2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/sysctl.h>
24 #include <linux/workqueue.h>
26 #include <net/inet_common.h>
30 #define SYNC_INIT 0 /* let the user enable it */
35 int sysctl_tcp_syncookies __read_mostly
= SYNC_INIT
;
36 EXPORT_SYMBOL(sysctl_tcp_syncookies
);
38 int sysctl_tcp_abort_on_overflow __read_mostly
;
40 struct inet_timewait_death_row tcp_death_row
= {
41 .sysctl_max_tw_buckets
= NR_FILE
* 2,
42 .period
= TCP_TIMEWAIT_LEN
/ INET_TWDR_TWKILL_SLOTS
,
43 .death_lock
= __SPIN_LOCK_UNLOCKED(tcp_death_row
.death_lock
),
44 .hashinfo
= &tcp_hashinfo
,
45 .tw_timer
= TIMER_INITIALIZER(inet_twdr_hangman
, 0,
46 (unsigned long)&tcp_death_row
),
47 .twkill_work
= __WORK_INITIALIZER(tcp_death_row
.twkill_work
,
48 inet_twdr_twkill_work
),
49 /* Short-time timewait calendar */
52 .twcal_timer
= TIMER_INITIALIZER(inet_twdr_twcal_tick
, 0,
53 (unsigned long)&tcp_death_row
),
56 EXPORT_SYMBOL_GPL(tcp_death_row
);
58 static __inline__
int tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
62 if (after(end_seq
, s_win
) && before(seq
, e_win
))
64 return (seq
== e_win
&& seq
== end_seq
);
68 * * Main purpose of TIME-WAIT state is to close connection gracefully,
69 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
70 * (and, probably, tail of data) and one or more our ACKs are lost.
71 * * What is TIME-WAIT timeout? It is associated with maximal packet
72 * lifetime in the internet, which results in wrong conclusion, that
73 * it is set to catch "old duplicate segments" wandering out of their path.
74 * It is not quite correct. This timeout is calculated so that it exceeds
75 * maximal retransmission timeout enough to allow to lose one (or more)
76 * segments sent by peer and our ACKs. This time may be calculated from RTO.
77 * * When TIME-WAIT socket receives RST, it means that another end
78 * finally closed and we are allowed to kill TIME-WAIT too.
79 * * Second purpose of TIME-WAIT is catching old duplicate segments.
80 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
81 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
82 * * If we invented some more clever way to catch duplicates
83 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
86 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
87 * from the very beginning.
89 * NOTE. With recycling (and later with fin-wait-2) TW bucket
90 * is _not_ stateless. It means, that strictly speaking we must
91 * spinlock it. I do not want! Well, probability of misbehaviour
92 * is ridiculously low and, seems, we could use some mb() tricks
93 * to avoid misread sequence numbers, states etc. --ANK
96 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
97 const struct tcphdr
*th
)
99 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
100 struct tcp_options_received tmp_opt
;
103 tmp_opt
.saw_tstamp
= 0;
104 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
105 tcp_parse_options(skb
, &tmp_opt
, 0);
107 if (tmp_opt
.saw_tstamp
) {
108 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
109 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
110 paws_reject
= tcp_paws_check(&tmp_opt
, th
->rst
);
114 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
115 /* Just repeat all the checks of tcp_rcv_state_process() */
117 /* Out of window, send ACK */
119 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
121 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
127 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
131 if (!after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
132 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
134 return TCP_TW_SUCCESS
;
137 /* New data or FIN. If new data arrive after half-duplex close,
141 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1) {
143 inet_twsk_deschedule(tw
, &tcp_death_row
);
148 /* FIN arrived, enter true time-wait state. */
149 tw
->tw_substate
= TCP_TIME_WAIT
;
150 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
151 if (tmp_opt
.saw_tstamp
) {
152 tcptw
->tw_ts_recent_stamp
= get_seconds();
153 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
156 /* I am shamed, but failed to make it more elegant.
