Linux 2.6.21
[linux/fpc-iii.git] / arch / alpha / kernel / smp.c
blobd1ec4f51df1aae6c3678dc85d393edb2d33ee321
1 /*
2 * linux/arch/alpha/kernel/smp.c
4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
5 * Renamed modified smp_call_function to smp_call_function_on_cpu()
6 * Created an function that conforms to the old calling convention
7 * of smp_call_function().
9 * This is helpful for DCPI.
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/threads.h>
20 #include <linux/smp.h>
21 #include <linux/smp_lock.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/spinlock.h>
26 #include <linux/irq.h>
27 #include <linux/cache.h>
28 #include <linux/profile.h>
29 #include <linux/bitops.h>
31 #include <asm/hwrpb.h>
32 #include <asm/ptrace.h>
33 #include <asm/atomic.h>
35 #include <asm/io.h>
36 #include <asm/irq.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include "proto.h"
43 #include "irq_impl.h"
46 #define DEBUG_SMP 0
47 #if DEBUG_SMP
48 #define DBGS(args) printk args
49 #else
50 #define DBGS(args)
51 #endif
53 /* A collection of per-processor data. */
54 struct cpuinfo_alpha cpu_data[NR_CPUS];
55 EXPORT_SYMBOL(cpu_data);
57 /* A collection of single bit ipi messages. */
58 static struct {
59 unsigned long bits ____cacheline_aligned;
60 } ipi_data[NR_CPUS] __cacheline_aligned;
62 enum ipi_message_type {
63 IPI_RESCHEDULE,
64 IPI_CALL_FUNC,
65 IPI_CPU_STOP,
68 /* Set to a secondary's cpuid when it comes online. */
69 static int smp_secondary_alive __initdata = 0;
71 /* Which cpus ids came online. */
72 cpumask_t cpu_online_map;
74 EXPORT_SYMBOL(cpu_online_map);
76 int smp_num_probed; /* Internal processor count */
77 int smp_num_cpus = 1; /* Number that came online. */
78 EXPORT_SYMBOL(smp_num_cpus);
80 extern void calibrate_delay(void);
85 * Called by both boot and secondaries to move global data into
86 * per-processor storage.
88 static inline void __init
89 smp_store_cpu_info(int cpuid)
91 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
92 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
93 cpu_data[cpuid].need_new_asn = 0;
94 cpu_data[cpuid].asn_lock = 0;
98 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
100 static inline void __init
101 smp_setup_percpu_timer(int cpuid)
103 cpu_data[cpuid].prof_counter = 1;
104 cpu_data[cpuid].prof_multiplier = 1;
107 static void __init
108 wait_boot_cpu_to_stop(int cpuid)
110 unsigned long stop = jiffies + 10*HZ;
112 while (time_before(jiffies, stop)) {
113 if (!smp_secondary_alive)
114 return;
115 barrier();
118 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
119 for (;;)
120 barrier();
124 * Where secondaries begin a life of C.
126 void __init
127 smp_callin(void)
129 int cpuid = hard_smp_processor_id();
131 if (cpu_test_and_set(cpuid, cpu_online_map)) {
132 printk("??, cpu 0x%x already present??\n", cpuid);
133 BUG();
136 /* Turn on machine checks. */
137 wrmces(7);
139 /* Set trap vectors. */
140 trap_init();
142 /* Set interrupt vector. */
143 wrent(entInt, 0);
145 /* Get our local ticker going. */
146 smp_setup_percpu_timer(cpuid);
148 /* Call platform-specific callin, if specified */
149 if (alpha_mv.smp_callin) alpha_mv.smp_callin();
151 /* All kernel threads share the same mm context. */
152 atomic_inc(&init_mm.mm_count);
153 current->active_mm = &init_mm;
155 /* Must have completely accurate bogos. */
156 local_irq_enable();
158 /* Wait boot CPU to stop with irq enabled before running
159 calibrate_delay. */
160 wait_boot_cpu_to_stop(cpuid);
161 mb();
162 calibrate_delay();
164 smp_store_cpu_info(cpuid);
165 /* Allow master to continue only after we written loops_per_jiffy. */
166 wmb();
167 smp_secondary_alive = 1;
169 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
170 cpuid, current, current->active_mm));
172 /* Do nothing. */
173 cpu_idle();
