
& NETIF_F_TSO
)
7277 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
7279 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7281 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
7283 /* Make NETIF_F_SG inheritable to tunnel devices.
7285 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
7287 /* Make NETIF_F_SG inheritable to MPLS.
7289 dev
->mpls_features
|= NETIF_F_SG
;
7291 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
7292 ret
= notifier_to_errno(ret
);
7296 ret
= netdev_register_kobject(dev
);
7299 dev
->reg_state
= NETREG_REGISTERED
;
7301 __netdev_update_features(dev
);
7304 * Default initial state at registry is that the
7305 * device is present.
7308 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
7310 linkwatch_init_dev(dev
);
7312 dev_init_scheduler(dev
);
7314 list_netdevice(dev
);
7315 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7317 /* If the device has permanent device address, driver should
7318 * set dev_addr and also addr_assign_type should be set to
7319 * NET_ADDR_PERM (default value).
7321 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
7322 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
7324 /* Notify protocols, that a new device appeared. */
7325 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
7326 ret
= notifier_to_errno(ret
);
7328 rollback_registered(dev
);
7329 dev
->reg_state
= NETREG_UNREGISTERED
;
7332 * Prevent userspace races by waiting until the network
7333 * device is fully setup before sending notifications.
7335 if (!dev
->rtnl_link_ops
||
7336 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
7337 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
7343 if (dev
->netdev_ops
->ndo_uninit
)
7344 dev
->netdev_ops
->ndo_uninit(dev
);
7347 EXPORT_SYMBOL(register_netdevice
);
7350 * init_dummy_netdev - init a dummy network device for NAPI
7351 * @dev: device to init
7353 * This takes a network device structure and initialize the minimum
7354 * amount of fields so it can be used to schedule NAPI polls without
7355 * registering a full blown interface. This is to be used by drivers
7356 * that need to tie several hardware interfaces to a single NAPI
7357 * poll scheduler due to HW limitations.
7359 int init_dummy_netdev(struct net_device
*dev
)
7361 /* Clear everything. Note we don't initialize spinlocks
7362 * are they aren't supposed to be taken by any of the
7363 * NAPI code and this dummy netdev is supposed to be
7364 * only ever used for NAPI polls
7366 memset(dev
, 0, sizeof(struct net_device
));
7368 /* make sure we BUG if trying to hit standard
7369 * register/unregister code path
7371 dev
->reg_state
= NETREG_DUMMY
;
7373 /* NAPI wants this */
7374 INIT_LIST_HEAD(&dev
->napi_list
);
7376 /* a dummy interface is started by default */
7377 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
7378 set_bit(__LINK_STATE_START
, &dev
->state
);
7380 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7381 * because users of this 'device' dont need to change
7387 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
7391 * register_netdev - register a network device
7392 * @dev: device to register
7394 * Take a completed network device structure and add it to the kernel
7395 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7396 * chain. 0 is returned on success. A negative errno code is returned
7397 * on a failure to set up the device, or if the name is a duplicate.
7399 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7400 * and expands the device name if you passed a format string to
7403 int register_netdev(struct net_device
*dev
)
7408 err
= register_netdevice(dev
);
7412 EXPORT_SYMBOL(register_netdev
);
7414 int netdev_refcnt_read(const struct net_device
*dev
)
7418 for_each_possible_cpu(i
)
7419 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
7422 EXPORT_SYMBOL(netdev_refcnt_read
);
7425 * netdev_wait_allrefs - wait until all references are gone.
7426 * @dev: target net_device
7428 * This is called when unregistering network devices.
7430 * Any protocol or device that holds a reference should register
7431 * for netdevice notification, and cleanup and put back the
7432 * reference if they receive an UNREGISTER event.
