Linux 2.6.21
[linux/fpc-iii.git] / arch / arm / common / uengine.c
blob95c8508c29b7125a1ac93bc0a6fd4e4f00d39f9e
1 /*
2 * Generic library functions for the microengines found on the Intel
3 * IXP2000 series of network processors.
5 * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
6 * Dedicated to Marija Kulikova.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU Lesser General Public License as
10 * published by the Free Software Foundation; either version 2.1 of the
11 * License, or (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 #include <linux/string.h>
19 #include <asm/hardware.h>
20 #include <asm/arch/hardware.h>
21 #include <asm/hardware/uengine.h>
22 #include <asm/io.h>
24 #if defined(CONFIG_ARCH_IXP2000)
25 #define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
26 #define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
27 #define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
28 #define IXP_RESET1 IXP2000_RESET1
29 #else
30 #if defined(CONFIG_ARCH_IXP23XX)
31 #define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
32 #define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
33 #define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
34 #define IXP_RESET1 IXP23XX_RESET1
35 #else
36 #error unknown platform
37 #endif
38 #endif
40 #define USTORE_ADDRESS 0x000
41 #define USTORE_DATA_LOWER 0x004
42 #define USTORE_DATA_UPPER 0x008
43 #define CTX_ENABLES 0x018
44 #define CC_ENABLE 0x01c
45 #define CSR_CTX_POINTER 0x020
46 #define INDIRECT_CTX_STS 0x040
47 #define ACTIVE_CTX_STS 0x044
48 #define INDIRECT_CTX_SIG_EVENTS 0x048
49 #define INDIRECT_CTX_WAKEUP_EVENTS 0x050
50 #define NN_PUT 0x080
51 #define NN_GET 0x084
52 #define TIMESTAMP_LOW 0x0c0
53 #define TIMESTAMP_HIGH 0x0c4
54 #define T_INDEX_BYTE_INDEX 0x0f4
55 #define LOCAL_CSR_STATUS 0x180
57 u32 ixp2000_uengine_mask;
59 static void *ixp2000_uengine_csr_area(int uengine)
61 return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
65 * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
66 * space means that the microengine we tried to access was also trying
67 * to access its own CSR space on the same clock cycle as we did. When
68 * this happens, we lose the arbitration process by default, and the
69 * read or write we tried to do was not actually performed, so we try
70 * again until it succeeds.
72 u32 ixp2000_uengine_csr_read(int uengine, int offset)
74 void *uebase;
75 u32 *local_csr_status;
76 u32 *reg;
77 u32 value;
79 uebase = ixp2000_uengine_csr_area(uengine);
81 local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
82 reg = (u32 *)(uebase + offset);
83 do {
84 value = ixp2000_reg_read(reg);
85 } while (ixp2000_reg_read(local_csr_status) & 1);
87 return value;
89 EXPORT_SYMBOL(ixp2000_uengine_csr_read);
91 void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
93 void *uebase;
94 u32 *local_csr_status;
95 u32 *reg;
97 uebase = ixp2000_uengine_csr_area(uengine);
99 local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
100 reg = (u32 *)(uebase + offset);
101 do {
102 ixp2000_reg_write(reg, value);
103 } while (ixp2000_reg_read(local_csr_status) & 1);
105 EXPORT_SYMBOL(ixp2000_uengine_csr_write);
107 void ixp2000_uengine_reset(u32 uengine_mask)
109 u32 value;
111 value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
113 uengine_mask &= ixp2000_uengine_mask;
114 ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
115 ixp2000_reg_wrb(IXP_RESET1, value);
117 EXPORT_SYMBOL(ixp2000_uengine_reset);
119 void ixp2000_uengine_set_mode(int uengine, u32 mode)
122 * CTL_STR_PAR_EN: unconditionally enable parity checking on
123 * control store.
125 mode |= 0x10000000;
126 ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
129 * Enable updating of condition codes.
131 ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
134 * Initialise other per-microengine registers.
136 ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
137 ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
138 ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
140 EXPORT_SYMBOL(ixp2000_uengine_set_mode);
142 static int make_even_parity(u32 x)
144 return hweight32(x) & 1;
147 static void ustore_write(int uengine, u64 insn)
150 * Generate even parity for top and bottom 20 bits.
