2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * The full GNU General Public License is in this distribution in the file
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
34 * The PL080 has a dual bus master, PL081 has a single master.
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
50 * Raise terminal count interrupt
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
59 * ASSUMES default (little) endianness for DMA transfers
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
74 #include <linux/amba/bus.h>
75 #include <linux/amba/pl08x.h>
76 #include <linux/debugfs.h>
77 #include <linux/delay.h>
78 #include <linux/device.h>
79 #include <linux/dmaengine.h>
80 #include <linux/dmapool.h>
81 #include <linux/dma-mapping.h>
82 #include <linux/export.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/module.h>
86 #include <linux/pm_runtime.h>
87 #include <linux/seq_file.h>
88 #include <linux/slab.h>
89 #include <linux/amba/pl080.h>
91 #include "dmaengine.h"
94 #define DRIVER_NAME "pl08xdmac"
96 #define PL80X_DMA_BUSWIDTHS \
97 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
98 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
99 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
100 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
102 static struct amba_driver pl08x_amba_driver
;
103 struct pl08x_driver_data
;
106 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
107 * @channels: the number of channels available in this variant
108 * @dualmaster: whether this version supports dual AHB masters or not.
109 * @nomadik: whether the channels have Nomadik security extension bits
110 * that need to be checked for permission before use and some registers are
112 * @pl080s: whether this version is a PL080S, which has separate register and
113 * LLI word for transfer size.
121 u32 max_transfer_size
;
125 * struct pl08x_bus_data - information of source or destination
126 * busses for a transfer
127 * @addr: current address
128 * @maxwidth: the maximum width of a transfer on this bus
129 * @buswidth: the width of this bus in bytes: 1, 2 or 4
131 struct pl08x_bus_data
{
137 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
140 * struct pl08x_phy_chan - holder for the physical channels
141 * @id: physical index to this channel
142 * @lock: a lock to use when altering an instance of this struct
143 * @serving: the virtual channel currently being served by this physical
145 * @locked: channel unavailable for the system, e.g. dedicated to secure
148 struct pl08x_phy_chan
{
151 void __iomem
*reg_config
;
153 struct pl08x_dma_chan
*serving
;
158 * struct pl08x_sg - structure containing data per sg
159 * @src_addr: src address of sg
160 * @dst_addr: dst address of sg
161 * @len: transfer len in bytes
162 * @node: node for txd's dsg_list
168 struct list_head node
;
172 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
173 * @vd: virtual DMA descriptor
174 * @dsg_list: list of children sg's
175 * @llis_bus: DMA memory address (physical) start for the LLIs
176 * @llis_va: virtual memory address start for the LLIs
177 * @cctl: control reg values for current txd
178 * @ccfg: config reg values for current txd
179 * @done: this marks completed descriptors, which should not have their
181 * @cyclic: indicate cyclic transfers
184 struct virt_dma_desc vd
;
185 struct list_head dsg_list
;
188 /* Default cctl value for LLIs */
191 * Settings to be put into the physical channel when we
192 * trigger this txd. Other registers are in llis_va[0].
200 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
202 * @PL08X_CHAN_IDLE: the channel is idle
203 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
204 * channel and is running a transfer on it
205 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
206 * channel, but the transfer is currently paused
207 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
208 * channel to become available (only pertains to memcpy channels)
210 enum pl08x_dma_chan_state
{
218 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
219 * @vc: wrappped virtual channel
220 * @phychan: the physical channel utilized by this channel, if there is one
221 * @name: name of channel
222 * @cd: channel platform data
223 * @runtime_addr: address for RX/TX according to the runtime config
224 * @at: active transaction on this channel
225 * @lock: a lock for this channel data
226 * @host: a pointer to the host (internal use)
227 * @state: whether the channel is idle, paused, running etc
228 * @slave: whether this channel is a device (slave) or for memcpy
229 * @signal: the physical DMA request signal which this channel is using
230 * @mux_use: count of descriptors using this DMA request signal setting
232 struct pl08x_dma_chan
{
233 struct virt_dma_chan vc
;
234 struct pl08x_phy_chan
*phychan
;
236 const struct pl08x_channel_data
*cd
;
237 struct dma_slave_config cfg
;
238 struct pl08x_txd
*at
;
239 struct pl08x_driver_data
*host
;
240 enum pl08x_dma_chan_state state
;
247 * struct pl08x_driver_data - the local state holder for the PL08x
248 * @slave: slave engine for this instance
249 * @memcpy: memcpy engine for this instance
250 * @base: virtual memory base (remapped) for the PL08x
251 * @adev: the corresponding AMBA (PrimeCell) bus entry
252 * @vd: vendor data for this PL08x variant
253 * @pd: platform data passed in from the platform/machine
254 * @phy_chans: array of data for the physical channels
255 * @pool: a pool for the LLI descriptors
256 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
258 * @mem_buses: set to indicate memory transfers on AHB2.
259 * @lock: a spinlock for this struct
261 struct pl08x_driver_data
{
262 struct dma_device slave
;
263 struct dma_device memcpy
;
265 struct amba_device
*adev
;
266 const struct vendor_data
*vd
;
267 struct pl08x_platform_data
*pd
;
268 struct pl08x_phy_chan
*phy_chans
;
269 struct dma_pool
*pool
;
276 * PL08X specific defines
279 /* The order of words in an LLI. */
280 #define PL080_LLI_SRC 0
281 #define PL080_LLI_DST 1
282 #define PL080_LLI_LLI 2
283 #define PL080_LLI_CCTL 3
284 #define PL080S_LLI_CCTL2 4
286 /* Total words in an LLI. */
287 #define PL080_LLI_WORDS 4
288 #define PL080S_LLI_WORDS 8
291 * Number of LLIs in each LLI buffer allocated for one transfer
292 * (maximum times we call dma_pool_alloc on this pool without freeing)
294 #define MAX_NUM_TSFR_LLIS 512
295 #define PL08X_ALIGN 8
297 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
299 return container_of(chan
, struct pl08x_dma_chan
, vc
.chan
);
302 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
304 return container_of(tx
, struct pl08x_txd
, vd
.tx
);
310 * This gives us the DMA request input to the PL08x primecell which the
311 * peripheral described by the channel data will be routed to, possibly
312 * via a board/SoC specific external MUX. One important point to note
313 * here is that this does not depend on the physical channel.