7433 * We can get stuck here if buggy protocols don't correctly
7436 static void netdev_wait_allrefs(struct net_device
*dev
)
7438 unsigned long rebroadcast_time
, warning_time
;
7441 linkwatch_forget_dev(dev
);
7443 rebroadcast_time
= warning_time
= jiffies
;
7444 refcnt
= netdev_refcnt_read(dev
);
7446 while (refcnt
!= 0) {
7447 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
7450 /* Rebroadcast unregister notification */
7451 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
7457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL
, dev
);
7458 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
7460 /* We must not have linkwatch events
7461 * pending on unregister. If this
7462 * happens, we simply run the queue
7463 * unscheduled, resulting in a noop
7466 linkwatch_run_queue();
7471 rebroadcast_time
= jiffies
;
7476 refcnt
= netdev_refcnt_read(dev
);
7478 if (time_after(jiffies
, warning_time
+ 10 * HZ
)) {
7479 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7481 warning_time
= jiffies
;
7490 * register_netdevice(x1);
7491 * register_netdevice(x2);
7493 * unregister_netdevice(y1);
7494 * unregister_netdevice(y2);
7500 * We are invoked by rtnl_unlock().
7501 * This allows us to deal with problems:
7502 * 1) We can delete sysfs objects which invoke hotplug
7503 * without deadlocking with linkwatch via keventd.
7504 * 2) Since we run with the RTNL semaphore not held, we can sleep
7505 * safely in order to wait for the netdev refcnt to drop to zero.
7507 * We must not return until all unregister events added during
7508 * the interval the lock was held have been completed.
7510 void netdev_run_todo(void)
7512 struct list_head list
;
7514 /* Snapshot list, allow later requests */
7515 list_replace_init(&net_todo_list
, &list
);
7520 /* Wait for rcu callbacks to finish before next phase */
7521 if (!list_empty(&list
))
7524 while (!list_empty(&list
)) {
7525 struct net_device
*dev
7526 = list_first_entry(&list
, struct net_device
, todo_list
);
7527 list_del(&dev
->todo_list
);
7530 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL
, dev
);
7533 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
7534 pr_err("network todo '%s' but state %d\n",
7535 dev
->name
, dev
->reg_state
);
7540 dev
->reg_state
= NETREG_UNREGISTERED
;
7542 netdev_wait_allrefs(dev
);
7545 BUG_ON(netdev_refcnt_read(dev
));
7546 BUG_ON(!list_empty(&dev
->ptype_all
));
7547 BUG_ON(!list_empty(&dev
->ptype_specific
));
7548 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
7549 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
7550 WARN_ON(dev
->dn_ptr
);
7552 if (dev
->destructor
)
7553 dev
->destructor(dev
);
7555 /* Report a network device has been unregistered */
7557 dev_net(dev
)->dev_unreg_count
--;
7559 wake_up(&netdev_unregistering_wq
);
7561 /* Free network device */
7562 kobject_put(&dev
->dev
.kobj
);
7566 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7567 * all the same fields in the same order as net_device_stats, with only
7568 * the type differing, but rtnl_link_stats64 may have additional fields
7569 * at the end for newer counters.
7571 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
7572 const struct net_device_stats
*netdev_stats
)
7574 #if BITS_PER_LONG == 64
7575 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
7576 memcpy(stats64
, netdev_stats
, sizeof(*stats64
));
7577 /* zero out counters that only exist in rtnl_link_stats64 */
7578 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
7579 sizeof(*stats64
) - sizeof(*netdev_stats
));
7581 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
7582 const unsigned long *src
= (const unsigned long *)netdev_stats
;
7583 u64
*dst
= (u64
*)stats64
;
7585 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
7586 for (i
= 0; i
< n
; i
++)
7588 /* zero out counters that only exist in rtnl_link_stats64 */
7589 memset((char *)stats64
+ n
* sizeof(u64
), 0,
7590 sizeof(*stats64
) - n
* sizeof(u64
));
7593 EXPORT_SYMBOL(netdev_stats_to_stats64
);
7596 * dev_get_stats - get network device statistics
7597 * @dev: device to get statistics from
7598 * @storage: place to store stats
7600 * Get network statistics from device. Return @storage.
7601 * The device driver may provide its own method by setting
7602 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7603 * otherwise the internal statistics structure is used.
