2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/slot-gpio.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/mmc.h>
52 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
53 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
55 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
63 module_param(use_spi_crc
, bool, 0);
65 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
69 * We use the system_freezable_wq, because of two reasons.
70 * First, it allows several works (not the same work item) to be
71 * executed simultaneously. Second, the queue becomes frozen when
72 * userspace becomes frozen during system PM.
74 return queue_delayed_work(system_freezable_wq
, work
, delay
);
77 #ifdef CONFIG_FAIL_MMC_REQUEST
80 * Internal function. Inject random data errors.
81 * If mmc_data is NULL no errors are injected.
83 static void mmc_should_fail_request(struct mmc_host
*host
,
84 struct mmc_request
*mrq
)
86 struct mmc_command
*cmd
= mrq
->cmd
;
87 struct mmc_data
*data
= mrq
->data
;
88 static const int data_errors
[] = {
97 if (cmd
->error
|| data
->error
||
98 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
101 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
102 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
105 #else /* CONFIG_FAIL_MMC_REQUEST */
107 static inline void mmc_should_fail_request(struct mmc_host
*host
,
108 struct mmc_request
*mrq
)
112 #endif /* CONFIG_FAIL_MMC_REQUEST */
114 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
116 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
117 complete_all(&mrq
->cmd_completion
);
120 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
122 if (!mrq
->cap_cmd_during_tfr
)
125 mmc_complete_cmd(mrq
);
127 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
128 mmc_hostname(host
), mrq
->cmd
->opcode
);
130 EXPORT_SYMBOL(mmc_command_done
);
133 * mmc_request_done - finish processing an MMC request
134 * @host: MMC host which completed request
135 * @mrq: MMC request which request
137 * MMC drivers should call this function when they have completed
138 * their processing of a request.
140 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
142 struct mmc_command
*cmd
= mrq
->cmd
;
143 int err
= cmd
->error
;
145 /* Flag re-tuning needed on CRC errors */
146 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
147 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
148 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
149 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
150 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
151 mmc_retune_needed(host
);
153 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
154 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
158 if (host
->ongoing_mrq
== mrq
)
159 host
->ongoing_mrq
= NULL
;
161 mmc_complete_cmd(mrq
);
163 trace_mmc_request_done(host
, mrq
);
166 * We list various conditions for the command to be considered
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
174 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
175 mmc_should_fail_request(host
, mrq
);
177 if (!host
->ongoing_mrq
)
178 led_trigger_event(host
->led
, LED_OFF
);
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host
), mrq
->sbc
->opcode
,
184 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
185 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host
), cmd
->opcode
, err
,
190 cmd
->resp
[0], cmd
->resp
[1],
191 cmd
->resp
[2], cmd
->resp
[3]);
194 pr_debug("%s: %d bytes transferred: %d\n",
196 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host
), mrq
->stop
->opcode
,
203 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
204 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
215 EXPORT_SYMBOL(mmc_request_done
);
217 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err
= mmc_retune(host
);
224 mrq
->cmd
->error
= err
;
225 mmc_request_done(host
, mrq
);
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
234 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
235 host
->ops
->card_busy
) {
236 int tries
= 500; /* Wait aprox 500ms at maximum */
238 while (host
->ops
->card_busy(host
) && --tries
)
242 mrq
->cmd
->error
= -EBUSY
;
243 mmc_request_done(host
, mrq
);
248 if (mrq
->cap_cmd_during_tfr
) {
249 host
->ongoing_mrq
= mrq
;
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
254 reinit_completion(&mrq
->cmd_completion
);
257 trace_mmc_request_start(host
, mrq
);
260 host
->cqe_ops
->cqe_off(host
);
262 host
->ops
->request(host
, mrq
);
265 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host
), mrq
->sbc
->opcode
,
271 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host
), cqe
? "CQE direct " : "",
277 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host
), mrq
->data
->blksz
,
287 mrq
->data
->blocks
, mrq
->data
->flags
,
288 mrq
->data
->timeout_ns
/ 1000000,
289 mrq
->data
->timeout_clks
);
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host
), mrq
->stop
->opcode
,
295 mrq
->stop
->arg
, mrq
->stop
->flags
);
299 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
301 unsigned int i
, sz
= 0;
302 struct scatterlist
*sg
;
307 mrq
->cmd
->data
= mrq
->data
;
314 if (mrq
->data
->blksz
> host
->max_blk_size
||
315 mrq
->data
->blocks
> host
->max_blk_count
||
316 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
319 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
321 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
324 mrq
->data
->error
= 0;
325 mrq
->data
->mrq
= mrq
;
327 mrq
->data
->stop
= mrq
->stop
;
328 mrq
->stop
->error
= 0;
329 mrq
->stop
->mrq
= mrq
;
336 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
340 init_completion(&mrq
->cmd_completion
);
342 mmc_retune_hold(host
);
344 if (mmc_card_removed(host
->card
))
347 mmc_mrq_pr_debug(host
, mrq
, false);
349 WARN_ON(!host
->claimed
);
351 err
= mmc_mrq_prep(host
, mrq
);
355 led_trigger_event(host
->led
, LED_FULL
);
356 __mmc_start_request(host
, mrq
);
360 EXPORT_SYMBOL(mmc_start_request
);
362 static void mmc_wait_done(struct mmc_request
*mrq
)
364 complete(&mrq
->completion
);
367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
369 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
372 * If there is an ongoing transfer, wait for the command line to become
375 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
376 wait_for_completion(&ongoing_mrq
->cmd_completion
);
379 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
383 mmc_wait_ongoing_tfr_cmd(host
);
385 init_completion(&mrq
->completion
);
386 mrq
->done
= mmc_wait_done
;
388 err
= mmc_start_request(host
, mrq
);
390 mrq
->cmd
->error
= err
;
391 mmc_complete_cmd(mrq
);
392 complete(&mrq
->completion
);
398 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
400 struct mmc_command
*cmd
;
403 wait_for_completion(&mrq
->completion
);
408 * If host has timed out waiting for the sanitize
409 * to complete, card might be still in programming state
410 * so let's try to bring the card out of programming
413 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
414 if (!mmc_interrupt_hpi(host
->card
)) {
415 pr_warn("%s: %s: Interrupted sanitize\n",
416 mmc_hostname(host
), __func__
);
420 pr_err("%s: %s: Failed to interrupt sanitize\n",
421 mmc_hostname(host
), __func__
);
424 if (!cmd
->error
|| !cmd
->retries
||
425 mmc_card_removed(host
->card
))
428 mmc_retune_recheck(host
);
430 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
431 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
434 __mmc_start_request(host
, mrq
);
437 mmc_retune_release(host
);
439 EXPORT_SYMBOL(mmc_wait_for_req_done
);
442 * mmc_cqe_start_req - Start a CQE request.