176 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */
177 static int __init
178 wait_for_txrdy (unsigned long cpumask)
180 unsigned long timeout;
182 if (!(hwrpb->txrdy & cpumask))
183 return 0;
185 timeout = jiffies + 10*HZ;
186 while (time_before(jiffies, timeout)) {
187 if (!(hwrpb->txrdy & cpumask))
188 return 0;
189 udelay(10);
190 barrier();
193 return -1;
197 * Send a message to a secondary's console. "START" is one such
198 * interesting message. ;-)
200 static void __init
201 send_secondary_console_msg(char *str, int cpuid)
203 struct percpu_struct *cpu;
204 register char *cp1, *cp2;
205 unsigned long cpumask;
206 size_t len;
208 cpu = (struct percpu_struct *)
209 ((char*)hwrpb
210 + hwrpb->processor_offset
211 + cpuid * hwrpb->processor_size);
213 cpumask = (1UL << cpuid);
214 if (wait_for_txrdy(cpumask))
215 goto timeout;
217 cp2 = str;
218 len = strlen(cp2);
219 *(unsigned int *)&cpu->ipc_buffer[0] = len;
220 cp1 = (char *) &cpu->ipc_buffer[1];
221 memcpy(cp1, cp2, len);
223 /* atomic test and set */
224 wmb();
225 set_bit(cpuid, &hwrpb->rxrdy);
227 if (wait_for_txrdy(cpumask))
228 goto timeout;
229 return;
231 timeout:
232 printk("Processor %x not ready\n", cpuid);
236 * A secondary console wants to send a message. Receive it.
238 static void
239 recv_secondary_console_msg(void)
241 int mycpu, i, cnt;
242 unsigned long txrdy = hwrpb->txrdy;
243 char *cp1, *cp2, buf[80];
244 struct percpu_struct *cpu;
246 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
248 mycpu = hard_smp_processor_id();
250 for (i = 0; i < NR_CPUS; i++) {
251 if (!(txrdy & (1UL << i)))
252 continue;
254 DBGS(("recv_secondary_console_msg: "
255 "TXRDY contains CPU %d.\n", i));
257 cpu = (struct percpu_struct *)
258 ((char*)hwrpb
259 + hwrpb->processor_offset
260 + i * hwrpb->processor_size);
262 DBGS(("recv_secondary_console_msg: on %d from %d"
263 " HALT_REASON 0x%lx FLAGS 0x%lx\n",
264 mycpu, i, cpu->halt_reason, cpu->flags));
266 cnt = cpu->ipc_buffer[0] >> 32;
267 if (cnt <= 0 || cnt >= 80)
268 strcpy(buf, "<<< BOGUS MSG >>>");
269 else {
270 cp1 = (char *) &cpu->ipc_buffer[11];
271 cp2 = buf;
272 strcpy(cp2, cp1);
274 while ((cp2 = strchr(cp2, '\r')) != 0) {
275 *cp2 = ' ';
276 if (cp2[1] == '\n')
277 cp2[1] = ' ';
281 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
282 "message is '%s'\n", mycpu, buf));
285 hwrpb->txrdy = 0;
289 * Convince the console to have a secondary cpu begin execution.
291 static int __init
292 secondary_cpu_start(int cpuid, struct task_struct *idle)
294 struct percpu_struct *cpu;
295 struct pcb_struct *hwpcb, *ipcb;
296 unsigned long timeout;
298 cpu = (struct percpu_struct *)
299 ((char*)hwrpb
300 + hwrpb->processor_offset
301 + cpuid * hwrpb->processor_size);
302 hwpcb = (struct pcb_struct *) cpu->hwpcb;
303 ipcb = &task_thread_info(idle)->pcb;
305 /* Initialize the CPU's HWPCB to something just good enough for
306 us to get started. Immediately after starting, we'll swpctx
307 to the target idle task's pcb. Reuse the stack in the mean
308 time. Precalculate the target PCBB. */
309 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
310 hwpcb->usp = 0;
311 hwpcb->ptbr = ipcb->ptbr;
312 hwpcb->pcc = 0;
313 hwpcb->asn = 0;
314 hwpcb->unique = virt_to_phys(ipcb);
315 hwpcb->flags = ipcb->flags;
316 hwpcb->res1 = hwpcb->res2 = 0;
318 #if 0
319 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
320 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
321 #endif
322 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
323 cpuid, idle->state, ipcb->flags));
325 /* Setup HWRPB fields that SRM uses to activate secondary CPU */
326 hwrpb->CPU_restart = __smp_callin;
327 hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
329 /* Recalculate and update the HWRPB checksum */
330 hwrpb_update_checksum(hwrpb);
333 * Send a "start" command to the specified processor.