7605 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
7606 struct rtnl_link_stats64
*storage
)
7608 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7610 if (ops
->ndo_get_stats64
) {
7611 memset(storage
, 0, sizeof(*storage
));
7612 ops
->ndo_get_stats64(dev
, storage
);
7613 } else if (ops
->ndo_get_stats
) {
7614 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
7616 netdev_stats_to_stats64(storage
, &dev
->stats
);
7618 storage
->rx_dropped
+= atomic_long_read(&dev
->rx_dropped
);
7619 storage
->tx_dropped
+= atomic_long_read(&dev
->tx_dropped
);
7620 storage
->rx_nohandler
+= atomic_long_read(&dev
->rx_nohandler
);
7623 EXPORT_SYMBOL(dev_get_stats
);
7625 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
7627 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
7629 #ifdef CONFIG_NET_CLS_ACT
7632 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
7635 netdev_init_one_queue(dev
, queue
, NULL
);
7636 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
7637 queue
->qdisc_sleeping
= &noop_qdisc
;
7638 rcu_assign_pointer(dev
->ingress_queue
, queue
);
7643 static const struct ethtool_ops default_ethtool_ops
;
7645 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
7646 const struct ethtool_ops
*ops
)
7648 if (dev
->ethtool_ops
== &default_ethtool_ops
)
7649 dev
->ethtool_ops
= ops
;
7651 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
7653 void netdev_freemem(struct net_device
*dev
)
7655 char *addr
= (char *)dev
- dev
->padded
;
7661 * alloc_netdev_mqs - allocate network device
7662 * @sizeof_priv: size of private data to allocate space for
7663 * @name: device name format string
7664 * @name_assign_type: origin of device name
7665 * @setup: callback to initialize device
7666 * @txqs: the number of TX subqueues to allocate
7667 * @rxqs: the number of RX subqueues to allocate
7669 * Allocates a struct net_device with private data area for driver use
7670 * and performs basic initialization. Also allocates subqueue structs
7671 * for each queue on the device.
7673 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
7674 unsigned char name_assign_type
,
7675 void (*setup
)(struct net_device
*),
7676 unsigned int txqs
, unsigned int rxqs
)
7678 struct net_device
*dev
;
7680 struct net_device
*p
;
7682 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
7685 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7691 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7696 alloc_size
= sizeof(struct net_device
);
7698 /* ensure 32-byte alignment of private area */
7699 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
7700 alloc_size
+= sizeof_priv
;
7702 /* ensure 32-byte alignment of whole construct */
7703 alloc_size
+= NETDEV_ALIGN
- 1;
7705 p
= kzalloc(alloc_size
, GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
7707 p
= vzalloc(alloc_size
);
7711 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
7712 dev
->padded
= (char *)dev
- (char *)p
;
7714 dev
->pcpu_refcnt
= alloc_percpu(int);
7715 if (!dev
->pcpu_refcnt
)
7718 if (dev_addr_init(dev
))
7724 dev_net_set(dev
, &init_net
);
7726 dev
->gso_max_size
= GSO_MAX_SIZE
;
7727 dev
->gso_max_segs
= GSO_MAX_SEGS
;
7729 INIT_LIST_HEAD(&dev
->napi_list
);
7730 INIT_LIST_HEAD(&dev
->unreg_list
);
7731 INIT_LIST_HEAD(&dev
->close_list
);
7732 INIT_LIST_HEAD(&dev
->link_watch_list
);
7733 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
7734 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
7735 INIT_LIST_HEAD(&dev
->ptype_all
);
7736 INIT_LIST_HEAD(&dev
->ptype_specific
);
7737 #ifdef CONFIG_NET_SCHED
7738 hash_init(dev
->qdisc_hash
);
7740 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
7743 if (!dev
->tx_queue_len
) {
7744 dev
->priv_flags
|= IFF_NO_QUEUE
;
7745 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
7748 dev
