PM / sleep: Asynchronous threads for suspend_late
[linux/fpc-iii.git] / drivers / firewire / sbp2.c
blob281029daf98c7ea291886d46ecf05378bfa98718
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
54 #include <asm/byteorder.h>
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_cmnd.h>
58 #include <scsi/scsi_device.h>
59 #include <scsi/scsi_host.h>
62 * So far only bridges from Oxford Semiconductor are known to support
63 * concurrent logins. Depending on firmware, four or two concurrent logins
64 * are possible on OXFW911 and newer Oxsemi bridges.
66 * Concurrent logins are useful together with cluster filesystems.
68 static bool sbp2_param_exclusive_login = 1;
69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71 "(default = Y, use N for concurrent initiators)");
74 * Flags for firmware oddities
76 * - 128kB max transfer
77 * Limit transfer size. Necessary for some old bridges.
79 * - 36 byte inquiry
80 * When scsi_mod probes the device, let the inquiry command look like that
81 * from MS Windows.
83 * - skip mode page 8
84 * Suppress sending of mode_sense for mode page 8 if the device pretends to
85 * support the SCSI Primary Block commands instead of Reduced Block Commands.
87 * - fix capacity
88 * Tell sd_mod to correct the last sector number reported by read_capacity.
89 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
90 * Don't use this with devices which don't have this bug.
92 * - delay inquiry
93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95 * - power condition
96 * Set the power condition field in the START STOP UNIT commands sent by
97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98 * Some disks need this to spin down or to resume properly.
100 * - override internal blacklist
101 * Instead of adding to the built-in blacklist, use only the workarounds
102 * specified in the module load parameter.
103 * Useful if a blacklist entry interfered with a non-broken device.
105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
106 #define SBP2_WORKAROUND_INQUIRY_36 0x2
107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
110 #define SBP2_INQUIRY_DELAY 12
111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
112 #define SBP2_WORKAROUND_OVERRIDE 0x100
114 static int sbp2_param_workarounds;
115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122 ", set power condition in start stop unit = "
123 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125 ", or a combination)");
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
147 int generation;
148 int retries;
149 struct delayed_work work;
150 bool has_sdev;
151 bool blocked;
154 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
156 queue_delayed_work(fw_workqueue, &lu->work, delay);
160 * We create one struct sbp2_target per IEEE 1212 Unit Directory
161 * and one struct Scsi_Host per sbp2_target.
163 struct sbp2_target {
164 struct fw_unit *unit;
165 struct list_head lu_list;
167 u64 management_agent_address;
168 u64 guid;
169 int directory_id;
170 int node_id;
171 int address_high;
172 unsigned int workarounds;
173 unsigned int mgt_orb_timeout;
174 unsigned int max_payload;
176 int dont_block; /* counter for each logical unit */
177 int blocked; /* ditto */
180 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
182 return fw_parent_device(tgt->unit);
185 static const struct device *tgt_dev(const struct sbp2_target *tgt)
187 return &tgt->unit->device;
190 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
192 return &lu->tgt->unit->device;
195 /* Impossible login_id, to detect logout attempt before successful login */
196 #define INVALID_LOGIN_ID 0x10000
198 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
199 #define SBP2_ORB_NULL 0x80000000
200 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
201 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
204 * There is no transport protocol limit to the CDB length, but we implement
205 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
207 #define SBP2_MAX_CDB_SIZE 16
210 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
211 * for compatibility with earlier versions of this driver.
213 #define SBP2_MAX_SEG_SIZE 0xfffc
215 /* Unit directory keys */
216 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
217 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
218 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
219 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
222 /* Management orb opcodes */
223 #define SBP2_LOGIN_REQUEST 0x0
224 #define SBP2_QUERY_LOGINS_REQUEST 0x1
225 #define SBP2_RECONNECT_REQUEST 0x3
226 #define SBP2_SET_PASSWORD_REQUEST 0x4
227 #define SBP2_LOGOUT_REQUEST 0x7
228 #define SBP2_ABORT_TASK_REQUEST 0xb
229 #define SBP2_ABORT_TASK_SET 0xc
230 #define SBP2_LOGICAL_UNIT_RESET 0xe
231 #define SBP2_TARGET_RESET_REQUEST 0xf
233 /* Offsets for command block agent registers */
234 #define SBP2_AGENT_STATE 0x00
235 #define SBP2_AGENT_RESET 0x04
236 #define SBP2_ORB_POINTER 0x08
237 #define SBP2_DOORBELL 0x10
238 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
240 /* Status write response codes */
241 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
242 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
243 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
244 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
246 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
247 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
248 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
249 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
250 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
251 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
252 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
253 #define STATUS_GET_DATA(v) ((v).data)
255 struct sbp2_status {
256 u32 status;
257 u32 orb_low;
258 u8 data[24];
261 struct sbp2_pointer {
262 __be32 high;
263 __be32 low;
266 struct sbp2_orb {
267 struct fw_transaction t;
268 struct kref kref;
269 dma_addr_t request_bus;
270 int rcode;
271 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
272 struct list_head link;
275 #define MANAGEMENT_ORB_LUN(v) ((v))
276 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
277 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
278 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
279 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
280 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
282 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
283 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
285 struct sbp2_management_orb {
286 struct sbp2_orb base;
287 struct {
288 struct sbp2_pointer password;
289 struct sbp2_pointer response;
290 __be32 misc;
291 __be32 length;
292 struct sbp2_pointer status_fifo;
293 } request;
294 __be32 response[4];
295 dma_addr_t response_bus;
296 struct completion done;
297 struct sbp2_status status;
300 struct sbp2_login_response {
301 __be32 misc;
302 struct sbp2_pointer command_block_agent;
303 __be32 reconnect_hold;
305 #define COMMAND_ORB_DATA_SIZE(v) ((v))
306 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
307 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
308 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
309 #define COMMAND_ORB_SPEED(v) ((v) << 24)
310 #define COMMAND_ORB_DIRECTION ((1) << 27)
311 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
312 #define COMMAND_ORB_NOTIFY ((1) << 31)
314 struct sbp2_command_orb {
315 struct sbp2_orb base;
316 struct {
317 struct sbp2_pointer next;
318 struct sbp2_pointer data_descriptor;
319 __be32 misc;
320 u8 command_block[SBP2_MAX_CDB_SIZE];
321 } request;
322 struct scsi_cmnd *cmd;
323 struct sbp2_logical_unit *lu;
325 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
326 dma_addr_t page_table_bus;
329 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
330 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
333 * List of devices with known bugs.