336 /* SRM III 3.4.1.3 */
337 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */
338 cpu->flags &= ~1; /* turn off Bootstrap In Progress */
339 wmb();
341 send_secondary_console_msg("START\r\n", cpuid);
343 /* Wait 10 seconds for an ACK from the console. */
344 timeout = jiffies + 10*HZ;
345 while (time_before(jiffies, timeout)) {
346 if (cpu->flags & 1)
347 goto started;
348 udelay(10);
349 barrier();
351 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
352 return -1;
354 started:
355 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
356 return 0;
360 * Bring one cpu online.
362 static int __init
363 smp_boot_one_cpu(int cpuid)
365 struct task_struct *idle;
366 unsigned long timeout;
368 /* Cook up an idler for this guy. Note that the address we
369 give to kernel_thread is irrelevant -- it's going to start
370 where HWRPB.CPU_restart says to start. But this gets all
371 the other task-y sort of data structures set up like we
372 wish. We can't use kernel_thread since we must avoid
373 rescheduling the child. */
374 idle = fork_idle(cpuid);
375 if (IS_ERR(idle))
376 panic("failed fork for CPU %d", cpuid);
378 DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n",
379 cpuid, idle->state, idle->flags));
381 /* Signal the secondary to wait a moment. */
382 smp_secondary_alive = -1;
384 /* Whirrr, whirrr, whirrrrrrrrr... */
385 if (secondary_cpu_start(cpuid, idle))
386 return -1;
388 /* Notify the secondary CPU it can run calibrate_delay. */
389 mb();
390 smp_secondary_alive = 0;
392 /* We've been acked by the console; wait one second for
393 the task to start up for real. */
394 timeout = jiffies + 1*HZ;
395 while (time_before(jiffies, timeout)) {
396 if (smp_secondary_alive == 1)
397 goto alive;
398 udelay(10);
399 barrier();
402 /* We failed to boot the CPU. */
404 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
405 return -1;
407 alive:
408 /* Another "Red Snapper". */
409 return 0;
413 * Called from setup_arch. Detect an SMP system and which processors
414 * are present.
416 void __init
417 setup_smp(void)
419 struct percpu_struct *cpubase, *cpu;
420 unsigned long i;
422 if (boot_cpuid != 0) {
423 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
424 boot_cpuid);
427 if (hwrpb->nr_processors > 1) {
428 int boot_cpu_palrev;
430 DBGS(("setup_smp: nr_processors %ld\n",
431 hwrpb->nr_processors));
433 cpubase = (struct percpu_struct *)
434 ((char*)hwrpb + hwrpb->processor_offset);
435 boot_cpu_palrev = cpubase->pal_revision;
437 for (i = 0; i < hwrpb->nr_processors; i++) {
438 cpu = (struct percpu_struct *)
439 ((char *)cpubase + i*hwrpb->processor_size);
440 if ((cpu->flags & 0x1cc) == 0x1cc) {
441 smp_num_probed++;
442 /* Assume here that "whami" == index */
443 cpu_set(i, cpu_present_map);
444 cpu->pal_revision = boot_cpu_palrev;
447 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
448 i, cpu->flags, cpu->type));
449 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
450 i, cpu->pal_revision));
452 } else {
453 smp_num_probed = 1;
456 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_map = %lx\n",
457 smp_num_probed, cpu_present_map.bits[0]);
461 * Called by smp_init prepare the secondaries
463 void __init
464 smp_prepare_cpus(unsigned int max_cpus)
466 /* Take care of some initial bookkeeping. */
467 memset(ipi_data, 0, sizeof(ipi_data));
469 current_thread_info()->cpu = boot_cpuid;
471 smp_store_cpu_info(boot_cpuid);
472 smp_setup_percpu_timer(boot_cpuid);
474 /* Nothing to do on a UP box, or when told not to. */
475 if (smp_num_probed == 1 || max_cpus == 0) {
476 cpu_present_map = cpumask_of_cpu(boot_cpuid);
477 printk(KERN_INFO "SMP mode deactivated.\n");
478 return;
481 printk(KERN_INFO "SMP starting up secondaries.\n");
483 smp_num_cpus = smp_num_probed;
486 void __devinit
487 smp_prepare_boot_cpu(void)
491 int __devinit
492 __cpu_up(unsigned int cpu)
494 smp_boot_one_cpu(cpu);
496 return cpu_online(cpu) ? 0 : -ENOSYS;
499 void __init
500 smp_cpus_done(unsigned int max_cpus)
502 int cpu;
503 unsigned long bogosum = 0;
505 for(cpu = 0; cpu < NR_CPUS; cpu++)
506 if (cpu_online(cpu))
507 bogosum += cpu_data[cpu].loops_per_jiffy;
509 printk(KERN_INFO "SMP: Total of %d processors activated "
510 "(%lu.%02lu BogoMIPS).\n",
