2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 * Copyright © 2005 Agere Systems Inc.
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *------------------------------------------------------------------------------
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
110 #define INT_MASK_DISABLE 0xffffffff
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER 0x00200000
143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS 0xA4
150 #define ET1310_PCI_EEPROM_STATUS 0xB2
151 #define ET1310_PCI_ACK_NACK 0xC0
152 #define ET1310_PCI_REPLAY 0xC2
153 #define ET1310_PCI_L0L1LATENCY 0xCF
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
162 #define PARM_RX_NUM_BUFS_DEF 4
163 #define PARM_RX_TIME_INT_DEF 10
164 #define PARM_RX_MEM_END_DEF 0x2bc
165 #define PARM_TX_TIME_INT_DEF 40
166 #define PARM_TX_NUM_BUFS_DEF 4
167 #define PARM_DMA_CACHE_DEF 0
170 #define FBR_CHUNKS 32
171 #define MAX_DESC_PER_RING_RX 1024
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK 40
175 #define NIC_DEFAULT_NUM_RFD 1024
178 #define MAX_PACKETS_HANDLED 256
180 #define ALCATEL_MULTICAST_PKT 0x01000000
181 #define ALCATEL_BROADCAST_PKT 0x02000000
183 /* typedefs for Free Buffer Descriptors */
187 u32 word2
; /* Bits 10-31 reserved, 0-9 descriptor */
190 /* Packet Status Ring Descriptors
194 * top 16 bits are from the Alcatel Status Word as enumerated in
195 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
198 * 1: ipa IP checksum assist
199 * 2: ipp IP checksum pass
200 * 3: tcpa TCP checksum assist
201 * 4: tcpp TCP checksum pass
203 * 6: rxmac_error RXMAC Error Indicator
204 * 7: drop Drop packet
205 * 8: ft Frame Truncated
209 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
210 * 17: asw_RX_DV_event short receive event detected
211 * 18: asw_false_carrier_event bad carrier since last good packet
212 * 19: asw_code_err one or more nibbles signalled as errors
213 * 20: asw_CRC_err CRC error
214 * 21: asw_len_chk_err frame length field incorrect
215 * 22: asw_too_long frame length > 1518 bytes
216 * 23: asw_OK valid CRC + no code error
217 * 24: asw_multicast has a multicast address
218 * 25: asw_broadcast has a broadcast address
219 * 26: asw_dribble_nibble spurious bits after EOP
220 * 27: asw_control_frame is a control frame
221 * 28: asw_pause_frame is a pause frame
222 * 29: asw_unsupported_op unsupported OP code
223 * 30: asw_VLAN_tag VLAN tag detected
224 * 31: asw_long_evt Rx long event
227 * 0-15: length length in bytes
228 * 16-25: bi Buffer Index
229 * 26-27: ri Ring Index
232 struct pkt_stat_desc
{
237 /* Typedefs for the RX DMA status word */
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
241 * which contains the Free Buffer ring 0 and 1 available offset.
243 * bit 0-9 FBR1 offset
244 * bit 10 Wrap flag for FBR1
245 * bit 16-25 FBR0 offset
246 * bit 26 Wrap flag for FBR0
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
251 * which contains the Packet Status Ring available offset.
254 * bit 16-27 PSRoffset
259 /* struct rx_status_block is a structure representing the status of the Rx
260 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
262 struct rx_status_block
{
267 /* Structure for look-up table holding free buffer ring pointers, addresses
271 void *virt
[MAX_DESC_PER_RING_RX
];
272 u32 bus_high
[MAX_DESC_PER_RING_RX
];
273 u32 bus_low
[MAX_DESC_PER_RING_RX
];
275 dma_addr_t ring_physaddr
;
276 void *mem_virtaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
277 dma_addr_t mem_physaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
283 /* struct rx_ring is the structure representing the adaptor's local
284 * reference(s) to the rings
287 struct fbr_lookup
*fbr
[NUM_FBRS
];
288 void *ps_ring_virtaddr
;
289 dma_addr_t ps_ring_physaddr
;
293 struct rx_status_block
*rx_status_block
;
294 dma_addr_t rx_status_bus
;
296 struct list_head recv_list
;
301 bool unfinished_receives
;
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
307 * 0-15: length of packet
310 * 29-31: VLAN priority
312 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
314 * 0: last packet in the sequence
315 * 1: first packet in the sequence
316 * 2: interrupt the processor when this pkt sent
317 * 3: Control word - no packet data
318 * 4: Issue half-duplex backpressure : XON/XOFF
319 * 5: send pause frame
320 * 6: Tx frame has error
324 * 10: Packet is a Huge packet
325 * 11: append VLAN tag
326 * 12: IP checksum assist
327 * 13: TCP checksum assist
328 * 14: UDP checksum assist
330 #define TXDESC_FLAG_LASTPKT 0x0001
331 #define TXDESC_FLAG_FIRSTPKT 0x0002
332 #define TXDESC_FLAG_INTPROC 0x0004
334 /* struct tx_desc represents each descriptor on the ring */
338 u32 len_vlan
; /* control words how to xmit the */
339 u32 flags
; /* data (detailed above) */
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343 * by 0x101c / 0x1020. This is a DMA10 type
346 /* TCB (Transmit Control Block: Host Side) */
348 struct tcb
*next
; /* Next entry in ring */
349 u32 count
; /* Used to spot stuck/lost packets */
350 u32 stale
; /* Used to spot stuck/lost packets */
351 struct sk_buff
*skb
; /* Network skb we are tied to */
352 u32 index
; /* Ring indexes */
356 /* Structure representing our local reference(s) to the ring */
358 /* TCB (Transmit Control Block) memory and lists */
359 struct tcb
*tcb_ring
;
361 /* List of TCBs that are ready to be used */
362 struct tcb
*tcb_qhead
;
363 struct tcb
*tcb_qtail
;
365 /* list of TCBs that are currently being sent. */
366 struct tcb
*send_head
;
367 struct tcb
*send_tail
;
370 /* The actual descriptor ring */
371 struct tx_desc
*tx_desc_ring
;
372 dma_addr_t tx_desc_ring_pa
;
374 /* send_idx indicates where we last wrote to in the descriptor ring. */
377 /* The location of the write-back status block */
379 dma_addr_t tx_status_pa
;
381 /* Packets since the last IRQ: used for interrupt coalescing */
385 /* Do not change these values: if changed, then change also in respective
386 * TXdma and Rxdma engines
388 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
391 /* These values are all superseded by registry entries to facilitate tuning.
392 * Once the desired performance has been achieved, the optimal registry values
393 * should be re-populated to these #defines:
395 #define TX_ERROR_PERIOD 1000
397 #define LO_MARK_PERCENT_FOR_PSR 15
398 #define LO_MARK_PERCENT_FOR_RX 15
400 /* RFD (Receive Frame Descriptor) */
402 struct list_head list_node
;
404 u32 len
; /* total size of receive frame */
411 #define FLOW_TXONLY 1
412 #define FLOW_RXONLY 2
415 /* Struct to define some device statistics */
417 u32 multicast_pkts_rcvd
;
418 u32 rcvd_pkts_dropped
;
422 u32 tx_excessive_collisions
;
423 u32 tx_first_collisions
;
424 u32 tx_late_collisions
;
432 u32 rx_code_violations
;
435 u32 interrupt_status
;
438 /* The private adapter structure */
439 struct et131x_adapter
{
440 struct net_device
*netdev
;
441 struct pci_dev
*pdev
;
442 struct mii_bus
*mii_bus
;
443 struct napi_struct napi
;
445 /* Flags that indicate current state of the adapter */
448 /* local link state, to determine if a state change has occurred */
452 u8 rom_addr
[ETH_ALEN
];
457 spinlock_t tcb_send_qlock
; /* protects the tx_ring send tcb list */
458 spinlock_t tcb_ready_qlock
; /* protects the tx_ring ready tcb list */
459 spinlock_t rcv_lock
; /* protects the rx_ring receive list */
461 /* Packet Filter and look ahead size */
465 u32 multicast_addr_count
;
466 u8 multicast_list
[NIC_MAX_MCAST_LIST
][ETH_ALEN
];
468 /* Pointer to the device's PCI register space */
469 struct address_map __iomem
*regs
;
471 /* Registry parameters */
472 u8 wanted_flow
; /* Flow we want for 802.3x flow control */
473 u32 registry_jumbo_packet
; /* Max supported ethernet packet size */
475 /* Derived from the registry: */
476 u8 flow
; /* flow control validated by the far-end */
478 /* Minimize init-time */
479 struct timer_list error_timer
;
481 /* variable putting the phy into coma mode when boot up with no cable
482 * plugged in after 5 seconds
486 /* Tx Memory Variables */
487 struct tx_ring tx_ring
;
489 /* Rx Memory Variables */
490 struct rx_ring rx_ring
;
492 struct ce_stats stats
;
495 static int eeprom_wait_ready(struct pci_dev
*pdev
, u32
*status
)
500 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
501 * bits 7,1:0 both equal to 1, at least once after reset.
502 * Subsequent operations need only to check that bits 1:0 are equal
503 * to 1 prior to starting a single byte read/write
505 for (i
= 0; i
< MAX_NUM_REGISTER_POLLS
; i
++) {
506 if (pci_read_config_dword(pdev
, LBCIF_DWORD1_GROUP
, ®
))
509 /* I2C idle and Phy Queue Avail both true */
510 if ((reg
& 0x3000) == 0x3000) {
519 static int eeprom_write(struct et131x_adapter
*adapter
, u32 addr
, u8 data
)
521 struct pci_dev
*pdev
= adapter
->pdev
;
529 /* For an EEPROM, an I2C single byte write is defined as a START
530 * condition followed by the device address, EEPROM address, one byte
531 * of data and a STOP condition. The STOP condition will trigger the
532 * EEPROM's internally timed write cycle to the nonvolatile memory.
533 * All inputs are disabled during this write cycle and the EEPROM will
534 * not respond to any access until the internal write is complete.
536 err
= eeprom_wait_ready(pdev
, NULL
);
540 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
541 * and bits 1:0 both =0. Bit 5 should be set according to the
542 * type of EEPROM being accessed (1=two byte addressing, 0=one
545 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
546 LBCIF_CONTROL_LBCIF_ENABLE
|
547 LBCIF_CONTROL_I2C_WRITE
))
550 /* Prepare EEPROM address for Step 3 */
551 for (retries
= 0; retries
< MAX_NUM_WRITE_RETRIES
; retries
++) {
552 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
554 /* Write the data to the LBCIF Data Register (the I2C write
557 if (pci_write_config_byte(pdev
, LBCIF_DATA_REGISTER
, data
))
559 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
560 * 1:0 are both equal to 1, the I2C write has completed and the
561 * internal write cycle of the EEPROM is about to start.
562 * (bits 1:0 = 01 is a legal state while waiting from both
563 * equal to 1, but bits 1:0 = 10 is invalid and implies that
564 * something is broken).
566 err
= eeprom_wait_ready(pdev
, &status
);
570 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
571 * an error has occurred.Don't break here if we are revision
572 * 1, this is so we do a blind write for load bug.
574 if ((status
& LBCIF_STATUS_GENERAL_ERROR
) &&
575 adapter
->pdev
->revision
== 0)
578 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
579 * ACK error has occurred on the address phase of the write.
580 * This could be due to an actual hardware failure or the
581 * EEPROM may still be in its internal write cycle from a
582 * previous write. This write operation was ignored and must be
585 if (status
& LBCIF_STATUS_ACK_ERROR
) {
586 /* This could be due to an actual hardware failure
587 * or the EEPROM may still be in its internal write
588 * cycle from a previous write. This write operation
589 * was ignored and must be repeated later.
602 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
603 LBCIF_CONTROL_LBCIF_ENABLE
))
606 /* Do read until internal ACK_ERROR goes away meaning write
610 pci_write_config_dword(pdev
,
611 LBCIF_ADDRESS_REGISTER
,
614 pci_read_config_dword(pdev
,
617 } while ((val
& 0x00010000) == 0);
618 } while (val
& 0x00040000);
620 if ((val
& 0xFF00) != 0xC000 || index
== 10000)
624 return writeok
? 0 : -EIO
;
627 static int eeprom_read(struct et131x_adapter
*adapter
, u32 addr
, u8
*pdata
)
629 struct pci_dev
*pdev
= adapter
->pdev
;
633 /* A single byte read is similar to the single byte write, with the
634 * exception of the data flow:
636 err
= eeprom_wait_ready(pdev
, NULL
);
639 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
640 * and bits 1:0 both =0. Bit 5 should be set according to the type
641 * of EEPROM being accessed (1=two byte addressing, 0=one byte
644 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
645 LBCIF_CONTROL_LBCIF_ENABLE
))
647 /* Write the address to the LBCIF Address Register (I2C read will
650 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
652 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
653 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656 err
= eeprom_wait_ready(pdev
, &status
);
659 /* Regardless of error status, read data byte from LBCIF Data
664 return (status
& LBCIF_STATUS_ACK_ERROR
) ? -EIO
: 0;
667 static int et131x_init_eeprom(struct et131x_adapter
*adapter
)
669 struct pci_dev
*pdev
= adapter
->pdev
;
672 pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
, &eestatus
);
674 /* THIS IS A WORKAROUND:
675 * I need to call this function twice to get my card in a
676 * LG M1 Express Dual running. I tried also a msleep before this
677 * function, because I thought there could be some time conditions
678 * but it didn't work. Call the whole function twice also work.
680 if (pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
, &eestatus
)) {
682 "Could not read PCI config space for EEPROM Status\n");
686 /* Determine if the error(s) we care about are present. If they are
687 * present we need to fail.
689 if (eestatus
& 0x4C) {
690 int write_failed
= 0;
692 if (pdev
->revision
== 0x01) {
694 static const u8 eedata
[4] = { 0xFE, 0x13, 0x10, 0xFF };
696 /* Re-write the first 4 bytes if we have an eeprom
697 * present and the revision id is 1, this fixes the
698 * corruption seen with 1310 B Silicon
700 for (i
= 0; i
< 3; i
++)
701 if (eeprom_write(adapter
, i
, eedata
[i
]) < 0)
704 if (pdev
->revision
!= 0x01 || write_failed
) {
706 "Fatal EEPROM Status Error - 0x%04x\n",
709 /* This error could mean that there was an error
710 * reading the eeprom or that the eeprom doesn't exist.
711 * We will treat each case the same and not try to
712 * gather additional information that normally would
713 * come from the eeprom, like MAC Address
715 adapter
->has_eeprom
= 0;
719 adapter
->has_eeprom
= 1;
721 /* Read the EEPROM for information regarding LED behavior. Refer to
722 * et131x_xcvr_init() for its use.