443 * @host: MMC host to start the request
444 * @mrq: request to start
446 * Start the request, re-tuning if needed and it is possible. Returns an error
447 * code if the request fails to start or -EBUSY if CQE is busy.
449 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
454 * CQE cannot process re-tuning commands. Caller must hold retuning
455 * while CQE is in use. Re-tuning can happen here only when CQE has no
456 * active requests i.e. this is the first. Note, re-tuning will call
459 err
= mmc_retune(host
);
465 mmc_mrq_pr_debug(host
, mrq
, true);
467 err
= mmc_mrq_prep(host
, mrq
);
471 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
475 trace_mmc_request_start(host
, mrq
);
481 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
482 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
484 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
485 mmc_hostname(host
), mrq
->tag
, err
);
489 EXPORT_SYMBOL(mmc_cqe_start_req
);
492 * mmc_cqe_request_done - CQE has finished processing an MMC request
493 * @host: MMC host which completed request
494 * @mrq: MMC request which completed
496 * CQE drivers should call this function when they have completed
497 * their processing of a request.
499 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
501 mmc_should_fail_request(host
, mrq
);
503 /* Flag re-tuning needed on CRC errors */
504 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
505 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
506 mmc_retune_needed(host
);
508 trace_mmc_request_done(host
, mrq
);
511 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
512 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
514 pr_debug("%s: CQE transfer done tag %d\n",
515 mmc_hostname(host
), mrq
->tag
);
519 pr_debug("%s: %d bytes transferred: %d\n",
521 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
526 EXPORT_SYMBOL(mmc_cqe_request_done
);
529 * mmc_cqe_post_req - CQE post process of a completed MMC request
531 * @mrq: MMC request to be processed
533 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
535 if (host
->cqe_ops
->cqe_post_req
)
536 host
->cqe_ops
->cqe_post_req(host
, mrq
);
538 EXPORT_SYMBOL(mmc_cqe_post_req
);
540 /* Arbitrary 1 second timeout */
541 #define MMC_CQE_RECOVERY_TIMEOUT 1000
544 * mmc_cqe_recovery - Recover from CQE errors.
545 * @host: MMC host to recover
547 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
548 * in eMMC, and discarding the queue in CQE. CQE must call
549 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
550 * fails to discard its queue.
552 int mmc_cqe_recovery(struct mmc_host
*host
)
554 struct mmc_command cmd
;
557 mmc_retune_hold_now(host
);
560 * Recovery is expected seldom, if at all, but it reduces performance,
561 * so make sure it is not completely silent.
563 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
565 host
->cqe_ops
->cqe_recovery_start(host
);
567 memset(&cmd
, 0, sizeof(cmd
));
568 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
569 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
570 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
571 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
572 mmc_wait_for_cmd(host
, &cmd
, 0);
574 memset(&cmd
, 0, sizeof(cmd
));
575 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
576 cmd
.arg
= 1; /* Discard entire queue */
577 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
578 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
579 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
580 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
582 host
->cqe_ops
->cqe_recovery_finish(host
);
584 mmc_retune_release(host
);
588 EXPORT_SYMBOL(mmc_cqe_recovery
);
591 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
595 * mmc_is_req_done() is used with requests that have
596 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
597 * starting a request and before waiting for it to complete. That is,
598 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
599 * and before mmc_wait_for_req_done(). If it is called at other times the
600 * result is not meaningful.
602 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
604 return completion_done(&mrq
->completion
);
606 EXPORT_SYMBOL(mmc_is_req_done
);
609 * mmc_wait_for_req - start a request and wait for completion
610 * @host: MMC host to start command
611 * @mrq: MMC request to start
613 * Start a new MMC custom command request for a host, and wait
614 * for the command to complete. In the case of 'cap_cmd_during_tfr'
615 * requests, the transfer is ongoing and the caller can issue further
616 * commands that do not use the data lines, and then wait by calling
617 * mmc_wait_for_req_done().
618 * Does not attempt to parse the response.
620 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
622 __mmc_start_req(host
, mrq
);
624 if (!mrq
->cap_cmd_during_tfr
)
625 mmc_wait_for_req_done(host
, mrq
);
627 EXPORT_SYMBOL(mmc_wait_for_req
);
630 * mmc_wait_for_cmd - start a command and wait for completion
631 * @host: MMC host to start command
632 * @cmd: MMC command to start
633 * @retries: maximum number of retries
635 * Start a new MMC command for a host, and wait for the command
636 * to complete. Return any error that occurred while the command
637 * was executing. Do not attempt to parse the response.
639 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
641 struct mmc_request mrq
= {};
643 WARN_ON(!host
->claimed
);
645 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
646 cmd
->retries
= retries
;
651 mmc_wait_for_req(host
, &mrq
);
656 EXPORT_SYMBOL(mmc_wait_for_cmd
);
659 * mmc_set_data_timeout - set the timeout for a data command
660 * @data: data phase for command
661 * @card: the MMC card associated with the data transfer
663 * Computes the data timeout parameters according to the
664 * correct algorithm given the card type.
666 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
671 * SDIO cards only define an upper 1 s limit on access.
673 if (mmc_card_sdio(card
)) {
674 data
->timeout_ns
= 1000000000;
675 data
->timeout_clks
= 0;
680 * SD cards use a 100 multiplier rather than 10
682 mult
= mmc_card_sd(card
) ? 100 : 10;
685 * Scale up the multiplier (and therefore the timeout) by
686 * the r2w factor for writes.
688 if (data
->flags
& MMC_DATA_WRITE
)
689 mult
<<= card
->csd
.r2w_factor
;
691 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
692 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
695 * SD cards also have an upper limit on the timeout.
697 if (mmc_card_sd(card
)) {
698 unsigned int timeout_us
, limit_us
;
700 timeout_us
= data
->timeout_ns
/ 1000;
701 if (card
->host
->ios
.clock
)
702 timeout_us
+= data
->timeout_clks
* 1000 /
703 (card
->host
->ios
.clock
/ 1000);
705 if (data
->flags
& MMC_DATA_WRITE
)
707 * The MMC spec "It is strongly recommended
708 * for hosts to implement more than 500ms
709 * timeout value even if the card indicates
710 * the 250ms maximum busy length." Even the
711 * previous value of 300ms is known to be
712 * insufficient for some cards.
719 * SDHC cards always use these fixed values.
721 if (timeout_us
> limit_us
) {
722 data
->timeout_ns
= limit_us
* 1000;
723 data
->timeout_clks
= 0;
726 /* assign limit value if invalid */
728 data
->timeout_ns
= limit_us
* 1000;
732 * Some cards require longer data read timeout than indicated in CSD.