511 num_online_cpus(),
512 (bogosum + 2500) / (500000/HZ),
513 ((bogosum + 2500) / (5000/HZ)) % 100);
517 void
518 smp_percpu_timer_interrupt(struct pt_regs *regs)
520 struct pt_regs *old_regs;
521 int cpu = smp_processor_id();
522 unsigned long user = user_mode(regs);
523 struct cpuinfo_alpha *data = &cpu_data[cpu];
525 old_regs = set_irq_regs(regs);
527 /* Record kernel PC. */
528 profile_tick(CPU_PROFILING);
530 if (!--data->prof_counter) {
531 /* We need to make like a normal interrupt -- otherwise
532 timer interrupts ignore the global interrupt lock,
533 which would be a Bad Thing. */
534 irq_enter();
536 update_process_times(user);
538 data->prof_counter = data->prof_multiplier;
540 irq_exit();
542 set_irq_regs(old_regs);
545 int __init
546 setup_profiling_timer(unsigned int multiplier)
548 return -EINVAL;
552 static void
553 send_ipi_message(cpumask_t to_whom, enum ipi_message_type operation)
555 int i;
557 mb();
558 for_each_cpu_mask(i, to_whom)
559 set_bit(operation, &ipi_data[i].bits);
561 mb();
562 for_each_cpu_mask(i, to_whom)
563 wripir(i);
566 /* Structure and data for smp_call_function. This is designed to
567 minimize static memory requirements. Plus it looks cleaner. */
569 struct smp_call_struct {
570 void (*func) (void *info);
571 void *info;
572 long wait;
573 atomic_t unstarted_count;
574 atomic_t unfinished_count;
577 static struct smp_call_struct *smp_call_function_data;
579 /* Atomicly drop data into a shared pointer. The pointer is free if
580 it is initially locked. If retry, spin until free. */
582 static int
583 pointer_lock (void *lock, void *data, int retry)
585 void *old, *tmp;
587 mb();
588 again:
589 /* Compare and swap with zero. */
590 asm volatile (
591 "1: ldq_l %0,%1\n"
592 " mov %3,%2\n"
593 " bne %0,2f\n"
594 " stq_c %2,%1\n"
595 " beq %2,1b\n"
596 "2:"
597 : "=&r"(old), "=m"(*(void **)lock), "=&r"(tmp)
598 : "r"(data)
599 : "memory");
601 if (old == 0)
602 return 0;
603 if (! retry)
604 return -EBUSY;
606 while (*(void **)lock)
607 barrier();
608 goto again;
611 void
612 handle_ipi(struct pt_regs *regs)
614 int this_cpu = smp_processor_id();
615 unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
616 unsigned long ops;
618 #if 0
619 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
620 this_cpu, *pending_ipis, regs->pc));
621 #endif
623 mb(); /* Order interrupt and bit testing. */
624 while ((ops = xchg(pending_ipis, 0)) != 0) {
625 mb(); /* Order bit clearing and data access. */
626 do {
627 unsigned long which;
629 which = ops & -ops;
630 ops &= ~which;
631 which = __ffs(which);
633 switch (which) {
634 case IPI_RESCHEDULE:
635 /* Reschedule callback. Everything to be done
636 is done by the interrupt return path. */
637 break;
639 case IPI_CALL_FUNC:
641 struct smp_call_struct *data;
642 void (*func)(void *info);
643 void *info;
644 int wait;
646 data = smp_call_function_data;
647 func = data->func;
648 info = data->info;
649 wait = data->wait;
651 /* Notify the sending CPU that the data has been
652 received, and execution is about to begin. */
653 mb();
654 atomic_dec (&data->unstarted_count);
656 /* At this point the structure may be gone unless
657 wait is true. */
658 (*func)(info);
660 /* Notify the sending CPU that the task is done. */
661 mb();
662 if (wait) atomic_dec (&data->unfinished_count);
663 break;
666 case IPI_CPU_STOP:
667 halt();
669 default:
670 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
671 this_cpu, which);
672 break;
674 } while (ops);
676 mb(); /* Order data access and bit testing. */
679 cpu_data[this_cpu].ipi_count++;
681 if (hwrpb->txrdy)
682 recv_secondary_console_msg();
685 void
686 smp_send_reschedule(int cpu)
688 #ifdef DEBUG_IPI_MSG
689 if (cpu == hard_smp_processor_id())
690 printk(KERN_WARNING
691 "smp_send_reschedule: Sending IPI to self.\n");
692 #endif
693 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
696 void
697 smp_send_stop(void)
699 cpumask_t to_whom = cpu_possible_map;
700 cpu_clear(smp_processor_id(), to_whom);
701 #ifdef DEBUG_IPI_MSG
702 if (hard_smp_processor_id() != boot_cpu_id)
703 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
704 #endif
705 send_ipi_message(to_whom, IPI_CPU_STOP);
709 * Run a function on all other CPUs.