335 * The firmware_revision field, masked with 0xffff00, is the best
336 * indicator for the type of bridge chip of a device. It yields a few
337 * false positives but this did not break correctly behaving devices
338 * so far.
340 static const struct {
341 u32 firmware_revision;
342 u32 model;
343 unsigned int workarounds;
344 } sbp2_workarounds_table[] = {
345 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
346 .firmware_revision = 0x002800,
347 .model = 0x001010,
348 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
349 SBP2_WORKAROUND_MODE_SENSE_8 |
350 SBP2_WORKAROUND_POWER_CONDITION,
352 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
353 .firmware_revision = 0x002800,
354 .model = 0x000000,
355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
357 /* Initio bridges, actually only needed for some older ones */ {
358 .firmware_revision = 0x000200,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
362 /* PL-3507 bridge with Prolific firmware */ {
363 .firmware_revision = 0x012800,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
367 /* Symbios bridge */ {
368 .firmware_revision = 0xa0b800,
369 .model = SBP2_ROM_VALUE_WILDCARD,
370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
372 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
373 .firmware_revision = 0x002600,
374 .model = SBP2_ROM_VALUE_WILDCARD,
375 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
378 * iPod 2nd generation: needs 128k max transfer size workaround
379 * iPod 3rd generation: needs fix capacity workaround
382 .firmware_revision = 0x0a2700,
383 .model = 0x000000,
384 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
385 SBP2_WORKAROUND_FIX_CAPACITY,
387 /* iPod 4th generation */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000021,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
392 /* iPod mini */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x000022,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
397 /* iPod mini */ {
398 .firmware_revision = 0x0a2700,
399 .model = 0x000023,
400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
402 /* iPod Photo */ {
403 .firmware_revision = 0x0a2700,
404 .model = 0x00007e,
405 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
409 static void free_orb(struct kref *kref)
411 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
413 kfree(orb);
416 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
417 int tcode, int destination, int source,
418 int generation, unsigned long long offset,
419 void *payload, size_t length, void *callback_data)
421 struct sbp2_logical_unit *lu = callback_data;
422 struct sbp2_orb *orb;
423 struct sbp2_status status;
424 unsigned long flags;
426 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
427 length < 8 || length > sizeof(status)) {
428 fw_send_response(card, request, RCODE_TYPE_ERROR);
429 return;
432 status.status = be32_to_cpup(payload);
433 status.orb_low = be32_to_cpup(payload + 4);
434 memset(status.data, 0, sizeof(status.data));
435 if (length > 8)
436 memcpy(status.data, payload + 8, length - 8);
438 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
439 dev_notice(lu_dev(lu),
440 "non-ORB related status write, not handled\n");
441 fw_send_response(card, request, RCODE_COMPLETE);
442 return;
445 /* Lookup the orb corresponding to this status write. */
446 spin_lock_irqsave(&card->lock, flags);
447 list_for_each_entry(orb, &lu->orb_list, link) {
448 if (STATUS_GET_ORB_HIGH(status) == 0 &&
449 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
450 orb->rcode = RCODE_COMPLETE;
451 list_del(&orb->link);
452 break;
455 spin_unlock_irqrestore(&card->lock, flags);
457 if (&orb->link != &lu->orb_list) {
458 orb->callback(orb, &status);
459 kref_put(&orb->kref, free_orb); /* orb callback reference */
460 } else {
461 dev_err(lu_dev(lu), "status write for unknown ORB\n");
464 fw_send_response(card, request, RCODE_COMPLETE);
467 static void complete_transaction(struct fw_card *card, int rcode,
468 void *payload, size_t length, void *data)
470 struct sbp2_orb *orb = data;
471 unsigned long flags;
474 * This is a little tricky. We can get the status write for
475 * the orb before we get this callback. The status write
476 * handler above will assume the orb pointer transaction was
477 * successful and set the rcode to RCODE_COMPLETE for the orb.
478 * So this callback only sets the rcode if it hasn't already
479 * been set and only does the cleanup if the transaction
480 * failed and we didn't already get a status write.