315 static int pl08x_request_mux(struct pl08x_dma_chan
*plchan
)
317 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
320 if (plchan
->mux_use
++ == 0 && pd
->get_xfer_signal
) {
321 ret
= pd
->get_xfer_signal(plchan
->cd
);
327 plchan
->signal
= ret
;
332 static void pl08x_release_mux(struct pl08x_dma_chan
*plchan
)
334 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
336 if (plchan
->signal
>= 0) {
337 WARN_ON(plchan
->mux_use
== 0);
339 if (--plchan
->mux_use
== 0 && pd
->put_xfer_signal
) {
340 pd
->put_xfer_signal(plchan
->cd
, plchan
->signal
);
347 * Physical channel handling
350 /* Whether a certain channel is busy or not */
351 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
355 val
= readl(ch
->reg_config
);
356 return val
& PL080_CONFIG_ACTIVE
;
359 static void pl08x_write_lli(struct pl08x_driver_data
*pl08x
,
360 struct pl08x_phy_chan
*phychan
, const u32
*lli
, u32 ccfg
)
362 if (pl08x
->vd
->pl080s
)
363 dev_vdbg(&pl08x
->adev
->dev
,
364 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
365 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
366 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
367 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
],
368 lli
[PL080S_LLI_CCTL2
], ccfg
);
370 dev_vdbg(&pl08x
->adev
->dev
,
371 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
372 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
373 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
374 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
], ccfg
);
376 writel_relaxed(lli
[PL080_LLI_SRC
], phychan
->base
+ PL080_CH_SRC_ADDR
);
377 writel_relaxed(lli
[PL080_LLI_DST
], phychan
->base
+ PL080_CH_DST_ADDR
);
378 writel_relaxed(lli
[PL080_LLI_LLI
], phychan
->base
+ PL080_CH_LLI
);
379 writel_relaxed(lli
[PL080_LLI_CCTL
], phychan
->base
+ PL080_CH_CONTROL
);
381 if (pl08x
->vd
->pl080s
)
382 writel_relaxed(lli
[PL080S_LLI_CCTL2
],
383 phychan
->base
+ PL080S_CH_CONTROL2
);
385 writel(ccfg
, phychan
->reg_config
);
389 * Set the initial DMA register values i.e. those for the first LLI
390 * The next LLI pointer and the configuration interrupt bit have
391 * been set when the LLIs were constructed. Poke them into the hardware
392 * and start the transfer.
394 static void pl08x_start_next_txd(struct pl08x_dma_chan
*plchan
)
396 struct pl08x_driver_data
*pl08x
= plchan
->host
;
397 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
398 struct virt_dma_desc
*vd
= vchan_next_desc(&plchan
->vc
);
399 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
402 list_del(&txd
->vd
.node
);
406 /* Wait for channel inactive */
407 while (pl08x_phy_channel_busy(phychan
))
410 pl08x_write_lli(pl08x
, phychan
, &txd
->llis_va
[0], txd
->ccfg
);
412 /* Enable the DMA channel */
413 /* Do not access config register until channel shows as disabled */
414 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
417 /* Do not access config register until channel shows as inactive */
418 val
= readl(phychan
->reg_config
);
419 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
420 val
= readl(phychan
->reg_config
);
422 writel(val
| PL080_CONFIG_ENABLE
, phychan
->reg_config
);
426 * Pause the channel by setting the HALT bit.
428 * For M->P transfers, pause the DMAC first and then stop the peripheral -
429 * the FIFO can only drain if the peripheral is still requesting data.
430 * (note: this can still timeout if the DMAC FIFO never drains of data.)
432 * For P->M transfers, disable the peripheral first to stop it filling
433 * the DMAC FIFO, and then pause the DMAC.
435 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
440 /* Set the HALT bit and wait for the FIFO to drain */
441 val
= readl(ch
->reg_config
);
442 val
|= PL080_CONFIG_HALT
;
443 writel(val
, ch
->reg_config
);
445 /* Wait for channel inactive */
446 for (timeout
= 1000; timeout
; timeout
--) {
447 if (!pl08x_phy_channel_busy(ch
))
451 if (pl08x_phy_channel_busy(ch
))
452 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
455 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
459 /* Clear the HALT bit */
460 val
= readl(ch
->reg_config
);
461 val
&= ~PL080_CONFIG_HALT
;
462 writel(val
, ch
->reg_config
);
466 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
467 * clears any pending interrupt status. This should not be used for
468 * an on-going transfer, but as a method of shutting down a channel
469 * (eg, when it's no longer used) or terminating a transfer.
471 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
472 struct pl08x_phy_chan
*ch
)
474 u32 val
= readl(ch
->reg_config
);
476 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
477 PL080_CONFIG_TC_IRQ_MASK
);
479 writel(val
, ch
->reg_config
);
481 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
482 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
485 static inline u32
get_bytes_in_cctl(u32 cctl
)
487 /* The source width defines the number of bytes */
488 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
490 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
492 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
493 case PL080_WIDTH_8BIT
:
495 case PL080_WIDTH_16BIT
:
498 case PL080_WIDTH_32BIT
:
505 static inline u32
get_bytes_in_cctl_pl080s(u32 cctl
, u32 cctl1
)
507 /* The source width defines the number of bytes */
508 u32 bytes
= cctl1
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
510 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
512 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
513 case PL080_WIDTH_8BIT
:
515 case PL080_WIDTH_16BIT
:
518 case PL080_WIDTH_32BIT
:
525 /* The channel should be paused when calling this */
526 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
528 struct pl08x_driver_data
*pl08x
= plchan
->host
;
529 const u32
*llis_va
, *llis_va_limit
;
530 struct pl08x_phy_chan
*ch
;
532 struct pl08x_txd
*txd
;
537 ch
= plchan
->phychan
;
544 * Follow the LLIs to get the number of remaining
545 * bytes in the currently active transaction.
547 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
549 /* First get the remaining bytes in the active transfer */
550 if (pl08x
->vd
->pl080s
)
551 bytes
= get_bytes_in_cctl_pl080s(
552 readl(ch
->base
+ PL080_CH_CONTROL
),
553 readl(ch
->base
+ PL080S_CH_CONTROL2
));
555 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
560 llis_va
= txd
->llis_va
;
561 llis_bus
= txd
->llis_bus
;
563 llis_max_words
= pl08x
->lli_words
* MAX_NUM_TSFR_LLIS
;
564 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
565 sizeof(u32
) * llis_max_words
);
568 * Locate the next LLI - as this is an array,
569 * it's simple maths to find.
571 llis_va
+= (clli
- llis_bus
) / sizeof(u32
);
573 llis_va_limit
= llis_va
+ llis_max_words
;
575 for (; llis_va
< llis_va_limit
; llis_va
+= pl08x
->lli_words
) {
576 if (pl08x
->vd
->pl080s
)
577 bytes
+= get_bytes_in_cctl_pl080s(
578 llis_va
[PL080_LLI_CCTL
],
579 llis_va
[PL080S_LLI_CCTL2
]);
581 bytes
+= get_bytes_in_cctl(llis_va
[PL080_LLI_CCTL
]);
584 * A LLI pointer going backward terminates the LLI list
586 if (llis_va
[PL080_LLI_LLI
] <= clli
)
594 * Allocate a physical channel for a virtual channel
596 * Try to locate a physical channel to be used for this transfer. If all
597 * are taken return NULL and the requester will have to cope by using
598 * some fallback PIO mode or retrying later.
