2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
21 #include <linux/slab.h>
23 #include <asm/uaccess.h>
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
39 struct request_queue
*brd_queue
;
40 struct gendisk
*brd_disk
;
41 struct list_head brd_list
;
44 * Backing store of pages and lock to protect it. This is the contents
45 * of the block device.
48 struct radix_tree_root brd_pages
;
52 * Look up and return a brd's page for a given sector.
54 static DEFINE_MUTEX(brd_mutex
);
55 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
72 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
73 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
76 BUG_ON(page
&& page
->index
!= idx
);
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
86 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
92 page
= brd_lookup_page(brd
, sector
);
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
100 * Cannot support DAX and highmem, because our ->direct_access
101 * routine for DAX must return memory that is always addressable.
102 * If DAX was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
105 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
106 #ifndef CONFIG_BLK_DEV_RAM_DAX
107 gfp_flags
|= __GFP_HIGHMEM
;
109 page
= alloc_page(gfp_flags
);
113 if (radix_tree_preload(GFP_NOIO
)) {
118 spin_lock(&brd
->brd_lock
);
119 idx
= sector
>> PAGE_SECTORS_SHIFT
;
121 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
123 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
125 BUG_ON(page
->index
!= idx
);
127 spin_unlock(&brd
->brd_lock
);
129 radix_tree_preload_end();
134 static void brd_free_page(struct brd_device
*brd
, sector_t sector
)
139 spin_lock(&brd
->brd_lock
);
140 idx
= sector
>> PAGE_SECTORS_SHIFT
;
141 page
= radix_tree_delete(&brd
->brd_pages
, idx
);
142 spin_unlock(&brd
->brd_lock
);
147 static void brd_zero_page(struct brd_device
*brd
, sector_t sector
)
151 page
= brd_lookup_page(brd
, sector
);
153 clear_highpage(page
);
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device
*brd
)
163 unsigned long pos
= 0;
164 struct page
*pages
[FREE_BATCH
];
170 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
171 (void **)pages
, pos
, FREE_BATCH
);
173 for (i
= 0; i
< nr_pages
; i
++) {
176 BUG_ON(pages
[i
]->index
< pos
);
177 pos
= pages
[i
]->index
;
178 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
179 BUG_ON(!ret
|| ret
!= pages
[i
]);
180 __free_page(pages
[i
]);
186 * This assumes radix_tree_gang_lookup always returns as
187 * many pages as possible. If the radix-tree code changes,
188 * so will this have to.
190 } while (nr_pages
== FREE_BATCH
);
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
196 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
198 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
201 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
202 if (!brd_insert_page(brd
, sector
))
205 sector
+= copy
>> SECTOR_SHIFT
;
206 if (!brd_insert_page(brd
, sector
))
212 static void discard_from_brd(struct brd_device
*brd
,
213 sector_t sector
, size_t n
)
215 while (n
>= PAGE_SIZE
) {
217 * Don't want to actually discard pages here because
218 * re-allocating the pages can result in writeback
219 * deadlocks under heavy load.
222 brd_free_page(brd
, sector
);
224 brd_zero_page(brd
, sector
);
225 sector
+= PAGE_SIZE
>> SECTOR_SHIFT
;
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
233 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
234 sector_t sector
, size_t n
)
238 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
241 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
242 page
= brd_lookup_page(brd
, sector
);
245 dst
= kmap_atomic(page
);
246 memcpy(dst
+ offset
, src
, copy
);
251 sector
+= copy
>> SECTOR_SHIFT
;
253 page
= brd_lookup_page(brd
, sector
);
256 dst
= kmap_atomic(page
);
257 memcpy(dst
, src
, copy
);
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
265 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
266 sector_t sector
, size_t n
)
270 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
273 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
274 page
= brd_lookup_page(brd
, sector
);
276 src
= kmap_atomic(page
);
277 memcpy(dst
, src
+ offset
, copy
);
280 memset(dst
, 0, copy
);
284 sector
+= copy
>> SECTOR_SHIFT
;
286 page
= brd_lookup_page(brd
, sector
);
288 src
= kmap_atomic(page
);
289 memcpy(dst
, src
, copy
);
292 memset(dst
, 0, copy
);
297 * Process a single bvec of a bio.