->num_tx_queues
= txqs
;
7749 dev
->real_num_tx_queues
= txqs
;
7750 if (netif_alloc_netdev_queues(dev
))
7754 dev
->num_rx_queues
= rxqs
;
7755 dev
->real_num_rx_queues
= rxqs
;
7756 if (netif_alloc_rx_queues(dev
))
7760 strcpy(dev
->name
, name
);
7761 dev
->name_assign_type
= name_assign_type
;
7762 dev
->group
= INIT_NETDEV_GROUP
;
7763 if (!dev
->ethtool_ops
)
7764 dev
->ethtool_ops
= &default_ethtool_ops
;
7766 nf_hook_ingress_init(dev
);
7775 free_percpu(dev
->pcpu_refcnt
);
7777 netdev_freemem(dev
);
7780 EXPORT_SYMBOL(alloc_netdev_mqs
);
7783 * free_netdev - free network device
7786 * This function does the last stage of destroying an allocated device
7787 * interface. The reference to the device object is released. If this
7788 * is the last reference then it will be freed.Must be called in process
7791 void free_netdev(struct net_device
*dev
)
7793 struct napi_struct
*p
, *n
;
7796 netif_free_tx_queues(dev
);
7801 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
7803 /* Flush device addresses */
7804 dev_addr_flush(dev
);
7806 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
7809 free_percpu(dev
->pcpu_refcnt
);
7810 dev
->pcpu_refcnt
= NULL
;
7812 /* Compatibility with error handling in drivers */
7813 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
7814 netdev_freemem(dev
);
7818 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
7819 dev
->reg_state
= NETREG_RELEASED
;
7821 /* will free via device release */
7822 put_device(&dev
->dev
);
7824 EXPORT_SYMBOL(free_netdev
);
7827 * synchronize_net - Synchronize with packet receive processing
7829 * Wait for packets currently being received to be done.
7830 * Does not block later packets from starting.
7832 void synchronize_net(void)
7835 if (rtnl_is_locked())
7836 synchronize_rcu_expedited();
7840 EXPORT_SYMBOL(synchronize_net
);
7843 * unregister_netdevice_queue - remove device from the kernel
7847 * This function shuts down a device interface and removes it
7848 * from the kernel tables.
7849 * If head not NULL, device is queued to be unregistered later.
7851 * Callers must hold the rtnl semaphore. You may want
7852 * unregister_netdev() instead of this.
7855 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
7860 list_move_tail(&dev
->unreg_list
, head
);
7862 rollback_registered(dev
);
7863 /* Finish processing unregister after unlock */
7867 EXPORT_SYMBOL(unregister_netdevice_queue
);
7870 * unregister_netdevice_many - unregister many devices
7871 * @head: list of devices
7873 * Note: As most callers use a stack allocated list_head,
7874 * we force a list_del() to make sure stack wont be corrupted later.
7876 void unregister_netdevice_many(struct list_head
*head
)
7878 struct net_device
*dev
;
7880 if (!list_empty(head
)) {
7881 rollback_registered_many(head
);
7882 list_for_each_entry(dev
, head
, unreg_list
)
7887 EXPORT_SYMBOL(unregister_netdevice_many
);
7890 * unregister_netdev - remove device from the kernel
7893 * This function shuts down a device interface and removes it
7894 * from the kernel tables.
7896 * This is just a wrapper for unregister_netdevice that takes
7897 * the rtnl semaphore. In general you want to use this and not
7898 * unregister_netdevice.
7900 void unregister_netdev(struct net_device
*dev
)
7903 unregister_netdevice(dev
);
7906 EXPORT_SYMBOL(unregister_netdev
);
7909 * dev_change_net_namespace - move device to different nethost namespace
7911 * @net: network namespace
7912 * @pat: If not NULL name pattern to try if the current device name
7913 * is already taken in the destination network namespace.
7915 * This function shuts down a device interface and moves it
7916 * to a new network namespace. On success 0 is returned, on
7917 * a failure a netagive errno code is returned.
7919 * Callers must hold the rtnl semaphore.