157 * Yes, it is direct reference to IP, which is impossible
158 * to generalize to IPv6. Taking into account that IPv6
159 * do not understand recycling in any case, it not
160 * a big problem in practice. --ANK */
161 if (tw
->tw_family
== AF_INET
&&
162 tcp_death_row
.sysctl_tw_recycle
&& tcptw
->tw_ts_recent_stamp
&&
163 tcp_v4_tw_remember_stamp(tw
))
164 inet_twsk_schedule(tw
, &tcp_death_row
, tw
->tw_timeout
,
167 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
173 * Now real TIME-WAIT state.
176 * "When a connection is [...] on TIME-WAIT state [...]
177 * [a TCP] MAY accept a new SYN from the remote TCP to
178 * reopen the connection directly, if it:
180 * (1) assigns its initial sequence number for the new
181 * connection to be larger than the largest sequence
182 * number it used on the previous connection incarnation,
185 * (2) returns to TIME-WAIT state if the SYN turns out
186 * to be an old duplicate".
190 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
191 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
192 /* In window segment, it may be only reset or bare ack. */
195 /* This is TIME_WAIT assassination, in two flavors.
196 * Oh well... nobody has a sufficient solution to this
199 if (sysctl_tcp_rfc1337
== 0) {
201 inet_twsk_deschedule(tw
, &tcp_death_row
);
203 return TCP_TW_SUCCESS
;
206 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
209 if (tmp_opt
.saw_tstamp
) {
210 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
211 tcptw
->tw_ts_recent_stamp
= get_seconds();
215 return TCP_TW_SUCCESS
;
218 /* Out of window segment.
220 All the segments are ACKed immediately.
222 The only exception is new SYN. We accept it, if it is
223 not old duplicate and we are not in danger to be killed
224 by delayed old duplicates. RFC check is that it has
225 newer sequence number works at rates <40Mbit/sec.
226 However, if paws works, it is reliable AND even more,
227 we even may relax silly seq space cutoff.
229 RED-PEN: we violate main RFC requirement, if this SYN will appear
230 old duplicate (i.e. we receive RST in reply to SYN-ACK),
231 we must return socket to time-wait state. It is not good,
235 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
236 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
237 (tmp_opt
.saw_tstamp
&&
238 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
239 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
242 TCP_SKB_CB(skb
)->when
= isn
;
247 NET_INC_STATS_BH(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
250 /* In this case we must reset the TIMEWAIT timer.
252 * If it is ACKless SYN it may be both old duplicate
253 * and new good SYN with random sequence number <rcv_nxt.
254 * Do not reschedule in the last case.
256 if (paws_reject
|| th
->ack
)
257 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
260 /* Send ACK. Note, we do not put the bucket,
261 * it will be released by caller.
266 return TCP_TW_SUCCESS
;
270 * Move a socket to time-wait or dead fin-wait-2 state.
272 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
274 struct inet_timewait_sock
*tw
= NULL
;
275 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
276 const struct tcp_sock
*tp
= tcp_sk(sk
);
279 if (tcp_death_row
.sysctl_tw_recycle
&& tp
->rx_opt
.ts_recent_stamp
)
280 recycle_ok
= icsk
->icsk_af_ops
->remember_stamp(sk
);
282 if (tcp_death_row
.tw_count
< tcp_death_row
.sysctl_max_tw_buckets
)
283 tw
= inet_twsk_alloc(sk
, state
);
286 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
287 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
289 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
290 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
291 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
292 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
293 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
294 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
296 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
297 if (tw
->tw_family
== PF_INET6
) {
298 struct ipv6_pinfo
*np
= inet6_sk(sk
);
299 struct inet6_timewait_sock
*tw6
;
301 tw
->tw_ipv6_offset
= inet6_tw_offset(sk
->sk_prot
);
302 tw6
= inet6_twsk((struct sock
*)tw
);
303 ipv6_addr_copy(&tw6
->tw_v6_daddr
, &np
->daddr
);
304 ipv6_addr_copy(&tw6
->tw_v6_rcv_saddr
, &np
->rcv_saddr
);
305 tw
->tw_ipv6only
= np
->ipv6only
;
309 #ifdef CONFIG_TCP_MD5SIG
311 * The timewait bucket does not have the key DB from the
312 * sock structure. We just make a quick copy of the
313 * md5 key being used (if indeed we are using one)
314 * so the timewait ack generating code has the key.