724 eeprom_read(adapter
, 0x70, &adapter
->eeprom_data
[0]);
725 eeprom_read(adapter
, 0x71, &adapter
->eeprom_data
[1]);
727 if (adapter
->eeprom_data
[0] != 0xcd)
728 /* Disable all optional features */
729 adapter
->eeprom_data
[1] = 0x00;
734 static void et131x_rx_dma_enable(struct et131x_adapter
*adapter
)
736 /* Setup the receive dma configuration register for normal operation */
737 u32 csr
= ET_RXDMA_CSR_FBR1_ENABLE
;
738 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
740 if (rx_ring
->fbr
[1]->buffsize
== 4096)
741 csr
|= ET_RXDMA_CSR_FBR1_SIZE_LO
;
742 else if (rx_ring
->fbr
[1]->buffsize
== 8192)
743 csr
|= ET_RXDMA_CSR_FBR1_SIZE_HI
;
744 else if (rx_ring
->fbr
[1]->buffsize
== 16384)
745 csr
|= ET_RXDMA_CSR_FBR1_SIZE_LO
| ET_RXDMA_CSR_FBR1_SIZE_HI
;
747 csr
|= ET_RXDMA_CSR_FBR0_ENABLE
;
748 if (rx_ring
->fbr
[0]->buffsize
== 256)
749 csr
|= ET_RXDMA_CSR_FBR0_SIZE_LO
;
750 else if (rx_ring
->fbr
[0]->buffsize
== 512)
751 csr
|= ET_RXDMA_CSR_FBR0_SIZE_HI
;
752 else if (rx_ring
->fbr
[0]->buffsize
== 1024)
753 csr
|= ET_RXDMA_CSR_FBR0_SIZE_LO
| ET_RXDMA_CSR_FBR0_SIZE_HI
;
754 writel(csr
, &adapter
->regs
->rxdma
.csr
);
756 csr
= readl(&adapter
->regs
->rxdma
.csr
);
757 if (csr
& ET_RXDMA_CSR_HALT_STATUS
) {
759 csr
= readl(&adapter
->regs
->rxdma
.csr
);
760 if (csr
& ET_RXDMA_CSR_HALT_STATUS
) {
761 dev_err(&adapter
->pdev
->dev
,
762 "RX Dma failed to exit halt state. CSR 0x%08x\n",
768 static void et131x_rx_dma_disable(struct et131x_adapter
*adapter
)
771 /* Setup the receive dma configuration register */
772 writel(ET_RXDMA_CSR_HALT
| ET_RXDMA_CSR_FBR1_ENABLE
,
773 &adapter
->regs
->rxdma
.csr
);
774 csr
= readl(&adapter
->regs
->rxdma
.csr
);
775 if (!(csr
& ET_RXDMA_CSR_HALT_STATUS
)) {
777 csr
= readl(&adapter
->regs
->rxdma
.csr
);
778 if (!(csr
& ET_RXDMA_CSR_HALT_STATUS
))
779 dev_err(&adapter
->pdev
->dev
,
780 "RX Dma failed to enter halt state. CSR 0x%08x\n",
785 static void et131x_tx_dma_enable(struct et131x_adapter
*adapter
)
787 /* Setup the transmit dma configuration register for normal
790 writel(ET_TXDMA_SNGL_EPKT
| (PARM_DMA_CACHE_DEF
<< ET_TXDMA_CACHE_SHIFT
),
791 &adapter
->regs
->txdma
.csr
);
794 static inline void add_10bit(u32
*v
, int n
)
796 *v
= INDEX10(*v
+ n
) | (*v
& ET_DMA10_WRAP
);
799 static inline void add_12bit(u32
*v
, int n
)
801 *v
= INDEX12(*v
+ n
) | (*v
& ET_DMA12_WRAP
);
804 static void et1310_config_mac_regs1(struct et131x_adapter
*adapter
)
806 struct mac_regs __iomem
*macregs
= &adapter
->regs
->mac
;
811 /* First we need to reset everything. Write to MAC configuration
812 * register 1 to perform reset.
814 writel(ET_MAC_CFG1_SOFT_RESET
| ET_MAC_CFG1_SIM_RESET
|
815 ET_MAC_CFG1_RESET_RXMC
| ET_MAC_CFG1_RESET_TXMC
|
816 ET_MAC_CFG1_RESET_RXFUNC
| ET_MAC_CFG1_RESET_TXFUNC
,
819 /* Next lets configure the MAC Inter-packet gap register */
820 ipg
= 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
821 ipg
|= 0x50 << 8; /* ifg enforce 0x50 */
822 writel(ipg
, ¯egs
->ipg
);
824 /* Next lets configure the MAC Half Duplex register */
825 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
826 writel(0x00A1F037, ¯egs
->hfdp
);
828 /* Next lets configure the MAC Interface Control register */
829 writel(0, ¯egs
->if_ctrl
);
831 writel(ET_MAC_MIIMGMT_CLK_RST
, ¯egs
->mii_mgmt_cfg
);
833 /* Next lets configure the MAC Station Address register. These
834 * values are read from the EEPROM during initialization and stored
835 * in the adapter structure. We write what is stored in the adapter
836 * structure to the MAC Station Address registers high and low. This
837 * station address is used for generating and checking pause control
840 station2
= (adapter
->addr
[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT
) |
841 (adapter
->addr
[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT
);
842 station1
= (adapter
->addr
[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT
) |
843 (adapter
->addr
[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT
) |
844 (adapter
->addr
[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT
) |
846 writel(station1
, ¯egs
->station_addr_1
);
847 writel(station2
, ¯egs
->station_addr_2
);
849 /* Max ethernet packet in bytes that will be passed by the mac without
850 * being truncated. Allow the MAC to pass 4 more than our max packet
851 * size. This is 4 for the Ethernet CRC.
853 * Packets larger than (registry_jumbo_packet) that do not contain a
854 * VLAN ID will be dropped by the Rx function.
856 writel(adapter
->registry_jumbo_packet
+ 4, ¯egs
->max_fm_len
);
858 /* clear out MAC config reset */
859 writel(0, ¯egs
->cfg1
);
862 static void et1310_config_mac_regs2(struct et131x_adapter
*adapter
)
865 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
866 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
872 ctl
= readl(&adapter
->regs
->txmac
.ctl
);
873 cfg1
= readl(&mac
->cfg1
);
874 cfg2
= readl(&mac
->cfg2
);
875 ifctrl
= readl(&mac
->if_ctrl
);
877 /* Set up the if mode bits */
878 cfg2
&= ~ET_MAC_CFG2_IFMODE_MASK
;
879 if (phydev
->speed
== SPEED_1000
) {
880 cfg2
|= ET_MAC_CFG2_IFMODE_1000
;
881 ifctrl
&= ~ET_MAC_IFCTRL_PHYMODE
;
883 cfg2
|= ET_MAC_CFG2_IFMODE_100
;
884 ifctrl
|= ET_MAC_IFCTRL_PHYMODE
;
887 cfg1
|= ET_MAC_CFG1_RX_ENABLE
| ET_MAC_CFG1_TX_ENABLE
|
890 cfg1
&= ~(ET_MAC_CFG1_LOOPBACK
| ET_MAC_CFG1_RX_FLOW
);
891 if (adapter
->flow
== FLOW_RXONLY
|| adapter
->flow
== FLOW_BOTH
)
892 cfg1
|= ET_MAC_CFG1_RX_FLOW
;
893 writel(cfg1
, &mac
->cfg1
);
895 /* Now we need to initialize the MAC Configuration 2 register */
896 /* preamble 7, check length, huge frame off, pad crc, crc enable
899 cfg2
|= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT
;
900 cfg2
|= ET_MAC_CFG2_IFMODE_LEN_CHECK
;
901 cfg2
|= ET_MAC_CFG2_IFMODE_PAD_CRC
;
902 cfg2
|= ET_MAC_CFG2_IFMODE_CRC_ENABLE
;
903 cfg2
&= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME
;
904 cfg2
&= ~ET_MAC_CFG2_IFMODE_FULL_DPLX
;
906 if (phydev
->duplex
== DUPLEX_FULL
)
907 cfg2
|= ET_MAC_CFG2_IFMODE_FULL_DPLX
;
909 ifctrl
&= ~ET_MAC_IFCTRL_GHDMODE
;
910 if (phydev
->duplex
== DUPLEX_HALF
)
911 ifctrl
|= ET_MAC_IFCTRL_GHDMODE
;
913 writel(ifctrl
, &mac
->if_ctrl
);
914 writel(cfg2
, &mac
->cfg2
);
919 cfg1
= readl(&mac
->cfg1
);
920 } while ((cfg1
& ET_MAC_CFG1_WAIT
) != ET_MAC_CFG1_WAIT
&& delay
< 100);
923 dev_warn(&adapter
->pdev
->dev
,
924 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
928 ctl
|= ET_TX_CTRL_TXMAC_ENABLE
| ET_TX_CTRL_FC_DISABLE
;
929 writel(ctl
, &adapter
->regs
->txmac
.ctl
);
931 if (adapter
->flags
& FMP_ADAPTER_LOWER_POWER
) {
932 et131x_rx_dma_enable(adapter
);
933 et131x_tx_dma_enable(adapter
);
937 static int et1310_in_phy_coma(struct et131x_adapter
*adapter
)
939 u32 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
941 return ET_PM_PHY_SW_COMA
& pmcsr
? 1 : 0;
944 static void et1310_setup_device_for_multicast(struct et131x_adapter
*adapter
)
946 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
953 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
954 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
955 * specified) then we should pass NO multi-cast addresses to the
958 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_MULTICAST
) {
961 /* Loop through our multicast array and set up the device */
962 for (i
= 0; i
< adapter
->multicast_addr_count
; i
++) {
965 result
= ether_crc(6, adapter
->multicast_list
[i
]);
967 result
= (result
& 0x3F800000) >> 23;
970 hash1
|= (1 << result
);
971 } else if ((31 < result
) && (result
< 64)) {
973 hash2
|= (1 << result
);
974 } else if ((63 < result
) && (result
< 96)) {
976 hash3
|= (1 << result
);
979 hash4
|= (1 << result
);
984 /* Write out the new hash to the device */
985 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
986 if (!et1310_in_phy_coma(adapter
)) {
987 writel(hash1
, &rxmac
->multi_hash1
);
988 writel(hash2
, &rxmac
->multi_hash2
);
989 writel(hash3
, &rxmac
->multi_hash3
);
990 writel(hash4
, &rxmac
->multi_hash4
);
994 static void et1310_setup_device_for_unicast(struct et131x_adapter
*adapter
)
996 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1002 /* Set up unicast packet filter reg 3 to be the first two octets of
1003 * the MAC address for both address
1005 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1006 * MAC address for second address
1008 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1009 * MAC address for first address
1011 uni_pf3
= (adapter
->addr
[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT
) |
1012 (adapter
->addr
[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT
) |
1013 (adapter
->addr
[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT
) |
1016 uni_pf2
= (adapter
->addr
[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT
) |
1017 (adapter
->addr
[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT
) |
1018 (adapter
->addr
[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT
) |
1021 uni_pf1
= (adapter
->addr
[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT
) |
1022 (adapter
->addr
[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT
) |
1023 (adapter
->addr
[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT
) |
1026 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1027 if (!et1310_in_phy_coma(adapter
)) {
1028 writel(uni_pf1
, &rxmac
->uni_pf_addr1
);
1029 writel(uni_pf2
, &rxmac
->uni_pf_addr2
);
1030 writel(uni_pf3
, &rxmac
->uni_pf_addr3
);
1034 static void et1310_config_rxmac_regs(struct et131x_adapter
*adapter
)
1036 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1037 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
1043 /* Disable the MAC while it is being configured (also disable WOL) */
1044 writel(0x8, &rxmac
->ctrl
);
1046 /* Initialize WOL to disabled. */
1047 writel(0, &rxmac
->crc0
);
1048 writel(0, &rxmac
->crc12
);
1049 writel(0, &rxmac
->crc34
);
1051 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1052 * its default Values of 0x00000000 because there are not WOL masks
1055 for (wolw
= &rxmac
->mask0_word0
; wolw
<= &rxmac
->mask4_word3
; wolw
++)
1058 /* Lets setup the WOL Source Address */
1059 sa_lo
= (adapter
->addr
[2] << ET_RX_WOL_LO_SA3_SHIFT
) |
1060 (adapter
->addr
[3] << ET_RX_WOL_LO_SA4_SHIFT
) |
1061 (adapter
->addr
[4] << ET_RX_WOL_LO_SA5_SHIFT
) |
1063 writel(sa_lo
, &rxmac
->sa_lo
);
1065 sa_hi
= (u32
)(adapter
->addr
[0] << ET_RX_WOL_HI_SA1_SHIFT
) |
1067 writel(sa_hi
, &rxmac
->sa_hi
);
1069 /* Disable all Packet Filtering */
1070 writel(0, &rxmac
->pf_ctrl
);
1072 /* Let's initialize the Unicast Packet filtering address */
1073 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_DIRECTED
) {
1074 et1310_setup_device_for_unicast(adapter
);
1075 pf_ctrl
|= ET_RX_PFCTRL_UNICST_FILTER_ENABLE
;
1077 writel(0, &rxmac
->uni_pf_addr1
);
1078 writel(0, &rxmac
->uni_pf_addr2
);
1079 writel(0, &rxmac
->uni_pf_addr3
);
1082 /* Let's initialize the Multicast hash */
1083 if (!(adapter
->packet_filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
1084 pf_ctrl
|= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE
;
1085 et1310_setup_device_for_multicast(adapter
);
1088 /* Runt packet filtering. Didn't work in version A silicon. */
1089 pf_ctrl
|= (NIC_MIN_PACKET_SIZE
+ 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT
;
1090 pf_ctrl
|= ET_RX_PFCTRL_FRAG_FILTER_ENABLE
;
1092 if (adapter
->registry_jumbo_packet
> 8192)
1093 /* In order to transmit jumbo packets greater than 8k, the
1094 * FIFO between RxMAC and RxDMA needs to be reduced in size
1095 * to (16k - Jumbo packet size). In order to implement this,
1096 * we must use "cut through" mode in the RxMAC, which chops
1097 * packets down into segments which are (max_size * 16). In
1098 * this case we selected 256 bytes, since this is the size of
1099 * the PCI-Express TLP's that the 1310 uses.
1101 * seg_en on, fc_en off, size 0x10
1103 writel(0x41, &rxmac
->mcif_ctrl_max_seg
);
1105 writel(0, &rxmac
->mcif_ctrl_max_seg
);
1107 writel(0, &rxmac
->mcif_water_mark
);
1108 writel(0, &rxmac
->mif_ctrl
);
1109 writel(0, &rxmac
->space_avail
);
1111 /* Initialize the the mif_ctrl register
1112 * bit 3: Receive code error. One or more nibbles were signaled as
1113 * errors during the reception of the packet. Clear this
1114 * bit in Gigabit, set it in 100Mbit. This was derived
1115 * experimentally at UNH.
1116 * bit 4: Receive CRC error. The packet's CRC did not match the
1117 * internally generated CRC.
1118 * bit 5: Receive length check error. Indicates that frame length
1119 * field value in the packet does not match the actual data
1120 * byte length and is not a type field.
1121 * bit 16: Receive frame truncated.
1122 * bit 17: Drop packet enable
1124 if (phydev
&& phydev
->speed
== SPEED_100
)
1125 writel(0x30038, &rxmac
->mif_ctrl
);
1127 writel(0x30030, &rxmac
->mif_ctrl
);
1129 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1130 * filter is always enabled since it is where the runt packets are
1131 * supposed to be dropped. For version A silicon, runt packet
1132 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1133 * but we still leave the packet filter on.
1135 writel(pf_ctrl
, &rxmac
->pf_ctrl
);
1136 writel(ET_RX_CTRL_RXMAC_ENABLE
| ET_RX_CTRL_WOL_DISABLE
, &rxmac
->ctrl
);
1139 static void et1310_config_txmac_regs(struct et131x_adapter
*adapter
)
1141 struct txmac_regs __iomem
*txmac
= &adapter
->regs
->txmac
;
1143 /* We need to update the Control Frame Parameters
1144 * cfpt - control frame pause timer set to 64 (0x40)
1145 * cfep - control frame extended pause timer set to 0x0
1147 if (adapter
->flow
== FLOW_NONE
)
1148 writel(0, &txmac
->cf_param
);
1150 writel(0x40, &txmac
->cf_param
);
1153 static void et1310_config_macstat_regs(struct et131x_adapter
*adapter
)
1155 struct macstat_regs __iomem
*macstat
= &adapter
->regs
->macstat
;
1158 /* initialize all the macstat registers to zero on the device */
1159 for (reg
= &macstat
->txrx_0_64_byte_frames
;
1160 reg
<= &macstat
->carry_reg2
; reg
++)
1163 /* Unmask any counters that we want to track the overflow of.
1164 * Initially this will be all counters. It may become clear later
1165 * that we do not need to track all counters.