7922 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
7928 /* Don't allow namespace local devices to be moved. */
7930 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
7933 /* Ensure the device has been registrered */
7934 if (dev
->reg_state
!= NETREG_REGISTERED
)
7937 /* Get out if there is nothing todo */
7939 if (net_eq(dev_net(dev
), net
))
7942 /* Pick the destination device name, and ensure
7943 * we can use it in the destination network namespace.
7946 if (__dev_get_by_name(net
, dev
->name
)) {
7947 /* We get here if we can't use the current device name */
7950 if (dev_get_valid_name(net
, dev
, pat
) < 0)
7955 * And now a mini version of register_netdevice unregister_netdevice.
7958 /* If device is running close it first. */
7961 /* And unlink it from device chain */
7963 unlist_netdevice(dev
);
7967 /* Shutdown queueing discipline. */
7970 /* Notify protocols, that we are about to destroy
7971 * this device. They should clean all the things.
7973 * Note that dev->reg_state stays at NETREG_REGISTERED.
7974 * This is wanted because this way 8021q and macvlan know
7975 * the device is just moving and can keep their slaves up.
7977 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
7979 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL
, dev
);
7980 rtmsg_ifinfo(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
);
7983 * Flush the unicast and multicast chains
7988 /* Send a netdev-removed uevent to the old namespace */
7989 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
7990 netdev_adjacent_del_links(dev
);
7992 /* Actually switch the network namespace */
7993 dev_net_set(dev
, net
);
7995 /* If there is an ifindex conflict assign a new one */
7996 if (__dev_get_by_index(net
, dev
->ifindex
))
7997 dev
->ifindex
= dev_new_index(net
);
7999 /* Send a netdev-add uevent to the new namespace */
8000 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
8001 netdev_adjacent_add_links(dev
);
8003 /* Fixup kobjects */
8004 err
= device_rename(&dev
->dev
, dev
->name
);
8007 /* Add the device back in the hashes */
8008 list_netdevice(dev
);
8010 /* Notify protocols, that a new device appeared. */
8011 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8014 * Prevent userspace races by waiting until the network
8015 * device is fully setup before sending notifications.
8017 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8024 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
8026 static int dev_cpu_dead(unsigned int oldcpu
)
8028 struct sk_buff
**list_skb
;
8029 struct sk_buff
*skb
;
8031 struct softnet_data
*sd
, *oldsd
;
8033 local_irq_disable();
8034 cpu
= smp_processor_id();
8035 sd
= &per_cpu(softnet_data
, cpu
);
8036 oldsd
= &per_cpu(softnet_data
, oldcpu
);
8038 /* Find end of our completion_queue. */
8039 list_skb
= &sd
->completion_queue
;
8041 list_skb
= &(*list_skb
)->next
;
8042 /* Append completion queue from offline CPU. */
8043 *list_skb
= oldsd
->completion_queue
;
8044 oldsd
->completion_queue
= NULL
;
8046 /* Append output queue from offline CPU. */
8047 if (oldsd
->output_queue
) {
8048 *sd
->output_queue_tailp
= oldsd
->output_queue
;
8049 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
8050 oldsd
->output_queue
= NULL
;
8051 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
8053 /* Append NAPI poll list from offline CPU, with one exception :
8054 * process_backlog() must be called by cpu owning percpu backlog.
8055 * We properly handle process_queue & input_pkt_queue later.
8057 while (!list_empty(&oldsd
->poll_list
)) {
8058 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
8062 list_del_init(&napi
->poll_list
);
8063 if (napi
->poll
== process_backlog
)
8066 ____napi_schedule(sd
, napi
);
8069 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
8072 /* Process offline CPU's input_pkt_queue */
8073 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
8075 input_queue_head_incr(oldsd
);
8077 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
8079 input_queue_head_incr(oldsd
);
8086 * netdev_increment_features - increment feature set by one
8087 * @all: current feature set
8088 * @one: new feature set
8089 * @mask: mask feature set
8091 * Computes a new feature set after adding a device with feature set
8092 * @one to the master device with current feature set @all. Will not
8093 * enable anything that is off in @mask. Returns the new feature set.