317 struct tcp_md5sig_key
*key
;
318 memset(tcptw
->tw_md5_key
, 0, sizeof(tcptw
->tw_md5_key
));
319 tcptw
->tw_md5_keylen
= 0;
320 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
322 memcpy(&tcptw
->tw_md5_key
, key
->key
, key
->keylen
);
323 tcptw
->tw_md5_keylen
= key
->keylen
;
324 if (tcp_alloc_md5sig_pool() == NULL
)
330 /* Linkage updates. */
331 __inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
333 /* Get the TIME_WAIT timeout firing. */
338 tw
->tw_timeout
= rto
;
340 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
341 if (state
== TCP_TIME_WAIT
)
342 timeo
= TCP_TIMEWAIT_LEN
;
345 inet_twsk_schedule(tw
, &tcp_death_row
, timeo
,
349 /* Sorry, if we're out of memory, just CLOSE this
350 * socket up. We've got bigger problems than
351 * non-graceful socket closings.
353 LIMIT_NETDEBUG(KERN_INFO
"TCP: time wait bucket table overflow\n");
356 tcp_update_metrics(sk
);
360 void tcp_twsk_destructor(struct sock
*sk
)
362 #ifdef CONFIG_TCP_MD5SIG
363 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
364 if (twsk
->tw_md5_keylen
)
365 tcp_put_md5sig_pool();
369 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
371 static inline void TCP_ECN_openreq_child(struct tcp_sock
*tp
,
372 struct request_sock
*req
)
374 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
377 /* This is not only more efficient than what we used to do, it eliminates
378 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
380 * Actually, we could lots of memory writes here. tp of listening
381 * socket contains all necessary default parameters.
383 struct sock
*tcp_create_openreq_child(struct sock
*sk
, struct request_sock
*req
, struct sk_buff
*skb
)
385 struct sock
*newsk
= inet_csk_clone(sk
, req
, GFP_ATOMIC
);
388 const struct inet_request_sock
*ireq
= inet_rsk(req
);
389 struct tcp_request_sock
*treq
= tcp_rsk(req
);
390 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
391 struct tcp_sock
*newtp
;
393 /* Now setup tcp_sock */
394 newtp
= tcp_sk(newsk
);
395 newtp
->pred_flags
= 0;
396 newtp
->rcv_wup
= newtp
->copied_seq
= newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
397 newtp
->snd_sml
= newtp
->snd_una
= newtp
->snd_nxt
= treq
->snt_isn
+ 1;
399 tcp_prequeue_init(newtp
);
401 tcp_init_wl(newtp
, treq
->snt_isn
, treq
->rcv_isn
);
404 newtp
->mdev
= TCP_TIMEOUT_INIT
;
405 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
407 newtp
->packets_out
= 0;
408 newtp
->retrans_out
= 0;
409 newtp
->sacked_out
= 0;
410 newtp
->fackets_out
= 0;
411 newtp
->snd_ssthresh
= 0x7fffffff;
413 /* So many TCP implementations out there (incorrectly) count the
414 * initial SYN frame in their delayed-ACK and congestion control
415 * algorithms that we must have the following bandaid to talk
416 * efficiently to them. -DaveM
419 newtp
->snd_cwnd_cnt
= 0;
420 newtp
->bytes_acked
= 0;
422 newtp
->frto_counter
= 0;
423 newtp
->frto_highmark
= 0;
425 newicsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
427 tcp_set_ca_state(newsk
, TCP_CA_Open
);
428 tcp_init_xmit_timers(newsk
);
429 skb_queue_head_init(&newtp
->out_of_order_queue
);
430 newtp
->write_seq
= treq
->snt_isn
+ 1;
431 newtp
->pushed_seq
= newtp
->write_seq
;
433 newtp
->rx_opt
.saw_tstamp
= 0;
435 newtp
->rx_opt
.dsack
= 0;
436 newtp
->rx_opt
.eff_sacks
= 0;
438 newtp
->rx_opt
.num_sacks
= 0;
441 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
442 inet_csk_reset_keepalive_timer(newsk
,
443 keepalive_time_when(newtp
));
445 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
446 if ((newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
) != 0) {
448 tcp_enable_fack(newtp
);
450 newtp
->window_clamp
= req
->window_clamp
;
451 newtp
->rcv_ssthresh
= req
->rcv_wnd
;
452 newtp
->rcv_wnd
= req
->rcv_wnd
;
453 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
454 if (newtp
->rx_opt
.wscale_ok
) {
455 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
456 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
458 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
459 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
