1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2 * Frank Mayer <mayerf@tresys.com>
4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, version 2.
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
17 #include "conditional.h"
21 * cond_evaluate_expr evaluates a conditional expr
22 * in reverse polish notation. It returns true (1), false (0),
23 * or undefined (-1). Undefined occurs when the expression
24 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
26 static int cond_evaluate_expr(struct policydb
*p
, struct cond_expr
*expr
)
29 struct cond_expr
*cur
;
30 int s
[COND_EXPR_MAXDEPTH
];
33 for (cur
= expr
; cur
; cur
= cur
->next
) {
34 switch (cur
->expr_type
) {
36 if (sp
== (COND_EXPR_MAXDEPTH
- 1))
39 s
[sp
] = p
->bool_val_to_struct
[cur
->bool - 1]->state
;
68 s
[sp
] = (s
[sp
] == s
[sp
+ 1]);
74 s
[sp
] = (s
[sp
] != s
[sp
+ 1]);
84 * evaluate_cond_node evaluates the conditional stored in
85 * a struct cond_node and if the result is different than the
86 * current state of the node it sets the rules in the true/false
87 * list appropriately. If the result of the expression is undefined
88 * all of the rules are disabled for safety.
90 int evaluate_cond_node(struct policydb
*p
, struct cond_node
*node
)
93 struct cond_av_list
*cur
;
95 new_state
= cond_evaluate_expr(p
, node
->expr
);
96 if (new_state
!= node
->cur_state
) {
97 node
->cur_state
= new_state
;
99 printk(KERN_ERR
"SELinux: expression result was undefined - disabling all rules.\n");
100 /* turn the rules on or off */
101 for (cur
= node
->true_list
; cur
; cur
= cur
->next
) {
103 cur
->node
->key
.specified
&= ~AVTAB_ENABLED
;
105 cur
->node
->key
.specified
|= AVTAB_ENABLED
;
108 for (cur
= node
->false_list
; cur
; cur
= cur
->next
) {
111 cur
->node
->key
.specified
&= ~AVTAB_ENABLED
;
113 cur
->node
->key
.specified
|= AVTAB_ENABLED
;
119 int cond_policydb_init(struct policydb
*p
)
123 p
->bool_val_to_struct
= NULL
;
126 rc
= avtab_init(&p
->te_cond_avtab
);
133 static void cond_av_list_destroy(struct cond_av_list
*list
)
135 struct cond_av_list
*cur
, *next
;
136 for (cur
= list
; cur
; cur
= next
) {
138 /* the avtab_ptr_t node is destroy by the avtab */
143 static void cond_node_destroy(struct cond_node
*node
)
145 struct cond_expr
*cur_expr
, *next_expr
;
147 for (cur_expr
= node
->expr
; cur_expr
; cur_expr
= next_expr
) {
148 next_expr
= cur_expr
->next
;
151 cond_av_list_destroy(node
->true_list
);
152 cond_av_list_destroy(node
->false_list
);
156 static void cond_list_destroy(struct cond_node
*list
)
158 struct cond_node
*next
, *cur
;
163 for (cur
= list
; cur
; cur
= next
) {
165 cond_node_destroy(cur
);
169 void cond_policydb_destroy(struct policydb
*p
)
171 kfree(p
->bool_val_to_struct
);
172 avtab_destroy(&p
->te_cond_avtab
);
173 cond_list_destroy(p
->cond_list
);
176 int cond_init_bool_indexes(struct policydb
*p
)
178 kfree(p
->bool_val_to_struct
);
179 p
->bool_val_to_struct
= kmalloc_array(p
->p_bools
.nprim
,
180 sizeof(*p
->bool_val_to_struct
),
182 if (!p
->bool_val_to_struct
)
187 int cond_destroy_bool(void *key
, void *datum
, void *p
)
194 int cond_index_bool(void *key
, void *datum
, void *datap
)
197 struct cond_bool_datum
*booldatum
;
198 struct flex_array
*fa
;
203 if (!booldatum
->value
|| booldatum
->value
> p
->p_bools
.nprim
)
206 fa
= p
->sym_val_to_name
[SYM_BOOLS
];
207 if (flex_array_put_ptr(fa
, booldatum
->value
- 1, key
,
208 GFP_KERNEL
| __GFP_ZERO
))
210 p
->bool_val_to_struct
[booldatum
->value
- 1] = booldatum
;
215 static int bool_isvalid(struct cond_bool_datum
*b
)
217 if (!(b
->state
== 0 || b
->state
== 1))
222 int cond_read_bool(struct policydb
*p
, struct hashtab
*h
, void *fp
)
225 struct cond_bool_datum
*booldatum
;
230 booldatum
= kzalloc(sizeof(*booldatum
), GFP_KERNEL
);
234 rc
= next_entry(buf
, fp
, sizeof buf
);
238 booldatum
->value
= le32_to_cpu(buf
[0]);
239 booldatum
->state
= le32_to_cpu(buf
[1]);
242 if (!bool_isvalid(booldatum
))
245 len
= le32_to_cpu(buf
[2]);
246 if (((len
== 0) || (len
== (u32
)-1)))
250 key
= kmalloc(len
+ 1, GFP_KERNEL
);
253 rc
= next_entry(key
, fp
, len
);
257 rc
= hashtab_insert(h
, key
, booldatum
);
263 cond_destroy_bool(key
, booldatum
, NULL
);
267 struct cond_insertf_data
{
269 struct cond_av_list
*other
;
270 struct cond_av_list
*head
;
271 struct cond_av_list
*tail
;
274 static int cond_insertf(struct avtab
*a
, struct avtab_key
*k
, struct avtab_datum
*d
, void *ptr
)
276 struct cond_insertf_data
*data
= ptr
;
277 struct policydb
*p
= data
->p
;
278 struct cond_av_list
*other
= data
->other
, *list
, *cur
;
279 struct avtab_node
*node_ptr
;
284 * For type rules we have to make certain there aren't any
285 * conflicting rules by searching the te_avtab and the
288 if (k
->specified
& AVTAB_TYPE
) {
289 if (avtab_search(&p
->te_avtab
, k
)) {
290 printk(KERN_ERR
"SELinux: type rule already exists outside of a conditional.\n");
294 * If we are reading the false list other will be a pointer to
295 * the true list. We can have duplicate entries if there is only
296 * 1 other entry and it is in our true list.