1167 writel(0xFFFFBE32, &macstat
->carry_reg1_mask
);
1168 writel(0xFFFE7E8B, &macstat
->carry_reg2_mask
);
1171 static int et131x_phy_mii_read(struct et131x_adapter
*adapter
, u8 addr
,
1174 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1181 /* Save a local copy of the registers we are dealing with so we can
1184 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1185 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1187 /* Stop the current operation */
1188 writel(0, &mac
->mii_mgmt_cmd
);
1190 /* Set up the register we need to read from on the correct PHY */
1191 writel(ET_MAC_MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1193 writel(0x1, &mac
->mii_mgmt_cmd
);
1198 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1199 } while ((mii_indicator
& ET_MAC_MGMT_WAIT
) && delay
< 50);
1201 /* If we hit the max delay, we could not read the register */
1203 dev_warn(&adapter
->pdev
->dev
,
1204 "reg 0x%08x could not be read\n", reg
);
1205 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1212 /* If we hit here we were able to read the register and we need to
1213 * return the value to the caller
1215 *value
= readl(&mac
->mii_mgmt_stat
) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK
;
1218 /* Stop the read operation */
1219 writel(0, &mac
->mii_mgmt_cmd
);
1221 /* set the registers we touched back to the state at which we entered
1224 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1225 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1230 static int et131x_mii_read(struct et131x_adapter
*adapter
, u8 reg
, u16
*value
)
1232 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
1237 return et131x_phy_mii_read(adapter
, phydev
->mdio
.addr
, reg
, value
);
1240 static int et131x_mii_write(struct et131x_adapter
*adapter
, u8 addr
, u8 reg
,
1243 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1250 /* Save a local copy of the registers we are dealing with so we can
1253 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1254 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1256 /* Stop the current operation */
1257 writel(0, &mac
->mii_mgmt_cmd
);
1259 /* Set up the register we need to write to on the correct PHY */
1260 writel(ET_MAC_MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1262 /* Add the value to write to the registers to the mac */
1263 writel(value
, &mac
->mii_mgmt_ctrl
);
1268 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1269 } while ((mii_indicator
& ET_MAC_MGMT_BUSY
) && delay
< 100);
1271 /* If we hit the max delay, we could not write the register */
1275 dev_warn(&adapter
->pdev
->dev
,
1276 "reg 0x%08x could not be written", reg
);
1277 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1279 dev_warn(&adapter
->pdev
->dev
, "command is 0x%08x\n",
1280 readl(&mac
->mii_mgmt_cmd
));
1282 et131x_mii_read(adapter
, reg
, &tmp
);
1286 /* Stop the write operation */
1287 writel(0, &mac
->mii_mgmt_cmd
);
1289 /* set the registers we touched back to the state at which we entered
1292 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1293 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1298 static void et1310_phy_read_mii_bit(struct et131x_adapter
*adapter
,
1304 u16 mask
= 1 << bitnum
;
1306 et131x_mii_read(adapter
, regnum
, ®
);
1308 *value
= (reg
& mask
) >> bitnum
;
1311 static void et1310_config_flow_control(struct et131x_adapter
*adapter
)
1313 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
1315 if (phydev
->duplex
== DUPLEX_HALF
) {
1316 adapter
->flow
= FLOW_NONE
;
1318 char remote_pause
, remote_async_pause
;
1320 et1310_phy_read_mii_bit(adapter
, 5, 10, &remote_pause
);
1321 et1310_phy_read_mii_bit(adapter
, 5, 11, &remote_async_pause
);
1323 if (remote_pause
&& remote_async_pause
) {
1324 adapter
->flow
= adapter
->wanted_flow
;
1325 } else if (remote_pause
&& !remote_async_pause
) {
1326 if (adapter
->wanted_flow
== FLOW_BOTH
)
1327 adapter
->flow
= FLOW_BOTH
;
1329 adapter
->flow
= FLOW_NONE
;
1330 } else if (!remote_pause
&& !remote_async_pause
) {
1331 adapter
->flow
= FLOW_NONE
;
1333 if (adapter
->wanted_flow
== FLOW_BOTH
)
1334 adapter
->flow
= FLOW_RXONLY
;
1336 adapter
->flow
= FLOW_NONE
;
1341 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1342 static void et1310_update_macstat_host_counters(struct et131x_adapter
*adapter
)
1344 struct ce_stats
*stats
= &adapter
->stats
;
1345 struct macstat_regs __iomem
*macstat
=
1346 &adapter
->regs
->macstat
;
1348 stats
->tx_collisions
+= readl(&macstat
->tx_total_collisions
);
1349 stats
->tx_first_collisions
+= readl(&macstat
->tx_single_collisions
);
1350 stats
->tx_deferred
+= readl(&macstat
->tx_deferred
);
1351 stats
->tx_excessive_collisions
+=
1352 readl(&macstat
->tx_multiple_collisions
);
1353 stats
->tx_late_collisions
+= readl(&macstat
->tx_late_collisions
);
1354 stats
->tx_underflows
+= readl(&macstat
->tx_undersize_frames
);
1355 stats
->tx_max_pkt_errs
+= readl(&macstat
->tx_oversize_frames
);
1357 stats
->rx_align_errs
+= readl(&macstat
->rx_align_errs
);
1358 stats
->rx_crc_errs
+= readl(&macstat
->rx_code_errs
);
1359 stats
->rcvd_pkts_dropped
+= readl(&macstat
->rx_drops
);
1360 stats
->rx_overflows
+= readl(&macstat
->rx_oversize_packets
);
1361 stats
->rx_code_violations
+= readl(&macstat
->rx_fcs_errs
);
1362 stats
->rx_length_errs
+= readl(&macstat
->rx_frame_len_errs
);
1363 stats
->rx_other_errs
+= readl(&macstat
->rx_fragment_packets
);
1366 /* et1310_handle_macstat_interrupt
1368 * One of the MACSTAT counters has wrapped. Update the local copy of
1369 * the statistics held in the adapter structure, checking the "wrap"
1370 * bit for each counter.
1372 static void et1310_handle_macstat_interrupt(struct et131x_adapter
*adapter
)
1377 /* Read the interrupt bits from the register(s). These are Clear On
1380 carry_reg1
= readl(&adapter
->regs
->macstat
.carry_reg1
);
1381 carry_reg2
= readl(&adapter
->regs
->macstat
.carry_reg2
);
1383 writel(carry_reg1
, &adapter
->regs
->macstat
.carry_reg1
);
1384 writel(carry_reg2
, &adapter
->regs
->macstat
.carry_reg2
);
1386 /* We need to do update the host copy of all the MAC_STAT counters.
1387 * For each counter, check it's overflow bit. If the overflow bit is
1388 * set, then increment the host version of the count by one complete
1389 * revolution of the counter. This routine is called when the counter
1390 * block indicates that one of the counters has wrapped.
1392 if (carry_reg1
& (1 << 14))
1393 adapter
->stats
.rx_code_violations
+= COUNTER_WRAP_16_BIT
;
1394 if (carry_reg1
& (1 << 8))
1395 adapter
->stats
.rx_align_errs
+= COUNTER_WRAP_12_BIT
;
1396 if (carry_reg1
& (1 << 7))
1397 adapter
->stats
.rx_length_errs
+= COUNTER_WRAP_16_BIT
;
1398 if (carry_reg1
& (1 << 2))
1399 adapter
->stats
.rx_other_errs
+= COUNTER_WRAP_16_BIT
;
1400 if (carry_reg1
& (1 << 6))
1401 adapter
->stats
.rx_crc_errs
+= COUNTER_WRAP_16_BIT
;
1402 if (carry_reg1
& (1 << 3))
1403 adapter
->stats
.rx_overflows
+= COUNTER_WRAP_16_BIT
;
1404 if (carry_reg1
& (1 << 0))
1405 adapter
->stats
.rcvd_pkts_dropped
+= COUNTER_WRAP_16_BIT
;
1406 if (carry_reg2
& (1 << 16))
1407 adapter
->stats
.tx_max_pkt_errs
+= COUNTER_WRAP_12_BIT
;
1408 if (carry_reg2
& (1 << 15))
1409 adapter
->stats
.tx_underflows
+= COUNTER_WRAP_12_BIT
;
1410 if (carry_reg2
& (1 << 6))
1411 adapter
->stats
.tx_first_collisions
+= COUNTER_WRAP_12_BIT
;
1412 if (carry_reg2
& (1 << 8))
1413 adapter
->stats
.tx_deferred
+= COUNTER_WRAP_12_BIT
;
1414 if (carry_reg2
& (1 << 5))
1415 adapter
->stats
.tx_excessive_collisions
+= COUNTER_WRAP_12_BIT
;
1416 if (carry_reg2
& (1 << 4))
1417 adapter
->stats
.tx_late_collisions
+= COUNTER_WRAP_12_BIT
;
1418 if (carry_reg2
& (1 << 2))
1419 adapter
->stats
.tx_collisions
+= COUNTER_WRAP_12_BIT
;
1422 static int et131x_mdio_read(struct mii_bus
*bus
, int phy_addr
, int reg
)
1424 struct net_device
*netdev
= bus
->priv
;
1425 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1429 ret
= et131x_phy_mii_read(adapter
, phy_addr
, reg
, &value
);
1437 static int et131x_mdio_write(struct mii_bus
*bus
, int phy_addr
,
1440 struct net_device
*netdev
= bus
->priv
;
1441 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1443 return et131x_mii_write(adapter
, phy_addr
, reg
, value
);
1446 /* et1310_phy_power_switch - PHY power control
1447 * @adapter: device to control
1448 * @down: true for off/false for back on
1450 * one hundred, ten, one thousand megs
1451 * How would you like to have your LAN accessed
1452 * Can't you see that this code processed
1453 * Phy power, phy power..
1455 static void et1310_phy_power_switch(struct et131x_adapter
*adapter
, bool down
)
1458 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
1460 et131x_mii_read(adapter
, MII_BMCR
, &data
);
1461 data
&= ~BMCR_PDOWN
;
1464 et131x_mii_write(adapter
, phydev
->mdio
.addr
, MII_BMCR
, data
);
1467 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1468 static void et131x_xcvr_init(struct et131x_adapter
*adapter
)
1471 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
1473 /* Set the LED behavior such that LED 1 indicates speed (off =
1474 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1475 * link and activity (on for link, blink off for activity).
1477 * NOTE: Some customizations have been added here for specific
1478 * vendors; The LED behavior is now determined by vendor data in the
1479 * EEPROM. However, the above description is the default.
1481 if ((adapter
->eeprom_data
[1] & 0x4) == 0) {
1482 et131x_mii_read(adapter
, PHY_LED_2
, &lcr2
);
1484 lcr2
&= (ET_LED2_LED_100TX
| ET_LED2_LED_1000T
);
1485 lcr2
|= (LED_VAL_LINKON_ACTIVE
<< LED_LINK_SHIFT
);
1487 if ((adapter
->eeprom_data
[1] & 0x8) == 0)
1488 lcr2
|= (LED_VAL_1000BT_100BTX
<< LED_TXRX_SHIFT
);
1490 lcr2
|= (LED_VAL_LINKON
<< LED_TXRX_SHIFT
);
1492 et131x_mii_write(adapter
, phydev
->mdio
.addr
, PHY_LED_2
, lcr2
);
1496 /* et131x_configure_global_regs - configure JAGCore global regs */
1497 static void et131x_configure_global_regs(struct et131x_adapter
*adapter
)
1499 struct global_regs __iomem
*regs
= &adapter
->regs
->global
;
1501 writel(0, ®s
->rxq_start_addr
);
1502 writel(INTERNAL_MEM_SIZE
- 1, ®s
->txq_end_addr
);
1504 if (adapter
->registry_jumbo_packet
< 2048) {
1505 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1506 * block of RAM that the driver can split between Tx
1507 * and Rx as it desires. Our default is to split it
1510 writel(PARM_RX_MEM_END_DEF
, ®s
->rxq_end_addr
);
1511 writel(PARM_RX_MEM_END_DEF
+ 1, ®s
->txq_start_addr
);
1512 } else if (adapter
->registry_jumbo_packet
< 8192) {
1513 /* For jumbo packets > 2k but < 8k, split 50-50. */
1514 writel(INTERNAL_MEM_RX_OFFSET
, ®s
->rxq_end_addr
);
1515 writel(INTERNAL_MEM_RX_OFFSET
+ 1, ®s
->txq_start_addr
);
1517 /* 9216 is the only packet size greater than 8k that
1518 * is available. The Tx buffer has to be big enough
1519 * for one whole packet on the Tx side. We'll make
1520 * the Tx 9408, and give the rest to Rx
1522 writel(0x01b3, ®s
->rxq_end_addr
);
1523 writel(0x01b4, ®s
->txq_start_addr
);
1526 /* Initialize the loopback register. Disable all loopbacks. */
1527 writel(0, ®s
->loopback
);
1529 writel(0, ®s
->msi_config
);
1531 /* By default, disable the watchdog timer. It will be enabled when
1532 * a packet is queued.
1534 writel(0, ®s
->watchdog_timer
);
1537 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1538 static void et131x_config_rx_dma_regs(struct et131x_adapter
*adapter
)
1540 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
1541 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
1542 struct fbr_desc
*fbr_entry
;
1545 unsigned long flags
;
1548 et131x_rx_dma_disable(adapter
);
1550 /* Load the completion writeback physical address */
1551 writel(upper_32_bits(rx_local
->rx_status_bus
), &rx_dma
->dma_wb_base_hi
);
1552 writel(lower_32_bits(rx_local
->rx_status_bus
), &rx_dma
->dma_wb_base_lo
);
1554 memset(rx_local
->rx_status_block
, 0, sizeof(struct rx_status_block
));
1556 /* Set the address and parameters of the packet status ring */
1557 writel(upper_32_bits(rx_local
->ps_ring_physaddr
), &rx_dma
->psr_base_hi
);
1558 writel(lower_32_bits(rx_local
->ps_ring_physaddr
), &rx_dma
->psr_base_lo
);
1559 writel(rx_local
->psr_entries
- 1, &rx_dma
->psr_num_des
);
1560 writel(0, &rx_dma
->psr_full_offset
);
1562 psr_num_des
= readl(&rx_dma
->psr_num_des
) & ET_RXDMA_PSR_NUM_DES_MASK
;
1563 writel((psr_num_des
* LO_MARK_PERCENT_FOR_PSR
) / 100,
1564 &rx_dma
->psr_min_des
);
1566 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
1568 /* These local variables track the PSR in the adapter structure */
1569 rx_local
->local_psr_full
= 0;
1571 for (id
= 0; id
< NUM_FBRS
; id
++) {
1572 u32 __iomem
*num_des
;
1573 u32 __iomem
*full_offset
;
1574 u32 __iomem
*min_des
;
1575 u32 __iomem
*base_hi
;
1576 u32 __iomem
*base_lo
;
1577 struct fbr_lookup
*fbr
= rx_local
->fbr
[id
];
1580 num_des
= &rx_dma
->fbr0_num_des
;
1581 full_offset
= &rx_dma
->fbr0_full_offset
;
1582 min_des
= &rx_dma
->fbr0_min_des
;
1583 base_hi
= &rx_dma
->fbr0_base_hi
;
1584 base_lo
= &rx_dma
->fbr0_base_lo
;
1586 num_des
= &rx_dma
->fbr1_num_des
;
1587 full_offset
= &rx_dma
->fbr1_full_offset
;
1588 min_des
= &rx_dma
->fbr1_min_des
;
1589 base_hi
= &rx_dma
->fbr1_base_hi
;
1590 base_lo
= &rx_dma
->fbr1_base_lo
;
1593 /* Now's the best time to initialize FBR contents */
1594 fbr_entry
= fbr
->ring_virtaddr
;
1595 for (entry
= 0; entry
< fbr
->num_entries
; entry
++) {
1596 fbr_entry
->addr_hi
= fbr
->bus_high
[entry
];
1597 fbr_entry
->addr_lo
= fbr
->bus_low
[entry
];
1598 fbr_entry
->word2
= entry
;
1602 /* Set the address and parameters of Free buffer ring 1 and 0 */
1603 writel(upper_32_bits(fbr
->ring_physaddr
), base_hi
);
1604 writel(lower_32_bits(fbr
->ring_physaddr
), base_lo
);
1605 writel(fbr
->num_entries
- 1, num_des
);
1606 writel(ET_DMA10_WRAP
, full_offset
);
1608 /* This variable tracks the free buffer ring 1 full position,
1609 * so it has to match the above.
1611 fbr
->local_full
= ET_DMA10_WRAP
;
1612 writel(((fbr
->num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
1616 /* Program the number of packets we will receive before generating an
1618 * For version B silicon, this value gets updated once autoneg is
1621 writel(PARM_RX_NUM_BUFS_DEF
, &rx_dma
->num_pkt_done
);
1623 /* The "time_done" is not working correctly to coalesce interrupts
1624 * after a given time period, but rather is giving us an interrupt
1625 * regardless of whether we have received packets.
1626 * This value gets updated once autoneg is complete.
1628 writel(PARM_RX_TIME_INT_DEF
, &rx_dma
->max_pkt_time
);
1630 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
1633 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1635 * Configure the transmit engine with the ring buffers we have created
1636 * and prepare it for use.