8095 netdev_features_t
netdev_increment_features(netdev_features_t all
,
8096 netdev_features_t one
, netdev_features_t mask
)
8098 if (mask
& NETIF_F_HW_CSUM
)
8099 mask
|= NETIF_F_CSUM_MASK
;
8100 mask
|= NETIF_F_VLAN_CHALLENGED
;
8102 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
8103 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
8105 /* If one device supports hw checksumming, set for all. */
8106 if (all
& NETIF_F_HW_CSUM
)
8107 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
8111 EXPORT_SYMBOL(netdev_increment_features
);
8113 static struct hlist_head
* __net_init
netdev_create_hash(void)
8116 struct hlist_head
*hash
;
8118 hash
= kmalloc(sizeof(*hash
) * NETDEV_HASHENTRIES
, GFP_KERNEL
);
8120 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
8121 INIT_HLIST_HEAD(&hash
[i
]);
8126 /* Initialize per network namespace state */
8127 static int __net_init
netdev_init(struct net
*net
)
8129 if (net
!= &init_net
)
8130 INIT_LIST_HEAD(&net
->dev_base_head
);
8132 net
->dev_name_head
= netdev_create_hash();
8133 if (net
->dev_name_head
== NULL
)
8136 net
->dev_index_head
= netdev_create_hash();
8137 if (net
->dev_index_head
== NULL
)
8143 kfree(net
->dev_name_head
);
8149 * netdev_drivername - network driver for the device
8150 * @dev: network device
8152 * Determine network driver for device.
8154 const char *netdev_drivername(const struct net_device
*dev
)
8156 const struct device_driver
*driver
;
8157 const struct device
*parent
;
8158 const char *empty
= "";
8160 parent
= dev
->dev
.parent
;
8164 driver
= parent
->driver
;
8165 if (driver
&& driver
->name
)
8166 return driver
->name
;
8170 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
8171 struct va_format
*vaf
)
8173 if (dev
&& dev
->dev
.parent
) {
8174 dev_printk_emit(level
[1] - '0',
8177 dev_driver_string(dev
->dev
.parent
),
8178 dev_name(dev
->dev
.parent
),
8179 netdev_name(dev
), netdev_reg_state(dev
),
8182 printk("%s%s%s: %pV",
8183 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
8185 printk("%s(NULL net_device): %pV", level
, vaf
);
8189 void netdev_printk(const char *level
, const struct net_device
*dev
,
8190 const char *format
, ...)
8192 struct va_format vaf
;
8195 va_start(args
, format
);
8200 __netdev_printk(level
, dev
, &vaf
);
8204 EXPORT_SYMBOL(netdev_printk
);
8206 #define define_netdev_printk_level(func, level) \
8207 void func(const struct net_device *dev, const char *fmt, ...) \
8209 struct va_format vaf; \
8212 va_start(args, fmt); \
8217 __netdev_printk(level, dev, &vaf); \
8221 EXPORT_SYMBOL(func);
8223 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
8224 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
8225 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
8226 define_netdev_printk_level(netdev_err
, KERN_ERR
);
8227 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
8228 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
8229 define_netdev_printk_level(netdev_info
, KERN_INFO
);
8231 static void __net_exit
netdev_exit(struct net
*net
)
8233 kfree(net
->dev_name_head
);
8234 kfree(net
->dev_index_head
);
8237 static struct pernet_operations __net_initdata netdev_net_ops
= {
8238 .init
= netdev_init
,
8239 .exit
= netdev_exit
,
8242 static void __net_exit
default_device_exit(struct net
*net
)
8244 struct net_device
*dev
, *aux
;
8246 * Push all migratable network devices back to the
8247 * initial network namespace
8250 for_each_netdev_safe(net
, dev
, aux
) {
8252 char fb_name
[IFNAMSIZ
];
8254 /* Ignore unmoveable devices (i.e. loopback) */
8255 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
8258 /* Leave virtual devices for the generic cleanup */
8259 if (dev
->rtnl_link_ops
)
8262 /* Push remaining network devices to init_net */
8263 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
8264 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
8266 pr_emerg("%s: failed to move %s to init_net: %d\n",
8267 __func__
, dev
->name
, err
);
8274 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
8276 /* Return with the rtnl_lock held when there are no network
8277 * devices unregistering in any network namespace in net_list.