152 insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
153 insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
156 * Write to microstore. The second write auto-increments
157 * the USTORE_ADDRESS index register.
159 ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
160 ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
163 void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
165 int i;
168 * Start writing to microstore at address 0.
170 ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
171 for (i = 0; i < insns; i++) {
172 u64 insn;
174 insn = (((u64)ucode[0]) << 32) |
175 (((u64)ucode[1]) << 24) |
176 (((u64)ucode[2]) << 16) |
177 (((u64)ucode[3]) << 8) |
178 ((u64)ucode[4]);
179 ucode += 5;
181 ustore_write(uengine, insn);
185 * Pad with a few NOPs at the end (to avoid the microengine
186 * aborting as it prefetches beyond the last instruction), unless
187 * we run off the end of the instruction store first, at which
188 * point the address register will wrap back to zero.
190 for (i = 0; i < 4; i++) {
191 u32 addr;
193 addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
194 if (addr == 0x80000000)
195 break;
196 ustore_write(uengine, 0xf0000c0300ULL);
200 * End programming.
202 ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
204 EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
206 void ixp2000_uengine_init_context(int uengine, int context, int pc)
209 * Select the right context for indirect access.
211 ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
214 * Initialise signal masks to immediately go to Ready state.
216 ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
217 ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
220 * Set program counter.
222 ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
224 EXPORT_SYMBOL(ixp2000_uengine_init_context);
226 void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
228 u32 mask;
231 * Enable the specified context to go to Executing state.
233 mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
234 mask |= ctx_mask << 8;
235 ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
237 EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
239 void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
241 u32 mask;
244 * Disable the Ready->Executing transition. Note that this
245 * does not stop the context until it voluntarily yields.
247 mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
248 mask &= ~(ctx_mask << 8);
249 ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
251 EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
253 static int check_ixp_type(struct ixp2000_uengine_code *c)
255 u32 product_id;
256 u32 rev;
258 product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
259 if (((product_id >> 16) & 0x1f) != 0)
260 return 0;
262 switch ((product_id >> 8) & 0xff) {
263 #ifdef CONFIG_ARCH_IXP2000
264 case 0: /* IXP2800 */
265 if (!(c->cpu_model_bitmask & 4))
266 return 0;
267 break;
269 case 1: /* IXP2850 */
270 if (!(c->cpu_model_bitmask & 8))
271 return 0;
272 break;
274 case 2: /* IXP2400 */
275 if (!(c->cpu_model_bitmask & 2))
276 return 0;
277 break;
278 #endif
280 #ifdef CONFIG_ARCH_IXP23XX
281 case 4: /* IXP23xx */
282 if (!(c->cpu_model_bitmask & 0x3f0))
283 return 0;
284 break;
285 #endif
287 default:
288 return 0;
291 rev = product_id & 0xff;
292 if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
293 return 0;
295 return 1;
298 static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
300 int offset;
301 int i;
303 offset = 0;
305 for (i = 0; i < 128; i++) {
306 u8 b3;
307 u8 b2;
308 u8 b1;
309 u8 b0;
311 b3 = (gpr_a[i] >> 24) & 0xff;
312 b2 = (gpr_a[i] >> 16) & 0xff;
313 b1 = (gpr_a[i] >> 8) & 0xff;
314 b0 = gpr_a[i] & 0xff;
316 // immed[@ai, (b1 << 8) | b0]
317 // 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII
318 ucode[offset++] = 0xf0;
319 ucode[offset++] = (b1 >> 4);
320 ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
321 ucode[offset++] = (b0 << 2);
322 ucode[offset++] = 0x80 | i;
324 // immed_w1[@ai, (b3 << 8) | b2]
325 // 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII
326 ucode[offset++] = 0xf4;
327 ucode[offset++] = 0x40 | (b3 >> 4);
328 ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
329 ucode[offset++] = (b2 << 2);