1638 static void et131x_config_tx_dma_regs(struct et131x_adapter
*adapter
)
1640 struct txdma_regs __iomem
*txdma
= &adapter
->regs
->txdma
;
1641 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
1643 /* Load the hardware with the start of the transmit descriptor ring. */
1644 writel(upper_32_bits(tx_ring
->tx_desc_ring_pa
), &txdma
->pr_base_hi
);
1645 writel(lower_32_bits(tx_ring
->tx_desc_ring_pa
), &txdma
->pr_base_lo
);
1647 /* Initialise the transmit DMA engine */
1648 writel(NUM_DESC_PER_RING_TX
- 1, &txdma
->pr_num_des
);
1650 /* Load the completion writeback physical address */
1651 writel(upper_32_bits(tx_ring
->tx_status_pa
), &txdma
->dma_wb_base_hi
);
1652 writel(lower_32_bits(tx_ring
->tx_status_pa
), &txdma
->dma_wb_base_lo
);
1654 *tx_ring
->tx_status
= 0;
1656 writel(0, &txdma
->service_request
);
1657 tx_ring
->send_idx
= 0;
1660 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1661 static void et131x_adapter_setup(struct et131x_adapter
*adapter
)
1663 et131x_configure_global_regs(adapter
);
1664 et1310_config_mac_regs1(adapter
);
1666 /* Configure the MMC registers */
1667 /* All we need to do is initialize the Memory Control Register */
1668 writel(ET_MMC_ENABLE
, &adapter
->regs
->mmc
.mmc_ctrl
);
1670 et1310_config_rxmac_regs(adapter
);
1671 et1310_config_txmac_regs(adapter
);
1673 et131x_config_rx_dma_regs(adapter
);
1674 et131x_config_tx_dma_regs(adapter
);
1676 et1310_config_macstat_regs(adapter
);
1678 et1310_phy_power_switch(adapter
, 0);
1679 et131x_xcvr_init(adapter
);
1682 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1683 static void et131x_soft_reset(struct et131x_adapter
*adapter
)
1687 /* Disable MAC Core */
1688 reg
= ET_MAC_CFG1_SOFT_RESET
| ET_MAC_CFG1_SIM_RESET
|
1689 ET_MAC_CFG1_RESET_RXMC
| ET_MAC_CFG1_RESET_TXMC
|
1690 ET_MAC_CFG1_RESET_RXFUNC
| ET_MAC_CFG1_RESET_TXFUNC
;
1691 writel(reg
, &adapter
->regs
->mac
.cfg1
);
1694 writel(reg
, &adapter
->regs
->global
.sw_reset
);
1696 reg
= ET_MAC_CFG1_RESET_RXMC
| ET_MAC_CFG1_RESET_TXMC
|
1697 ET_MAC_CFG1_RESET_RXFUNC
| ET_MAC_CFG1_RESET_TXFUNC
;
1698 writel(reg
, &adapter
->regs
->mac
.cfg1
);
1699 writel(0, &adapter
->regs
->mac
.cfg1
);
1702 static void et131x_enable_interrupts(struct et131x_adapter
*adapter
)
1706 if (adapter
->flow
== FLOW_TXONLY
|| adapter
->flow
== FLOW_BOTH
)
1707 mask
= INT_MASK_ENABLE
;
1709 mask
= INT_MASK_ENABLE_NO_FLOW
;
1711 writel(mask
, &adapter
->regs
->global
.int_mask
);
1714 static void et131x_disable_interrupts(struct et131x_adapter
*adapter
)
1716 writel(INT_MASK_DISABLE
, &adapter
->regs
->global
.int_mask
);
1719 static void et131x_tx_dma_disable(struct et131x_adapter
*adapter
)
1721 /* Setup the transmit dma configuration register */
1722 writel(ET_TXDMA_CSR_HALT
| ET_TXDMA_SNGL_EPKT
,
1723 &adapter
->regs
->txdma
.csr
);
1726 static void et131x_enable_txrx(struct net_device
*netdev
)
1728 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1730 et131x_rx_dma_enable(adapter
);
1731 et131x_tx_dma_enable(adapter
);
1733 if (adapter
->flags
& FMP_ADAPTER_INTERRUPT_IN_USE
)
1734 et131x_enable_interrupts(adapter
);
1736 netif_start_queue(netdev
);
1739 static void et131x_disable_txrx(struct net_device
*netdev
)
1741 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1743 netif_stop_queue(netdev
);
1745 et131x_rx_dma_disable(adapter
);
1746 et131x_tx_dma_disable(adapter
);
1748 et131x_disable_interrupts(adapter
);
1751 static void et131x_init_send(struct et131x_adapter
*adapter
)
1754 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
1755 struct tcb
*tcb
= tx_ring
->tcb_ring
;
1757 tx_ring
->tcb_qhead
= tcb
;
1759 memset(tcb
, 0, sizeof(struct tcb
) * NUM_TCB
);
1761 for (i
= 0; i
< NUM_TCB
; i
++) {
1762 tcb
->next
= tcb
+ 1;
1767 tx_ring
->tcb_qtail
= tcb
;
1769 /* Curr send queue should now be empty */
1770 tx_ring
->send_head
= NULL
;
1771 tx_ring
->send_tail
= NULL
;
1774 /* et1310_enable_phy_coma
1776 * driver receive an phy status change interrupt while in D0 and check that
1777 * phy_status is down.
1779 * -- gate off JAGCore;
1780 * -- set gigE PHY in Coma mode
1781 * -- wake on phy_interrupt; Perform software reset JAGCore,
1782 * re-initialize jagcore and gigE PHY
1784 static void et1310_enable_phy_coma(struct et131x_adapter
*adapter
)
1786 u32 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
1788 /* Stop sending packets. */
1789 adapter
->flags
|= FMP_ADAPTER_LOWER_POWER
;
1791 /* Wait for outstanding Receive packets */
1792 et131x_disable_txrx(adapter
->netdev
);
1794 /* Gate off JAGCore 3 clock domains */
1795 pmcsr
&= ~ET_PMCSR_INIT
;
1796 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
1798 /* Program gigE PHY in to Coma mode */
1799 pmcsr
|= ET_PM_PHY_SW_COMA
;
1800 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
1803 static void et1310_disable_phy_coma(struct et131x_adapter
*adapter
)
1807 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
1809 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1810 pmcsr
|= ET_PMCSR_INIT
;
1811 pmcsr
&= ~ET_PM_PHY_SW_COMA
;
1812 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
1814 /* Restore the GbE PHY speed and duplex modes;
1815 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1818 /* Re-initialize the send structures */
1819 et131x_init_send(adapter
);
1821 /* Bring the device back to the state it was during init prior to
1822 * autonegotiation being complete. This way, when we get the auto-neg
1823 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1825 et131x_soft_reset(adapter
);
1827 et131x_adapter_setup(adapter
);
1829 /* Allow Tx to restart */
1830 adapter
->flags
&= ~FMP_ADAPTER_LOWER_POWER
;
1832 et131x_enable_txrx(adapter
->netdev
);
1835 static inline u32
bump_free_buff_ring(u32
*free_buff_ring
, u32 limit
)
1837 u32 tmp_free_buff_ring
= *free_buff_ring
;
1839 tmp_free_buff_ring
++;
1840 /* This works for all cases where limit < 1024. The 1023 case
1841 * works because 1023++ is 1024 which means the if condition is not
1842 * taken but the carry of the bit into the wrap bit toggles the wrap
1845 if ((tmp_free_buff_ring
& ET_DMA10_MASK
) > limit
) {
1846 tmp_free_buff_ring
&= ~ET_DMA10_MASK
;
1847 tmp_free_buff_ring
^= ET_DMA10_WRAP
;
1849 /* For the 1023 case */
1850 tmp_free_buff_ring
&= (ET_DMA10_MASK
| ET_DMA10_WRAP
);
1851 *free_buff_ring
= tmp_free_buff_ring
;
1852 return tmp_free_buff_ring
;
1855 /* et131x_rx_dma_memory_alloc
1857 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1858 * and the Packet Status Ring.
1860 static int et131x_rx_dma_memory_alloc(struct et131x_adapter
*adapter
)
1867 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
1868 struct fbr_lookup
*fbr
;
1870 /* Alloc memory for the lookup table */
1871 rx_ring
->fbr
[0] = kzalloc(sizeof(*fbr
), GFP_KERNEL
);
1872 if (rx_ring
->fbr
[0] == NULL
)
1874 rx_ring
->fbr
[1] = kzalloc(sizeof(*fbr
), GFP_KERNEL
);
1875 if (rx_ring
->fbr
[1] == NULL
)
1878 /* The first thing we will do is configure the sizes of the buffer
1879 * rings. These will change based on jumbo packet support. Larger
1880 * jumbo packets increases the size of each entry in FBR0, and the
1881 * number of entries in FBR0, while at the same time decreasing the
1882 * number of entries in FBR1.
1884 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
1885 * entries are huge in order to accommodate a "jumbo" frame, then it
1886 * will have less entries. Conversely, FBR1 will now be relied upon
1887 * to carry more "normal" frames, thus it's entry size also increases
1888 * and the number of entries goes up too (since it now carries
1889 * "small" + "regular" packets.
1891 * In this scheme, we try to maintain 512 entries between the two
1892 * rings. Also, FBR1 remains a constant size - when it's size doubles
1893 * the number of entries halves. FBR0 increases in size, however.
1895 if (adapter
->registry_jumbo_packet
< 2048) {
1896 rx_ring
->fbr
[0]->buffsize
= 256;
1897 rx_ring
->fbr
[0]->num_entries
= 512;
1898 rx_ring
->fbr
[1]->buffsize
= 2048;
1899 rx_ring
->fbr
[1]->num_entries
= 512;
1900 } else if (adapter
->registry_jumbo_packet
< 4096) {
1901 rx_ring
->fbr
[0]->buffsize
= 512;
1902 rx_ring
->fbr
[0]->num_entries
= 1024;
1903 rx_ring
->fbr
[1]->buffsize
= 4096;
1904 rx_ring
->fbr
[1]->num_entries
= 512;
1906 rx_ring
->fbr
[0]->buffsize
= 1024;
1907 rx_ring
->fbr
[0]->num_entries
= 768;
1908 rx_ring
->fbr
[1]->buffsize
= 16384;
1909 rx_ring
->fbr
[1]->num_entries
= 128;
1912 rx_ring
->psr_entries
= rx_ring
->fbr
[0]->num_entries
+
1913 rx_ring
->fbr
[1]->num_entries
;
1915 for (id
= 0; id
< NUM_FBRS
; id
++) {
1916 fbr
= rx_ring
->fbr
[id
];
1917 /* Allocate an area of memory for Free Buffer Ring */
1918 bufsize
= sizeof(struct fbr_desc
) * fbr
->num_entries
;
1919 fbr
->ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
1921 &fbr
->ring_physaddr
,
1923 if (!fbr
->ring_virtaddr
) {
1924 dev_err(&adapter
->pdev
->dev
,
1925 "Cannot alloc memory for Free Buffer Ring %d\n",
1931 for (id
= 0; id
< NUM_FBRS
; id
++) {
1932 fbr
= rx_ring
->fbr
[id
];
1933 fbr_chunksize
= (FBR_CHUNKS
* fbr
->buffsize
);
1935 for (i
= 0; i
< fbr
->num_entries
/ FBR_CHUNKS
; i
++) {
1936 dma_addr_t fbr_physaddr
;
1938 fbr
->mem_virtaddrs
[i
] = dma_alloc_coherent(
1939 &adapter
->pdev
->dev
, fbr_chunksize
,
1940 &fbr
->mem_physaddrs
[i
],
1943 if (!fbr
->mem_virtaddrs
[i
]) {
1944 dev_err(&adapter
->pdev
->dev
,
1945 "Could not alloc memory\n");
1949 /* See NOTE in "Save Physical Address" comment above */
1950 fbr_physaddr
= fbr
->mem_physaddrs
[i
];
1952 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
1953 u32 k
= (i
* FBR_CHUNKS
) + j
;
1955 /* Save the Virtual address of this index for
1956 * quick access later
1958 fbr
->virt
[k
] = (u8
*)fbr
->mem_virtaddrs
[i
] +
1959 (j
* fbr
->buffsize
);
1961 /* now store the physical address in the
1962 * descriptor so the device can access it
1964 fbr
->bus_high
[k
] = upper_32_bits(fbr_physaddr
);
1965 fbr
->bus_low
[k
] = lower_32_bits(fbr_physaddr
);
1966 fbr_physaddr
+= fbr
->buffsize
;
1971 /* Allocate an area of memory for FIFO of Packet Status ring entries */
1972 psr_size
= sizeof(struct pkt_stat_desc
) * rx_ring
->psr_entries
;
1974 rx_ring
->ps_ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
1976 &rx_ring
->ps_ring_physaddr
,
1979 if (!rx_ring
->ps_ring_virtaddr
) {
1980 dev_err(&adapter
->pdev
->dev
,
1981 "Cannot alloc memory for Packet Status Ring\n");
1985 /* Allocate an area of memory for writeback of status information */
1986 rx_ring
->rx_status_block
= dma_alloc_coherent(&adapter
->pdev
->dev
,
1987 sizeof(struct rx_status_block
),
1988 &rx_ring
->rx_status_bus
,
1990 if (!rx_ring
->rx_status_block
) {
1991 dev_err(&adapter
->pdev
->dev
,
1992 "Cannot alloc memory for Status Block\n");
1995 rx_ring
->num_rfd
= NIC_DEFAULT_NUM_RFD
;
1997 /* The RFDs are going to be put on lists later on, so initialize the
2000 INIT_LIST_HEAD(&rx_ring
->recv_list
);
2004 static void et131x_rx_dma_memory_free(struct et131x_adapter
*adapter
)
2011 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2012 struct fbr_lookup
*fbr
;
2014 /* Free RFDs and associated packet descriptors */
2015 WARN_ON(rx_ring
->num_ready_recv
!= rx_ring
->num_rfd
);
2017 while (!list_empty(&rx_ring
->recv_list
)) {
2018 rfd
= list_entry(rx_ring
->recv_list
.next
,
2019 struct rfd
, list_node
);
2021 list_del(&rfd
->list_node
);
2026 /* Free Free Buffer Rings */
2027 for (id
= 0; id
< NUM_FBRS
; id
++) {
2028 fbr
= rx_ring
->fbr
[id
];
2030 if (!fbr
|| !fbr
->ring_virtaddr
)
2033 /* First the packet memory */
2034 for (ii
= 0; ii
< fbr
->num_entries
/ FBR_CHUNKS
; ii
++) {
2035 if (fbr
->mem_virtaddrs
[ii
]) {
2036 bufsize
= fbr
->buffsize
* FBR_CHUNKS
;
2038 dma_free_coherent(&adapter
->pdev
->dev
,
2040 fbr
->mem_virtaddrs
[ii
],
2041 fbr
->mem_physaddrs
[ii
]);
2043 fbr
->mem_virtaddrs
[ii
] = NULL
;
2047 bufsize
= sizeof(struct fbr_desc
) * fbr
->num_entries
;
2049 dma_free_coherent(&adapter
->pdev
->dev
,
2052 fbr
->ring_physaddr
);
2054 fbr
->ring_virtaddr
= NULL
;
2057 /* Free Packet Status Ring */
2058 if (rx_ring
->ps_ring_virtaddr
) {
2059 psr_size
= sizeof(struct pkt_stat_desc
) * rx_ring
->psr_entries
;
2061 dma_free_coherent(&adapter
->pdev
->dev
, psr_size
,
2062 rx_ring
->ps_ring_virtaddr
,
2063 rx_ring
->ps_ring_physaddr
);
2065 rx_ring
->ps_ring_virtaddr
= NULL
;
2068 /* Free area of memory for the writeback of status information */
2069 if (rx_ring
->rx_status_block
) {
2070 dma_free_coherent(&adapter
->pdev
->dev
,
2071 sizeof(struct rx_status_block
),
2072 rx_ring
->rx_status_block
,
2073 rx_ring
->rx_status_bus
);
2074 rx_ring
->rx_status_block
= NULL
;
2077 /* Free the FBR Lookup Table */
2078 kfree(rx_ring
->fbr
[0]);
2079 kfree(rx_ring
->fbr
[1]);
2081 /* Reset Counters */
2082 rx_ring
->num_ready_recv
= 0;
2085 /* et131x_init_recv - Initialize receive data structures */
2086 static int et131x_init_recv(struct et131x_adapter
*adapter
)
2090 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2092 /* Setup each RFD */
2093 for (rfdct
= 0; rfdct
< rx_ring
->num_rfd
; rfdct
++) {
2094 rfd
= kzalloc(sizeof(*rfd
), GFP_ATOMIC
| GFP_DMA
);
2100 /* Add this RFD to the recv_list */
2101 list_add_tail(&rfd
->list_node
, &rx_ring
->recv_list
);
2103 /* Increment the available RFD's */
2104 rx_ring
->num_ready_recv
++;
2110 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2111 static void et131x_set_rx_dma_timer(struct et131x_adapter
*adapter
)
2113 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
2115 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2116 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2118 if ((phydev
->speed
== SPEED_100
) || (phydev
->speed
== SPEED_10
)) {
2119 writel(0, &adapter
->regs
->rxdma
.max_pkt_time
);
2120 writel(1, &adapter
->regs
->rxdma
.num_pkt_done
);
2124 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2125 static void nic_return_rfd(struct et131x_adapter
*adapter
, struct rfd
*rfd
)
2127 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2128 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
2129 u16 buff_index
= rfd
->bufferindex
;
2130 u8 ring_index
= rfd
->ringindex
;
2131 unsigned long flags
;
2132 struct fbr_lookup
*fbr
= rx_local
->fbr
[ring_index
];
2134 /* We don't use any of the OOB data besides status. Otherwise, we
2135 * need to clean up OOB data
2137 if (buff_index
< fbr
->num_entries
) {
2139 u32 __iomem
*offset
;
2140 struct fbr_desc
*next
;
2142 if (ring_index
== 0)
2143 offset
= &rx_dma
->fbr0_full_offset
;
2145 offset
= &rx_dma
->fbr1_full_offset
;
2147 next
= (struct fbr_desc
*)(fbr
->ring_virtaddr
) +
2148 INDEX10(fbr
->local_full
);
2150 /* Handle the Free Buffer Ring advancement here. Write
2151 * the PA / Buffer Index for the returned buffer into
2152 * the oldest (next to be freed)FBR entry
2154 next
->addr_hi
= fbr
->bus_high
[buff_index
];
2155 next
->addr_lo
= fbr
->bus_low
[buff_index
];
2156 next
->word2
= buff_index
;
2158 free_buff_ring
= bump_free_buff_ring(&fbr
->local_full
,
2159 fbr
->num_entries
- 1);
2160 writel(free_buff_ring
, offset
);
2162 dev_err(&adapter
->pdev
->dev
,
2163 "%s illegal Buffer Index returned\n", __func__
);
2166 /* The processing on this RFD is done, so put it back on the tail of
2169 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2170 list_add_tail(&rfd
->list_node
, &rx_local
->recv_list
);
2171 rx_local
->num_ready_recv
++;
2172 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2174 WARN_ON(rx_local
->num_ready_recv
> rx_local
->num_rfd
);
2177 /* nic_rx_pkts - Checks the hardware for available packets
2179 * Checks the hardware for available packets, using completion ring
2180 * If packets are available, it gets an RFD from the recv_list, attaches
2181 * the packet to it, puts the RFD in the RecvPendList, and also returns
2182 * the pointer to the RFD.