600 static struct pl08x_phy_chan
*
601 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
602 struct pl08x_dma_chan
*virt_chan
)
604 struct pl08x_phy_chan
*ch
= NULL
;
608 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
609 ch
= &pl08x
->phy_chans
[i
];
611 spin_lock_irqsave(&ch
->lock
, flags
);
613 if (!ch
->locked
&& !ch
->serving
) {
614 ch
->serving
= virt_chan
;
615 spin_unlock_irqrestore(&ch
->lock
, flags
);
619 spin_unlock_irqrestore(&ch
->lock
, flags
);
622 if (i
== pl08x
->vd
->channels
) {
623 /* No physical channel available, cope with it */
630 /* Mark the physical channel as free. Note, this write is atomic. */
631 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
632 struct pl08x_phy_chan
*ch
)
638 * Try to allocate a physical channel. When successful, assign it to
639 * this virtual channel, and initiate the next descriptor. The
640 * virtual channel lock must be held at this point.
642 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan
*plchan
)
644 struct pl08x_driver_data
*pl08x
= plchan
->host
;
645 struct pl08x_phy_chan
*ch
;
647 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
649 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
650 plchan
->state
= PL08X_CHAN_WAITING
;
654 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d for xfer on %s\n",
655 ch
->id
, plchan
->name
);
657 plchan
->phychan
= ch
;
658 plchan
->state
= PL08X_CHAN_RUNNING
;
659 pl08x_start_next_txd(plchan
);
662 static void pl08x_phy_reassign_start(struct pl08x_phy_chan
*ch
,
663 struct pl08x_dma_chan
*plchan
)
665 struct pl08x_driver_data
*pl08x
= plchan
->host
;
667 dev_dbg(&pl08x
->adev
->dev
, "reassigned physical channel %d for xfer on %s\n",
668 ch
->id
, plchan
->name
);
671 * We do this without taking the lock; we're really only concerned
672 * about whether this pointer is NULL or not, and we're guaranteed
673 * that this will only be called when it _already_ is non-NULL.
675 ch
->serving
= plchan
;
676 plchan
->phychan
= ch
;
677 plchan
->state
= PL08X_CHAN_RUNNING
;
678 pl08x_start_next_txd(plchan
);
682 * Free a physical DMA channel, potentially reallocating it to another
683 * virtual channel if we have any pending.
685 static void pl08x_phy_free(struct pl08x_dma_chan
*plchan
)
687 struct pl08x_driver_data
*pl08x
= plchan
->host
;
688 struct pl08x_dma_chan
*p
, *next
;
693 /* Find a waiting virtual channel for the next transfer. */
694 list_for_each_entry(p
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
)
695 if (p
->state
== PL08X_CHAN_WAITING
) {
701 list_for_each_entry(p
, &pl08x
->slave
.channels
, vc
.chan
.device_node
)
702 if (p
->state
== PL08X_CHAN_WAITING
) {
708 /* Ensure that the physical channel is stopped */
709 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
715 * Eww. We know this isn't going to deadlock
716 * but lockdep probably doesn't.
718 spin_lock(&next
->vc
.lock
);
719 /* Re-check the state now that we have the lock */
720 success
= next
->state
== PL08X_CHAN_WAITING
;
722 pl08x_phy_reassign_start(plchan
->phychan
, next
);
723 spin_unlock(&next
->vc
.lock
);
725 /* If the state changed, try to find another channel */
729 /* No more jobs, so free up the physical channel */
730 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
733 plchan
->phychan
= NULL
;
734 plchan
->state
= PL08X_CHAN_IDLE
;
741 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
744 case PL080_WIDTH_8BIT
:
746 case PL080_WIDTH_16BIT
:
748 case PL080_WIDTH_32BIT
:
757 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
762 /* Remove all src, dst and transfer size bits */
763 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
764 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
765 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
767 /* Then set the bits according to the parameters */
770 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
773 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
776 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
785 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
788 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
791 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
798 tsize
&= PL080_CONTROL_TRANSFER_SIZE_MASK
;
799 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
803 struct pl08x_lli_build_data
{
804 struct pl08x_txd
*txd
;
805 struct pl08x_bus_data srcbus
;
806 struct pl08x_bus_data dstbus
;
812 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
813 * victim in case src & dest are not similarly aligned. i.e. If after aligning
814 * masters address with width requirements of transfer (by sending few byte by
815 * byte data), slave is still not aligned, then its width will be reduced to
817 * - prefers the destination bus if both available
818 * - prefers bus with fixed address (i.e. peripheral)
820 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
821 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
823 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
826 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
830 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
841 * Fills in one LLI for a certain transfer descriptor and advance the counter
843 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
844 struct pl08x_lli_build_data
*bd
,
845 int num_llis
, int len
, u32 cctl
, u32 cctl2
)
847 u32 offset
= num_llis
* pl08x
->lli_words
;
848 u32
*llis_va
= bd
->txd
->llis_va
+ offset
;
849 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
851 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
853 /* Advance the offset to next LLI. */
854 offset
+= pl08x
->lli_words
;
856 llis_va
[PL080_LLI_SRC
] = bd
->srcbus
.addr
;
857 llis_va
[PL080_LLI_DST
] = bd
->dstbus
.addr
;
858 llis_va
[PL080_LLI_LLI
] = (llis_bus
+ sizeof(u32
) * offset
);
859 llis_va
[PL080_LLI_LLI
] |= bd
->lli_bus
;
860 llis_va
[PL080_LLI_CCTL
] = cctl
;
861 if (pl08x
->vd
->pl080s
)
862 llis_va
[PL080S_LLI_CCTL2
] = cctl2
;
864 if (cctl
& PL080_CONTROL_SRC_INCR
)
865 bd
->srcbus
.addr
+= len
;
866 if (cctl
& PL080_CONTROL_DST_INCR
)
867 bd
->dstbus
.addr
+= len
;
869 BUG_ON(bd
->remainder
< len
);
871 bd
->remainder
-= len
;
874 static inline void prep_byte_width_lli(struct pl08x_driver_data
*pl08x
,
875 struct pl08x_lli_build_data
*bd
, u32
*cctl
, u32 len
,
876 int num_llis
, size_t *total_bytes
)
878 *cctl
= pl08x_cctl_bits(*cctl
, 1, 1, len
);
879 pl08x_fill_lli_for_desc(pl08x
, bd
, num_llis
, len
, *cctl
, len
);
880 (*total_bytes
) += len
;
884 static void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
885 const u32
*llis_va
, int num_llis
)
889 if (pl08x
->vd
->pl080s
) {
890 dev_vdbg(&pl08x
->adev
->dev
,
891 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
892 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
893 for (i
= 0; i
< num_llis
; i
++) {
894 dev_vdbg(&pl08x
->adev
->dev
,
895 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
896 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
897 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
898 llis_va
[PL080_LLI_CCTL
],
899 llis_va
[PL080S_LLI_CCTL2
]);
900 llis_va
+= pl08x
->lli_words
;
903 dev_vdbg(&pl08x
->adev
->dev
,
904 "%-3s %-9s %-10s %-10s %-10s %s\n",
905 "lli", "", "csrc", "cdst", "clli", "cctl");
906 for (i
= 0; i
< num_llis
; i
++) {
907 dev_vdbg(&pl08x
->adev
->dev
,
908 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
909 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
910 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
911 llis_va
[PL080_LLI_CCTL
]);
912 llis_va
+= pl08x
->lli_words
;
917 static inline void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
918 const u32
*llis_va