710 * <func> The function to run. This must be fast and non-blocking.
711 * <info> An arbitrary pointer to pass to the function.
712 * <retry> If true, keep retrying until ready.
713 * <wait> If true, wait until function has completed on other CPUs.
714 * [RETURNS] 0 on success, else a negative status code.
716 * Does not return until remote CPUs are nearly ready to execute <func>
717 * or are or have executed.
718 * You must not call this function with disabled interrupts or from a
719 * hardware interrupt handler or from a bottom half handler.
723 smp_call_function_on_cpu (void (*func) (void *info), void *info, int retry,
724 int wait, cpumask_t to_whom)
726 struct smp_call_struct data;
727 unsigned long timeout;
728 int num_cpus_to_call;
730 /* Can deadlock when called with interrupts disabled */
731 WARN_ON(irqs_disabled());
733 data.func = func;
734 data.info = info;
735 data.wait = wait;
737 cpu_clear(smp_processor_id(), to_whom);
738 num_cpus_to_call = cpus_weight(to_whom);
740 atomic_set(&data.unstarted_count, num_cpus_to_call);
741 atomic_set(&data.unfinished_count, num_cpus_to_call);
743 /* Acquire the smp_call_function_data mutex. */
744 if (pointer_lock(&smp_call_function_data, &data, retry))
745 return -EBUSY;
747 /* Send a message to the requested CPUs. */
748 send_ipi_message(to_whom, IPI_CALL_FUNC);
750 /* Wait for a minimal response. */
751 timeout = jiffies + HZ;
752 while (atomic_read (&data.unstarted_count) > 0
753 && time_before (jiffies, timeout))
754 barrier();
756 /* If there's no response yet, log a message but allow a longer
757 * timeout period -- if we get a response this time, log
758 * a message saying when we got it..
760 if (atomic_read(&data.unstarted_count) > 0) {
761 long start_time = jiffies;
762 printk(KERN_ERR "%s: initial timeout -- trying long wait\n",
763 __FUNCTION__);
764 timeout = jiffies + 30 * HZ;
765 while (atomic_read(&data.unstarted_count) > 0
766 && time_before(jiffies, timeout))
767 barrier();
768 if (atomic_read(&data.unstarted_count) <= 0) {
769 long delta = jiffies - start_time;
770 printk(KERN_ERR
771 "%s: response %ld.%ld seconds into long wait\n",
772 __FUNCTION__, delta / HZ,
773 (100 * (delta - ((delta / HZ) * HZ))) / HZ);
777 /* We either got one or timed out -- clear the lock. */
778 mb();
779 smp_call_function_data = NULL;
782 * If after both the initial and long timeout periods we still don't
783 * have a response, something is very wrong...