482 spin_lock_irqsave(&card->lock, flags);
484 if (orb->rcode == -1)
485 orb->rcode = rcode;
486 if (orb->rcode != RCODE_COMPLETE) {
487 list_del(&orb->link);
488 spin_unlock_irqrestore(&card->lock, flags);
490 orb->callback(orb, NULL);
491 kref_put(&orb->kref, free_orb); /* orb callback reference */
492 } else {
493 spin_unlock_irqrestore(&card->lock, flags);
496 kref_put(&orb->kref, free_orb); /* transaction callback reference */
499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
500 int node_id, int generation, u64 offset)
502 struct fw_device *device = target_parent_device(lu->tgt);
503 struct sbp2_pointer orb_pointer;
504 unsigned long flags;
506 orb_pointer.high = 0;
507 orb_pointer.low = cpu_to_be32(orb->request_bus);
509 spin_lock_irqsave(&device->card->lock, flags);
510 list_add_tail(&orb->link, &lu->orb_list);
511 spin_unlock_irqrestore(&device->card->lock, flags);
513 kref_get(&orb->kref); /* transaction callback reference */
514 kref_get(&orb->kref); /* orb callback reference */
516 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
517 node_id, generation, device->max_speed, offset,
518 &orb_pointer, 8, complete_transaction, orb);
521 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
523 struct fw_device *device = target_parent_device(lu->tgt);
524 struct sbp2_orb *orb, *next;
525 struct list_head list;
526 unsigned long flags;
527 int retval = -ENOENT;
529 INIT_LIST_HEAD(&list);
530 spin_lock_irqsave(&device->card->lock, flags);
531 list_splice_init(&lu->orb_list, &list);
532 spin_unlock_irqrestore(&device->card->lock, flags);
534 list_for_each_entry_safe(orb, next, &list, link) {
535 retval = 0;
536 if (fw_cancel_transaction(device->card, &orb->t) == 0)
537 continue;
539 orb->rcode = RCODE_CANCELLED;
540 orb->callback(orb, NULL);
541 kref_put(&orb->kref, free_orb); /* orb callback reference */
544 return retval;
547 static void complete_management_orb(struct sbp2_orb *base_orb,
548 struct sbp2_status *status)
550 struct sbp2_management_orb *orb =
551 container_of(base_orb, struct sbp2_management_orb, base);
553 if (status)
554 memcpy(&orb->status, status, sizeof(*status));
555 complete(&orb->done);
558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
559 int generation, int function,
560 int lun_or_login_id, void *response)
562 struct fw_device *device = target_parent_device(lu->tgt);
563 struct sbp2_management_orb *orb;
564 unsigned int timeout;
565 int retval = -ENOMEM;
567 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
568 return 0;
570 orb = kzalloc(sizeof(*orb), GFP_NOIO);
571 if (orb == NULL)
572 return -ENOMEM;
574 kref_init(&orb->base.kref);
575 orb->response_bus =
576 dma_map_single(device->card->device, &orb->response,
577 sizeof(orb->response), DMA_FROM_DEVICE);
578 if (dma_mapping_error(device->card->device, orb->response_bus))
579 goto fail_mapping_response;
581 orb->request.response.high = 0;
582 orb->request.response.low = cpu_to_be32(orb->response_bus);
584 orb->request.misc = cpu_to_be32(
585 MANAGEMENT_ORB_NOTIFY |
586 MANAGEMENT_ORB_FUNCTION(function) |
587 MANAGEMENT_ORB_LUN(lun_or_login_id));
588 orb->request.length = cpu_to_be32(
589 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
591 orb->request.status_fifo.high =
592 cpu_to_be32(lu->address_handler.offset >> 32);
593 orb->request.status_fifo.low =
594 cpu_to_be32(lu->address_handler.offset);
596 if (function == SBP2_LOGIN_REQUEST) {
597 /* Ask for 2^2 == 4 seconds reconnect grace period */
598 orb->request.misc |= cpu_to_be32(
599 MANAGEMENT_ORB_RECONNECT(2) |
600 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
601 timeout = lu->tgt->mgt_orb_timeout;
602 } else {
603 timeout = SBP2_ORB_TIMEOUT;
606 init_completion(&orb->done);
607 orb->base.callback = complete_management_orb;
609 orb->base.request_bus =
610 dma_map_single(device->card->device, &orb->request,
611 sizeof(orb->request), DMA_TO_DEVICE);
612 if (dma_mapping_error(device->card->device, orb->base.request_bus))
613 goto fail_mapping_request;
615 sbp2_send_orb(&orb->base, lu, node_id, generation,
616 lu->tgt->management_agent_address);
618 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
620 retval = -EIO;
621 if (sbp2_cancel_orbs(lu) == 0) {
622 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
623 orb->base.rcode);
624 goto out;
627 if (orb->base.rcode != RCODE_COMPLETE) {
628 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
629 orb->base.rcode);
630 goto out;
633 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
634 STATUS_GET_SBP_STATUS(orb->status) != 0) {
635 dev_err(lu_dev(lu), "error status: %d:%d\n",
636 STATUS_GET_RESPONSE(orb->status),
637 STATUS_GET_SBP_STATUS(orb->status));
638 goto out;
641 retval = 0;
642 out:
643 dma_unmap_single(device->card->device, orb->base.request_bus,
644 sizeof(orb->request), DMA_TO_DEVICE);
645 fail_mapping_request:
646 dma_unmap_single(device->card->device, orb->response_bus,
647 sizeof(orb->response), DMA_FROM_DEVICE);
648 fail_mapping_response:
649 if (response)
650 memcpy(response, orb->response, sizeof(orb->response));
651 kref_put(&orb->base.kref, free_orb);
653 return retval;
656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
658 struct fw_device *device = target_parent_device(lu->tgt);
659 __be32 d = 0;
661 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
662 lu->tgt->node_id, lu->generation, device->max_speed,
663 lu->command_block_agent_address + SBP2_AGENT_RESET,
664 &d, 4);
667 static void complete_agent_reset_write_no_wait(struct fw_card *card,
668 int rcode, void *payload, size_t length, void *data)
670 kfree(data);
673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
675 struct fw_device *device = target_parent_device(lu->tgt);
676 struct fw_transaction *t;
677 static __be32 d;
679 t = kmalloc(sizeof(*t), GFP_ATOMIC);
680 if (t == NULL)
681 return;
683 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
684 lu->tgt->node_id, lu->generation, device->max_speed,
685 lu->command_block_agent_address + SBP2_AGENT_RESET,
686 &d, 4, complete_agent_reset_write_no_wait, t);
689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
692 * We may access dont_block without taking card->lock here:
693 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
694 * are currently serialized against each other.