2184 static struct rfd
*nic_rx_pkts(struct et131x_adapter
*adapter
)
2186 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2187 struct rx_status_block
*status
;
2188 struct pkt_stat_desc
*psr
;
2190 unsigned long flags
;
2191 struct list_head
*element
;
2197 struct sk_buff
*skb
;
2198 struct fbr_lookup
*fbr
;
2200 /* RX Status block is written by the DMA engine prior to every
2201 * interrupt. It contains the next to be used entry in the Packet
2202 * Status Ring, and also the two Free Buffer rings.
2204 status
= rx_local
->rx_status_block
;
2205 word1
= status
->word1
>> 16;
2207 /* Check the PSR and wrap bits do not match */
2208 if ((word1
& 0x1FFF) == (rx_local
->local_psr_full
& 0x1FFF))
2209 return NULL
; /* Looks like this ring is not updated yet */
2211 /* The packet status ring indicates that data is available. */
2212 psr
= (struct pkt_stat_desc
*)(rx_local
->ps_ring_virtaddr
) +
2213 (rx_local
->local_psr_full
& 0xFFF);
2215 /* Grab any information that is required once the PSR is advanced,
2216 * since we can no longer rely on the memory being accurate
2218 len
= psr
->word1
& 0xFFFF;
2219 ring_index
= (psr
->word1
>> 26) & 0x03;
2220 fbr
= rx_local
->fbr
[ring_index
];
2221 buff_index
= (psr
->word1
>> 16) & 0x3FF;
2224 /* Indicate that we have used this PSR entry. */
2226 add_12bit(&rx_local
->local_psr_full
, 1);
2227 if ((rx_local
->local_psr_full
& 0xFFF) > rx_local
->psr_entries
- 1) {
2228 /* Clear psr full and toggle the wrap bit */
2229 rx_local
->local_psr_full
&= ~0xFFF;
2230 rx_local
->local_psr_full
^= 0x1000;
2233 writel(rx_local
->local_psr_full
, &adapter
->regs
->rxdma
.psr_full_offset
);
2235 if (ring_index
> 1 || buff_index
> fbr
->num_entries
- 1) {
2236 /* Illegal buffer or ring index cannot be used by S/W*/
2237 dev_err(&adapter
->pdev
->dev
,
2238 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2239 rx_local
->local_psr_full
& 0xFFF, len
, buff_index
);
2243 /* Get and fill the RFD. */
2244 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2246 element
= rx_local
->recv_list
.next
;
2247 rfd
= list_entry(element
, struct rfd
, list_node
);
2250 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2254 list_del(&rfd
->list_node
);
2255 rx_local
->num_ready_recv
--;
2257 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2259 rfd
->bufferindex
= buff_index
;
2260 rfd
->ringindex
= ring_index
;
2262 /* In V1 silicon, there is a bug which screws up filtering of runt
2263 * packets. Therefore runt packet filtering is disabled in the MAC and
2264 * the packets are dropped here. They are also counted here.
2266 if (len
< (NIC_MIN_PACKET_SIZE
+ 4)) {
2267 adapter
->stats
.rx_other_errs
++;
2272 if ((word0
& ALCATEL_MULTICAST_PKT
) && !(word0
& ALCATEL_BROADCAST_PKT
))
2273 adapter
->stats
.multicast_pkts_rcvd
++;
2277 skb
= dev_alloc_skb(rfd
->len
+ 2);
2281 adapter
->netdev
->stats
.rx_bytes
+= rfd
->len
;
2283 memcpy(skb_put(skb
, rfd
->len
), fbr
->virt
[buff_index
], rfd
->len
);
2285 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
2286 skb
->ip_summed
= CHECKSUM_NONE
;
2287 netif_receive_skb(skb
);
2290 nic_return_rfd(adapter
, rfd
);
2294 static int et131x_handle_recv_pkts(struct et131x_adapter
*adapter
, int budget
)
2296 struct rfd
*rfd
= NULL
;
2300 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2302 if (budget
> MAX_PACKETS_HANDLED
)
2303 limit
= MAX_PACKETS_HANDLED
;
2305 /* Process up to available RFD's */
2306 while (count
< limit
) {
2307 if (list_empty(&rx_ring
->recv_list
)) {
2308 WARN_ON(rx_ring
->num_ready_recv
!= 0);
2313 rfd
= nic_rx_pkts(adapter
);
2318 /* Do not receive any packets until a filter has been set.
2319 * Do not receive any packets until we have link.
2320 * If length is zero, return the RFD in order to advance the
2323 if (!adapter
->packet_filter
||
2324 !netif_carrier_ok(adapter
->netdev
) ||
2328 adapter
->netdev
->stats
.rx_packets
++;
2330 if (rx_ring
->num_ready_recv
< RFD_LOW_WATER_MARK
)
2331 dev_warn(&adapter
->pdev
->dev
, "RFD's are running out\n");
2336 if (count
== limit
|| !done
) {
2337 rx_ring
->unfinished_receives
= true;
2338 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
2339 &adapter
->regs
->global
.watchdog_timer
);
2341 /* Watchdog timer will disable itself if appropriate. */
2342 rx_ring
->unfinished_receives
= false;
2348 /* et131x_tx_dma_memory_alloc
2350 * Allocates memory that will be visible both to the device and to the CPU.
2351 * The OS will pass us packets, pointers to which we will insert in the Tx
2352 * Descriptor queue. The device will read this queue to find the packets in
2353 * memory. The device will update the "status" in memory each time it xmits a
2356 static int et131x_tx_dma_memory_alloc(struct et131x_adapter
*adapter
)
2359 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2361 /* Allocate memory for the TCB's (Transmit Control Block) */
2362 tx_ring
->tcb_ring
= kcalloc(NUM_TCB
, sizeof(struct tcb
),
2363 GFP_ATOMIC
| GFP_DMA
);
2364 if (!tx_ring
->tcb_ring
)
2367 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
);
2368 tx_ring
->tx_desc_ring
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2370 &tx_ring
->tx_desc_ring_pa
,
2372 if (!tx_ring
->tx_desc_ring
) {
2373 dev_err(&adapter
->pdev
->dev
,
2374 "Cannot alloc memory for Tx Ring\n");
2378 tx_ring
->tx_status
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2380 &tx_ring
->tx_status_pa
,
2382 if (!tx_ring
->tx_status
) {
2383 dev_err(&adapter
->pdev
->dev
,
2384 "Cannot alloc memory for Tx status block\n");
2390 static void et131x_tx_dma_memory_free(struct et131x_adapter
*adapter
)
2393 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2395 if (tx_ring
->tx_desc_ring
) {
2396 /* Free memory relating to Tx rings here */
2397 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
);
2398 dma_free_coherent(&adapter
->pdev
->dev
,
2400 tx_ring
->tx_desc_ring
,
2401 tx_ring
->tx_desc_ring_pa
);
2402 tx_ring
->tx_desc_ring
= NULL
;
2405 /* Free memory for the Tx status block */
2406 if (tx_ring
->tx_status
) {
2407 dma_free_coherent(&adapter
->pdev
->dev
,
2410 tx_ring
->tx_status_pa
);
2412 tx_ring
->tx_status
= NULL
;
2414 /* Free the memory for the tcb structures */
2415 kfree(tx_ring
->tcb_ring
);
2418 /* nic_send_packet - NIC specific send handler for version B silicon. */
2419 static int nic_send_packet(struct et131x_adapter
*adapter
, struct tcb
*tcb
)
2422 struct tx_desc desc
[24];
2424 u32 thiscopy
, remainder
;
2425 struct sk_buff
*skb
= tcb
->skb
;
2426 u32 nr_frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2427 struct skb_frag_struct
*frags
= &skb_shinfo(skb
)->frags
[0];
2428 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
2429 dma_addr_t dma_addr
;
2430 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2432 /* Part of the optimizations of this send routine restrict us to
2433 * sending 24 fragments at a pass. In practice we should never see
2434 * more than 5 fragments.
2437 /* nr_frags should be no more than 18. */
2438 BUILD_BUG_ON(MAX_SKB_FRAGS
+ 1 > 23);
2440 memset(desc
, 0, sizeof(struct tx_desc
) * (nr_frags
+ 1));
2442 for (i
= 0; i
< nr_frags
; i
++) {
2443 /* If there is something in this element, lets get a
2444 * descriptor from the ring and get the necessary data
2447 /* If the fragments are smaller than a standard MTU,
2448 * then map them to a single descriptor in the Tx
2449 * Desc ring. However, if they're larger, as is
2450 * possible with support for jumbo packets, then
2451 * split them each across 2 descriptors.
2453 * This will work until we determine why the hardware
2454 * doesn't seem to like large fragments.
2456 if (skb_headlen(skb
) <= 1514) {
2457 /* Low 16bits are length, high is vlan and
2458 * unused currently so zero
2460 desc
[frag
].len_vlan
= skb_headlen(skb
);
2461 dma_addr
= dma_map_single(&adapter
->pdev
->dev
,
2465 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2466 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2469 desc
[frag
].len_vlan
= skb_headlen(skb
) / 2;
2470 dma_addr
= dma_map_single(&adapter
->pdev
->dev
,
2472 skb_headlen(skb
) / 2,
2474 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2475 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2478 desc
[frag
].len_vlan
= skb_headlen(skb
) / 2;
2479 dma_addr
= dma_map_single(&adapter
->pdev
->dev
,
2481 skb_headlen(skb
) / 2,
2482 skb_headlen(skb
) / 2,
2484 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2485 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2489 desc
[frag
].len_vlan
= frags
[i
- 1].size
;
2490 dma_addr
= skb_frag_dma_map(&adapter
->pdev
->dev
,
2495 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2496 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2501 if (phydev
&& phydev
->speed
== SPEED_1000
) {
2502 if (++tx_ring
->since_irq
== PARM_TX_NUM_BUFS_DEF
) {
2503 /* Last element & Interrupt flag */
2504 desc
[frag
- 1].flags
=
2505 TXDESC_FLAG_INTPROC
| TXDESC_FLAG_LASTPKT
;
2506 tx_ring
->since_irq
= 0;
2507 } else { /* Last element */
2508 desc
[frag
- 1].flags
= TXDESC_FLAG_LASTPKT
;
2511 desc
[frag
- 1].flags
=
2512 TXDESC_FLAG_INTPROC
| TXDESC_FLAG_LASTPKT
;
2515 desc
[0].flags
|= TXDESC_FLAG_FIRSTPKT
;
2517 tcb
->index_start
= tx_ring
->send_idx
;
2520 thiscopy
= NUM_DESC_PER_RING_TX
- INDEX10(tx_ring
->send_idx
);
2522 if (thiscopy
>= frag
) {
2526 remainder
= frag
- thiscopy
;
2529 memcpy(tx_ring
->tx_desc_ring
+ INDEX10(tx_ring
->send_idx
),
2531 sizeof(struct tx_desc
) * thiscopy
);
2533 add_10bit(&tx_ring
->send_idx
, thiscopy
);
2535 if (INDEX10(tx_ring
->send_idx
) == 0 ||
2536 INDEX10(tx_ring
->send_idx
) == NUM_DESC_PER_RING_TX
) {
2537 tx_ring
->send_idx
&= ~ET_DMA10_MASK
;
2538 tx_ring
->send_idx
^= ET_DMA10_WRAP
;
2542 memcpy(tx_ring
->tx_desc_ring
,
2544 sizeof(struct tx_desc
) * remainder
);
2546 add_10bit(&tx_ring
->send_idx
, remainder
);
2549 if (INDEX10(tx_ring
->send_idx
) == 0) {
2550 if (tx_ring
->send_idx
)
2551 tcb
->index
= NUM_DESC_PER_RING_TX
- 1;
2553 tcb
->index
= ET_DMA10_WRAP
|(NUM_DESC_PER_RING_TX
- 1);
2555 tcb
->index
= tx_ring
->send_idx
- 1;
2558 spin_lock(&adapter
->tcb_send_qlock
);
2560 if (tx_ring
->send_tail
)
2561 tx_ring
->send_tail
->next
= tcb
;
2563 tx_ring
->send_head
= tcb
;
2565 tx_ring
->send_tail
= tcb
;
2567 WARN_ON(tcb
->next
!= NULL
);
2571 spin_unlock(&adapter
->tcb_send_qlock
);
2573 /* Write the new write pointer back to the device. */
2574 writel(tx_ring
->send_idx
, &adapter
->regs
->txdma
.service_request
);
2576 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2577 * timer to wake us up if this packet isn't followed by N more.
