2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
28 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
30 extern void _stext
, _etext
, __data_start
, _end
;
31 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page
*empty_zero_page
;
40 * The pmd table for the upper-most set of pages.
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
51 static unsigned int ecc_mask __initdata
= 0;
53 pgprot_t pgprot_kernel
;
55 EXPORT_SYMBOL(pgprot_user
);
56 EXPORT_SYMBOL(pgprot_kernel
);
59 const char policy
[16];
65 static struct cachepolicy cache_policies
[] __initdata
= {
69 .pmd
= PMD_SECT_UNCACHED
,
74 .pmd
= PMD_SECT_BUFFERED
,
75 .pte
= PTE_BUFFERABLE
,
77 .policy
= "writethrough",
82 .policy
= "writeback",
85 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
87 .policy
= "writealloc",
90 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
95 * These are useful for identifing cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off. (Note: the write
98 * buffer should not be on and the cache off).
100 static void __init
early_cachepolicy(char **p
)
104 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
105 int len
= strlen(cache_policies
[i
].policy
);
107 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
109 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
110 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
115 if (i
== ARRAY_SIZE(cache_policies
))
116 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
118 set_cr(cr_alignment
);
120 __early_param("cachepolicy=", early_cachepolicy
);
122 static void __init
early_nocache(char **__unused
)
124 char *p
= "buffered";
125 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
126 early_cachepolicy(&p
);
128 __early_param("nocache", early_nocache
);
130 static void __init
early_nowrite(char **__unused
)
132 char *p
= "uncached";
133 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
134 early_cachepolicy(&p
);
136 __early_param("nowb", early_nowrite
);
138 static void __init
early_ecc(char **p
)
140 if (memcmp(*p
, "on", 2) == 0) {
141 ecc_mask
= PMD_PROTECTION
;
143 } else if (memcmp(*p
, "off", 3) == 0) {
148 __early_param("ecc=", early_ecc
);
150 static int __init
noalign_setup(char *__unused
)
152 cr_alignment
&= ~CR_A
;
153 cr_no_alignment
&= ~CR_A
;
154 set_cr(cr_alignment
);
157 __setup("noalign", noalign_setup
);
160 void adjust_cr(unsigned long mask
, unsigned long set
)
168 local_irq_save(flags
);
170 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
171 cr_alignment
= (cr_alignment
& ~mask
) | set
;
173 set_cr((get_cr() & ~mask
) | set
);
175 local_irq_restore(flags
);
180 unsigned int prot_pte
;
181 unsigned int prot_l1
;
182 unsigned int prot_sect
;
186 static struct mem_types mem_types
[] __initdata
= {
188 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
190 .prot_l1
= PMD_TYPE_TABLE
,
191 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_UNCACHED
|
196 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
,
197 .domain
= DOMAIN_KERNEL
,
200 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_MINICACHE
,
201 .domain
= DOMAIN_KERNEL
,
204 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
206 .prot_l1
= PMD_TYPE_TABLE
,
207 .domain
= DOMAIN_USER
,
209 [MT_HIGH_VECTORS
] = {
210 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
211 L_PTE_USER
| L_PTE_EXEC
,
212 .prot_l1
= PMD_TYPE_TABLE
,
213 .domain
= DOMAIN_USER
,
216 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_AP_WRITE
,
217 .domain
= DOMAIN_KERNEL
,
220 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
,
221 .domain
= DOMAIN_KERNEL
,
223 [MT_IXP2000_DEVICE
] = { /* IXP2400 requires XCB=101 for on-chip I/O */
224 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
226 .prot_l1
= PMD_TYPE_TABLE
,
227 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_UNCACHED
|
228 PMD_SECT_AP_WRITE
| PMD_SECT_BUFFERABLE
|
232 [MT_NONSHARED_DEVICE
] = {
233 .prot_l1
= PMD_TYPE_TABLE
,
234 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_NONSHARED_DEV
|
241 * Adjust the PMD section entries according to the CPU in use.
243 static void __init
build_mem_type_table(void)
245 struct cachepolicy
*cp
;
246 unsigned int cr
= get_cr();
247 unsigned int user_pgprot
, kern_pgprot
;
248 int cpu_arch
= cpu_architecture();
251 #if defined(CONFIG_CPU_DCACHE_DISABLE)
252 if (cachepolicy
> CPOLICY_BUFFERED
)
253 cachepolicy
= CPOLICY_BUFFERED
;
254 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
255 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
256 cachepolicy
= CPOLICY_WRITETHROUGH
;
258 if (cpu_arch
< CPU_ARCH_ARMv5
) {
259 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
260 cachepolicy
= CPOLICY_WRITEBACK
;
265 * Xscale must not have PMD bit 4 set for section mappings.
268 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
269 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
272 * ARMv5 and lower, excluding Xscale, bit 4 must be set for
275 if (cpu_arch
< CPU_ARCH_ARMv6
&& !cpu_is_xscale())
276 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
277 if (mem_types
[i
].prot_l1
)
278 mem_types
[i
].prot_l1
|= PMD_BIT4
;
280 cp
= &cache_policies
[cachepolicy
];
281 kern_pgprot
= user_pgprot
= cp
->pte
;
284 * Enable CPU-specific coherency if supported.
285 * (Only available on XSC3 at the moment.)
287 if (arch_is_coherent()) {
289 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
290 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
295 * ARMv6 and above have extended page tables.