695 * And a wrong result in sbp2_conditionally_block()'s access of
696 * dont_block is rather harmless, it simply misses its first chance.
698 --lu->tgt->dont_block;
702 * Blocks lu->tgt if all of the following conditions are met:
703 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
704 * logical units have been finished (indicated by dont_block == 0).
705 * - lu->generation is stale.
707 * Note, scsi_block_requests() must be called while holding card->lock,
708 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
709 * unblock the target.
711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
713 struct sbp2_target *tgt = lu->tgt;
714 struct fw_card *card = target_parent_device(tgt)->card;
715 struct Scsi_Host *shost =
716 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
717 unsigned long flags;
719 spin_lock_irqsave(&card->lock, flags);
720 if (!tgt->dont_block && !lu->blocked &&
721 lu->generation != card->generation) {
722 lu->blocked = true;
723 if (++tgt->blocked == 1)
724 scsi_block_requests(shost);
726 spin_unlock_irqrestore(&card->lock, flags);
730 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
731 * Note, it is harmless to run scsi_unblock_requests() outside the
732 * card->lock protected section. On the other hand, running it inside
733 * the section might clash with shost->host_lock.
735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
737 struct sbp2_target *tgt = lu->tgt;
738 struct fw_card *card = target_parent_device(tgt)->card;
739 struct Scsi_Host *shost =
740 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741 unsigned long flags;
742 bool unblock = false;
744 spin_lock_irqsave(&card->lock, flags);
745 if (lu->blocked && lu->generation == card->generation) {
746 lu->blocked = false;
747 unblock = --tgt->blocked == 0;
749 spin_unlock_irqrestore(&card->lock, flags);
751 if (unblock)
752 scsi_unblock_requests(shost);
756 * Prevents future blocking of tgt and unblocks it.
757 * Note, it is harmless to run scsi_unblock_requests() outside the
758 * card->lock protected section. On the other hand, running it inside
759 * the section might clash with shost->host_lock.
761 static void sbp2_unblock(struct sbp2_target *tgt)
763 struct fw_card *card = target_parent_device(tgt)->card;
764 struct Scsi_Host *shost =
765 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766 unsigned long flags;
768 spin_lock_irqsave(&card->lock, flags);
769 ++tgt->dont_block;
770 spin_unlock_irqrestore(&card->lock, flags);
772 scsi_unblock_requests(shost);
775 static int sbp2_lun2int(u16 lun)
777 struct scsi_lun eight_bytes_lun;
779 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
780 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
781 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
783 return scsilun_to_int(&eight_bytes_lun);
787 * Write retransmit retry values into the BUSY_TIMEOUT register.
788 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
789 * default retry_limit value is 0 (i.e. never retry transmission). We write a
790 * saner value after logging into the device.
791 * - The dual-phase retry protocol is optional to implement, and if not
792 * supported, writes to the dual-phase portion of the register will be
793 * ignored. We try to write the original 1394-1995 default here.
794 * - In the case of devices that are also SBP-3-compliant, all writes are
795 * ignored, as the register is read-only, but contains single-phase retry of
796 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
797 * write attempt is safe and yields more consistent behavior for all devices.
799 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
800 * and section 6.4 of the SBP-3 spec for further details.
802 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
804 struct fw_device *device = target_parent_device(lu->tgt);
805 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
807 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
808 lu->tgt->node_id, lu->generation, device->max_speed,
809 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
812 static void sbp2_reconnect(struct work_struct *work);
814 static void sbp2_login(struct work_struct *work)
816 struct sbp2_logical_unit *lu =
817 container_of(work, struct sbp2_logical_unit, work.work);
818 struct sbp2_target *tgt = lu->tgt;
819 struct fw_device *device = target_parent_device(tgt);
820 struct Scsi_Host *shost;
821 struct scsi_device *sdev;
822 struct sbp2_login_response response;
823 int generation, node_id, local_node_id;
825 if (fw_device_is_shutdown(device))
826 return;
828 generation = device->generation;
829 smp_rmb(); /* node IDs must not be older than generation */
830 node_id = device->node_id;
831 local_node_id = device->card->node_id;
833 /* If this is a re-login attempt, log out, or we might be rejected. */
834 if (lu->has_sdev)
835 sbp2_send_management_orb(lu, device->node_id, generation,
836 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
838 if (sbp2_send_management_orb(lu, node_id, generation,
839 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
840 if (lu->retries++ < 5) {
841 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
842 } else {
843 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
844 lu->lun);
845 /* Let any waiting I/O fail from now on. */
846 sbp2_unblock(lu->tgt);
848 return;
851 tgt->node_id = node_id;
852 tgt->address_high = local_node_id << 16;
853 smp_wmb(); /* node IDs must not be older than generation */
854 lu->generation = generation;
856 lu->command_block_agent_address =
857 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
858 << 32) | be32_to_cpu(response.command_block_agent.low);
859 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
861 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
862 lu->lun, lu->retries);
864 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
865 sbp2_set_busy_timeout(lu);
867 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
868 sbp2_agent_reset(lu);
870 /* This was a re-login. */
871 if (lu->has_sdev) {
872 sbp2_cancel_orbs(lu);
873 sbp2_conditionally_unblock(lu);
875 return;
878 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
879 ssleep(SBP2_INQUIRY_DELAY);
881 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
882 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
884 * FIXME: We are unable to perform reconnects while in sbp2_login().