298 * If we are reading the true list (other == NULL) there shouldn't
299 * be any other entries.
302 node_ptr
= avtab_search_node(&p
->te_cond_avtab
, k
);
304 if (avtab_search_node_next(node_ptr
, k
->specified
)) {
305 printk(KERN_ERR
"SELinux: too many conflicting type rules.\n");
309 for (cur
= other
; cur
; cur
= cur
->next
) {
310 if (cur
->node
== node_ptr
) {
316 printk(KERN_ERR
"SELinux: conflicting type rules.\n");
321 if (avtab_search(&p
->te_cond_avtab
, k
)) {
322 printk(KERN_ERR
"SELinux: conflicting type rules when adding type rule for true.\n");
328 node_ptr
= avtab_insert_nonunique(&p
->te_cond_avtab
, k
, d
);
330 printk(KERN_ERR
"SELinux: could not insert rule.\n");
335 list
= kzalloc(sizeof(*list
), GFP_KERNEL
);
341 list
->node
= node_ptr
;
345 data
->tail
->next
= list
;
350 cond_av_list_destroy(data
->head
);
355 static int cond_read_av_list(struct policydb
*p
, void *fp
, struct cond_av_list
**ret_list
, struct cond_av_list
*other
)
360 struct cond_insertf_data data
;
365 rc
= next_entry(buf
, fp
, sizeof(u32
));
369 len
= le32_to_cpu(buf
[0]);
377 for (i
= 0; i
< len
; i
++) {
378 rc
= avtab_read_item(&p
->te_cond_avtab
, fp
, p
, cond_insertf
,
384 *ret_list
= data
.head
;
388 static int expr_isvalid(struct policydb
*p
, struct cond_expr
*expr
)
390 if (expr
->expr_type
<= 0 || expr
->expr_type
> COND_LAST
) {
391 printk(KERN_ERR
"SELinux: conditional expressions uses unknown operator.\n");
395 if (expr
->bool > p
->p_bools
.nprim
) {
396 printk(KERN_ERR
"SELinux: conditional expressions uses unknown bool.\n");
402 static int cond_read_node(struct policydb
*p
, struct cond_node
*node
, void *fp
)
407 struct cond_expr
*expr
= NULL
, *last
= NULL
;
409 rc
= next_entry(buf
, fp
, sizeof(u32
) * 2);
413 node
->cur_state
= le32_to_cpu(buf
[0]);
416 len
= le32_to_cpu(buf
[1]);
418 for (i
= 0; i
< len
; i
++) {
419 rc
= next_entry(buf
, fp
, sizeof(u32
) * 2);
424 expr
= kzalloc(sizeof(*expr
), GFP_KERNEL
);
428 expr
->expr_type
= le32_to_cpu(buf
[0]);
429 expr
->bool = le32_to_cpu(buf
[1]);
431 if (!expr_isvalid(p
, expr
)) {
444 rc
= cond_read_av_list(p
, fp
, &node
->true_list
, NULL
);
447 rc
= cond_read_av_list(p
, fp
, &node
->false_list
, node
->true_list
);
452 cond_node_destroy(node
);
456 int cond_read_list(struct policydb
*p
, void *fp
)
458 struct cond_node
*node
, *last
= NULL
;
463 rc
= next_entry(buf
, fp
, sizeof buf
);
467 len
= le32_to_cpu(buf
[0]);
469 rc
= avtab_alloc(&(p
->te_cond_avtab
), p
->te_avtab
.nel
);
473 for (i
= 0; i
< len
; i
++) {
475 node
= kzalloc(sizeof(*node
), GFP_KERNEL
);
479 rc
= cond_read_node(p
, node
, fp
);
491 cond_list_destroy(p
->cond_list
);
496 int cond_write_bool(void *vkey
, void *datum
, void *ptr
)
499 struct cond_bool_datum
*booldatum
= datum
;
500 struct policy_data
*pd
= ptr
;
507 buf
[0] = cpu_to_le32(booldatum
->value
);
508 buf
[1] = cpu_to_le32(booldatum
->state
);
509 buf
[2] = cpu_to_le32(len
);
510 rc
= put_entry(buf
, sizeof(u32
), 3, fp
);
513 rc
= put_entry(key
, 1, len
, fp
);
520 * cond_write_cond_av_list doesn't write out the av_list nodes.