2579 if (phydev
&& phydev
->speed
== SPEED_1000
) {
2580 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
2581 &adapter
->regs
->global
.watchdog_timer
);
2586 static int send_packet(struct sk_buff
*skb
, struct et131x_adapter
*adapter
)
2590 unsigned long flags
;
2591 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2593 /* All packets must have at least a MAC address and a protocol type */
2594 if (skb
->len
< ETH_HLEN
)
2597 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
2599 tcb
= tx_ring
->tcb_qhead
;
2602 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
2606 tx_ring
->tcb_qhead
= tcb
->next
;
2608 if (tx_ring
->tcb_qhead
== NULL
)
2609 tx_ring
->tcb_qtail
= NULL
;
2611 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
2616 status
= nic_send_packet(adapter
, tcb
);
2619 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
2621 if (tx_ring
->tcb_qtail
)
2622 tx_ring
->tcb_qtail
->next
= tcb
;
2624 /* Apparently ready Q is empty. */
2625 tx_ring
->tcb_qhead
= tcb
;
2627 tx_ring
->tcb_qtail
= tcb
;
2628 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
2631 WARN_ON(tx_ring
->used
> NUM_TCB
);
2635 /* free_send_packet - Recycle a struct tcb */
2636 static inline void free_send_packet(struct et131x_adapter
*adapter
,
2639 unsigned long flags
;
2640 struct tx_desc
*desc
= NULL
;
2641 struct net_device_stats
*stats
= &adapter
->netdev
->stats
;
2642 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2646 stats
->tx_bytes
+= tcb
->skb
->len
;
2648 /* Iterate through the TX descriptors on the ring
2649 * corresponding to this packet and umap the fragments
2653 desc
= tx_ring
->tx_desc_ring
+
2654 INDEX10(tcb
->index_start
);
2656 dma_addr
= desc
->addr_lo
;
2657 dma_addr
|= (u64
)desc
->addr_hi
<< 32;
2659 dma_unmap_single(&adapter
->pdev
->dev
,
2661 desc
->len_vlan
, DMA_TO_DEVICE
);
2663 add_10bit(&tcb
->index_start
, 1);
2664 if (INDEX10(tcb
->index_start
) >=
2665 NUM_DESC_PER_RING_TX
) {
2666 tcb
->index_start
&= ~ET_DMA10_MASK
;
2667 tcb
->index_start
^= ET_DMA10_WRAP
;
2669 } while (desc
!= tx_ring
->tx_desc_ring
+ INDEX10(tcb
->index
));
2671 dev_kfree_skb_any(tcb
->skb
);
2674 memset(tcb
, 0, sizeof(struct tcb
));
2676 /* Add the TCB to the Ready Q */
2677 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
2679 stats
->tx_packets
++;
2681 if (tx_ring
->tcb_qtail
)
2682 tx_ring
->tcb_qtail
->next
= tcb
;
2683 else /* Apparently ready Q is empty. */
2684 tx_ring
->tcb_qhead
= tcb
;
2686 tx_ring
->tcb_qtail
= tcb
;
2688 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
2689 WARN_ON(tx_ring
->used
< 0);
2692 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2693 static void et131x_free_busy_send_packets(struct et131x_adapter
*adapter
)
2696 unsigned long flags
;
2698 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2700 /* Any packets being sent? Check the first TCB on the send list */
2701 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
2703 tcb
= tx_ring
->send_head
;
2705 while (tcb
!= NULL
&& freed
< NUM_TCB
) {
2706 struct tcb
*next
= tcb
->next
;
2708 tx_ring
->send_head
= next
;
2711 tx_ring
->send_tail
= NULL
;
2715 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
2718 free_send_packet(adapter
, tcb
);
2720 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
2722 tcb
= tx_ring
->send_head
;
2725 WARN_ON(freed
== NUM_TCB
);
2727 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
2732 /* et131x_handle_send_pkts
2734 * Re-claim the send resources, complete sends and get more to send from
2735 * the send wait queue.
2737 static void et131x_handle_send_pkts(struct et131x_adapter
*adapter
)
2739 unsigned long flags
;
2743 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2745 serviced
= readl(&adapter
->regs
->txdma
.new_service_complete
);
2746 index
= INDEX10(serviced
);
2748 /* Has the ring wrapped? Process any descriptors that do not have
2749 * the same "wrap" indicator as the current completion indicator
2751 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
2753 tcb
= tx_ring
->send_head
;
2756 ((serviced
^ tcb
->index
) & ET_DMA10_WRAP
) &&
2757 index
< INDEX10(tcb
->index
)) {
2759 tx_ring
->send_head
= tcb
->next
;
2760 if (tcb
->next
== NULL
)
2761 tx_ring
->send_tail
= NULL
;
2763 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
2764 free_send_packet(adapter
, tcb
);
2765 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
2767 /* Goto the next packet */
2768 tcb
= tx_ring
->send_head
;
2771 !((serviced
^ tcb
->index
) & ET_DMA10_WRAP
) &&
2772 index
> (tcb
->index
& ET_DMA10_MASK
)) {
2774 tx_ring
->send_head
= tcb
->next
;
2775 if (tcb
->next
== NULL
)
2776 tx_ring
->send_tail
= NULL
;
2778 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
2779 free_send_packet(adapter
, tcb
);
2780 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
2782 /* Goto the next packet */
2783 tcb
= tx_ring
->send_head
;
2786 /* Wake up the queue when we hit a low-water mark */
2787 if (tx_ring
->used
<= NUM_TCB
/ 3)
2788 netif_wake_queue(adapter
->netdev
);
2790 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
2793 static int et131x_get_regs_len(struct net_device
*netdev
)
2795 #define ET131X_REGS_LEN 256
2796 return ET131X_REGS_LEN
* sizeof(u32
);
2799 static void et131x_get_regs(struct net_device
*netdev
,
2800 struct ethtool_regs
*regs
, void *regs_data
)
2802 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
2803 struct address_map __iomem
*aregs
= adapter
->regs
;
2804 u32
*regs_buff
= regs_data
;
2808 memset(regs_data
, 0, et131x_get_regs_len(netdev
));
2810 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
2811 adapter
->pdev
->device
;
2814 et131x_mii_read(adapter
, MII_BMCR
, &tmp
);
2815 regs_buff
[num
++] = tmp
;
2816 et131x_mii_read(adapter
, MII_BMSR
, &tmp
);
2817 regs_buff
[num
++] = tmp
;
2818 et131x_mii_read(adapter
, MII_PHYSID1
, &tmp
);
2819 regs_buff
[num
++] = tmp
;
2820 et131x_mii_read(adapter
, MII_PHYSID2
, &tmp
);
2821 regs_buff
[num
++] = tmp
;
2822 et131x_mii_read(adapter
, MII_ADVERTISE
, &tmp
);
2823 regs_buff
[num
++] = tmp
;
2824 et131x_mii_read(adapter
, MII_LPA
, &tmp
);
2825 regs_buff
[num
++] = tmp
;
2826 et131x_mii_read(adapter
, MII_EXPANSION
, &tmp
);
2827 regs_buff
[num
++] = tmp
;
2828 /* Autoneg next page transmit reg */
2829 et131x_mii_read(adapter
, 0x07, &tmp
);
2830 regs_buff
[num
++] = tmp
;
2831 /* Link partner next page reg */
2832 et131x_mii_read(adapter
, 0x08, &tmp
);
2833 regs_buff
[num
++] = tmp
;
2834 et131x_mii_read(adapter
, MII_CTRL1000
, &tmp
);
2835 regs_buff
[num
++] = tmp
;
2836 et131x_mii_read(adapter
, MII_STAT1000
, &tmp
);
2837 regs_buff
[num
++] = tmp
;
2838 et131x_mii_read(adapter
, 0x0b, &tmp
);
2839 regs_buff
[num
++] = tmp
;
2840 et131x_mii_read(adapter
, 0x0c, &tmp
);
2841 regs_buff
[num
++] = tmp
;
2842 et131x_mii_read(adapter
, MII_MMD_CTRL
, &tmp
);
2843 regs_buff
[num
++] = tmp
;
2844 et131x_mii_read(adapter
, MII_MMD_DATA
, &tmp
);
2845 regs_buff
[num
++] = tmp
;
2846 et131x_mii_read(adapter
, MII_ESTATUS
, &tmp
);
2847 regs_buff
[num
++] = tmp
;
2849 et131x_mii_read(adapter
, PHY_INDEX_REG
, &tmp
);
2850 regs_buff
[num
++] = tmp
;
2851 et131x_mii_read(adapter
, PHY_DATA_REG
, &tmp
);
2852 regs_buff
[num
++] = tmp
;
2853 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
, &tmp
);
2854 regs_buff
[num
++] = tmp
;
2855 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
, &tmp
);
2856 regs_buff
[num
++] = tmp
;
2857 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
+ 1, &tmp
);
2858 regs_buff
[num
++] = tmp
;
2860 et131x_mii_read(adapter
, PHY_REGISTER_MGMT_CONTROL
, &tmp
);
2861 regs_buff
[num
++] = tmp
;
2862 et131x_mii_read(adapter
, PHY_CONFIG
, &tmp
);
2863 regs_buff
[num
++] = tmp
;
2864 et131x_mii_read(adapter
, PHY_PHY_CONTROL
, &tmp
);
2865 regs_buff
[num
++] = tmp
;
2866 et131x_mii_read(adapter
, PHY_INTERRUPT_MASK
, &tmp
);
2867 regs_buff
[num
++] = tmp
;
2868 et131x_mii_read(adapter
, PHY_INTERRUPT_STATUS
, &tmp
);
2869 regs_buff
[num
++] = tmp
;
2870 et131x_mii_read(adapter
, PHY_PHY_STATUS
, &tmp
);
2871 regs_buff
[num
++] = tmp
;
2872 et131x_mii_read(adapter
, PHY_LED_1
, &tmp
);
2873 regs_buff
[num
++] = tmp
;
2874 et131x_mii_read(adapter
, PHY_LED_2
, &tmp
);
2875 regs_buff
[num
++] = tmp
;
2878 regs_buff
[num
++] = readl(&aregs
->global
.txq_start_addr
);
2879 regs_buff
[num
++] = readl(&aregs
->global
.txq_end_addr
);
2880 regs_buff
[num
++] = readl(&aregs
->global
.rxq_start_addr
);
2881 regs_buff
[num
++] = readl(&aregs
->global
.rxq_end_addr
);
2882 regs_buff
[num
++] = readl(&aregs
->global
.pm_csr
);
2883 regs_buff
[num
++] = adapter
->stats
.interrupt_status
;
2884 regs_buff
[num
++] = readl(&aregs
->global
.int_mask
);
2885 regs_buff
[num
++] = readl(&aregs
->global
.int_alias_clr_en
);
2886 regs_buff
[num
++] = readl(&aregs
->global
.int_status_alias
);
2887 regs_buff
[num
++] = readl(&aregs
->global
.sw_reset
);
2888 regs_buff
[num
++] = readl(&aregs
->global
.slv_timer
);
2889 regs_buff
[num
++] = readl(&aregs
->global
.msi_config
);
2890 regs_buff
[num
++] = readl(&aregs
->global
.loopback
);
2891 regs_buff
[num
++] = readl(&aregs
->global
.watchdog_timer
);
2894 regs_buff
[num
++] = readl(&aregs
->txdma
.csr
);
2895 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_hi
);
2896 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_lo
);
2897 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_num_des
);
2898 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr
);
2899 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr_ext
);
2900 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_rd_addr
);
2901 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_hi
);
2902 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_lo
);
2903 regs_buff
[num
++] = readl(&aregs
->txdma
.service_request
);
2904 regs_buff
[num
++] = readl(&aregs
->txdma
.service_complete
);
2905 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_rd_index
);
2906 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_wr_index
);
2907 regs_buff
[num
++] = readl(&aregs
->txdma
.tx_dma_error
);
2908 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_abort_cnt
);
2909 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_abort_cnt
);
2910 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_abort_cnt
);
2911 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_timeout_cnt
);
2912 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_timeout_cnt
);
2913 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_timeout_cnt
);
2914 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_error_cnt
);
2915 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_error_cnt
);
2916 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_error_cnt
);
2917 regs_buff
[num
++] = readl(&aregs
->txdma
.dropped_tlp_cnt
);
2918 regs_buff
[num
++] = readl(&aregs
->txdma
.new_service_complete
);
2919 regs_buff
[num
++] = readl(&aregs
->txdma
.ethernet_packet_cnt
);
2922 regs_buff
[num
++] = readl(&aregs
->rxdma
.csr
);
2923 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_hi
);
2924 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_lo
);
2925 regs_buff
[num
++] = readl(&aregs
->rxdma
.num_pkt_done
);
2926 regs_buff
[num
++] = readl(&aregs
->rxdma
.max_pkt_time
);
2927 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr
);
2928 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr_ext
);
2929 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_wr_addr
);
2930 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_hi
);
2931 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_lo
);
2932 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_num_des
);
2933 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_avail_offset
);
2934 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_full_offset
);
2935 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_access_index
);
2936 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_min_des
);
2937 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_lo
);
2938 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_hi
);
2939 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_num_des
);
2940 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_avail_offset
);
2941 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_full_offset
);
2942 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_rd_index
);
2943 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_min_des
);
2944 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_lo
);
2945 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_hi
);
2946 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_num_des
);
2947 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_avail_offset
);
2948 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_full_offset
);
2949 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_rd_index
);
2950 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_min_des
);
2953 static void et131x_get_drvinfo(struct net_device
*netdev
,
2954 struct ethtool_drvinfo
*info
)
2956 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
2958 strlcpy(info
->driver
, DRIVER_NAME
, sizeof(info
->driver
));
2959 strlcpy(info
->version
, DRIVER_VERSION
, sizeof(info
->version
));
2960 strlcpy(info
->bus_info
, pci_name(adapter
->pdev
),
2961 sizeof(info
->bus_info
));
2964 static struct ethtool_ops et131x_ethtool_ops
= {
2965 .get_drvinfo
= et131x_get_drvinfo
,
2966 .get_regs_len
= et131x_get_regs_len
,
2967 .get_regs
= et131x_get_regs
,
2968 .get_link
= ethtool_op_get_link
,
2969 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
2970 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
2973 /* et131x_hwaddr_init - set up the MAC Address */
2974 static void et131x_hwaddr_init(struct et131x_adapter
*adapter
)
2976 /* If have our default mac from init and no mac address from
2977 * EEPROM then we need to generate the last octet and set it on the
2980 if (is_zero_ether_addr(adapter
->rom_addr
)) {
2981 /* We need to randomly generate the last octet so we
2982 * decrease our chances of setting the mac address to
2983 * same as another one of our cards in the system
2985 get_random_bytes(&adapter
->addr
[5], 1);
2986 /* We have the default value in the register we are
2987 * working with so we need to copy the current
2988 * address into the permanent address
2990 ether_addr_copy(adapter
->rom_addr
, adapter
->addr
);
2992 /* We do not have an override address, so set the
2993 * current address to the permanent address and add
2996 ether_addr_copy(adapter
->addr
, adapter
->rom_addr
);
3000 static int et131x_pci_init(struct et131x_adapter
*adapter
,
3001 struct pci_dev
*pdev
)
3006 rc
= et131x_init_eeprom(adapter
);
3010 if (!pci_is_pcie(pdev
)) {
3011 dev_err(&pdev
->dev
, "Missing PCIe capabilities\n");
3015 /* Program the Ack/Nak latency and replay timers */
3016 max_payload
= pdev
->pcie_mpss
;
3018 if (max_payload
< 2) {
3019 static const u16 acknak
[2] = { 0x76, 0xD0 };
3020 static const u16 replay
[2] = { 0x1E0, 0x2ED };
3022 if (pci_write_config_word(pdev
, ET1310_PCI_ACK_NACK
,
3023 acknak
[max_payload
])) {
3025 "Could not write PCI config space for ACK/NAK\n");
3028 if (pci_write_config_word(pdev
, ET1310_PCI_REPLAY
,
3029 replay
[max_payload
])) {
3031 "Could not write PCI config space for Replay Timer\n");
3036 /* l0s and l1 latency timers. We are using default values.