733 * Address this by setting the read timeout to a "reasonably high"
734 * value. For the cards tested, 600ms has proven enough. If necessary,
735 * this value can be increased if other problematic cards require this.
737 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
738 data
->timeout_ns
= 600000000;
739 data
->timeout_clks
= 0;
743 * Some cards need very high timeouts if driven in SPI mode.
744 * The worst observed timeout was 900ms after writing a
745 * continuous stream of data until the internal logic
748 if (mmc_host_is_spi(card
->host
)) {
749 if (data
->flags
& MMC_DATA_WRITE
) {
750 if (data
->timeout_ns
< 1000000000)
751 data
->timeout_ns
= 1000000000; /* 1s */
753 if (data
->timeout_ns
< 100000000)
754 data
->timeout_ns
= 100000000; /* 100ms */
758 EXPORT_SYMBOL(mmc_set_data_timeout
);
761 * mmc_align_data_size - pads a transfer size to a more optimal value
762 * @card: the MMC card associated with the data transfer
763 * @sz: original transfer size
765 * Pads the original data size with a number of extra bytes in
766 * order to avoid controller bugs and/or performance hits
767 * (e.g. some controllers revert to PIO for certain sizes).
769 * Returns the improved size, which might be unmodified.
771 * Note that this function is only relevant when issuing a
772 * single scatter gather entry.
774 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
777 * FIXME: We don't have a system for the controller to tell
778 * the core about its problems yet, so for now we just 32-bit
781 sz
= ((sz
+ 3) / 4) * 4;
785 EXPORT_SYMBOL(mmc_align_data_size
);
788 * Allow claiming an already claimed host if the context is the same or there is
789 * no context but the task is the same.
791 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
792 struct task_struct
*task
)
794 return host
->claimer
== ctx
||
795 (!ctx
&& task
&& host
->claimer
->task
== task
);
798 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
800 struct task_struct
*task
)
802 if (!host
->claimer
) {
806 host
->claimer
= &host
->default_ctx
;
809 host
->claimer
->task
= task
;
813 * __mmc_claim_host - exclusively claim a host
814 * @host: mmc host to claim
815 * @ctx: context that claims the host or NULL in which case the default
816 * context will be used
817 * @abort: whether or not the operation should be aborted
819 * Claim a host for a set of operations. If @abort is non null and
820 * dereference a non-zero value then this will return prematurely with
821 * that non-zero value without acquiring the lock. Returns zero
822 * with the lock held otherwise.
824 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
827 struct task_struct
*task
= ctx
? NULL
: current
;
828 DECLARE_WAITQUEUE(wait
, current
);
835 add_wait_queue(&host
->wq
, &wait
);
836 spin_lock_irqsave(&host
->lock
, flags
);
838 set_current_state(TASK_UNINTERRUPTIBLE
);
839 stop
= abort
? atomic_read(abort
) : 0;
840 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
842 spin_unlock_irqrestore(&host
->lock
, flags
);
844 spin_lock_irqsave(&host
->lock
, flags
);
846 set_current_state(TASK_RUNNING
);
849 mmc_ctx_set_claimer(host
, ctx
, task
);
850 host
->claim_cnt
+= 1;
851 if (host
->claim_cnt
== 1)
855 spin_unlock_irqrestore(&host
->lock
, flags
);
856 remove_wait_queue(&host
->wq
, &wait
);
859 pm_runtime_get_sync(mmc_dev(host
));
863 EXPORT_SYMBOL(__mmc_claim_host
);
866 * mmc_release_host - release a host
867 * @host: mmc host to release
869 * Release a MMC host, allowing others to claim the host
870 * for their operations.
872 void mmc_release_host(struct mmc_host
*host
)
876 WARN_ON(!host
->claimed
);
878 spin_lock_irqsave(&host
->lock
, flags
);
879 if (--host
->claim_cnt
) {
880 /* Release for nested claim */
881 spin_unlock_irqrestore(&host
->lock
, flags
);
884 host
->claimer
->task
= NULL
;
885 host
->claimer
= NULL
;
886 spin_unlock_irqrestore(&host
->lock
, flags
);
888 pm_runtime_mark_last_busy(mmc_dev(host
));
889 if (host
->caps
& MMC_CAP_SYNC_RUNTIME_PM
)
890 pm_runtime_put_sync_suspend(mmc_dev(host
));
892 pm_runtime_put_autosuspend(mmc_dev(host
));
895 EXPORT_SYMBOL(mmc_release_host
);
898 * This is a helper function, which fetches a runtime pm reference for the
899 * card device and also claims the host.
901 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
903 pm_runtime_get_sync(&card
->dev
);
904 __mmc_claim_host(card
->host
, ctx
, NULL
);
906 EXPORT_SYMBOL(mmc_get_card
);
909 * This is a helper function, which releases the host and drops the runtime
910 * pm reference for the card device.
912 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
914 struct mmc_host
*host
= card
->host
;
916 WARN_ON(ctx
&& host
->claimer
!= ctx
);
918 mmc_release_host(host
);
919 pm_runtime_mark_last_busy(&card
->dev
);
920 pm_runtime_put_autosuspend(&card
->dev
);
922 EXPORT_SYMBOL(mmc_put_card
);
925 * Internal function that does the actual ios call to the host driver,
926 * optionally printing some debug output.
928 static inline void mmc_set_ios(struct mmc_host
*host
)
930 struct mmc_ios
*ios
= &host
->ios
;
932 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
933 "width %u timing %u\n",
934 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
935 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
936 1 << ios
->bus_width
, ios
->timing
);
938 host
->ops
->set_ios(host
, ios
);
942 * Control chip select pin on a host.
944 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
946 host
->ios
.chip_select
= mode
;
951 * Sets the host clock to the highest possible frequency that
954 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
956 WARN_ON(hz
&& hz
< host
->f_min
);
958 if (hz
> host
->f_max
)
961 host
->ios
.clock
= hz
;
965 int mmc_execute_tuning(struct mmc_card
*card
)
967 struct mmc_host
*host
= card
->host
;
971 if (!host
->ops
->execute_tuning
)
975 host
->cqe_ops
->cqe_off(host
);
977 if (mmc_card_mmc(card
))
978 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
980 opcode
= MMC_SEND_TUNING_BLOCK
;
982 err
= host
->ops
->execute_tuning(host
, opcode
);
985 pr_err("%s: tuning execution failed: %d\n",
986 mmc_hostname(host
), err
);
988 mmc_retune_enable(host
);
994 * Change the bus mode (open drain/push-pull) of a host.
996 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
998 host
->ios
.bus_mode
= mode
;
1003 * Change data bus width of a host.