330 ucode[offset++] = 0x80 | i;
333 for (i = 0; i < 128; i++) {
334 u8 b3;
335 u8 b2;
336 u8 b1;
337 u8 b0;
339 b3 = (gpr_b[i] >> 24) & 0xff;
340 b2 = (gpr_b[i] >> 16) & 0xff;
341 b1 = (gpr_b[i] >> 8) & 0xff;
342 b0 = gpr_b[i] & 0xff;
344 // immed[@bi, (b1 << 8) | b0]
345 // 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV
346 ucode[offset++] = 0xf0;
347 ucode[offset++] = (b1 >> 4);
348 ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
349 ucode[offset++] = (i << 2) | 0x03;
350 ucode[offset++] = b0;
352 // immed_w1[@bi, (b3 << 8) | b2]
353 // 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV
354 ucode[offset++] = 0xf4;
355 ucode[offset++] = 0x40 | (b3 >> 4);
356 ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
357 ucode[offset++] = (i << 2) | 0x03;
358 ucode[offset++] = b2;
361 // ctx_arb[kill]
362 ucode[offset++] = 0xe0;
363 ucode[offset++] = 0x00;
364 ucode[offset++] = 0x01;
365 ucode[offset++] = 0x00;
366 ucode[offset++] = 0x00;
369 static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
371 int per_ctx_regs;
372 u32 *gpr_a;
373 u32 *gpr_b;
374 u8 *ucode;
375 int i;
377 gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL);
378 gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL);
379 ucode = kmalloc(513 * 5, GFP_KERNEL);
380 if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
381 kfree(ucode);
382 kfree(gpr_b);
383 kfree(gpr_a);
384 return 1;
387 per_ctx_regs = 16;
388 if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
389 per_ctx_regs = 32;
391 memset(gpr_a, 0, sizeof(gpr_a));
392 memset(gpr_b, 0, sizeof(gpr_b));
393 for (i = 0; i < 256; i++) {
394 struct ixp2000_reg_value *r = c->initial_reg_values + i;
395 u32 *bank;
396 int inc;
397 int j;
399 if (r->reg == -1)
400 break;
402 bank = (r->reg & 0x400) ? gpr_b : gpr_a;
403 inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
405 j = r->reg & 0x7f;
406 while (j < 128) {
407 bank[j] = r->value;
408 j += inc;
412 generate_ucode(ucode, gpr_a, gpr_b);
413 ixp2000_uengine_load_microcode(uengine, ucode, 513);
414 ixp2000_uengine_init_context(uengine, 0, 0);
415 ixp2000_uengine_start_contexts(uengine, 0x01);
416 for (i = 0; i < 100; i++) {
417 u32 status;
419 status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
420 if (!(status & 0x80000000))
421 break;
423 ixp2000_uengine_stop_contexts(uengine, 0x01);
425 kfree(ucode);
426 kfree(gpr_b);
427 kfree(gpr_a);
429 return !!(i == 100);
432 int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
434 int ctx;
436 if (!check_ixp_type(c))
437 return 1;
439 if (!(ixp2000_uengine_mask & (1 << uengine)))
440 return 1;
442 ixp2000_uengine_reset(1 << uengine);
443 ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
444 if (set_initial_registers(uengine, c))
445 return 1;
446 ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
448 for (ctx = 0; ctx < 8; ctx++)
449 ixp2000_uengine_init_context(uengine, ctx, 0);
451 return 0;
453 EXPORT_SYMBOL(ixp2000_uengine_load);
456 static int __init ixp2000_uengine_init(void)
458 int uengine;
459 u32 value;
462 * Determine number of microengines present.
464 switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
465 #ifdef CONFIG_ARCH_IXP2000
466 case 0: /* IXP2800 */
467 case 1: /* IXP2850 */
468 ixp2000_uengine_mask = 0x00ff00ff;
469 break;
471 case 2: /* IXP2400 */
472 ixp2000_uengine_mask = 0x000f000f;
473 break;
474 #endif
476 #ifdef CONFIG_ARCH_IXP23XX
477 case 4: /* IXP23xx */
478 ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
479 break;
480 #endif
482 default:
483 printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
484 (unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
485 ixp2000_uengine_mask = 0x00000000;
486 break;
490 * Reset microengines.
492 ixp2000_uengine_reset(ixp2000_uengine_mask);
495 * Synchronise timestamp counters across all microengines.
497 value = ixp2000_reg_read(IXP_MISC_CONTROL);
498 ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
499 for (uengine = 0; uengine < 32; uengine++) {
500 if (ixp2000_uengine_mask & (1 << uengine)) {
501 ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
502 ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
505 ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
507 return 0;
510 subsys_initcall(ixp2000_uengine_init);