3037 * Representing 001 for L0s and 010 for L1
3039 if (pci_write_config_byte(pdev
, ET1310_PCI_L0L1LATENCY
, 0x11)) {
3041 "Could not write PCI config space for Latency Timers\n");
3045 /* Change the max read size to 2k */
3046 if (pcie_set_readrq(pdev
, 2048)) {
3048 "Couldn't change PCI config space for Max read size\n");
3052 /* Get MAC address from config space if an eeprom exists, otherwise
3053 * the MAC address there will not be valid
3055 if (!adapter
->has_eeprom
) {
3056 et131x_hwaddr_init(adapter
);
3060 for (i
= 0; i
< ETH_ALEN
; i
++) {
3061 if (pci_read_config_byte(pdev
, ET1310_PCI_MAC_ADDRESS
+ i
,
3062 adapter
->rom_addr
+ i
)) {
3063 dev_err(&pdev
->dev
, "Could not read PCI config space for MAC address\n");
3067 ether_addr_copy(adapter
->addr
, adapter
->rom_addr
);
3075 /* et131x_error_timer_handler
3076 * @data: timer-specific variable; here a pointer to our adapter structure
3078 * The routine called when the error timer expires, to track the number of
3081 static void et131x_error_timer_handler(unsigned long data
)
3083 struct et131x_adapter
*adapter
= (struct et131x_adapter
*)data
;
3084 struct phy_device
*phydev
= adapter
->netdev
->phydev
;
3086 if (et1310_in_phy_coma(adapter
)) {
3087 /* Bring the device immediately out of coma, to
3088 * prevent it from sleeping indefinitely, this
3089 * mechanism could be improved!
3091 et1310_disable_phy_coma(adapter
);
3092 adapter
->boot_coma
= 20;
3094 et1310_update_macstat_host_counters(adapter
);
3097 if (!phydev
->link
&& adapter
->boot_coma
< 11)
3098 adapter
->boot_coma
++;
3100 if (adapter
->boot_coma
== 10) {
3101 if (!phydev
->link
) {
3102 if (!et1310_in_phy_coma(adapter
)) {
3103 /* NOTE - This was originally a 'sync with
3104 * interrupt'. How to do that under Linux?
3106 et131x_enable_interrupts(adapter
);
3107 et1310_enable_phy_coma(adapter
);
3112 /* This is a periodic timer, so reschedule */
3113 mod_timer(&adapter
->error_timer
, jiffies
+
3114 msecs_to_jiffies(TX_ERROR_PERIOD
));
3117 static void et131x_adapter_memory_free(struct et131x_adapter
*adapter
)
3119 et131x_tx_dma_memory_free(adapter
);
3120 et131x_rx_dma_memory_free(adapter
);
3123 static int et131x_adapter_memory_alloc(struct et131x_adapter
*adapter
)
3127 status
= et131x_tx_dma_memory_alloc(adapter
);
3129 dev_err(&adapter
->pdev
->dev
,
3130 "et131x_tx_dma_memory_alloc FAILED\n");
3131 et131x_tx_dma_memory_free(adapter
);
3135 status
= et131x_rx_dma_memory_alloc(adapter
);
3137 dev_err(&adapter
->pdev
->dev
,
3138 "et131x_rx_dma_memory_alloc FAILED\n");
3139 et131x_adapter_memory_free(adapter
);
3143 status
= et131x_init_recv(adapter
);
3145 dev_err(&adapter
->pdev
->dev
, "et131x_init_recv FAILED\n");
3146 et131x_adapter_memory_free(adapter
);
3151 static void et131x_adjust_link(struct net_device
*netdev
)
3153 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3154 struct phy_device
*phydev
= netdev
->phydev
;
3158 if (phydev
->link
== adapter
->link
)
3161 /* Check to see if we are in coma mode and if
3162 * so, disable it because we will not be able
3163 * to read PHY values until we are out.
3165 if (et1310_in_phy_coma(adapter
))
3166 et1310_disable_phy_coma(adapter
);
3168 adapter
->link
= phydev
->link
;
3169 phy_print_status(phydev
);
3172 adapter
->boot_coma
= 20;
3173 if (phydev
->speed
== SPEED_10
) {
3176 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
3178 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3179 PHY_MPHY_CONTROL_REG
,
3181 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3182 PHY_INDEX_REG
, register18
| 0x8402);
3183 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3184 PHY_DATA_REG
, register18
| 511);
3185 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3186 PHY_MPHY_CONTROL_REG
, register18
);
3189 et1310_config_flow_control(adapter
);
3191 if (phydev
->speed
== SPEED_1000
&&
3192 adapter
->registry_jumbo_packet
> 2048) {
3195 et131x_mii_read(adapter
, PHY_CONFIG
, ®
);
3196 reg
&= ~ET_PHY_CONFIG_TX_FIFO_DEPTH
;
3197 reg
|= ET_PHY_CONFIG_FIFO_DEPTH_32
;
3198 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3202 et131x_set_rx_dma_timer(adapter
);
3203 et1310_config_mac_regs2(adapter
);
3205 adapter
->boot_coma
= 0;
3207 if (phydev
->speed
== SPEED_10
) {
3210 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
3212 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3213 PHY_MPHY_CONTROL_REG
,
3215 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3216 PHY_INDEX_REG
, register18
| 0x8402);
3217 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3218 PHY_DATA_REG
, register18
| 511);
3219 et131x_mii_write(adapter
, phydev
->mdio
.addr
,
3220 PHY_MPHY_CONTROL_REG
, register18
);
3223 et131x_free_busy_send_packets(adapter
);
3224 et131x_init_send(adapter
);
3226 /* Bring the device back to the state it was during
3227 * init prior to autonegotiation being complete. This
3228 * way, when we get the auto-neg complete interrupt,
3229 * we can complete init by calling config_mac_regs2.
3231 et131x_soft_reset(adapter
);
3233 et131x_adapter_setup(adapter
);
3235 et131x_disable_txrx(netdev
);
3236 et131x_enable_txrx(netdev
);
3240 static int et131x_mii_probe(struct net_device
*netdev
)
3242 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3243 struct phy_device
*phydev
= NULL
;
3245 phydev
= phy_find_first(adapter
->mii_bus
);
3247 dev_err(&adapter
->pdev
->dev
, "no PHY found\n");
3251 phydev
= phy_connect(netdev
, phydev_name(phydev
),
3252 &et131x_adjust_link
, PHY_INTERFACE_MODE_MII
);
3254 if (IS_ERR(phydev
)) {
3255 dev_err(&adapter
->pdev
->dev
, "Could not attach to PHY\n");
3256 return PTR_ERR(phydev
);
3259 phydev
->supported
&= (SUPPORTED_10baseT_Half
|
3260 SUPPORTED_10baseT_Full
|
3261 SUPPORTED_100baseT_Half
|
3262 SUPPORTED_100baseT_Full
|
3267 if (adapter
->pdev
->device
!= ET131X_PCI_DEVICE_ID_FAST
)
3268 phydev
->supported
|= SUPPORTED_1000baseT_Half
|
3269 SUPPORTED_1000baseT_Full
;
3271 phydev
->advertising
= phydev
->supported
;
3272 phydev
->autoneg
= AUTONEG_ENABLE
;
3274 phy_attached_info(phydev
);
3279 static struct et131x_adapter
*et131x_adapter_init(struct net_device
*netdev
,
3280 struct pci_dev
*pdev
)
3282 static const u8 default_mac
[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3284 struct et131x_adapter
*adapter
;
3286 adapter
= netdev_priv(netdev
);
3287 adapter
->pdev
= pci_dev_get(pdev
);
3288 adapter
->netdev
= netdev
;
3290 spin_lock_init(&adapter
->tcb_send_qlock
);
3291 spin_lock_init(&adapter
->tcb_ready_qlock
);
3292 spin_lock_init(&adapter
->rcv_lock
);
3294 adapter
->registry_jumbo_packet
= 1514; /* 1514-9216 */
3296 ether_addr_copy(adapter
->addr
, default_mac
);
3301 static void et131x_pci_remove(struct pci_dev
*pdev
)
3303 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3304 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3306 unregister_netdev(netdev
);
3307 netif_napi_del(&adapter
->napi
);
3308 phy_disconnect(netdev
->phydev
);
3309 mdiobus_unregister(adapter
->mii_bus
);
3310 mdiobus_free(adapter
->mii_bus
);
3312 et131x_adapter_memory_free(adapter
);
3313 iounmap(adapter
->regs
);
3316 free_netdev(netdev
);
3317 pci_release_regions(pdev
);
3318 pci_disable_device(pdev
);
3321 static void et131x_up(struct net_device
*netdev
)
3323 et131x_enable_txrx(netdev
);
3324 phy_start(netdev
->phydev
);
3327 static void et131x_down(struct net_device
*netdev
)
3329 /* Save the timestamp for the TX watchdog, prevent a timeout */
3330 netif_trans_update(netdev
);
3332 phy_stop(netdev
->phydev
);
3333 et131x_disable_txrx(netdev
);
3336 #ifdef CONFIG_PM_SLEEP
3337 static int et131x_suspend(struct device
*dev
)
3339 struct pci_dev
*pdev
= to_pci_dev(dev
);
3340 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3342 if (netif_running(netdev
)) {
3343 netif_device_detach(netdev
);
3344 et131x_down(netdev
);
3345 pci_save_state(pdev
);
3351 static int et131x_resume(struct device
*dev
)
3353 struct pci_dev
*pdev
= to_pci_dev(dev
);
3354 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3356 if (netif_running(netdev
)) {
3357 pci_restore_state(pdev
);
3359 netif_device_attach(netdev
);
3366 static SIMPLE_DEV_PM_OPS(et131x_pm_ops
, et131x_suspend
, et131x_resume
);
3368 static irqreturn_t
et131x_isr(int irq
, void *dev_id
)
3370 bool handled
= true;
3371 bool enable_interrupts
= true;
3372 struct net_device
*netdev
= dev_id
;
3373 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3374 struct address_map __iomem
*iomem
= adapter
->regs
;
3375 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
3376 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3379 if (!netif_device_present(netdev
)) {
3381 enable_interrupts
= false;
3385 et131x_disable_interrupts(adapter
);
3387 status
= readl(&adapter
->regs
->global
.int_status
);
3389 if (adapter
->flow
== FLOW_TXONLY
|| adapter
->flow
== FLOW_BOTH
)
3390 status
&= ~INT_MASK_ENABLE
;
3392 status
&= ~INT_MASK_ENABLE_NO_FLOW
;
3394 /* Make sure this is our interrupt */
3397 et131x_enable_interrupts(adapter
);
3401 /* This is our interrupt, so process accordingly */
3402 if (status
& ET_INTR_WATCHDOG
) {
3403 struct tcb
*tcb
= tx_ring
->send_head
;
3406 if (++tcb
->stale
> 1)
3407 status
|= ET_INTR_TXDMA_ISR
;
3409 if (rx_ring
->unfinished_receives
)
3410 status
|= ET_INTR_RXDMA_XFR_DONE
;
3411 else if (tcb
== NULL
)
3412 writel(0, &adapter
->regs
->global
.watchdog_timer
);
3414 status
&= ~ET_INTR_WATCHDOG
;
3417 if (status
& (ET_INTR_RXDMA_XFR_DONE
| ET_INTR_TXDMA_ISR
)) {
3418 enable_interrupts
= false;
3419 napi_schedule(&adapter
->napi
);
3422 status
&= ~(ET_INTR_TXDMA_ISR
| ET_INTR_RXDMA_XFR_DONE
);
3427 if (status
& ET_INTR_TXDMA_ERR
) {
3428 /* Following read also clears the register (COR) */
3429 u32 txdma_err
= readl(&iomem
->txdma
.tx_dma_error
);
3431 dev_warn(&adapter
->pdev
->dev
,
3432 "TXDMA_ERR interrupt, error = %d\n",
3436 if (status
& (ET_INTR_RXDMA_FB_R0_LOW
| ET_INTR_RXDMA_FB_R1_LOW
)) {
3437 /* This indicates the number of unused buffers in RXDMA free
3438 * buffer ring 0 is <= the limit you programmed. Free buffer
3439 * resources need to be returned. Free buffers are consumed as
3440 * packets are passed from the network to the host. The host
3441 * becomes aware of the packets from the contents of the packet
3442 * status ring. This ring is queried when the packet done
3443 * interrupt occurs. Packets are then passed to the OS. When
3444 * the OS is done with the packets the resources can be
3445 * returned to the ET1310 for re-use. This interrupt is one
3446 * method of returning resources.
3449 /* If the user has flow control on, then we will
3450 * send a pause packet, otherwise just exit
3452 if (adapter
->flow
== FLOW_TXONLY
|| adapter
->flow
== FLOW_BOTH
) {
3455 /* Tell the device to send a pause packet via the back
3456 * pressure register (bp req and bp xon/xoff)
3458 pm_csr
= readl(&iomem
->global
.pm_csr
);
3459 if (!et1310_in_phy_coma(adapter
))
3460 writel(3, &iomem
->txmac
.bp_ctrl
);
3464 /* Handle Packet Status Ring Low Interrupt */
3465 if (status
& ET_INTR_RXDMA_STAT_LOW
) {
3466 /* Same idea as with the two Free Buffer Rings. Packets going
3467 * from the network to the host each consume a free buffer
3468 * resource and a packet status resource. These resources are
3469 * passed to the OS. When the OS is done with the resources,
3470 * they need to be returned to the ET1310. This is one method
3471 * of returning the resources.
3475 if (status
& ET_INTR_RXDMA_ERR
) {
3476 /* The rxdma_error interrupt is sent when a time-out on a
3477 * request issued by the JAGCore has occurred or a completion is
3478 * returned with an un-successful status. In both cases the
3479 * request is considered complete. The JAGCore will
3480 * automatically re-try the request in question. Normally
3481 * information on events like these are sent to the host using
3482 * the "Advanced Error Reporting" capability. This interrupt is
3483 * another way of getting similar information. The only thing
3484 * required is to clear the interrupt by reading the ISR in the
3485 * global resources. The JAGCore will do a re-try on the
3486 * request. Normally you should never see this interrupt. If
3487 * you start to see this interrupt occurring frequently then
3488 * something bad has occurred. A reset might be the thing to do.
3492 dev_warn(&adapter
->pdev
->dev
, "RxDMA_ERR interrupt, error %x\n",
3493 readl(&iomem
->txmac
.tx_test
));
3496 /* Handle the Wake on LAN Event */
3497 if (status
& ET_INTR_WOL
) {
3498 /* This is a secondary interrupt for wake on LAN. The driver
3499 * should never see this, if it does, something serious is
3502 dev_err(&adapter
->pdev
->dev
, "WAKE_ON_LAN interrupt\n");
3505 if (status
& ET_INTR_TXMAC
) {
3506 u32 err
= readl(&iomem
->txmac
.err
);
3508 /* When any of the errors occur and TXMAC generates an
3509 * interrupt to report these errors, it usually means that
3510 * TXMAC has detected an error in the data stream retrieved
3511 * from the on-chip Tx Q. All of these errors are catastrophic
3512 * and TXMAC won't be able to recover data when these errors
3513 * occur. In a nutshell, the whole Tx path will have to be reset
3514 * and re-configured afterwards.
3516 dev_warn(&adapter
->pdev
->dev
, "TXMAC interrupt, error 0x%08x\n",
3519 /* If we are debugging, we want to see this error, otherwise we
3520 * just want the device to be reset and continue
3524 if (status
& ET_INTR_RXMAC
) {
3525 /* These interrupts are catastrophic to the device, what we need
3526 * to do is disable the interrupts and set the flag to cause us
3527 * to reset so we can solve this issue.
3529 dev_warn(&adapter
->pdev
->dev
,
3530 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3531 readl(&iomem
->rxmac
.err_reg
));
3533 dev_warn(&adapter
->pdev
->dev
,
3534 "Enable 0x%08x, Diag 0x%08x\n",
3535 readl(&iomem
->rxmac
.ctrl
),
3536 readl(&iomem
->rxmac
.rxq_diag
));
3538 /* If we are debugging, we want to see this error, otherwise we
3539 * just want the device to be reset and continue
3543 if (status
& ET_INTR_MAC_STAT
) {
3544 /* This means at least one of the un-masked counters in the
3545 * MAC_STAT block has rolled over. Use this to maintain the top,
3546 * software managed bits of the counter(s).
3548 et1310_handle_macstat_interrupt(adapter
);
3551 if (status
& ET_INTR_SLV_TIMEOUT
) {
3552 /* This means a timeout has occurred on a read or write request
3553 * to one of the JAGCore registers. The Global Resources block
3554 * has terminated the request and on a read request, returned a
3555 * "fake" value. The most likely reasons are: Bad Address or the
3556 * addressed module is in a power-down state and can't respond.