885 * Therefore __scsi_add_device() will get into trouble if a bus reset
886 * happens in parallel. It will either fail or leave us with an
887 * unusable sdev. As a workaround we check for this and retry the
888 * whole login and SCSI probing.
891 /* Reported error during __scsi_add_device() */
892 if (IS_ERR(sdev))
893 goto out_logout_login;
895 /* Unreported error during __scsi_add_device() */
896 smp_rmb(); /* get current card generation */
897 if (generation != device->card->generation) {
898 scsi_remove_device(sdev);
899 scsi_device_put(sdev);
900 goto out_logout_login;
903 /* No error during __scsi_add_device() */
904 lu->has_sdev = true;
905 scsi_device_put(sdev);
906 sbp2_allow_block(lu);
908 return;
910 out_logout_login:
911 smp_rmb(); /* generation may have changed */
912 generation = device->generation;
913 smp_rmb(); /* node_id must not be older than generation */
915 sbp2_send_management_orb(lu, device->node_id, generation,
916 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
918 * If a bus reset happened, sbp2_update will have requeued
919 * lu->work already. Reset the work from reconnect to login.
921 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
924 static void sbp2_reconnect(struct work_struct *work)
926 struct sbp2_logical_unit *lu =
927 container_of(work, struct sbp2_logical_unit, work.work);
928 struct sbp2_target *tgt = lu->tgt;
929 struct fw_device *device = target_parent_device(tgt);
930 int generation, node_id, local_node_id;
932 if (fw_device_is_shutdown(device))
933 return;
935 generation = device->generation;
936 smp_rmb(); /* node IDs must not be older than generation */
937 node_id = device->node_id;
938 local_node_id = device->card->node_id;
940 if (sbp2_send_management_orb(lu, node_id, generation,
941 SBP2_RECONNECT_REQUEST,
942 lu->login_id, NULL) < 0) {
944 * If reconnect was impossible even though we are in the
945 * current generation, fall back and try to log in again.
947 * We could check for "Function rejected" status, but
948 * looking at the bus generation as simpler and more general.
950 smp_rmb(); /* get current card generation */
951 if (generation == device->card->generation ||
952 lu->retries++ >= 5) {
953 dev_err(tgt_dev(tgt), "failed to reconnect\n");
954 lu->retries = 0;
955 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
957 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
959 return;
962 tgt->node_id = node_id;
963 tgt->address_high = local_node_id << 16;
964 smp_wmb(); /* node IDs must not be older than generation */
965 lu->generation = generation;
967 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
968 lu->lun, lu->retries);
970 sbp2_agent_reset(lu);
971 sbp2_cancel_orbs(lu);
972 sbp2_conditionally_unblock(lu);
975 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
977 struct sbp2_logical_unit *lu;
979 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
980 if (!lu)
981 return -ENOMEM;
983 lu->address_handler.length = 0x100;
984 lu->address_handler.address_callback = sbp2_status_write;
985 lu->address_handler.callback_data = lu;
987 if (fw_core_add_address_handler(&lu->address_handler,
988 &fw_high_memory_region) < 0) {
989 kfree(lu);
990 return -ENOMEM;
993 lu->tgt = tgt;
994 lu->lun = lun_entry & 0xffff;
995 lu->login_id = INVALID_LOGIN_ID;
996 lu->retries = 0;
997 lu->has_sdev = false;
998 lu->blocked = false;
999 ++tgt->dont_block;
1000 INIT_LIST_HEAD(&lu->orb_list);
1001 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1003 list_add_tail(&lu->link, &tgt->lu_list);
1004 return 0;
1007 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1008 const u32 *leaf)
1010 if ((leaf[0] & 0xffff0000) == 0x00020000)
1011 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1015 const u32 *directory)
1017 struct fw_csr_iterator ci;
1018 int key, value;
1020 fw_csr_iterator_init(&ci, directory);
1021 while (fw_csr_iterator_next(&ci, &key, &value))
1022 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1023 sbp2_add_logical_unit(tgt, value) < 0)
1024 return -ENOMEM;
1025 return 0;
1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1029 u32 *model, u32 *firmware_revision)
1031 struct fw_csr_iterator ci;
1032 int key, value;
1034 fw_csr_iterator_init(&ci, directory);
1035 while (fw_csr_iterator_next(&ci, &key, &value)) {
1036 switch (key) {
1038 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1039 tgt->management_agent_address =
1040 CSR_REGISTER_BASE + 4 * value;
1041 break;
1043 case CSR_DIRECTORY_ID:
1044 tgt->directory_id = value;
1045 break;
1047 case CSR_MODEL:
1048 *model = value;
1049 break;
1051 case SBP2_CSR_FIRMWARE_REVISION:
1052 *firmware_revision = value;
1053 break;
1055 case SBP2_CSR_UNIT_CHARACTERISTICS:
1056 /* the timeout value is stored in 500ms units */
1057 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1058 break;
1060 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1061 if (sbp2_add_logical_unit(tgt, value) < 0)
1062 return -ENOMEM;
1063 break;
1065 case SBP2_CSR_UNIT_UNIQUE_ID:
1066 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1067 break;
1069 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070 /* Adjust for the increment in the iterator */
1071 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072 return -ENOMEM;
1073 break;
1076 return 0;
1080 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1081 * provided in the config rom. Most devices do provide a value, which
1082 * we'll use for login management orbs, but with some sane limits.