785 BUG_ON(atomic_read (&data.unstarted_count) > 0);
787 /* Wait for a complete response, if needed. */
788 if (wait) {
789 while (atomic_read (&data.unfinished_count) > 0)
790 barrier();
793 return 0;
795 EXPORT_SYMBOL(smp_call_function_on_cpu);
798 smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
800 return smp_call_function_on_cpu (func, info, retry, wait,
801 cpu_online_map);
803 EXPORT_SYMBOL(smp_call_function);
805 static void
806 ipi_imb(void *ignored)
808 imb();
811 void
812 smp_imb(void)
814 /* Must wait other processors to flush their icache before continue. */
815 if (on_each_cpu(ipi_imb, NULL, 1, 1))
816 printk(KERN_CRIT "smp_imb: timed out\n");
818 EXPORT_SYMBOL(smp_imb);
820 static void
821 ipi_flush_tlb_all(void *ignored)
823 tbia();
826 void
827 flush_tlb_all(void)
829 /* Although we don't have any data to pass, we do want to
830 synchronize with the other processors. */
831 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1)) {
832 printk(KERN_CRIT "flush_tlb_all: timed out\n");
836 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
838 static void
839 ipi_flush_tlb_mm(void *x)
841 struct mm_struct *mm = (struct mm_struct *) x;
842 if (mm == current->active_mm && !asn_locked())
843 flush_tlb_current(mm);
844 else
845 flush_tlb_other(mm);
848 void
849 flush_tlb_mm(struct mm_struct *mm)
851 preempt_disable();
853 if (mm == current->active_mm) {
854 flush_tlb_current(mm);
855 if (atomic_read(&mm->mm_users) <= 1) {
856 int cpu, this_cpu = smp_processor_id();
857 for (cpu = 0; cpu < NR_CPUS; cpu++) {
858 if (!cpu_online(cpu) || cpu == this_cpu)
859 continue;
860 if (mm->context[cpu])
861 mm->context[cpu] = 0;
863 preempt_enable();
864 return;
868 if (smp_call_function(ipi_flush_tlb_mm, mm, 1, 1)) {
869 printk(KERN_CRIT "flush_tlb_mm: timed out\n");
872 preempt_enable();
874 EXPORT_SYMBOL(flush_tlb_mm);
876 struct flush_tlb_page_struct {
877 struct vm_area_struct *vma;
878 struct mm_struct *mm;
879 unsigned long addr;
882 static void
883 ipi_flush_tlb_page(void *x)
885 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
886 struct mm_struct * mm = data->mm;
888 if (mm == current->active_mm && !asn_locked())
889 flush_tlb_current_page(mm, data->vma, data->addr);
890 else
891 flush_tlb_other(mm);
894 void
895 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
897 struct flush_tlb_page_struct data;
898 struct mm_struct *mm = vma->vm_mm;
900 preempt_disable();
902 if (mm == current->active_mm) {
903 flush_tlb_current_page(mm, vma, addr);
904 if (atomic_read(&mm->mm_users) <= 1) {
905 int cpu, this_cpu = smp_processor_id();
906 for (cpu = 0; cpu < NR_CPUS; cpu++) {
907 if (!cpu_online(cpu) || cpu == this_cpu)
908 continue;
909 if (mm->context[cpu])
910 mm->context[cpu] = 0;
912 preempt_enable();
913 return;
917 data.vma = vma;
918 data.mm = mm;
919 data.addr = addr;
921 if (smp_call_function(ipi_flush_tlb_page, &data, 1, 1)) {
922 printk(KERN_CRIT "flush_tlb_page: timed out\n");
925 preempt_enable();
927 EXPORT_SYMBOL(flush_tlb_page);
929 void
930 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
932 /* On the Alpha we always flush the whole user tlb. */
933 flush_tlb_mm(vma->vm_mm);
935 EXPORT_SYMBOL(flush_tlb_range);
937 static void
938 ipi_flush_icache_page(void *x)
940 struct mm_struct *mm = (struct mm_struct *) x;
941 if (mm == current->active_mm && !asn_locked())
942 __load_new_mm_context(mm);
943 else
944 flush_tlb_other(mm);
947 void
948 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
949 unsigned long addr, int len)
951 struct mm_struct *mm = vma->vm_mm;
953 if ((vma->vm_flags & VM_EXEC) == 0)
954 return;
956 preempt_disable();
958 if (mm == current->active_mm) {
959 __load_new_mm_context(mm);
960 if (atomic_read(&mm->mm_users) <= 1) {
961 int cpu, this_cpu = smp_processor_id();
962 for (cpu = 0; cpu < NR_CPUS; cpu++) {
963 if (!cpu_online(cpu) || cpu == this_cpu)
964 continue;
965 if (mm->context[cpu])
966 mm->context[cpu] = 0;
968 preempt_enable();
969 return;
973 if (smp_call_function(ipi_flush_icache_page, mm, 1, 1)) {
974 printk(KERN_CRIT "flush_icache_page: timed out\n");
977 preempt_enable();