, int num_llis
) {}
922 * This fills in the table of LLIs for the transfer descriptor
923 * Note that we assume we never have to change the burst sizes
926 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
927 struct pl08x_txd
*txd
)
929 struct pl08x_bus_data
*mbus
, *sbus
;
930 struct pl08x_lli_build_data bd
;
932 u32 cctl
, early_bytes
= 0;
933 size_t max_bytes_per_lli
, total_bytes
;
934 u32
*llis_va
, *last_lli
;
935 struct pl08x_sg
*dsg
;
937 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
939 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
944 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
947 /* Find maximum width of the source bus */
949 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
950 PL080_CONTROL_SWIDTH_SHIFT
);
952 /* Find maximum width of the destination bus */
954 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
955 PL080_CONTROL_DWIDTH_SHIFT
);
957 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
961 bd
.srcbus
.addr
= dsg
->src_addr
;
962 bd
.dstbus
.addr
= dsg
->dst_addr
;
963 bd
.remainder
= dsg
->len
;
964 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
965 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
967 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
969 dev_vdbg(&pl08x
->adev
->dev
,
970 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
972 cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
975 cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
978 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
979 mbus
== &bd
.srcbus
? "src" : "dst",
980 sbus
== &bd
.srcbus
? "src" : "dst");
983 * Zero length is only allowed if all these requirements are
985 * - flow controller is peripheral.
986 * - src.addr is aligned to src.width
987 * - dst.addr is aligned to dst.width
989 * sg_len == 1 should be true, as there can be two cases here:
991 * - Memory addresses are contiguous and are not scattered.
992 * Here, Only one sg will be passed by user driver, with
993 * memory address and zero length. We pass this to controller
994 * and after the transfer it will receive the last burst
995 * request from peripheral and so transfer finishes.
997 * - Memory addresses are scattered and are not contiguous.
998 * Here, Obviously as DMA controller doesn't know when a lli's
999 * transfer gets over, it can't load next lli. So in this
1000 * case, there has to be an assumption that only one lli is
1001 * supported. Thus, we can't have scattered addresses.
1003 if (!bd
.remainder
) {
1004 u32 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
1005 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1006 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
1007 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
1008 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
1013 if (!IS_BUS_ALIGNED(&bd
.srcbus
) ||
1014 !IS_BUS_ALIGNED(&bd
.dstbus
)) {
1015 dev_err(&pl08x
->adev
->dev
,
1016 "%s src & dst address must be aligned to src"
1017 " & dst width if peripheral is flow controller",
1022 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1023 bd
.dstbus
.buswidth
, 0);
1024 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1030 * Send byte by byte for following cases
1031 * - Less than a bus width available
1032 * - until master bus is aligned
1034 if (bd
.remainder
< mbus
->buswidth
)
1035 early_bytes
= bd
.remainder
;
1036 else if (!IS_BUS_ALIGNED(mbus
)) {
1037 early_bytes
= mbus
->buswidth
-
1038 (mbus
->addr
& (mbus
->buswidth
- 1));
1039 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
1040 early_bytes
= bd
.remainder
;
1044 dev_vdbg(&pl08x
->adev
->dev
,
1045 "%s byte width LLIs (remain 0x%08zx)\n",
1046 __func__
, bd
.remainder
);
1047 prep_byte_width_lli(pl08x
, &bd
, &cctl
, early_bytes
,
1048 num_llis
++, &total_bytes
);
1053 * Master now aligned
1054 * - if slave is not then we must set its width down
1056 if (!IS_BUS_ALIGNED(sbus
)) {
1057 dev_dbg(&pl08x
->adev
->dev
,
1058 "%s set down bus width to one byte\n",
1065 * Bytes transferred = tsize * src width, not
1068 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
1069 pl08x
->vd
->max_transfer_size
;
1070 dev_vdbg(&pl08x
->adev
->dev
,
1071 "%s max bytes per lli = %zu\n",
1072 __func__
, max_bytes_per_lli
);
1075 * Make largest possible LLIs until less than one bus
1078 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
1079 size_t lli_len
, tsize
, width
;
1082 * If enough left try to send max possible,
1083 * otherwise try to send the remainder
1085 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
1088 * Check against maximum bus alignment:
1089 * Calculate actual transfer size in relation to
1090 * bus width an get a maximum remainder of the
1091 * highest bus width - 1
1093 width
= max(mbus
->buswidth
, sbus
->buswidth
);
1094 lli_len
= (lli_len
/ width
) * width
;
1095 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
1097 dev_vdbg(&pl08x
->adev
->dev
,
1098 "%s fill lli with single lli chunk of "
1099 "size 0x%08zx (remainder 0x%08zx)\n",
1100 __func__
, lli_len
, bd
.remainder
);
1102 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1103 bd
.dstbus
.buswidth
, tsize
);
1104 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1105 lli_len
, cctl
, tsize
);
1106 total_bytes
+= lli_len
;
1110 * Send any odd bytes
1113 dev_vdbg(&pl08x
->adev
->dev
,
1114 "%s align with boundary, send odd bytes (remain %zu)\n",
1115 __func__
, bd
.remainder
);
1116 prep_byte_width_lli(pl08x
, &bd
, &cctl
,
1117 bd
.remainder
, num_llis
++, &total_bytes
);
1121 if (total_bytes
!= dsg
->len
) {
1122 dev_err(&pl08x
->adev
->dev
,
1123 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1124 __func__
, total_bytes
, dsg
->len
);
1128 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
1129 dev_err(&pl08x
->adev
->dev
,
1130 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1131 __func__
, MAX_NUM_TSFR_LLIS
);
1136 llis_va
= txd
->llis_va
;
1137 last_lli
= llis_va
+ (num_llis
- 1) * pl08x
->lli_words
;
1140 /* Link back to the first LLI. */
1141 last_lli
[PL080_LLI_LLI
] = txd
->llis_bus
| bd
.lli_bus
;
1143 /* The final LLI terminates the LLI. */
1144 last_lli
[PL080_LLI_LLI
] = 0;
1145 /* The final LLI element shall also fire an interrupt. */
1146 last_lli
[PL080_LLI_CCTL
] |= PL080_CONTROL_TC_IRQ_EN
;
1149 pl08x_dump_lli(pl08x
, llis_va
, num_llis
);
1154 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
1155 struct pl08x_txd
*txd
)
1157 struct pl08x_sg
*dsg
, *_dsg
;
1160 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
1162 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
1163 list_del(&dsg
->node
);
1170 static void pl08x_desc_free(struct virt_dma_desc
*vd
)
1172 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1173 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(vd
->tx
.chan
);
1175 dma_descriptor_unmap(&vd
->tx
);
1177 pl08x_release_mux(plchan
);
1179 pl08x_free_txd(plchan
->host
, txd
);
1182 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1183 struct pl08x_dma_chan
*plchan
)
1187 vchan_get_all_descriptors(&plchan
->vc
, &head
);
1188 vchan_dma_desc_free_list(&plchan
->vc
, &head
);
1192 * The DMA ENGINE API
1194 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1196 /* Ensure all queued descriptors are freed */
1197 vchan_free_chan_resources(to_virt_chan(chan
));
1200 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1201 struct dma_chan
*chan
, unsigned long flags
)
1203 struct dma_async_tx_descriptor
*retval
= NULL
;
1209 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1210 * If slaves are relying on interrupts to signal completion this function
1211 * must not be called with interrupts disabled.