3561 if (enable_interrupts
)
3562 et131x_enable_interrupts(adapter
);
3564 return IRQ_RETVAL(handled
);
3567 static int et131x_poll(struct napi_struct
*napi
, int budget
)
3569 struct et131x_adapter
*adapter
=
3570 container_of(napi
, struct et131x_adapter
, napi
);
3571 int work_done
= et131x_handle_recv_pkts(adapter
, budget
);
3573 et131x_handle_send_pkts(adapter
);
3575 if (work_done
< budget
) {
3576 napi_complete(&adapter
->napi
);
3577 et131x_enable_interrupts(adapter
);
3583 /* et131x_stats - Return the current device statistics */
3584 static struct net_device_stats
*et131x_stats(struct net_device
*netdev
)
3586 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3587 struct net_device_stats
*stats
= &adapter
->netdev
->stats
;
3588 struct ce_stats
*devstat
= &adapter
->stats
;
3590 stats
->rx_errors
= devstat
->rx_length_errs
+
3591 devstat
->rx_align_errs
+
3592 devstat
->rx_crc_errs
+
3593 devstat
->rx_code_violations
+
3594 devstat
->rx_other_errs
;
3595 stats
->tx_errors
= devstat
->tx_max_pkt_errs
;
3596 stats
->multicast
= devstat
->multicast_pkts_rcvd
;
3597 stats
->collisions
= devstat
->tx_collisions
;
3599 stats
->rx_length_errors
= devstat
->rx_length_errs
;
3600 stats
->rx_over_errors
= devstat
->rx_overflows
;
3601 stats
->rx_crc_errors
= devstat
->rx_crc_errs
;
3602 stats
->rx_dropped
= devstat
->rcvd_pkts_dropped
;
3604 /* NOTE: Not used, can't find analogous statistics */
3605 /* stats->rx_frame_errors = devstat->; */
3606 /* stats->rx_fifo_errors = devstat->; */
3607 /* stats->rx_missed_errors = devstat->; */
3609 /* stats->tx_aborted_errors = devstat->; */
3610 /* stats->tx_carrier_errors = devstat->; */
3611 /* stats->tx_fifo_errors = devstat->; */
3612 /* stats->tx_heartbeat_errors = devstat->; */
3613 /* stats->tx_window_errors = devstat->; */
3617 static int et131x_open(struct net_device
*netdev
)
3619 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3620 struct pci_dev
*pdev
= adapter
->pdev
;
3621 unsigned int irq
= pdev
->irq
;
3624 /* Start the timer to track NIC errors */
3625 init_timer(&adapter
->error_timer
);
3626 adapter
->error_timer
.expires
= jiffies
+
3627 msecs_to_jiffies(TX_ERROR_PERIOD
);
3628 adapter
->error_timer
.function
= et131x_error_timer_handler
;
3629 adapter
->error_timer
.data
= (unsigned long)adapter
;
3630 add_timer(&adapter
->error_timer
);
3632 result
= request_irq(irq
, et131x_isr
,
3633 IRQF_SHARED
, netdev
->name
, netdev
);
3635 dev_err(&pdev
->dev
, "could not register IRQ %d\n", irq
);
3639 adapter
->flags
|= FMP_ADAPTER_INTERRUPT_IN_USE
;
3641 napi_enable(&adapter
->napi
);
3648 static int et131x_close(struct net_device
*netdev
)
3650 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3652 et131x_down(netdev
);
3653 napi_disable(&adapter
->napi
);
3655 adapter
->flags
&= ~FMP_ADAPTER_INTERRUPT_IN_USE
;
3656 free_irq(adapter
->pdev
->irq
, netdev
);
3658 /* Stop the error timer */
3659 return del_timer_sync(&adapter
->error_timer
);
3662 static int et131x_ioctl(struct net_device
*netdev
, struct ifreq
*reqbuf
,
3665 if (!netdev
->phydev
)
3668 return phy_mii_ioctl(netdev
->phydev
, reqbuf
, cmd
);
3671 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3672 static int et131x_set_packet_filter(struct et131x_adapter
*adapter
)
3674 int filter
= adapter
->packet_filter
;
3678 ctrl
= readl(&adapter
->regs
->rxmac
.ctrl
);
3679 pf_ctrl
= readl(&adapter
->regs
->rxmac
.pf_ctrl
);
3681 /* Default to disabled packet filtering */
3684 /* Set us to be in promiscuous mode so we receive everything, this
3685 * is also true when we get a packet filter of 0
3687 if ((filter
& ET131X_PACKET_TYPE_PROMISCUOUS
) || filter
== 0)
3688 pf_ctrl
&= ~7; /* Clear filter bits */
3690 /* Set us up with Multicast packet filtering. Three cases are
3691 * possible - (1) we have a multi-cast list, (2) we receive ALL
3692 * multicast entries or (3) we receive none.
3694 if (filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)
3695 pf_ctrl
&= ~2; /* Multicast filter bit */
3697 et1310_setup_device_for_multicast(adapter
);
3702 /* Set us up with Unicast packet filtering */
3703 if (filter
& ET131X_PACKET_TYPE_DIRECTED
) {
3704 et1310_setup_device_for_unicast(adapter
);
3709 /* Set us up with Broadcast packet filtering */
3710 if (filter
& ET131X_PACKET_TYPE_BROADCAST
) {
3711 pf_ctrl
|= 1; /* Broadcast filter bit */
3717 /* Setup the receive mac configuration registers - Packet
3718 * Filter control + the enable / disable for packet filter
3719 * in the control reg.
3721 writel(pf_ctrl
, &adapter
->regs
->rxmac
.pf_ctrl
);
3722 writel(ctrl
, &adapter
->regs
->rxmac
.ctrl
);
3727 static void et131x_multicast(struct net_device
*netdev
)
3729 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3731 struct netdev_hw_addr
*ha
;
3734 /* Before we modify the platform-independent filter flags, store them
3735 * locally. This allows us to determine if anything's changed and if
3736 * we even need to bother the hardware
3738 packet_filter
= adapter
->packet_filter
;
3740 /* Clear the 'multicast' flag locally; because we only have a single
3741 * flag to check multicast, and multiple multicast addresses can be
3742 * set, this is the easiest way to determine if more than one
3743 * multicast address is being set.
3745 packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
3747 /* Check the net_device flags and set the device independent flags
3750 if (netdev
->flags
& IFF_PROMISC
)
3751 adapter
->packet_filter
|= ET131X_PACKET_TYPE_PROMISCUOUS
;
3753 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_PROMISCUOUS
;
3755 if ((netdev
->flags
& IFF_ALLMULTI
) ||
3756 (netdev_mc_count(netdev
) > NIC_MAX_MCAST_LIST
))
3757 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
3759 if (netdev_mc_count(netdev
) < 1) {
3760 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_ALL_MULTICAST
;
3761 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
3763 adapter
->packet_filter
|= ET131X_PACKET_TYPE_MULTICAST
;
3766 /* Set values in the private adapter struct */
3768 netdev_for_each_mc_addr(ha
, netdev
) {
3769 if (i
== NIC_MAX_MCAST_LIST
)
3771 ether_addr_copy(adapter
->multicast_list
[i
++], ha
->addr
);
3773 adapter
->multicast_addr_count
= i
;
3775 /* Are the new flags different from the previous ones? If not, then no
3776 * action is required
3778 * NOTE - This block will always update the multicast_list with the
3779 * hardware, even if the addresses aren't the same.
3781 if (packet_filter
!= adapter
->packet_filter
)
3782 et131x_set_packet_filter(adapter
);
3785 static netdev_tx_t
et131x_tx(struct sk_buff
*skb
, struct net_device
*netdev
)
3787 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3788 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3790 /* stop the queue if it's getting full */
3791 if (tx_ring
->used
>= NUM_TCB
- 1 && !netif_queue_stopped(netdev
))
3792 netif_stop_queue(netdev
);
3794 /* Save the timestamp for the TX timeout watchdog */
3795 netif_trans_update(netdev
);
3797 /* TCB is not available */
3798 if (tx_ring
->used
>= NUM_TCB
)
3801 if ((adapter
->flags
& FMP_ADAPTER_FAIL_SEND_MASK
) ||
3802 !netif_carrier_ok(netdev
))
3805 if (send_packet(skb
, adapter
))
3808 return NETDEV_TX_OK
;
3811 dev_kfree_skb_any(skb
);
3812 adapter
->netdev
->stats
.tx_dropped
++;
3813 return NETDEV_TX_OK
;
3816 /* et131x_tx_timeout - Timeout handler
3818 * The handler called when a Tx request times out. The timeout period is
3819 * specified by the 'tx_timeo" element in the net_device structure (see
3820 * et131x_alloc_device() to see how this value is set).
3822 static void et131x_tx_timeout(struct net_device
*netdev
)
3824 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3825 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3827 unsigned long flags
;
3829 /* If the device is closed, ignore the timeout */
3830 if (!(adapter
->flags
& FMP_ADAPTER_INTERRUPT_IN_USE
))
3833 /* Any nonrecoverable hardware error?
3834 * Checks adapter->flags for any failure in phy reading
3836 if (adapter
->flags
& FMP_ADAPTER_NON_RECOVER_ERROR
)
3839 /* Hardware failure? */
3840 if (adapter
->flags
& FMP_ADAPTER_HARDWARE_ERROR
) {
3841 dev_err(&adapter
->pdev
->dev
, "hardware error - reset\n");
3845 /* Is send stuck? */
3846 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3847 tcb
= tx_ring
->send_head
;
3848 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3853 if (tcb
->count
> NIC_SEND_HANG_THRESHOLD
) {
3854 dev_warn(&adapter
->pdev
->dev
,
3855 "Send stuck - reset. tcb->WrIndex %x\n",
3858 adapter
->netdev
->stats
.tx_errors
++;
3860 /* perform reset of tx/rx */
3861 et131x_disable_txrx(netdev
);
3862 et131x_enable_txrx(netdev
);
3867 static int et131x_change_mtu(struct net_device
*netdev
, int new_mtu
)
3870 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3872 if (new_mtu
< 64 || new_mtu
> 9216)
3875 et131x_disable_txrx(netdev
);
3877 netdev
->mtu
= new_mtu
;
3879 et131x_adapter_memory_free(adapter
);
3881 /* Set the config parameter for Jumbo Packet support */
3882 adapter
->registry_jumbo_packet
= new_mtu
+ 14;
3883 et131x_soft_reset(adapter
);
3885 result
= et131x_adapter_memory_alloc(adapter
);
3887 dev_warn(&adapter
->pdev
->dev
,
3888 "Change MTU failed; couldn't re-alloc DMA memory\n");
3892 et131x_init_send(adapter
);
3893 et131x_hwaddr_init(adapter
);
3894 ether_addr_copy(netdev
->dev_addr
, adapter
->addr
);
3896 /* Init the device with the new settings */
3897 et131x_adapter_setup(adapter
);
3898 et131x_enable_txrx(netdev
);
3903 static const struct net_device_ops et131x_netdev_ops
= {
3904 .ndo_open
= et131x_open
,
3905 .ndo_stop
= et131x_close
,
3906 .ndo_start_xmit
= et131x_tx
,
3907 .ndo_set_rx_mode
= et131x_multicast
,
3908 .ndo_tx_timeout
= et131x_tx_timeout
,
3909 .ndo_change_mtu
= et131x_change_mtu
,
3910 .ndo_set_mac_address
= eth_mac_addr
,
3911 .ndo_validate_addr
= eth_validate_addr
,
3912 .ndo_get_stats
= et131x_stats
,
3913 .ndo_do_ioctl
= et131x_ioctl
,
3916 static int et131x_pci_setup(struct pci_dev
*pdev
,
3917 const struct pci_device_id
*ent
)
3919 struct net_device
*netdev
;
3920 struct et131x_adapter
*adapter
;
3923 rc
= pci_enable_device(pdev
);
3925 dev_err(&pdev
->dev
, "pci_enable_device() failed\n");
3929 /* Perform some basic PCI checks */
3930 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
3931 dev_err(&pdev
->dev
, "Can't find PCI device's base address\n");
3936 rc
= pci_request_regions(pdev
, DRIVER_NAME
);
3938 dev_err(&pdev
->dev
, "Can't get PCI resources\n");
3942 pci_set_master(pdev
);
3944 /* Check the DMA addressing support of this device */
3945 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64)) &&
3946 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32))) {
3947 dev_err(&pdev
->dev
, "No usable DMA addressing method\n");
3949 goto err_release_res
;
3952 netdev
= alloc_etherdev(sizeof(struct et131x_adapter
));
3954 dev_err(&pdev
->dev
, "Couldn't alloc netdev struct\n");
3956 goto err_release_res
;
3959 netdev
->watchdog_timeo
= ET131X_TX_TIMEOUT
;
3960 netdev
->netdev_ops
= &et131x_netdev_ops
;
3962 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3963 netdev
->ethtool_ops
= &et131x_ethtool_ops
;
3965 adapter
= et131x_adapter_init(netdev
, pdev
);
3967 rc
= et131x_pci_init(adapter
, pdev
);
3971 /* Map the bus-relative registers to system virtual memory */
3972 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
3973 if (!adapter
->regs
) {
3974 dev_err(&pdev
->dev
, "Cannot map device registers\n");
3979 /* If Phy COMA mode was enabled when we went down, disable it here. */
3980 writel(ET_PMCSR_INIT
, &adapter
->regs
->global
.pm_csr
);
3982 et131x_soft_reset(adapter
);
3983 et131x_disable_interrupts(adapter
);
3985 rc
= et131x_adapter_memory_alloc(adapter
);
3987 dev_err(&pdev
->dev
, "Could not alloc adapter memory (DMA)\n");
3991 et131x_init_send(adapter
);
3993 netif_napi_add(netdev
, &adapter
->napi
, et131x_poll
, 64);
3995 ether_addr_copy(netdev
->dev_addr
, adapter
->addr
);
3999 adapter
->mii_bus
= mdiobus_alloc();
4000 if (!adapter
->mii_bus
) {
4001 dev_err(&pdev
->dev
, "Alloc of mii_bus struct failed\n");
4005 adapter
->mii_bus
->name
= "et131x_eth_mii";
4006 snprintf(adapter
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x",
4007 (adapter
->pdev
->bus
->number
<< 8) | adapter
->pdev
->devfn
);
4008 adapter
->mii_bus
->priv
= netdev
;
4009 adapter
->mii_bus
->read
= et131x_mdio_read
;
4010 adapter
->mii_bus
->write
= et131x_mdio_write
;
4012 rc
= mdiobus_register(adapter
->mii_bus
);
4014 dev_err(&pdev
->dev
, "failed to register MII bus\n");
4018 rc
= et131x_mii_probe(netdev
);
4020 dev_err(&pdev
->dev
, "failed to probe MII bus\n");
4021 goto err_mdio_unregister
;
4024 et131x_adapter_setup(adapter
);
4026 /* Init variable for counting how long we do not have link status */
4027 adapter
->boot_coma
= 0;
4028 et1310_disable_phy_coma(adapter
);
4030 /* We can enable interrupts now
4032 * NOTE - Because registration of interrupt handler is done in the
4033 * device's open(), defer enabling device interrupts to that
4037 rc
= register_netdev(netdev
);
4039 dev_err(&pdev
->dev
, "register_netdev() failed\n");
4040 goto err_phy_disconnect
;
4043 /* Register the net_device struct with the PCI subsystem. Save a copy
4044 * of the PCI config space for this device now that the device has
4045 * been initialized, just in case it needs to be quickly restored.
4047 pci_set_drvdata(pdev
, netdev
);
4052 phy_disconnect(netdev
->phydev
);
4053 err_mdio_unregister
:
4054 mdiobus_unregister(adapter
->mii_bus
);
4056 mdiobus_free(adapter
->mii_bus
);
4058 et131x_adapter_memory_free(adapter
);
4060 iounmap(adapter
->regs
);
4063 free_netdev(netdev
);
4065 pci_release_regions(pdev
);
4067 pci_disable_device(pdev
);
4071 static const struct pci_device_id et131x_pci_table
[] = {
4072 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_GIG
), 0UL},
4073 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_FAST
), 0UL},
4076 MODULE_DEVICE_TABLE(pci
, et131x_pci_table
);
4078 static struct pci_driver et131x_driver
= {
4079 .name
= DRIVER_NAME
,
4080 .id_table
= et131x_pci_table
,
4081 .probe
= et131x_pci_setup
,
4082 .remove
= et131x_pci_remove
,
4083 .driver
.pm
= &et131x_pm_ops
,
4086 module_pci_driver(et131x_driver
);