521 * Instead it writes out the key/value pairs from the avtab. This
522 * is necessary because there is no way to uniquely identifying rules
523 * in the avtab so it is not possible to associate individual rules
524 * in the avtab with a conditional without saving them as part of
525 * the conditional. This means that the avtab with the conditional
526 * rules will not be saved but will be rebuilt on policy load.
528 static int cond_write_av_list(struct policydb
*p
,
529 struct cond_av_list
*list
, struct policy_file
*fp
)
532 struct cond_av_list
*cur_list
;
537 for (cur_list
= list
; cur_list
!= NULL
; cur_list
= cur_list
->next
)
540 buf
[0] = cpu_to_le32(len
);
541 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
548 for (cur_list
= list
; cur_list
!= NULL
; cur_list
= cur_list
->next
) {
549 rc
= avtab_write_item(p
, cur_list
->node
, fp
);
557 static int cond_write_node(struct policydb
*p
, struct cond_node
*node
,
558 struct policy_file
*fp
)
560 struct cond_expr
*cur_expr
;
565 buf
[0] = cpu_to_le32(node
->cur_state
);
566 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
570 for (cur_expr
= node
->expr
; cur_expr
!= NULL
; cur_expr
= cur_expr
->next
)
573 buf
[0] = cpu_to_le32(len
);
574 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
578 for (cur_expr
= node
->expr
; cur_expr
!= NULL
; cur_expr
= cur_expr
->next
) {
579 buf
[0] = cpu_to_le32(cur_expr
->expr_type
);
580 buf
[1] = cpu_to_le32(cur_expr
->bool);
581 rc
= put_entry(buf
, sizeof(u32
), 2, fp
);
586 rc
= cond_write_av_list(p
, node
->true_list
, fp
);
589 rc
= cond_write_av_list(p
, node
->false_list
, fp
);
596 int cond_write_list(struct policydb
*p
, struct cond_node
*list
, void *fp
)
598 struct cond_node
*cur
;
604 for (cur
= list
; cur
!= NULL
; cur
= cur
->next
)
606 buf
[0] = cpu_to_le32(len
);
607 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
611 for (cur
= list
; cur
!= NULL
; cur
= cur
->next
) {
612 rc
= cond_write_node(p
, cur
, fp
);
620 void cond_compute_xperms(struct avtab
*ctab
, struct avtab_key
*key
,
621 struct extended_perms_decision
*xpermd
)
623 struct avtab_node
*node
;
625 if (!ctab
|| !key
|| !xpermd
)
628 for (node
= avtab_search_node(ctab
, key
); node
;
629 node
= avtab_search_node_next(node
, key
->specified
)) {
630 if (node
->key
.specified
& AVTAB_ENABLED
)
631 services_compute_xperms_decision(xpermd
, node
);
636 /* Determine whether additional permissions are granted by the conditional
637 * av table, and if so, add them to the result
639 void cond_compute_av(struct avtab
*ctab
, struct avtab_key
*key
,
640 struct av_decision
*avd
, struct extended_perms
*xperms
)
642 struct avtab_node
*node
;
644 if (!ctab
|| !key
|| !avd
)
647 for (node
= avtab_search_node(ctab
, key
); node
;
648 node
= avtab_search_node_next(node
, key
->specified
)) {
649 if ((u16
)(AVTAB_ALLOWED
|AVTAB_ENABLED
) ==
650 (node
->key
.specified
& (AVTAB_ALLOWED
|AVTAB_ENABLED
)))
651 avd
->allowed
|= node
->datum
.u
.data
;
652 if ((u16
)(AVTAB_AUDITDENY
|AVTAB_ENABLED
) ==
653 (node
->key
.specified
& (AVTAB_AUDITDENY
|AVTAB_ENABLED
)))
654 /* Since a '0' in an auditdeny mask represents a
655 * permission we do NOT want to audit (dontaudit), we use
656 * the '&' operand to ensure that all '0's in the mask
657 * are retained (much unlike the allow and auditallow cases).
659 avd
->auditdeny
&= node
->datum
.u
.data
;
660 if ((u16
)(AVTAB_AUDITALLOW
|AVTAB_ENABLED
) ==
661 (node
->key
.specified
& (AVTAB_AUDITALLOW
|AVTAB_ENABLED
)))
662 avd
->auditallow
|= node
->datum
.u
.data
;
663 if (xperms
&& (node
->key
.specified
& AVTAB_ENABLED
) &&
664 (node
->key
.specified
& AVTAB_XPERMS
))
665 services_compute_xperms_drivers(xperms
, node
);