1005 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1007 host
->ios
.bus_width
= width
;
1012 * Set initial state after a power cycle or a hw_reset.
1014 void mmc_set_initial_state(struct mmc_host
*host
)
1017 host
->cqe_ops
->cqe_off(host
);
1019 mmc_retune_disable(host
);
1021 if (mmc_host_is_spi(host
))
1022 host
->ios
.chip_select
= MMC_CS_HIGH
;
1024 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1025 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1026 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1027 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1028 host
->ios
.drv_type
= 0;
1029 host
->ios
.enhanced_strobe
= false;
1032 * Make sure we are in non-enhanced strobe mode before we
1033 * actually enable it in ext_csd.
1035 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1036 host
->ops
->hs400_enhanced_strobe
)
1037 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1043 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1044 * @vdd: voltage (mV)
1045 * @low_bits: prefer low bits in boundary cases
1047 * This function returns the OCR bit number according to the provided @vdd
1048 * value. If conversion is not possible a negative errno value returned.
1050 * Depending on the @low_bits flag the function prefers low or high OCR bits
1051 * on boundary voltages. For example,
1052 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1053 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1059 const int max_bit
= ilog2(MMC_VDD_35_36
);
1062 if (vdd
< 1650 || vdd
> 3600)
1065 if (vdd
>= 1650 && vdd
<= 1950)
1066 return ilog2(MMC_VDD_165_195
);
1071 /* Base 2000 mV, step 100 mV, bit's base 8. */
1072 bit
= (vdd
- 2000) / 100 + 8;
1079 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1080 * @vdd_min: minimum voltage value (mV)
1081 * @vdd_max: maximum voltage value (mV)
1083 * This function returns the OCR mask bits according to the provided @vdd_min
1084 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 * Notes wrt boundary cases:
1087 * This function sets the OCR bits for all boundary voltages, for example
1088 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1089 * MMC_VDD_34_35 mask.
1091 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1095 if (vdd_max
< vdd_min
)
1098 /* Prefer high bits for the boundary vdd_max values. */
1099 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1103 /* Prefer low bits for the boundary vdd_min values. */
1104 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1108 /* Fill the mask, from max bit to min bit. */
1109 while (vdd_max
>= vdd_min
)
1110 mask
|= 1 << vdd_max
--;
1118 * mmc_of_parse_voltage - return mask of supported voltages
1119 * @np: The device node need to be parsed.
1120 * @mask: mask of voltages available for MMC/SD/SDIO
1122 * Parse the "voltage-ranges" DT property, returning zero if it is not
1123 * found, negative errno if the voltage-range specification is invalid,
1124 * or one if the voltage-range is specified and successfully parsed.
1126 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1128 const u32
*voltage_ranges
;
1131 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1132 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1133 if (!voltage_ranges
) {
1134 pr_debug("%pOF: voltage-ranges unspecified\n", np
);
1138 pr_err("%pOF: voltage-ranges empty\n", np
);
1142 for (i
= 0; i
< num_ranges
; i
++) {
1143 const int j
= i
* 2;
1146 ocr_mask
= mmc_vddrange_to_ocrmask(
1147 be32_to_cpu(voltage_ranges
[j
]),
1148 be32_to_cpu(voltage_ranges
[j
+ 1]));
1150 pr_err("%pOF: voltage-range #%d is invalid\n",
1159 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1161 #endif /* CONFIG_OF */
1163 static int mmc_of_get_func_num(struct device_node
*node
)
1168 ret
= of_property_read_u32(node
, "reg", ®
);
1175 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1178 struct device_node
*node
;
1180 if (!host
->parent
|| !host
->parent
->of_node
)
1183 for_each_child_of_node(host
->parent
->of_node
, node
) {
1184 if (mmc_of_get_func_num(node
) == func_num
)
1192 * Mask off any voltages we don't support and select
1193 * the lowest voltage
1195 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1200 * Sanity check the voltages that the card claims to
1204 dev_warn(mmc_dev(host
),
1205 "card claims to support voltages below defined range\n");
1209 ocr
&= host
->ocr_avail
;
1211 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1215 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1218 mmc_power_cycle(host
, ocr
);
1222 if (bit
!= host
->ios
.vdd
)
1223 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1229 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1232 int old_signal_voltage
= host
->ios
.signal_voltage
;
1234 host
->ios
.signal_voltage
= signal_voltage
;
1235 if (host
->ops
->start_signal_voltage_switch
)
1236 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1239 host
->ios
.signal_voltage
= old_signal_voltage
;
1245 void mmc_set_initial_signal_voltage(struct mmc_host
*host
)
1247 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1248 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1249 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1250 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1251 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1252 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1253 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1256 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1261 * During a signal voltage level switch, the clock must be gated
1262 * for 5 ms according to the SD spec
1264 clock
= host
->ios
.clock
;
1265 host
->ios
.clock
= 0;
1268 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1271 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1273 host
->ios
.clock
= clock
;
1279 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1281 struct mmc_command cmd
= {};
1285 * If we cannot switch voltages, return failure so the caller
1286 * can continue without UHS mode
1288 if (!host
->ops
->start_signal_voltage_switch
)
1290 if (!host
->ops
->card_busy
)
1291 pr_warn("%s: cannot verify signal voltage switch\n",
1292 mmc_hostname(host
));
1294 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1296 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1298 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1302 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1306 * The card should drive cmd and dat[0:3] low immediately
1307 * after the response of cmd11, but wait 1 ms to be sure
1310 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1315 if (mmc_host_set_uhs_voltage(host
)) {
1317 * Voltages may not have been switched, but we've already
1318 * sent CMD11, so a power cycle is required anyway
1324 /* Wait for at least 1 ms according to spec */
1328 * Failure to switch is indicated by the card holding
1331 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1336 pr_debug("%s: Signal voltage switch failed, "
1337 "power cycling card\n", mmc_hostname(host
));
1338 mmc_power_cycle(host
, ocr
);
1345 * Select timing parameters for host.
1347 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1349 host
->ios
.timing
= timing
;
1354 * Select appropriate driver type for host.
1356 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1358 host
->ios
.drv_type
= drv_type
;
1362 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1363 int card_drv_type
, int *drv_type
)
1365 struct mmc_host
*host
= card
->host
;
1366 int host_drv_type
= SD_DRIVER_TYPE_B
;
1370 if (!host
->ops
->select_drive_strength
)
1373 /* Use SD definition of driver strength for hosts */
1374 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1375 host_drv_type
|= SD_DRIVER_TYPE_A
;
1377 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1378 host_drv_type
|= SD_DRIVER_TYPE_C
;
1380 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1381 host_drv_type
|= SD_DRIVER_TYPE_D
;
1384 * The drive strength that the hardware can support
1385 * depends on the board design. Pass the appropriate
1386 * information and let the hardware specific code
1387 * return what is possible given the options
1389 return host
->ops
->select_drive_strength(card
, max_dtr
,
1396 * Apply power to the MMC stack. This is a two-stage process.