1084 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1086 unsigned int timeout = tgt->mgt_orb_timeout;
1088 if (timeout > 40000)
1089 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1090 timeout / 1000);
1092 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1095 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1096 u32 firmware_revision)
1098 int i;
1099 unsigned int w = sbp2_param_workarounds;
1101 if (w)
1102 dev_notice(tgt_dev(tgt),
1103 "Please notify linux1394-devel@lists.sf.net "
1104 "if you need the workarounds parameter\n");
1106 if (w & SBP2_WORKAROUND_OVERRIDE)
1107 goto out;
1109 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1111 if (sbp2_workarounds_table[i].firmware_revision !=
1112 (firmware_revision & 0xffffff00))
1113 continue;
1115 if (sbp2_workarounds_table[i].model != model &&
1116 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1117 continue;
1119 w |= sbp2_workarounds_table[i].workarounds;
1120 break;
1122 out:
1123 if (w)
1124 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1125 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1126 w, firmware_revision, model);
1127 tgt->workarounds = w;
1130 static struct scsi_host_template scsi_driver_template;
1131 static void sbp2_remove(struct fw_unit *unit);
1133 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1135 struct fw_device *device = fw_parent_device(unit);
1136 struct sbp2_target *tgt;
1137 struct sbp2_logical_unit *lu;
1138 struct Scsi_Host *shost;
1139 u32 model, firmware_revision;
1141 /* cannot (or should not) handle targets on the local node */
1142 if (device->is_local)
1143 return -ENODEV;
1145 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1146 WARN_ON(dma_set_max_seg_size(device->card->device,
1147 SBP2_MAX_SEG_SIZE));
1149 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1150 if (shost == NULL)
1151 return -ENOMEM;
1153 tgt = (struct sbp2_target *)shost->hostdata;
1154 dev_set_drvdata(&unit->device, tgt);
1155 tgt->unit = unit;
1156 INIT_LIST_HEAD(&tgt->lu_list);
1157 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1159 if (fw_device_enable_phys_dma(device) < 0)
1160 goto fail_shost_put;
1162 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1164 if (scsi_add_host_with_dma(shost, &unit->device,
1165 device->card->device) < 0)
1166 goto fail_shost_put;
1168 /* implicit directory ID */
1169 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1170 + CSR_CONFIG_ROM) & 0xffffff;
1172 firmware_revision = SBP2_ROM_VALUE_MISSING;
1173 model = SBP2_ROM_VALUE_MISSING;
1175 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1176 &firmware_revision) < 0)
1177 goto fail_remove;
1179 sbp2_clamp_management_orb_timeout(tgt);
1180 sbp2_init_workarounds(tgt, model, firmware_revision);
1183 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1184 * and so on up to 4096 bytes. The SBP-2 max_payload field
1185 * specifies the max payload size as 2 ^ (max_payload + 2), so
1186 * if we set this to max_speed + 7, we get the right value.
1188 tgt->max_payload = min3(device->max_speed + 7, 10U,
1189 device->card->max_receive - 1);
1191 /* Do the login in a workqueue so we can easily reschedule retries. */
1192 list_for_each_entry(lu, &tgt->lu_list, link)
1193 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1195 return 0;
1197 fail_remove:
1198 sbp2_remove(unit);
1199 return -ENOMEM;
1201 fail_shost_put:
1202 scsi_host_put(shost);
1203 return -ENOMEM;
1206 static void sbp2_update(struct fw_unit *unit)
1208 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1209 struct sbp2_logical_unit *lu;
1211 fw_device_enable_phys_dma(fw_parent_device(unit));
1214 * Fw-core serializes sbp2_update() against sbp2_remove().
1215 * Iteration over tgt->lu_list is therefore safe here.
1217 list_for_each_entry(lu, &tgt->lu_list, link) {
1218 sbp2_conditionally_block(lu);
1219 lu->retries = 0;
1220 sbp2_queue_work(lu, 0);
1224 static void sbp2_remove(struct fw_unit *unit)
1226 struct fw_device *device = fw_parent_device(unit);
1227 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1228 struct sbp2_logical_unit *lu, *next;
1229 struct Scsi_Host *shost =
1230 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1231 struct scsi_device *sdev;
1233 /* prevent deadlocks */
1234 sbp2_unblock(tgt);
1236 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1237 cancel_delayed_work_sync(&lu->work);
1238 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1239 if (sdev) {
1240 scsi_remove_device(sdev);
1241 scsi_device_put(sdev);
1243 if (lu->login_id != INVALID_LOGIN_ID) {
1244 int generation, node_id;
1246 * tgt->node_id may be obsolete here if we failed
1247 * during initial login or after a bus reset where
1248 * the topology changed.