1213 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
1214 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
1216 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1217 struct virt_dma_desc
*vd
;
1218 unsigned long flags
;
1219 enum dma_status ret
;
1222 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1223 if (ret
== DMA_COMPLETE
)
1227 * There's no point calculating the residue if there's
1228 * no txstate to store the value.
1231 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1236 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1237 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1238 if (ret
!= DMA_COMPLETE
) {
1239 vd
= vchan_find_desc(&plchan
->vc
, cookie
);
1241 /* On the issued list, so hasn't been processed yet */
1242 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1243 struct pl08x_sg
*dsg
;
1245 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1248 bytes
= pl08x_getbytes_chan(plchan
);
1251 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1254 * This cookie not complete yet
1255 * Get number of bytes left in the active transactions and queue
1257 dma_set_residue(txstate
, bytes
);
1259 if (plchan
->state
== PL08X_CHAN_PAUSED
&& ret
== DMA_IN_PROGRESS
)
1262 /* Whether waiting or running, we're in progress */
1266 /* PrimeCell DMA extension */
1267 struct burst_table
{
1272 static const struct burst_table burst_sizes
[] = {
1275 .reg
= PL080_BSIZE_256
,
1279 .reg
= PL080_BSIZE_128
,
1283 .reg
= PL080_BSIZE_64
,
1287 .reg
= PL080_BSIZE_32
,
1291 .reg
= PL080_BSIZE_16
,
1295 .reg
= PL080_BSIZE_8
,
1299 .reg
= PL080_BSIZE_4
,
1303 .reg
= PL080_BSIZE_1
,
1308 * Given the source and destination available bus masks, select which
1309 * will be routed to each port. We try to have source and destination
1310 * on separate ports, but always respect the allowable settings.
1312 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1316 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1317 cctl
|= PL080_CONTROL_DST_AHB2
;
1318 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1319 cctl
|= PL080_CONTROL_SRC_AHB2
;
1324 static u32
pl08x_cctl(u32 cctl
)
1326 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1327 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1328 PL080_CONTROL_PROT_MASK
);
1330 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1331 return cctl
| PL080_CONTROL_PROT_SYS
;
1334 static u32
pl08x_width(enum dma_slave_buswidth width
)
1337 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1338 return PL080_WIDTH_8BIT
;
1339 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1340 return PL080_WIDTH_16BIT
;
1341 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1342 return PL080_WIDTH_32BIT
;
1348 static u32
pl08x_burst(u32 maxburst
)
1352 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1353 if (burst_sizes
[i
].burstwords
<= maxburst
)
1356 return burst_sizes
[i
].reg
;
1359 static u32
pl08x_get_cctl(struct pl08x_dma_chan
*plchan
,
1360 enum dma_slave_buswidth addr_width
, u32 maxburst
)
1362 u32 width
, burst
, cctl
= 0;
1364 width
= pl08x_width(addr_width
);
1368 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1369 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1372 * If this channel will only request single transfers, set this
1373 * down to ONE element. Also select one element if no maxburst
1376 if (plchan
->cd
->single
)
1379 burst
= pl08x_burst(maxburst
);
1380 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1381 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1383 return pl08x_cctl(cctl
);
1387 * Slave transactions callback to the slave device to allow
1388 * synchronization of slave DMA signals with the DMAC enable
1390 static void pl08x_issue_pending(struct dma_chan
*chan
)
1392 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1393 unsigned long flags
;
1395 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1396 if (vchan_issue_pending(&plchan
->vc
)) {
1397 if (!plchan
->phychan
&& plchan
->state
!= PL08X_CHAN_WAITING
)
1398 pl08x_phy_alloc_and_start(plchan
);
1400 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1403 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
)
1405 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1408 INIT_LIST_HEAD(&txd
->dsg_list
);
1410 /* Always enable error and terminal interrupts */
1411 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1412 PL080_CONFIG_TC_IRQ_MASK
;
1418 * Initialize a descriptor to be used by memcpy submit
1420 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1421 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1422 size_t len
, unsigned long flags
)
1424 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1425 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1426 struct pl08x_txd
*txd
;
1427 struct pl08x_sg
*dsg
;
1430 txd
= pl08x_get_txd(plchan
);
1432 dev_err(&pl08x
->adev
->dev
,
1433 "%s no memory for descriptor\n", __func__
);
1437 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1439 pl08x_free_txd(pl08x
, txd
);
1440 dev_err(&pl08x
->adev
->dev
, "%s no memory for pl080 sg\n",
1444 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1446 dsg
->src_addr
= src
;
1447 dsg
->dst_addr
= dest
;
1450 /* Set platform data for m2m */
1451 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1452 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl_memcpy
&
1453 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1455 /* Both to be incremented or the code will break */
1456 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1458 if (pl08x
->vd
->dualmaster
)
1459 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1462 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1464 pl08x_free_txd(pl08x
, txd
);
1468 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1471 static struct pl08x_txd
*pl08x_init_txd(
1472 struct dma_chan
*chan
,
1473 enum dma_transfer_direction direction
,
1474 dma_addr_t
*slave_addr
)
1476 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1477 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1478 struct pl08x_txd
*txd
;
1479 enum dma_slave_buswidth addr_width
;
1481 u8 src_buses
, dst_buses
;
1484 txd
= pl08x_get_txd(plchan
);
1486 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1491 * Set up addresses, the PrimeCell configured address
1492 * will take precedence since this may configure the
1493 * channel target address dynamically at runtime.