1397 * First, we enable power to the card without the clock running.
1398 * We then wait a bit for the power to stabilise. Finally,
1399 * enable the bus drivers and clock to the card.
1401 * We must _NOT_ enable the clock prior to power stablising.
1403 * If a host does all the power sequencing itself, ignore the
1404 * initial MMC_POWER_UP stage.
1406 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1408 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1411 mmc_pwrseq_pre_power_on(host
);
1413 host
->ios
.vdd
= fls(ocr
) - 1;
1414 host
->ios
.power_mode
= MMC_POWER_UP
;
1415 /* Set initial state and call mmc_set_ios */
1416 mmc_set_initial_state(host
);
1418 mmc_set_initial_signal_voltage(host
);
1421 * This delay should be sufficient to allow the power supply
1422 * to reach the minimum voltage.
1424 mmc_delay(host
->ios
.power_delay_ms
);
1426 mmc_pwrseq_post_power_on(host
);
1428 host
->ios
.clock
= host
->f_init
;
1430 host
->ios
.power_mode
= MMC_POWER_ON
;
1434 * This delay must be at least 74 clock sizes, or 1 ms, or the
1435 * time required to reach a stable voltage.
1437 mmc_delay(host
->ios
.power_delay_ms
);
1440 void mmc_power_off(struct mmc_host
*host
)
1442 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1445 mmc_pwrseq_power_off(host
);
1447 host
->ios
.clock
= 0;
1450 host
->ios
.power_mode
= MMC_POWER_OFF
;
1451 /* Set initial state and call mmc_set_ios */
1452 mmc_set_initial_state(host
);
1455 * Some configurations, such as the 802.11 SDIO card in the OLPC
1456 * XO-1.5, require a short delay after poweroff before the card
1457 * can be successfully turned on again.
1462 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1464 mmc_power_off(host
);
1465 /* Wait at least 1 ms according to SD spec */
1467 mmc_power_up(host
, ocr
);
1471 * Cleanup when the last reference to the bus operator is dropped.
1473 static void __mmc_release_bus(struct mmc_host
*host
)
1475 WARN_ON(!host
->bus_dead
);
1477 host
->bus_ops
= NULL
;
1481 * Increase reference count of bus operator
1483 static inline void mmc_bus_get(struct mmc_host
*host
)
1485 unsigned long flags
;
1487 spin_lock_irqsave(&host
->lock
, flags
);
1489 spin_unlock_irqrestore(&host
->lock
, flags
);
1493 * Decrease reference count of bus operator and free it if
1494 * it is the last reference.
1496 static inline void mmc_bus_put(struct mmc_host
*host
)
1498 unsigned long flags
;
1500 spin_lock_irqsave(&host
->lock
, flags
);
1502 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1503 __mmc_release_bus(host
);
1504 spin_unlock_irqrestore(&host
->lock
, flags
);
1508 * Assign a mmc bus handler to a host. Only one bus handler may control a
1509 * host at any given time.
1511 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1513 unsigned long flags
;
1515 WARN_ON(!host
->claimed
);
1517 spin_lock_irqsave(&host
->lock
, flags
);
1519 WARN_ON(host
->bus_ops
);
1520 WARN_ON(host
->bus_refs
);
1522 host
->bus_ops
= ops
;
1526 spin_unlock_irqrestore(&host
->lock
, flags
);
1530 * Remove the current bus handler from a host.
1532 void mmc_detach_bus(struct mmc_host
*host
)
1534 unsigned long flags
;
1536 WARN_ON(!host
->claimed
);
1537 WARN_ON(!host
->bus_ops
);
1539 spin_lock_irqsave(&host
->lock
, flags
);
1543 spin_unlock_irqrestore(&host
->lock
, flags
);
1548 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1552 * If the device is configured as wakeup, we prevent a new sleep for
1553 * 5 s to give provision for user space to consume the event.
1555 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1556 device_can_wakeup(mmc_dev(host
)))
1557 pm_wakeup_event(mmc_dev(host
), 5000);
1559 host
->detect_change
= 1;
1560 mmc_schedule_delayed_work(&host
->detect
, delay
);
1564 * mmc_detect_change - process change of state on a MMC socket
1565 * @host: host which changed state.
1566 * @delay: optional delay to wait before detection (jiffies)
1568 * MMC drivers should call this when they detect a card has been
1569 * inserted or removed. The MMC layer will confirm that any
1570 * present card is still functional, and initialize any newly
1573 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1575 _mmc_detect_change(host
, delay
, true);
1577 EXPORT_SYMBOL(mmc_detect_change
);
1579 void mmc_init_erase(struct mmc_card
*card
)
1583 if (is_power_of_2(card
->erase_size
))
1584 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1586 card
->erase_shift
= 0;
1589 * It is possible to erase an arbitrarily large area of an SD or MMC
1590 * card. That is not desirable because it can take a long time
1591 * (minutes) potentially delaying more important I/O, and also the
1592 * timeout calculations become increasingly hugely over-estimated.
1593 * Consequently, 'pref_erase' is defined as a guide to limit erases
1594 * to that size and alignment.
1596 * For SD cards that define Allocation Unit size, limit erases to one
1597 * Allocation Unit at a time.
1598 * For MMC, have a stab at ai good value and for modern cards it will
1599 * end up being 4MiB. Note that if the value is too small, it can end
1600 * up taking longer to erase. Also note, erase_size is already set to
1601 * High Capacity Erase Size if available when this function is called.
1603 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1604 card
->pref_erase
= card
->ssr
.au
;
1605 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1606 } else if (card
->erase_size
) {
1607 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1609 card
->pref_erase
= 512 * 1024 / 512;
1611 card
->pref_erase
= 1024 * 1024 / 512;
1613 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1615 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1616 if (card
->pref_erase
< card
->erase_size
)
1617 card
->pref_erase
= card
->erase_size
;
1619 sz
= card
->pref_erase
% card
->erase_size
;
1621 card
->pref_erase
+= card
->erase_size
- sz
;
1624 card
->pref_erase
= 0;
1627 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1628 unsigned int arg
, unsigned int qty
)
1630 unsigned int erase_timeout
;
1632 if (arg
== MMC_DISCARD_ARG
||
1633 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1634 erase_timeout
= card
->ext_csd
.trim_timeout
;
1635 } else if (card
->ext_csd
.erase_group_def
& 1) {
1636 /* High Capacity Erase Group Size uses HC timeouts */
1637 if (arg
== MMC_TRIM_ARG
)
1638 erase_timeout
= card
->ext_csd
.trim_timeout
;
1640 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1642 /* CSD Erase Group Size uses write timeout */
1643 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1644 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1645 unsigned int timeout_us
;
1647 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1648 if (card
->csd
.taac_ns
< 1000000)
1649 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1651 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1654 * ios.clock is only a target. The real clock rate might be
1655 * less but not that much less, so fudge it by multiplying by 2.