461 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
462 newtp
->rx_opt
.snd_wscale
);
463 newtp
->max_window
= newtp
->snd_wnd
;
465 if (newtp
->rx_opt
.tstamp_ok
) {
466 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
467 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
468 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
470 newtp
->rx_opt
.ts_recent_stamp
= 0;
471 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
473 #ifdef CONFIG_TCP_MD5SIG
474 newtp
->md5sig_info
= NULL
; /*XXX*/
475 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
476 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
478 if (skb
->len
>= TCP_MIN_RCVMSS
+newtp
->tcp_header_len
)
479 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
480 newtp
->rx_opt
.mss_clamp
= req
->mss
;
481 TCP_ECN_openreq_child(newtp
, req
);
483 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
489 * Process an incoming packet for SYN_RECV sockets represented
493 struct sock
*tcp_check_req(struct sock
*sk
,struct sk_buff
*skb
,
494 struct request_sock
*req
,
495 struct request_sock
**prev
)
497 const struct tcphdr
*th
= tcp_hdr(skb
);
498 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
500 struct tcp_options_received tmp_opt
;
503 tmp_opt
.saw_tstamp
= 0;
504 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
505 tcp_parse_options(skb
, &tmp_opt
, 0);
507 if (tmp_opt
.saw_tstamp
) {
508 tmp_opt
.ts_recent
= req
->ts_recent
;
509 /* We do not store true stamp, but it is not required,
510 * it can be estimated (approximately)
513 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->retrans
);
514 paws_reject
= tcp_paws_check(&tmp_opt
, th
->rst
);
518 /* Check for pure retransmitted SYN. */
519 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
520 flg
== TCP_FLAG_SYN
&&
523 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
524 * this case on figure 6 and figure 8, but formal
525 * protocol description says NOTHING.
526 * To be more exact, it says that we should send ACK,
527 * because this segment (at least, if it has no data)
530 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
531 * describe SYN-RECV state. All the description
532 * is wrong, we cannot believe to it and should
533 * rely only on common sense and implementation
536 * Enforce "SYN-ACK" according to figure 8, figure 6
537 * of RFC793, fixed by RFC1122.
539 req
->rsk_ops
->rtx_syn_ack(sk
, req
);
543 /* Further reproduces section "SEGMENT ARRIVES"
544 for state SYN-RECEIVED of RFC793.
545 It is broken, however, it does not work only
546 when SYNs are crossed.
548 You would think that SYN crossing is impossible here, since
549 we should have a SYN_SENT socket (from connect()) on our end,
550 but this is not true if the crossed SYNs were sent to both
551 ends by a malicious third party. We must defend against this,
552 and to do that we first verify the ACK (as per RFC793, page
553 36) and reset if it is invalid. Is this a true full defense?
554 To convince ourselves, let us consider a way in which the ACK
555 test can still pass in this 'malicious crossed SYNs' case.
556 Malicious sender sends identical SYNs (and thus identical sequence
557 numbers) to both A and B:
562 By our good fortune, both A and B select the same initial
563 send sequence number of seven :-)
565 A: sends SYN|ACK, seq=7, ack_seq=8
566 B: sends SYN|ACK, seq=7, ack_seq=8
568 So we are now A eating this SYN|ACK, ACK test passes. So
569 does sequence test, SYN is truncated, and thus we consider
572 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
573 bare ACK. Otherwise, we create an established connection. Both
574 ends (listening sockets) accept the new incoming connection and try
575 to talk to each other. 8-)
577 Note: This case is both harmless, and rare. Possibility is about the
578 same as us discovering intelligent life on another plant tomorrow.
580 But generally, we should (RFC lies!) to accept ACK
581 from SYNACK both here and in tcp_rcv_state_process().
582 tcp_rcv_state_process() does not, hence, we do not too.