1495 if (direction
== DMA_MEM_TO_DEV
) {
1496 cctl
= PL080_CONTROL_SRC_INCR
;
1497 *slave_addr
= plchan
->cfg
.dst_addr
;
1498 addr_width
= plchan
->cfg
.dst_addr_width
;
1499 maxburst
= plchan
->cfg
.dst_maxburst
;
1500 src_buses
= pl08x
->mem_buses
;
1501 dst_buses
= plchan
->cd
->periph_buses
;
1502 } else if (direction
== DMA_DEV_TO_MEM
) {
1503 cctl
= PL080_CONTROL_DST_INCR
;
1504 *slave_addr
= plchan
->cfg
.src_addr
;
1505 addr_width
= plchan
->cfg
.src_addr_width
;
1506 maxburst
= plchan
->cfg
.src_maxburst
;
1507 src_buses
= plchan
->cd
->periph_buses
;
1508 dst_buses
= pl08x
->mem_buses
;
1510 pl08x_free_txd(pl08x
, txd
);
1511 dev_err(&pl08x
->adev
->dev
,
1512 "%s direction unsupported\n", __func__
);
1516 cctl
|= pl08x_get_cctl(plchan
, addr_width
, maxburst
);
1518 pl08x_free_txd(pl08x
, txd
);
1519 dev_err(&pl08x
->adev
->dev
,
1520 "DMA slave configuration botched?\n");
1524 txd
->cctl
= cctl
| pl08x_select_bus(src_buses
, dst_buses
);
1526 if (plchan
->cfg
.device_fc
)
1527 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER_PER
:
1528 PL080_FLOW_PER2MEM_PER
;
1530 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER
:
1533 txd
->ccfg
|= tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1535 ret
= pl08x_request_mux(plchan
);
1537 pl08x_free_txd(pl08x
, txd
);
1538 dev_dbg(&pl08x
->adev
->dev
,
1539 "unable to mux for transfer on %s due to platform restrictions\n",
1544 dev_dbg(&pl08x
->adev
->dev
, "allocated DMA request signal %d for xfer on %s\n",
1545 plchan
->signal
, plchan
->name
);
1547 /* Assign the flow control signal to this channel */
1548 if (direction
== DMA_MEM_TO_DEV
)
1549 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
1551 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
1556 static int pl08x_tx_add_sg(struct pl08x_txd
*txd
,
1557 enum dma_transfer_direction direction
,
1558 dma_addr_t slave_addr
,
1559 dma_addr_t buf_addr
,
1562 struct pl08x_sg
*dsg
;
1564 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1568 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1571 if (direction
== DMA_MEM_TO_DEV
) {
1572 dsg
->src_addr
= buf_addr
;
1573 dsg
->dst_addr
= slave_addr
;
1575 dsg
->src_addr
= slave_addr
;
1576 dsg
->dst_addr
= buf_addr
;
1582 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1583 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1584 unsigned int sg_len
, enum dma_transfer_direction direction
,
1585 unsigned long flags
, void *context
)
1587 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1588 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1589 struct pl08x_txd
*txd
;
1590 struct scatterlist
*sg
;
1592 dma_addr_t slave_addr
;
1594 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1595 __func__
, sg_dma_len(sgl
), plchan
->name
);
1597 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1601 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1602 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1606 pl08x_release_mux(plchan
);
1607 pl08x_free_txd(pl08x
, txd
);
1608 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
1614 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1616 pl08x_release_mux(plchan
);
1617 pl08x_free_txd(pl08x
, txd
);
1621 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1624 static struct dma_async_tx_descriptor
*pl08x_prep_dma_cyclic(
1625 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1626 size_t period_len
, enum dma_transfer_direction direction
,
1627 unsigned long flags
)
1629 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1630 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1631 struct pl08x_txd
*txd
;
1633 dma_addr_t slave_addr
;
1635 dev_dbg(&pl08x
->adev
->dev
,
1636 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1637 __func__
, period_len
, buf_len
,
1638 direction
== DMA_MEM_TO_DEV
? "to" : "from",
1641 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1646 txd
->cctl
|= PL080_CONTROL_TC_IRQ_EN
;
1647 for (tmp
= 0; tmp
< buf_len
; tmp
+= period_len
) {
1648 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1649 buf_addr
+ tmp
, period_len
);
1651 pl08x_release_mux(plchan
);
1652 pl08x_free_txd(pl08x
, txd
);
1657 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1659 pl08x_release_mux(plchan
);
1660 pl08x_free_txd(pl08x
, txd
);
1664 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1667 static int pl08x_config(struct dma_chan
*chan
,
1668 struct dma_slave_config
*config
)
1670 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1671 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1676 /* Reject definitely invalid configurations */
1677 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
1678 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
1681 if (config
->device_fc
&& pl08x
->vd
->pl080s
) {
1682 dev_err(&pl08x
->adev
->dev
,
1683 "%s: PL080S does not support peripheral flow control\n",
1688 plchan
->cfg
= *config
;
1693 static int pl08x_terminate_all(struct dma_chan
*chan
)
1695 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1696 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1697 unsigned long flags
;
1699 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1700 if (!plchan
->phychan
&& !plchan
->at
) {
1701 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1705 plchan
->state
= PL08X_CHAN_IDLE
;
1707 if (plchan
->phychan
) {
1709 * Mark physical channel as free and free any slave
1712 pl08x_phy_free(plchan
);
1714 /* Dequeue jobs and free LLIs */
1716 pl08x_desc_free(&plchan
->at
->vd
);
1719 /* Dequeue jobs not yet fired as well */
1720 pl08x_free_txd_list(pl08x
, plchan
);
1722 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1727 static int pl08x_pause(struct dma_chan
*chan
)
1729 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1730 unsigned long flags
;
1733 * Anything succeeds on channels with no physical allocation and
1734 * no queued transfers.