1658 timeout_us
+= (timeout_clks
* 1000) /
1659 (card
->host
->ios
.clock
/ 1000);
1661 erase_timeout
= timeout_us
/ 1000;
1664 * Theoretically, the calculation could underflow so round up
1665 * to 1ms in that case.
1671 /* Multiplier for secure operations */
1672 if (arg
& MMC_SECURE_ARGS
) {
1673 if (arg
== MMC_SECURE_ERASE_ARG
)
1674 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1676 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1679 erase_timeout
*= qty
;
1682 * Ensure at least a 1 second timeout for SPI as per
1683 * 'mmc_set_data_timeout()'
1685 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1686 erase_timeout
= 1000;
1688 return erase_timeout
;
1691 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1695 unsigned int erase_timeout
;
1697 if (card
->ssr
.erase_timeout
) {
1698 /* Erase timeout specified in SD Status Register (SSR) */
1699 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1700 card
->ssr
.erase_offset
;
1703 * Erase timeout not specified in SD Status Register (SSR) so
1704 * use 250ms per write block.
1706 erase_timeout
= 250 * qty
;
1709 /* Must not be less than 1 second */
1710 if (erase_timeout
< 1000)
1711 erase_timeout
= 1000;
1713 return erase_timeout
;
1716 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1720 if (mmc_card_sd(card
))
1721 return mmc_sd_erase_timeout(card
, arg
, qty
);
1723 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1726 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1727 unsigned int to
, unsigned int arg
)
1729 struct mmc_command cmd
= {};
1730 unsigned int qty
= 0, busy_timeout
= 0;
1731 bool use_r1b_resp
= false;
1732 unsigned long timeout
;
1733 int loop_udelay
=64, udelay_max
=32768;
1736 mmc_retune_hold(card
->host
);
1739 * qty is used to calculate the erase timeout which depends on how many
1740 * erase groups (or allocation units in SD terminology) are affected.
1741 * We count erasing part of an erase group as one erase group.
1742 * For SD, the allocation units are always a power of 2. For MMC, the
1743 * erase group size is almost certainly also power of 2, but it does not
1744 * seem to insist on that in the JEDEC standard, so we fall back to
1745 * division in that case. SD may not specify an allocation unit size,
1746 * in which case the timeout is based on the number of write blocks.
1748 * Note that the timeout for secure trim 2 will only be correct if the
1749 * number of erase groups specified is the same as the total of all
1750 * preceding secure trim 1 commands. Since the power may have been
1751 * lost since the secure trim 1 commands occurred, it is generally
1752 * impossible to calculate the secure trim 2 timeout correctly.
1754 if (card
->erase_shift
)
1755 qty
+= ((to
>> card
->erase_shift
) -
1756 (from
>> card
->erase_shift
)) + 1;
1757 else if (mmc_card_sd(card
))
1758 qty
+= to
- from
+ 1;
1760 qty
+= ((to
/ card
->erase_size
) -
1761 (from
/ card
->erase_size
)) + 1;
1763 if (!mmc_card_blockaddr(card
)) {
1768 if (mmc_card_sd(card
))
1769 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1771 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1773 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1774 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1776 pr_err("mmc_erase: group start error %d, "
1777 "status %#x\n", err
, cmd
.resp
[0]);
1782 memset(&cmd
, 0, sizeof(struct mmc_command
));
1783 if (mmc_card_sd(card
))
1784 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1786 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1788 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1789 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1791 pr_err("mmc_erase: group end error %d, status %#x\n",
1797 memset(&cmd
, 0, sizeof(struct mmc_command
));
1798 cmd
.opcode
= MMC_ERASE
;
1800 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
1802 * If the host controller supports busy signalling and the timeout for
1803 * the erase operation does not exceed the max_busy_timeout, we should
1804 * use R1B response. Or we need to prevent the host from doing hw busy
1805 * detection, which is done by converting to a R1 response instead.
1807 if (card
->host
->max_busy_timeout
&&
1808 busy_timeout
> card
->host
->max_busy_timeout
) {
1809 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1811 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1812 cmd
.busy_timeout
= busy_timeout
;
1813 use_r1b_resp
= true;
1816 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1818 pr_err("mmc_erase: erase error %d, status %#x\n",
1824 if (mmc_host_is_spi(card
->host
))
1828 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1831 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
1834 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
1836 memset(&cmd
, 0, sizeof(struct mmc_command
));
1837 cmd
.opcode
= MMC_SEND_STATUS
;
1838 cmd
.arg
= card
->rca
<< 16;
1839 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1840 /* Do not retry else we can't see errors */
1841 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1842 if (err
|| R1_STATUS(cmd
.resp
[0])) {
1843 pr_err("error %d requesting status %#x\n",
1849 /* Timeout if the device never becomes ready for data and
1850 * never leaves the program state.
1852 if (time_after(jiffies
, timeout
)) {
1853 pr_err("%s: Card stuck in programming state! %s\n",
1854 mmc_hostname(card
->host
), __func__
);
1858 if ((cmd
.resp
[0] & R1_READY_FOR_DATA
) &&
1859 R1_CURRENT_STATE(cmd
.resp
[0]) != R1_STATE_PRG
)
1862 usleep_range(loop_udelay
, loop_udelay
*2);
1863 if (loop_udelay
< udelay_max
)
1868 mmc_retune_release(card
->host
);
1872 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
1877 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
1880 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1881 * to align the erase size efficiently.
1883 if (is_power_of_2(card
->erase_size
)) {
1884 unsigned int temp
= from_new
;
1886 from_new
= round_up(temp
, card
->erase_size
);
1887 rem
= from_new
- temp
;
1894 nr_new
= round_down(nr_new
, card
->erase_size
);
1896 rem
= from_new
% card
->erase_size
;
1898 rem
= card
->erase_size
- rem
;
1906 rem
= nr_new
% card
->erase_size
;
1914 *to
= from_new
+ nr_new
;
1921 * mmc_erase - erase sectors.
1922 * @card: card to erase
1923 * @from: first sector to erase
1924 * @nr: number of sectors to erase
1925 * @arg: erase command argument (SD supports only %SD_ERASE_ARG)
1927 * Caller must claim host before calling this function.