584 Note that the case is absolutely generic:
585 we cannot optimize anything here without
586 violating protocol. All the checks must be made
587 before attempt to create socket.
590 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
591 * and the incoming segment acknowledges something not yet
592 * sent (the segment carries an unacceptable ACK) ...
595 * Invalid ACK: reset will be sent by listening socket
597 if ((flg
& TCP_FLAG_ACK
) &&
598 (TCP_SKB_CB(skb
)->ack_seq
!= tcp_rsk(req
)->snt_isn
+ 1))
601 /* Also, it would be not so bad idea to check rcv_tsecr, which
602 * is essentially ACK extension and too early or too late values
603 * should cause reset in unsynchronized states.
606 /* RFC793: "first check sequence number". */
608 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
609 tcp_rsk(req
)->rcv_isn
+ 1, tcp_rsk(req
)->rcv_isn
+ 1 + req
->rcv_wnd
)) {
610 /* Out of window: send ACK and drop. */
611 if (!(flg
& TCP_FLAG_RST
))
612 req
->rsk_ops
->send_ack(skb
, req
);
614 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
618 /* In sequence, PAWS is OK. */
620 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_isn
+ 1))
621 req
->ts_recent
= tmp_opt
.rcv_tsval
;
623 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
624 /* Truncate SYN, it is out of window starting
625 at tcp_rsk(req)->rcv_isn + 1. */
626 flg
&= ~TCP_FLAG_SYN
;
629 /* RFC793: "second check the RST bit" and
630 * "fourth, check the SYN bit"
632 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
633 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
634 goto embryonic_reset
;
637 /* ACK sequence verified above, just make sure ACK is
638 * set. If ACK not set, just silently drop the packet.
640 if (!(flg
& TCP_FLAG_ACK
))
643 /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
644 if (inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
645 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
646 inet_rsk(req
)->acked
= 1;
650 /* OK, ACK is valid, create big socket and
651 * feed this segment to it. It will repeat all
652 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
653 * ESTABLISHED STATE. If it will be dropped after
654 * socket is created, wait for troubles.
656 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
,
659 goto listen_overflow
;
660 #ifdef CONFIG_TCP_MD5SIG
662 /* Copy over the MD5 key from the original socket */
663 struct tcp_md5sig_key
*key
;
664 struct tcp_sock
*tp
= tcp_sk(sk
);
665 key
= tp
->af_specific
->md5_lookup(sk
, child
);
668 * We're using one, so create a matching key on the
669 * newsk structure. If we fail to get memory then we
670 * end up not copying the key across. Shucks.
672 char *newkey
= kmemdup(key
->key
, key
->keylen
,
675 if (!tcp_alloc_md5sig_pool())
677 tp
->af_specific
->md5_add(child
, child
,
685 inet_csk_reqsk_queue_unlink(sk
, req
, prev
);
686 inet_csk_reqsk_queue_removed(sk
, req
);
688 inet_csk_reqsk_queue_add(sk
, req
, child
);
692 if (!sysctl_tcp_abort_on_overflow
) {
693 inet_rsk(req
)->acked
= 1;
698 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
699 if (!(flg
& TCP_FLAG_RST
))
700 req
->rsk_ops
->send_reset(sk
, skb
);
702 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
707 * Queue segment on the new socket if the new socket is active,
708 * otherwise we just shortcircuit this and continue with
712 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
716 int state
= child
->sk_state
;
718 if (!sock_owned_by_user(child
)) {
719 ret
= tcp_rcv_state_process(child
, skb
, tcp_hdr(skb
),
721 /* Wakeup parent, send SIGIO */
722 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
723 parent
->sk_data_ready(parent
, 0);
725 /* Alas, it is possible again, because we do lookup
726 * in main socket hash table and lock on listening
727 * socket does not protect us more.
729 sk_add_backlog(child
, skb
);
732 bh_unlock_sock(child
);
737 EXPORT_SYMBOL(tcp_check_req
);
738 EXPORT_SYMBOL(tcp_child_process
);
739 EXPORT_SYMBOL(tcp_create_openreq_child
);
740 EXPORT_SYMBOL(tcp_timewait_state_process
);