299 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
300 unsigned int len
, unsigned int off
, int rw
,
307 err
= copy_to_brd_setup(brd
, sector
, len
);
312 mem
= kmap_atomic(page
);
314 copy_from_brd(mem
+ off
, brd
, sector
, len
);
315 flush_dcache_page(page
);
317 flush_dcache_page(page
);
318 copy_to_brd(brd
, mem
+ off
, sector
, len
);
326 static void brd_make_request(struct request_queue
*q
, struct bio
*bio
)
328 struct block_device
*bdev
= bio
->bi_bdev
;
329 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
333 struct bvec_iter iter
;
336 sector
= bio
->bi_iter
.bi_sector
;
337 if (bio_end_sector(bio
) > get_capacity(bdev
->bd_disk
))
340 if (unlikely(bio
->bi_rw
& REQ_DISCARD
)) {
342 discard_from_brd(brd
, sector
, bio
->bi_iter
.bi_size
);
350 bio_for_each_segment(bvec
, bio
, iter
) {
351 unsigned int len
= bvec
.bv_len
;
352 err
= brd_do_bvec(brd
, bvec
.bv_page
, len
,
353 bvec
.bv_offset
, rw
, sector
);
356 sector
+= len
>> SECTOR_SHIFT
;
363 static int brd_rw_page(struct block_device
*bdev
, sector_t sector
,
364 struct page
*page
, int rw
)
366 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
367 int err
= brd_do_bvec(brd
, page
, PAGE_CACHE_SIZE
, 0, rw
, sector
);
368 page_endio(page
, rw
& WRITE
, err
);
372 #ifdef CONFIG_BLK_DEV_RAM_DAX
373 static long brd_direct_access(struct block_device
*bdev
, sector_t sector
,
374 void **kaddr
, unsigned long *pfn
, long size
)
376 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
381 page
= brd_insert_page(brd
, sector
);
384 *kaddr
= page_address(page
);
385 *pfn
= page_to_pfn(page
);
388 * TODO: If size > PAGE_SIZE, we could look to see if the next page in
389 * the file happens to be mapped to the next page of physical RAM.
394 #define brd_direct_access NULL
397 static int brd_ioctl(struct block_device
*bdev
, fmode_t mode
,
398 unsigned int cmd
, unsigned long arg
)
401 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
403 if (cmd
!= BLKFLSBUF
)
407 * ram device BLKFLSBUF has special semantics, we want to actually
408 * release and destroy the ramdisk data.
410 mutex_lock(&brd_mutex
);
411 mutex_lock(&bdev
->bd_mutex
);
413 if (bdev
->bd_openers
<= 1) {
415 * Kill the cache first, so it isn't written back to the
418 * Another thread might instantiate more buffercache here,
419 * but there is not much we can do to close that race.
425 mutex_unlock(&bdev
->bd_mutex
);
426 mutex_unlock(&brd_mutex
);
431 static const struct block_device_operations brd_fops
= {
432 .owner
= THIS_MODULE
,
433 .rw_page
= brd_rw_page
,
435 .direct_access
= brd_direct_access
,
439 * And now the modules code and kernel interface.
441 static int rd_nr
= CONFIG_BLK_DEV_RAM_COUNT
;
442 module_param(rd_nr
, int, S_IRUGO
);
443 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
445 int rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
446 module_param(rd_size
, int, S_IRUGO
);
447 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
449 static int max_part
= 1;
450 module_param(max_part
, int, S_IRUGO
);
451 MODULE_PARM_DESC(max_part
, "Num Minors to reserve between devices");
453 MODULE_LICENSE("GPL");
454 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
458 /* Legacy boot options - nonmodular */
459 static int __init
ramdisk_size(char *str
)
461 rd_size
= simple_strtol(str
, NULL
, 0);
464 __setup("ramdisk_size=", ramdisk_size
);
468 * The device scheme is derived from loop.c. Keep them in synch where possible
469 * (should share code eventually).