1736 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1737 if (!plchan
->phychan
&& !plchan
->at
) {
1738 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1742 pl08x_pause_phy_chan(plchan
->phychan
);
1743 plchan
->state
= PL08X_CHAN_PAUSED
;
1745 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1750 static int pl08x_resume(struct dma_chan
*chan
)
1752 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1753 unsigned long flags
;
1756 * Anything succeeds on channels with no physical allocation and
1757 * no queued transfers.
1759 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1760 if (!plchan
->phychan
&& !plchan
->at
) {
1761 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1765 pl08x_resume_phy_chan(plchan
->phychan
);
1766 plchan
->state
= PL08X_CHAN_RUNNING
;
1768 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1773 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1775 struct pl08x_dma_chan
*plchan
;
1776 char *name
= chan_id
;
1778 /* Reject channels for devices not bound to this driver */
1779 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
1782 plchan
= to_pl08x_chan(chan
);
1784 /* Check that the channel is not taken! */
1785 if (!strcmp(plchan
->name
, name
))
1790 EXPORT_SYMBOL_GPL(pl08x_filter_id
);
1793 * Just check that the device is there and active
1794 * TODO: turn this bit on/off depending on the number of physical channels
1795 * actually used, if it is zero... well shut it off. That will save some
1796 * power. Cut the clock at the same time.
1798 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1800 /* The Nomadik variant does not have the config register */
1801 if (pl08x
->vd
->nomadik
)
1803 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
1806 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1808 struct pl08x_driver_data
*pl08x
= dev
;
1809 u32 mask
= 0, err
, tc
, i
;
1811 /* check & clear - ERR & TC interrupts */
1812 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1814 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
1816 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
1818 tc
= readl(pl08x
->base
+ PL080_TC_STATUS
);
1820 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
1825 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1826 if (((1 << i
) & err
) || ((1 << i
) & tc
)) {
1827 /* Locate physical channel */
1828 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1829 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1830 struct pl08x_txd
*tx
;
1833 dev_err(&pl08x
->adev
->dev
,
1834 "%s Error TC interrupt on unused channel: 0x%08x\n",
1839 spin_lock(&plchan
->vc
.lock
);
1841 if (tx
&& tx
->cyclic
) {
1842 vchan_cyclic_callback(&tx
->vd
);
1846 * This descriptor is done, release its mux
1849 pl08x_release_mux(plchan
);
1851 vchan_cookie_complete(&tx
->vd
);
1854 * And start the next descriptor (if any),
1855 * otherwise free this channel.
1857 if (vchan_next_desc(&plchan
->vc
))
1858 pl08x_start_next_txd(plchan
);
1860 pl08x_phy_free(plchan
);
1862 spin_unlock(&plchan
->vc
.lock
);
1868 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1871 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1874 chan
->name
= chan
->cd
->bus_id
;
1875 chan
->cfg
.src_addr
= chan
->cd
->addr
;
1876 chan
->cfg
.dst_addr
= chan
->cd
->addr
;
1880 * Initialise the DMAC memcpy/slave channels.
1881 * Make a local wrapper to hold required data
1883 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1884 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1886 struct pl08x_dma_chan
*chan
;
1889 INIT_LIST_HEAD(&dmadev
->channels
);
1892 * Register as many many memcpy as we have physical channels,
1893 * we won't always be able to use all but the code will have
1894 * to cope with that situation.
1896 for (i
= 0; i
< channels
; i
++) {
1897 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1899 dev_err(&pl08x
->adev
->dev
,
1900 "%s no memory for channel\n", __func__
);
1905 chan
->state
= PL08X_CHAN_IDLE
;
1909 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1910 pl08x_dma_slave_init(chan
);
1912 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1913 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1919 dev_dbg(&pl08x
->adev
->dev
,
1920 "initialize virtual channel \"%s\"\n",
1923 chan
->vc
.desc_free
= pl08x_desc_free
;
1924 vchan_init(&chan
->vc
, dmadev
);
1926 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1927 i
, slave
? "slave" : "memcpy");
1931 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1933 struct pl08x_dma_chan
*chan
= NULL
;
1934 struct pl08x_dma_chan
*next
;
1936 list_for_each_entry_safe(chan
,
1937 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
1938 list_del(&chan
->vc
.chan
.device_node
);
1943 #ifdef CONFIG_DEBUG_FS
1944 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1947 case PL08X_CHAN_IDLE
:
1949 case PL08X_CHAN_RUNNING
:
1951 case PL08X_CHAN_PAUSED
:
1953 case PL08X_CHAN_WAITING
:
1958 return "UNKNOWN STATE";
1961 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1963 struct pl08x_driver_data
*pl08x
= s
->private;
1964 struct pl08x_dma_chan
*chan
;
1965 struct pl08x_phy_chan
*ch
;
1966 unsigned long flags
;
1969 seq_printf(s
, "PL08x physical channels:\n");
1970 seq_printf(s
, "CHANNEL:\tUSER:\n");
1971 seq_printf(s
, "--------\t-----\n");
1972 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1973 struct pl08x_dma_chan
*virt_chan
;
1975 ch
= &pl08x
->phy_chans
[i
];
1977 spin_lock_irqsave(&ch
->lock
, flags
);
1978 virt_chan
= ch
->serving
;
1980 seq_printf(s
, "%d\t\t%s%s\n",
1982 virt_chan
? virt_chan
->name
: "(none)",
1983 ch
->locked
? " LOCKED" : "");
1985 spin_unlock_irqrestore(&ch
->lock
, flags
);
1988 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1989 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1990 seq_printf(s
, "--------\t------\n");
1991 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
) {
1992 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1993 pl08x_state_str(chan
->state
));
1996 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1997 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1998 seq_printf(s
, "--------\t------\n");
1999 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
2000 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2001 pl08x_state_str(chan
->state
));
2007 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
2009 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
2012 static const struct file_operations pl08x_debugfs_operations
= {
2013 .open
= pl08x_debugfs_open
,
2015 .llseek
= seq_lseek
,
2016 .release
= single_release
,
2019 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2021 /* Expose a simple debugfs interface to view all clocks */
2022 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
2023 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
2024 &pl08x_debugfs_operations
);
2028 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2033 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2035 struct pl08x_driver_data
*pl08x
;
2036 const struct vendor_data
*vd
= id
->data
;
2041 ret
= amba_request_regions(adev
, NULL
);
2045 /* Ensure that we can do DMA */
2046 ret
= dma_set_mask_and_coherent(&adev
->dev