1250 generation = device->generation;
1251 smp_rmb(); /* node_id vs. generation */
1252 node_id = device->node_id;
1253 sbp2_send_management_orb(lu, node_id, generation,
1254 SBP2_LOGOUT_REQUEST,
1255 lu->login_id, NULL);
1257 fw_core_remove_address_handler(&lu->address_handler);
1258 list_del(&lu->link);
1259 kfree(lu);
1261 scsi_remove_host(shost);
1262 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1264 scsi_host_put(shost);
1267 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1268 #define SBP2_SW_VERSION_ENTRY 0x00010483
1270 static const struct ieee1394_device_id sbp2_id_table[] = {
1272 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1273 IEEE1394_MATCH_VERSION,
1274 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1275 .version = SBP2_SW_VERSION_ENTRY,
1280 static struct fw_driver sbp2_driver = {
1281 .driver = {
1282 .owner = THIS_MODULE,
1283 .name = KBUILD_MODNAME,
1284 .bus = &fw_bus_type,
1286 .probe = sbp2_probe,
1287 .update = sbp2_update,
1288 .remove = sbp2_remove,
1289 .id_table = sbp2_id_table,
1292 static void sbp2_unmap_scatterlist(struct device *card_device,
1293 struct sbp2_command_orb *orb)
1295 scsi_dma_unmap(orb->cmd);
1297 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1298 dma_unmap_single(card_device, orb->page_table_bus,
1299 sizeof(orb->page_table), DMA_TO_DEVICE);
1302 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1304 int sam_status;
1305 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1307 if (sfmt == 2 || sfmt == 3) {
1309 * Reserved for future standardization (2) or
1310 * Status block format vendor-dependent (3)
1312 return DID_ERROR << 16;
1315 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1316 sense_data[1] = 0x0;
1317 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1318 sense_data[3] = sbp2_status[4];
1319 sense_data[4] = sbp2_status[5];
1320 sense_data[5] = sbp2_status[6];
1321 sense_data[6] = sbp2_status[7];
1322 sense_data[7] = 10;
1323 sense_data[8] = sbp2_status[8];
1324 sense_data[9] = sbp2_status[9];
1325 sense_data[10] = sbp2_status[10];
1326 sense_data[11] = sbp2_status[11];
1327 sense_data[12] = sbp2_status[2];
1328 sense_data[13] = sbp2_status[3];
1329 sense_data[14] = sbp2_status[12];
1330 sense_data[15] = sbp2_status[13];
1332 sam_status = sbp2_status[0] & 0x3f;
1334 switch (sam_status) {
1335 case SAM_STAT_GOOD:
1336 case SAM_STAT_CHECK_CONDITION:
1337 case SAM_STAT_CONDITION_MET:
1338 case SAM_STAT_BUSY:
1339 case SAM_STAT_RESERVATION_CONFLICT:
1340 case SAM_STAT_COMMAND_TERMINATED:
1341 return DID_OK << 16 | sam_status;
1343 default:
1344 return DID_ERROR << 16;
1348 static void complete_command_orb(struct sbp2_orb *base_orb,
1349 struct sbp2_status *status)
1351 struct sbp2_command_orb *orb =
1352 container_of(base_orb, struct sbp2_command_orb, base);
1353 struct fw_device *device = target_parent_device(orb->lu->tgt);
1354 int result;
1356 if (status != NULL) {
1357 if (STATUS_GET_DEAD(*status))
1358 sbp2_agent_reset_no_wait(orb->lu);
1360 switch (STATUS_GET_RESPONSE(*status)) {
1361 case SBP2_STATUS_REQUEST_COMPLETE:
1362 result = DID_OK << 16;
1363 break;
1364 case SBP2_STATUS_TRANSPORT_FAILURE:
1365 result = DID_BUS_BUSY << 16;
1366 break;
1367 case SBP2_STATUS_ILLEGAL_REQUEST:
1368 case SBP2_STATUS_VENDOR_DEPENDENT:
1369 default:
1370 result = DID_ERROR << 16;
1371 break;
1374 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1375 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1376 orb->cmd->sense_buffer);
1377 } else {
1379 * If the orb completes with status == NULL, something
1380 * went wrong, typically a bus reset happened mid-orb
1381 * or when sending the write (less likely).
1383 result = DID_BUS_BUSY << 16;
1384 sbp2_conditionally_block(orb->lu);
1387 dma_unmap_single(device->card->device, orb->base.request_bus,
1388 sizeof(orb->request), DMA_TO_DEVICE);
1389 sbp2_unmap_scatterlist(device->card->device, orb);
1391 orb->cmd->result = result;
1392 orb->cmd->scsi_done(orb->cmd);
1395 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1396 struct fw_device *device, struct sbp2_logical_unit *lu)
1398 struct scatterlist *sg = scsi_sglist(orb->cmd);
1399 int i, n;
1401 n = scsi_dma_map(orb->cmd);
1402 if (n <= 0)
1403 goto fail;
1406 * Handle the special case where there is only one element in
1407 * the scatter list by converting it to an immediate block
1408 * request. This is also a workaround for broken devices such
1409 * as the second generation iPod which doesn't support page
1410 * tables.