1929 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
1932 unsigned int rem
, to
= from
+ nr
;
1935 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
1936 !(card
->csd
.cmdclass
& CCC_ERASE
))
1939 if (!card
->erase_size
)
1942 if (mmc_card_sd(card
) && arg
!= SD_ERASE_ARG
)
1945 if ((arg
& MMC_SECURE_ARGS
) &&
1946 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1949 if ((arg
& MMC_TRIM_ARGS
) &&
1950 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
1953 if (arg
== MMC_SECURE_ERASE_ARG
) {
1954 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1958 if (arg
== MMC_ERASE_ARG
)
1959 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
1967 /* 'from' and 'to' are inclusive */
1971 * Special case where only one erase-group fits in the timeout budget:
1972 * If the region crosses an erase-group boundary on this particular
1973 * case, we will be trimming more than one erase-group which, does not
1974 * fit in the timeout budget of the controller, so we need to split it
1975 * and call mmc_do_erase() twice if necessary. This special case is
1976 * identified by the card->eg_boundary flag.
1978 rem
= card
->erase_size
- (from
% card
->erase_size
);
1979 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
1980 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
1982 if ((err
) || (to
<= from
))
1986 return mmc_do_erase(card
, from
, to
, arg
);
1988 EXPORT_SYMBOL(mmc_erase
);
1990 int mmc_can_erase(struct mmc_card
*card
)
1992 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
1993 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
1997 EXPORT_SYMBOL(mmc_can_erase
);
1999 int mmc_can_trim(struct mmc_card
*card
)
2001 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2002 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2006 EXPORT_SYMBOL(mmc_can_trim
);
2008 int mmc_can_discard(struct mmc_card
*card
)
2011 * As there's no way to detect the discard support bit at v4.5
2012 * use the s/w feature support filed.
2014 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2018 EXPORT_SYMBOL(mmc_can_discard
);
2020 int mmc_can_sanitize(struct mmc_card
*card
)
2022 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2024 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2028 EXPORT_SYMBOL(mmc_can_sanitize
);
2030 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2032 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2033 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2037 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2039 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2042 if (!card
->erase_size
)
2044 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2048 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2050 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2053 struct mmc_host
*host
= card
->host
;
2054 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2055 unsigned int last_timeout
= 0;
2056 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2057 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2059 if (card
->erase_shift
) {
2060 max_qty
= UINT_MAX
>> card
->erase_shift
;
2061 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2062 } else if (mmc_card_sd(card
)) {
2064 min_qty
= card
->pref_erase
;
2066 max_qty
= UINT_MAX
/ card
->erase_size
;
2067 min_qty
= card
->pref_erase
/ card
->erase_size
;
2071 * We should not only use 'host->max_busy_timeout' as the limitation
2072 * when deciding the max discard sectors. We should set a balance value
2073 * to improve the erase speed, and it can not get too long timeout at
2076 * Here we set 'card->pref_erase' as the minimal discard sectors no
2077 * matter what size of 'host->max_busy_timeout', but if the
2078 * 'host->max_busy_timeout' is large enough for more discard sectors,
2079 * then we can continue to increase the max discard sectors until we
2080 * get a balance value. In cases when the 'host->max_busy_timeout'
2081 * isn't specified, use the default max erase timeout.
2085 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2086 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2088 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2091 if (timeout
< last_timeout
)
2093 last_timeout
= timeout
;
2103 * When specifying a sector range to trim, chances are we might cross
2104 * an erase-group boundary even if the amount of sectors is less than
2106 * If we can only fit one erase-group in the controller timeout budget,
2107 * we have to care that erase-group boundaries are not crossed by a
2108 * single trim operation. We flag that special case with "eg_boundary".
2109 * In all other cases we can just decrement qty and pretend that we
2110 * always touch (qty + 1) erase-groups as a simple optimization.
2113 card
->eg_boundary
= 1;
2117 /* Convert qty to sectors */
2118 if (card
->erase_shift
)
2119 max_discard
= qty
<< card
->erase_shift
;
2120 else if (mmc_card_sd(card
))
2121 max_discard
= qty
+ 1;
2123 max_discard
= qty
* card
->erase_size
;
2128 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2130 struct mmc_host
*host
= card
->host
;
2131 unsigned int max_discard
, max_trim
;
2134 * Without erase_group_def set, MMC erase timeout depends on clock
2135 * frequence which can change. In that case, the best choice is
2136 * just the preferred erase size.
2138 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2139 return card
->pref_erase
;
2141 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2142 if (max_discard
&& mmc_can_trim(card
)) {
2143 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2144 if (max_trim
< max_discard
)
2145 max_discard
= max_trim
;
2146 } else if (max_discard
< card
->erase_size
) {
2149 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2150 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2151 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2154 EXPORT_SYMBOL(mmc_calc_max_discard
);
2156 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2158 return card
? mmc_card_blockaddr(card
) : false;
2160 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2162 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2164 struct mmc_command cmd
= {};
2166 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2167 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2170 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2172 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2173 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2175 EXPORT_SYMBOL(mmc_set_blocklen
);
2177 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2179 mmc_pwrseq_reset(host
);
2181 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2183 host
->ops
->hw_reset(host
);
2186 int mmc_hw_reset(struct mmc_host
*host
)
2194 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->hw_reset
) {
2199 ret
= host
->bus_ops
->hw_reset(host
);
2203 pr_warn("%s: tried to HW reset card, got error %d\n",
2204 mmc_hostname(host
), ret
);
2208 EXPORT_SYMBOL(mmc_hw_reset
);
2210 int mmc_sw_reset(struct mmc_host
*host
)
2218 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->sw_reset
) {
2223 ret
= host
->bus_ops
->sw_reset(host
);
2227 pr_warn("%s: tried to SW reset card, got error %d\n",
2228 mmc_hostname(host
), ret
);
2232 EXPORT_SYMBOL(mmc_sw_reset
);
2234 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2236 host
->f_init
= freq
;
2238 pr_debug("%s: %s: trying to init card at %u Hz\n",
2239 mmc_hostname(host
), __func__
, host
->f_init
);
2241 mmc_power_up(host
, host
->ocr_avail
);
2244 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2245 * do a hardware reset if possible.
2247 mmc_hw_reset_for_init(host
);
2250 * sdio_reset sends CMD52 to reset card. Since we do not know
2251 * if the card is being re-initialized, just send it. CMD52
2252 * should be ignored by SD/eMMC cards.