471 static LIST_HEAD(brd_devices
);
472 static DEFINE_MUTEX(brd_devices_mutex
);
474 static struct brd_device
*brd_alloc(int i
)
476 struct brd_device
*brd
;
477 struct gendisk
*disk
;
479 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
483 spin_lock_init(&brd
->brd_lock
);
484 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
486 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
490 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
491 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
492 blk_queue_bounce_limit(brd
->brd_queue
, BLK_BOUNCE_ANY
);
494 /* This is so fdisk will align partitions on 4k, because of
495 * direct_access API needing 4k alignment, returning a PFN
496 * (This is only a problem on very small devices <= 4M,
497 * otherwise fdisk will align on 1M. Regardless this call
500 blk_queue_physical_block_size(brd
->brd_queue
, PAGE_SIZE
);
502 brd
->brd_queue
->limits
.discard_granularity
= PAGE_SIZE
;
503 brd
->brd_queue
->limits
.max_discard_sectors
= UINT_MAX
;
504 brd
->brd_queue
->limits
.discard_zeroes_data
= 1;
505 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, brd
->brd_queue
);
507 disk
= brd
->brd_disk
= alloc_disk(max_part
);
510 disk
->major
= RAMDISK_MAJOR
;
511 disk
->first_minor
= i
* max_part
;
512 disk
->fops
= &brd_fops
;
513 disk
->private_data
= brd
;
514 disk
->queue
= brd
->brd_queue
;
515 disk
->flags
= GENHD_FL_EXT_DEVT
;
516 sprintf(disk
->disk_name
, "ram%d", i
);
517 set_capacity(disk
, rd_size
* 2);
522 blk_cleanup_queue(brd
->brd_queue
);
529 static void brd_free(struct brd_device
*brd
)
531 put_disk(brd
->brd_disk
);
532 blk_cleanup_queue(brd
->brd_queue
);
537 static struct brd_device
*brd_init_one(int i
, bool *new)
539 struct brd_device
*brd
;
542 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
543 if (brd
->brd_number
== i
)
549 add_disk(brd
->brd_disk
);
550 list_add_tail(&brd
->brd_list
, &brd_devices
);
557 static void brd_del_one(struct brd_device
*brd
)
559 list_del(&brd
->brd_list
);
560 del_gendisk(brd
->brd_disk
);
564 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
566 struct brd_device
*brd
;
567 struct kobject
*kobj
;
570 mutex_lock(&brd_devices_mutex
);
571 brd
= brd_init_one(MINOR(dev
) / max_part
, &new);
572 kobj
= brd
? get_disk(brd
->brd_disk
) : NULL
;
573 mutex_unlock(&brd_devices_mutex
);
581 static int __init
brd_init(void)
583 struct brd_device
*brd
, *next
;
587 * brd module now has a feature to instantiate underlying device
588 * structure on-demand, provided that there is an access dev node.
590 * (1) if rd_nr is specified, create that many upfront. else
591 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
592 * (2) User can further extend brd devices by create dev node themselves
593 * and have kernel automatically instantiate actual device
594 * on-demand. Example:
595 * mknod /path/devnod_name b 1 X # 1 is the rd major
596 * fdisk -l /path/devnod_name
597 * If (X / max_part) was not already created it will be created
601 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
604 if (unlikely(!max_part
))
607 for (i
= 0; i
< rd_nr
; i
++) {
611 list_add_tail(&brd
->brd_list
, &brd_devices
);
614 /* point of no return */
616 list_for_each_entry(brd
, &brd_devices
, brd_list
)
617 add_disk(brd
->brd_disk
);
619 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
,
620 THIS_MODULE
, brd_probe
, NULL
, NULL
);
622 pr_info("brd: module loaded\n");
626 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
627 list_del(&brd
->brd_list
);
630 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
632 pr_info("brd: module NOT loaded !!!\n");
636 static void __exit
brd_exit(void)
638 struct brd_device
*brd
, *next
;
640 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
643 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
);
644 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
646 pr_info("brd: module unloaded\n");
649 module_init(brd_init
);
650 module_exit(brd_exit
);