8281 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
8283 add_wait_queue(&netdev_unregistering_wq
, &wait
);
8285 unregistering
= false;
8287 list_for_each_entry(net
, net_list
, exit_list
) {
8288 if (net
->dev_unreg_count
> 0) {
8289 unregistering
= true;
8297 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
8299 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
8302 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
8304 /* At exit all network devices most be removed from a network
8305 * namespace. Do this in the reverse order of registration.
8306 * Do this across as many network namespaces as possible to
8307 * improve batching efficiency.
8309 struct net_device
*dev
;
8311 LIST_HEAD(dev_kill_list
);
8313 /* To prevent network device cleanup code from dereferencing
8314 * loopback devices or network devices that have been freed
8315 * wait here for all pending unregistrations to complete,
8316 * before unregistring the loopback device and allowing the
8317 * network namespace be freed.
8319 * The netdev todo list containing all network devices
8320 * unregistrations that happen in default_device_exit_batch
8321 * will run in the rtnl_unlock() at the end of
8322 * default_device_exit_batch.
8324 rtnl_lock_unregistering(net_list
);
8325 list_for_each_entry(net
, net_list
, exit_list
) {
8326 for_each_netdev_reverse(net
, dev
) {
8327 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
8328 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
8330 unregister_netdevice_queue(dev
, &dev_kill_list
);
8333 unregister_netdevice_many(&dev_kill_list
);
8337 static struct pernet_operations __net_initdata default_device_ops
= {
8338 .exit
= default_device_exit
,
8339 .exit_batch
= default_device_exit_batch
,
8343 * Initialize the DEV module. At boot time this walks the device list and
8344 * unhooks any devices that fail to initialise (normally hardware not
8345 * present) and leaves us with a valid list of present and active devices.
8350 * This is called single threaded during boot, so no need
8351 * to take the rtnl semaphore.
8353 static int __init
net_dev_init(void)
8355 int i
, rc
= -ENOMEM
;
8357 BUG_ON(!dev_boot_phase
);
8359 if (dev_proc_init())
8362 if (netdev_kobject_init())
8365 INIT_LIST_HEAD(&ptype_all
);
8366 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
8367 INIT_LIST_HEAD(&ptype_base
[i
]);
8369 INIT_LIST_HEAD(&offload_base
);
8371 if (register_pernet_subsys(&netdev_net_ops
))
8375 * Initialise the packet receive queues.
8378 for_each_possible_cpu(i
) {
8379 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
8380 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
8382 INIT_WORK(flush
, flush_backlog
);
8384 skb_queue_head_init(&sd
->input_pkt_queue
);
8385 skb_queue_head_init(&sd
->process_queue
);
8386 INIT_LIST_HEAD(&sd
->poll_list
);
8387 sd
->output_queue_tailp
= &sd
->output_queue
;
8389 sd
->csd
.func
= rps_trigger_softirq
;
8394 sd
->backlog
.poll
= process_backlog
;
8395 sd
->backlog
.weight
= weight_p
;
8400 /* The loopback device is special if any other network devices
8401 * is present in a network namespace the loopback device must
8402 * be present. Since we now dynamically allocate and free the
8403 * loopback device ensure this invariant is maintained by
8404 * keeping the loopback device as the first device on the
8405 * list of network devices. Ensuring the loopback devices
8406 * is the first device that appears and the last network device
8409 if (register_pernet_device(&loopback_net_ops
))
8412 if (register_pernet_device(&default_device_ops
))
8415 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
8416 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
8418 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
8419 NULL
, dev_cpu_dead
);
8427 subsys_initcall(net_dev_init
);