2253 * Skip it if we already know that we do not support SDIO commands
2255 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2260 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2261 mmc_send_if_cond(host
, host
->ocr_avail
);
2263 /* Order's important: probe SDIO, then SD, then MMC */
2264 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2265 if (!mmc_attach_sdio(host
))
2268 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2269 if (!mmc_attach_sd(host
))
2272 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2273 if (!mmc_attach_mmc(host
))
2276 mmc_power_off(host
);
2280 int _mmc_detect_card_removed(struct mmc_host
*host
)
2284 if (!host
->card
|| mmc_card_removed(host
->card
))
2287 ret
= host
->bus_ops
->alive(host
);
2290 * Card detect status and alive check may be out of sync if card is
2291 * removed slowly, when card detect switch changes while card/slot
2292 * pads are still contacted in hardware (refer to "SD Card Mechanical
2293 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2294 * detect work 200ms later for this case.
2296 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2297 mmc_detect_change(host
, msecs_to_jiffies(200));
2298 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2302 mmc_card_set_removed(host
->card
);
2303 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2309 int mmc_detect_card_removed(struct mmc_host
*host
)
2311 struct mmc_card
*card
= host
->card
;
2314 WARN_ON(!host
->claimed
);
2319 if (!mmc_card_is_removable(host
))
2322 ret
= mmc_card_removed(card
);
2324 * The card will be considered unchanged unless we have been asked to
2325 * detect a change or host requires polling to provide card detection.
2327 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2330 host
->detect_change
= 0;
2332 ret
= _mmc_detect_card_removed(host
);
2333 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2335 * Schedule a detect work as soon as possible to let a
2336 * rescan handle the card removal.
2338 cancel_delayed_work(&host
->detect
);
2339 _mmc_detect_change(host
, 0, false);
2345 EXPORT_SYMBOL(mmc_detect_card_removed
);
2347 void mmc_rescan(struct work_struct
*work
)
2349 struct mmc_host
*host
=
2350 container_of(work
, struct mmc_host
, detect
.work
);
2353 if (host
->rescan_disable
)
2356 /* If there is a non-removable card registered, only scan once */
2357 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2359 host
->rescan_entered
= 1;
2361 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2362 mmc_claim_host(host
);
2363 host
->ops
->card_event(host
);
2364 mmc_release_host(host
);
2365 host
->trigger_card_event
= false;
2371 * if there is a _removable_ card registered, check whether it is
2374 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2375 host
->bus_ops
->detect(host
);
2377 host
->detect_change
= 0;
2380 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2381 * the card is no longer present.
2386 /* if there still is a card present, stop here */
2387 if (host
->bus_ops
!= NULL
) {
2393 * Only we can add a new handler, so it's safe to
2394 * release the lock here.
2398 mmc_claim_host(host
);
2399 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2400 host
->ops
->get_cd(host
) == 0) {
2401 mmc_power_off(host
);
2402 mmc_release_host(host
);
2406 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2407 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2409 if (freqs
[i
] <= host
->f_min
)
2412 mmc_release_host(host
);
2415 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2416 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2419 void mmc_start_host(struct mmc_host
*host
)
2421 host
->f_init
= max(freqs
[0], host
->f_min
);
2422 host
->rescan_disable
= 0;
2423 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2425 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2426 mmc_claim_host(host
);
2427 mmc_power_up(host
, host
->ocr_avail
);
2428 mmc_release_host(host
);
2431 mmc_gpiod_request_cd_irq(host
);
2432 _mmc_detect_change(host
, 0, false);
2435 void mmc_stop_host(struct mmc_host
*host
)
2437 if (host
->slot
.cd_irq
>= 0) {
2438 mmc_gpio_set_cd_wake(host
, false);
2439 disable_irq(host
->slot
.cd_irq
);
2442 host
->rescan_disable
= 1;
2443 cancel_delayed_work_sync(&host
->detect
);
2445 /* clear pm flags now and let card drivers set them as needed */
2449 if (host
->bus_ops
&& !host
->bus_dead
) {
2450 /* Calling bus_ops->remove() with a claimed host can deadlock */
2451 host
->bus_ops
->remove(host
);
2452 mmc_claim_host(host
);
2453 mmc_detach_bus(host
);
2454 mmc_power_off(host
);
2455 mmc_release_host(host
);
2461 mmc_claim_host(host
);
2462 mmc_power_off(host
);
2463 mmc_release_host(host
);
2466 #ifdef CONFIG_PM_SLEEP
2467 /* Do the card removal on suspend if card is assumed removeable
2468 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2471 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2472 unsigned long mode
, void *unused
)
2474 struct mmc_host
*host
= container_of(
2475 notify_block
, struct mmc_host
, pm_notify
);
2476 unsigned long flags
;
2480 case PM_HIBERNATION_PREPARE
:
2481 case PM_SUSPEND_PREPARE
:
2482 case PM_RESTORE_PREPARE
:
2483 spin_lock_irqsave(&host
->lock
, flags
);
2484 host
->rescan_disable
= 1;
2485 spin_unlock_irqrestore(&host
->lock
, flags
);
2486 cancel_delayed_work_sync(&host
->detect
);
2491 /* Validate prerequisites for suspend */
2492 if (host
->bus_ops
->pre_suspend
)
2493 err
= host
->bus_ops
->pre_suspend(host
);
2497 if (!mmc_card_is_removable(host
)) {
2498 dev_warn(mmc_dev(host
),
2499 "pre_suspend failed for non-removable host: "
2501 /* Avoid removing non-removable hosts */
2505 /* Calling bus_ops->remove() with a claimed host can deadlock */
2506 host
->bus_ops
->remove(host
);
2507 mmc_claim_host(host
);
2508 mmc_detach_bus(host
);
2509 mmc_power_off(host
);
2510 mmc_release_host(host
);
2514 case PM_POST_SUSPEND
:
2515 case PM_POST_HIBERNATION
:
2516 case PM_POST_RESTORE
:
2518 spin_lock_irqsave(&host
->lock
, flags
);
2519 host
->rescan_disable
= 0;
2520 spin_unlock_irqrestore(&host
->lock
, flags
);
2521 _mmc_detect_change(host
, 0, false);
2528 void mmc_register_pm_notifier(struct mmc_host
*host
)
2530 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2531 register_pm_notifier(&host
->pm_notify
);
2534 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2536 unregister_pm_notifier(&host
->pm_notify
);
2540 static int __init
mmc_init(void)
2544 ret
= mmc_register_bus();
2548 ret
= mmc_register_host_class();
2550 goto unregister_bus
;
2552 ret
= sdio_register_bus();
2554 goto unregister_host_class
;
2558 unregister_host_class
:
2559 mmc_unregister_host_class();
2561 mmc_unregister_bus();
2565 static void __exit
mmc_exit(void)
2567 sdio_unregister_bus();
2568 mmc_unregister_host_class();
2569 mmc_unregister_bus();
2572 subsys_initcall(mmc_init
);
2573 module_exit(mmc_exit
);
2575 MODULE_LICENSE("GPL");