, DMA_BIT_MASK(32));
2050 /* Create the driver state holder */
2051 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
2057 /* Initialize memcpy engine */
2058 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
2059 pl08x
->memcpy
.dev
= &adev
->dev
;
2060 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
2061 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
2062 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2063 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
2064 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
2065 pl08x
->memcpy
.device_config
= pl08x_config
;
2066 pl08x
->memcpy
.device_pause
= pl08x_pause
;
2067 pl08x
->memcpy
.device_resume
= pl08x_resume
;
2068 pl08x
->memcpy
.device_terminate_all
= pl08x_terminate_all
;
2069 pl08x
->memcpy
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2070 pl08x
->memcpy
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2071 pl08x
->memcpy
.directions
= BIT(DMA_MEM_TO_MEM
);
2072 pl08x
->memcpy
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2074 /* Initialize slave engine */
2075 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
2076 dma_cap_set(DMA_CYCLIC
, pl08x
->slave
.cap_mask
);
2077 pl08x
->slave
.dev
= &adev
->dev
;
2078 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
2079 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2080 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
2081 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
2082 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
2083 pl08x
->slave
.device_prep_dma_cyclic
= pl08x_prep_dma_cyclic
;
2084 pl08x
->slave
.device_config
= pl08x_config
;
2085 pl08x
->slave
.device_pause
= pl08x_pause
;
2086 pl08x
->slave
.device_resume
= pl08x_resume
;
2087 pl08x
->slave
.device_terminate_all
= pl08x_terminate_all
;
2088 pl08x
->slave
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2089 pl08x
->slave
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2090 pl08x
->slave
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2091 pl08x
->slave
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2093 /* Get the platform data */
2094 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
2096 dev_err(&adev
->dev
, "no platform data supplied\n");
2098 goto out_no_platdata
;
2101 /* Assign useful pointers to the driver state */
2105 /* By default, AHB1 only. If dualmaster, from platform */
2106 pl08x
->lli_buses
= PL08X_AHB1
;
2107 pl08x
->mem_buses
= PL08X_AHB1
;
2108 if (pl08x
->vd
->dualmaster
) {
2109 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
2110 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
2114 pl08x
->lli_words
= PL080S_LLI_WORDS
;
2116 pl08x
->lli_words
= PL080_LLI_WORDS
;
2117 tsfr_size
= MAX_NUM_TSFR_LLIS
* pl08x
->lli_words
* sizeof(u32
);
2119 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2120 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
2121 tsfr_size
, PL08X_ALIGN
, 0);
2124 goto out_no_lli_pool
;
2127 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2130 goto out_no_ioremap
;
2133 /* Turn on the PL08x */
2134 pl08x_ensure_on(pl08x
);
2136 /* Attach the interrupt handler */
2137 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2138 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2140 ret
= request_irq(adev
->irq
[0], pl08x_irq
, 0, DRIVER_NAME
, pl08x
);
2142 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2143 __func__
, adev
->irq
[0]);
2147 /* Initialize physical channels */
2148 pl08x
->phy_chans
= kzalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
2150 if (!pl08x
->phy_chans
) {
2151 dev_err(&adev
->dev
, "%s failed to allocate "
2152 "physical channel holders\n",
2155 goto out_no_phychans
;
2158 for (i
= 0; i
< vd
->channels
; i
++) {
2159 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2162 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2163 ch
->reg_config
= ch
->base
+ vd
->config_offset
;
2164 spin_lock_init(&ch
->lock
);
2167 * Nomadik variants can have channels that are locked
2168 * down for the secure world only. Lock up these channels
2169 * by perpetually serving a dummy virtual channel.
2174 val
= readl(ch
->reg_config
);
2175 if (val
& (PL080N_CONFIG_ITPROT
| PL080N_CONFIG_SECPROT
)) {
2176 dev_info(&adev
->dev
, "physical channel %d reserved for secure access only\n", i
);
2181 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
2182 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2185 /* Register as many memcpy channels as there are physical channels */
2186 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2187 pl08x
->vd
->channels
, false);
2189 dev_warn(&pl08x
->adev
->dev
,
2190 "%s failed to enumerate memcpy channels - %d\n",
2195 /* Register slave channels */
2196 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2197 pl08x
->pd
->num_slave_channels
, true);
2199 dev_warn(&pl08x
->adev
->dev
,
2200 "%s failed to enumerate slave channels - %d\n",
2205 ret
= dma_async_device_register(&pl08x
->memcpy
);
2207 dev_warn(&pl08x
->adev
->dev
,
2208 "%s failed to register memcpy as an async device - %d\n",
2210 goto out_no_memcpy_reg
;
2213 ret
= dma_async_device_register(&pl08x
->slave
);
2215 dev_warn(&pl08x
->adev
->dev
,
2216 "%s failed to register slave as an async device - %d\n",
2218 goto out_no_slave_reg
;
2221 amba_set_drvdata(adev
, pl08x
);
2222 init_pl08x_debugfs(pl08x
);
2223 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2224 amba_part(adev
), pl08x
->vd
->pl080s
? "s" : "", amba_rev(adev
),
2225 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2230 dma_async_device_unregister(&pl08x
->memcpy
);
2232 pl08x_free_virtual_channels(&pl08x
->slave
);
2234 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2236 kfree(pl08x
->phy_chans
);
2238 free_irq(adev
->irq
[0], pl08x
);
2240 iounmap(pl08x
->base
);
2242 dma_pool_destroy(pl08x
->pool
);
2247 amba_release_regions(adev
);
2251 /* PL080 has 8 channels and the PL080 have just 2 */
2252 static struct vendor_data vendor_pl080
= {
2253 .config_offset
= PL080_CH_CONFIG
,
2256 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2259 static struct vendor_data vendor_nomadik
= {
2260 .config_offset
= PL080_CH_CONFIG
,
2264 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2267 static struct vendor_data vendor_pl080s
= {
2268 .config_offset
= PL080S_CH_CONFIG
,
2271 .max_transfer_size
= PL080S_CONTROL_TRANSFER_SIZE_MASK
,
2274 static struct vendor_data vendor_pl081
= {
2275 .config_offset
= PL080_CH_CONFIG
,
2277 .dualmaster
= false,
2278 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2281 static struct amba_id pl08x_ids
[] = {
2282 /* Samsung PL080S variant */
2286 .data
= &vendor_pl080s
,
2292 .data
= &vendor_pl080
,
2298 .data
= &vendor_pl081
,
2300 /* Nomadik 8815 PL080 variant */
2304 .data
= &vendor_nomadik
,
2309 MODULE_DEVICE_TABLE(amba
, pl08x_ids
);
2311 static struct amba_driver pl08x_amba_driver
= {
2312 .drv
.name
= DRIVER_NAME
,
2313 .id_table
= pl08x_ids
,
2314 .probe
= pl08x_probe
,
2317 static int __init
pl08x_init(void)
2320 retval
= amba_driver_register(&pl08x_amba_driver
);
2322 printk(KERN_WARNING DRIVER_NAME
2323 "failed to register as an AMBA device (%d)\n",
2327 subsys_initcall(pl08x_init
);