1412 if (n == 1) {
1413 orb->request.data_descriptor.high =
1414 cpu_to_be32(lu->tgt->address_high);
1415 orb->request.data_descriptor.low =
1416 cpu_to_be32(sg_dma_address(sg));
1417 orb->request.misc |=
1418 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1419 return 0;
1422 for_each_sg(sg, sg, n, i) {
1423 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1424 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1427 orb->page_table_bus =
1428 dma_map_single(device->card->device, orb->page_table,
1429 sizeof(orb->page_table), DMA_TO_DEVICE);
1430 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1431 goto fail_page_table;
1434 * The data_descriptor pointer is the one case where we need
1435 * to fill in the node ID part of the address. All other
1436 * pointers assume that the data referenced reside on the
1437 * initiator (i.e. us), but data_descriptor can refer to data
1438 * on other nodes so we need to put our ID in descriptor.high.
1440 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1441 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1442 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1443 COMMAND_ORB_DATA_SIZE(n));
1445 return 0;
1447 fail_page_table:
1448 scsi_dma_unmap(orb->cmd);
1449 fail:
1450 return -ENOMEM;
1453 /* SCSI stack integration */
1455 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1456 struct scsi_cmnd *cmd)
1458 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1459 struct fw_device *device = target_parent_device(lu->tgt);
1460 struct sbp2_command_orb *orb;
1461 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1464 * Bidirectional commands are not yet implemented, and unknown
1465 * transfer direction not handled.
1467 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1468 dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1469 cmd->result = DID_ERROR << 16;
1470 cmd->scsi_done(cmd);
1471 return 0;
1474 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1475 if (orb == NULL)
1476 return SCSI_MLQUEUE_HOST_BUSY;
1478 /* Initialize rcode to something not RCODE_COMPLETE. */
1479 orb->base.rcode = -1;
1480 kref_init(&orb->base.kref);
1481 orb->lu = lu;
1482 orb->cmd = cmd;
1483 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1484 orb->request.misc = cpu_to_be32(
1485 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1486 COMMAND_ORB_SPEED(device->max_speed) |
1487 COMMAND_ORB_NOTIFY);
1489 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1490 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1492 generation = device->generation;
1493 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1495 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1496 goto out;
1498 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1500 orb->base.callback = complete_command_orb;
1501 orb->base.request_bus =
1502 dma_map_single(device->card->device, &orb->request,
1503 sizeof(orb->request), DMA_TO_DEVICE);
1504 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1505 sbp2_unmap_scatterlist(device->card->device, orb);
1506 goto out;
1509 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1510 lu->command_block_agent_address + SBP2_ORB_POINTER);
1511 retval = 0;
1512 out:
1513 kref_put(&orb->base.kref, free_orb);
1514 return retval;
1517 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1519 struct sbp2_logical_unit *lu = sdev->hostdata;
1521 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1522 if (!lu)
1523 return -ENOSYS;
1525 sdev->allow_restart = 1;
1528 * SBP-2 does not require any alignment, but we set it anyway
1529 * for compatibility with earlier versions of this driver.
1531 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1533 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1534 sdev->inquiry_len = 36;
1536 return 0;
1539 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1541 struct sbp2_logical_unit *lu = sdev->hostdata;
1543 sdev->use_10_for_rw = 1;
1545 if (sbp2_param_exclusive_login)
1546 sdev->manage_start_stop = 1;
1548 if (sdev->type == TYPE_ROM)
1549 sdev->use_10_for_ms = 1;
1551 if (sdev->type == TYPE_DISK &&
1552 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1553 sdev->skip_ms_page_8 = 1;
1555 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1556 sdev->fix_capacity = 1;
1558 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1559 sdev->start_stop_pwr_cond = 1;
1561 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1562 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1564 return 0;
1568 * Called by scsi stack when something has really gone wrong. Usually
1569 * called when a command has timed-out for some reason.
1571 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1573 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1575 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1576 sbp2_agent_reset(lu);
1577 sbp2_cancel_orbs(lu);
1579 return SUCCESS;
1583 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1584 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1586 * This is the concatenation of target port identifier and logical unit
1587 * identifier as per SAM-2...SAM-4 annex A.
1589 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1590 struct device_attribute *attr, char *buf)
1592 struct scsi_device *sdev = to_scsi_device(dev);
1593 struct sbp2_logical_unit *lu;
1595 if (!sdev)
1596 return 0;
1598 lu = sdev->hostdata;
1600 return sprintf(buf, "%016llx:%06x:%04x\n",
1601 (unsigned long long)lu->tgt->guid,
1602 lu->tgt->directory_id, lu->lun);
1605 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1607 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1608 &dev_attr_ieee1394_id,
1609 NULL
1612 static struct scsi_host_template scsi_driver_template = {
1613 .module = THIS_MODULE,
1614 .name = "SBP-2 IEEE-1394",
1615 .proc_name = "sbp2",
1616 .queuecommand = sbp2_scsi_queuecommand,
1617 .slave_alloc = sbp2_scsi_slave_alloc,
1618 .slave_configure = sbp2_scsi_slave_configure,
1619 .eh_abort_handler = sbp2_scsi_abort,
1620 .this_id = -1,
1621 .sg_tablesize = SG_ALL,
1622 .use_clustering = ENABLE_CLUSTERING,
1623 .cmd_per_lun = 1,
1624 .can_queue = 1,
1625 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1628 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1629 MODULE_DESCRIPTION("SCSI over IEEE1394");
1630 MODULE_LICENSE("GPL");
1631 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1633 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1634 MODULE_ALIAS("sbp2");
1636 static int __init sbp2_init(void)
1638 return driver_register(&sbp2_driver.driver);
1641 static void __exit sbp2_cleanup(void)
1643 driver_unregister(&sbp2_driver.driver);
1646 module_init(sbp2_init);
1647 module_exit(sbp2_cleanup);