297 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
299 * bit 4 becomes XN which we must clear for the
300 * kernel memory mapping.
302 mem_types
[MT_MEMORY
].prot_sect
&= ~PMD_SECT_XN
;
303 mem_types
[MT_ROM
].prot_sect
&= ~PMD_SECT_XN
;
306 * Mark cache clean areas and XIP ROM read only
307 * from SVC mode and no access from userspace.
309 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
310 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
311 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
314 * Mark the device area as "shared device"
316 mem_types
[MT_DEVICE
].prot_pte
|= L_PTE_BUFFERABLE
;
317 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
321 * Mark memory with the "shared" attribute for SMP systems
323 user_pgprot
|= L_PTE_SHARED
;
324 kern_pgprot
|= L_PTE_SHARED
;
325 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
329 for (i
= 0; i
< 16; i
++) {
330 unsigned long v
= pgprot_val(protection_map
[i
]);
331 v
= (v
& ~(L_PTE_BUFFERABLE
|L_PTE_CACHEABLE
)) | user_pgprot
;
332 protection_map
[i
] = __pgprot(v
);
335 mem_types
[MT_LOW_VECTORS
].prot_pte
|= kern_pgprot
;
336 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= kern_pgprot
;
338 if (cpu_arch
>= CPU_ARCH_ARMv5
) {
341 * Only use write-through for non-SMP systems
343 mem_types
[MT_LOW_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
344 mem_types
[MT_HIGH_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
347 mem_types
[MT_MINICLEAN
].prot_sect
&= ~PMD_SECT_TEX(1);
350 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
351 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
352 L_PTE_DIRTY
| L_PTE_WRITE
|
353 L_PTE_EXEC
| kern_pgprot
);
355 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
356 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
357 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
358 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
362 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
366 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
369 printk("Memory policy: ECC %sabled, Data cache %s\n",
370 ecc_mask
? "en" : "dis", cp
->policy
);
373 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
376 * Create a SECTION PGD between VIRT and PHYS in domain
377 * DOMAIN with protection PROT. This operates on half-
378 * pgdir entry increments.
381 alloc_init_section(unsigned long virt
, unsigned long phys
, int prot
)
383 pmd_t
*pmdp
= pmd_off_k(virt
);
385 if (virt
& (1 << 20))
388 *pmdp
= __pmd(phys
| prot
);
389 flush_pmd_entry(pmdp
);
393 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
396 alloc_init_supersection(unsigned long virt
, unsigned long phys
, int prot
)
400 for (i
= 0; i
< 16; i
+= 1) {
401 alloc_init_section(virt
, phys
, prot
| PMD_SECT_SUPER
);
403 virt
+= (PGDIR_SIZE
/ 2);
408 * Add a PAGE mapping between VIRT and PHYS in domain
409 * DOMAIN with protection PROT. Note that due to the
410 * way we map the PTEs, we must allocate two PTE_SIZE'd
411 * blocks - one for the Linux pte table, and one for
412 * the hardware pte table.
415 alloc_init_page(unsigned long virt
, unsigned long phys
, unsigned int prot_l1
, pgprot_t prot
)
417 pmd_t
*pmdp
= pmd_off_k(virt
);
420 if (pmd_none(*pmdp
)) {
421 ptep
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
*
424 __pmd_populate(pmdp
, __pa(ptep
) | prot_l1
);
426 ptep
= pte_offset_kernel(pmdp
, virt
);
428 set_pte_ext(ptep
, pfn_pte(phys
>> PAGE_SHIFT
, prot
), 0);
432 * Create the page directory entries and any necessary
433 * page tables for the mapping specified by `md'. We
434 * are able to cope here with varying sizes and address
435 * offsets, and we take full advantage of sections and
438 void __init
create_mapping(struct map_desc
*md
)
440 unsigned long virt
, length
;
441 int prot_sect
, prot_l1
, domain
;
443 unsigned long off
= (u32
)__pfn_to_phys(md
->pfn
);
445 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
446 printk(KERN_WARNING
"BUG: not creating mapping for "
447 "0x%08llx at 0x%08lx in user region\n",
448 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
452 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
453 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
454 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
455 "overlaps vmalloc space\n",
456 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
459 domain
= mem_types
[md
->type
].domain
;
460 prot_pte
= __pgprot(mem_types
[md
->type
].prot_pte
);
461 prot_l1
= mem_types
[md
->type
].prot_l1
| PMD_DOMAIN(domain
);
462 prot_sect
= mem_types
[md
->type
].prot_sect
| PMD_DOMAIN(domain
);
465 * Catch 36-bit addresses
467 if(md
->pfn
>= 0x100000) {
469 printk(KERN_ERR
"MM: invalid domain in supersection "
470 "mapping for 0x%08llx at 0x%08lx\n",
471 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
474 if((md
->virtual | md
->length
| __pfn_to_phys(md
->pfn
))
475 & ~SUPERSECTION_MASK
) {
476 printk(KERN_ERR
"MM: cannot create mapping for "
477 "0x%08llx at 0x%08lx invalid alignment\n",
478 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
483 * Shift bits [35:32] of address into bits [23:20] of PMD
486 off
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
493 if (mem_types
[md
->type
].prot_l1
== 0 &&
494 (virt
& 0xfffff || (virt
+ off
) & 0xfffff || (virt
+ length
) & 0xfffff)) {
495 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
496 "be mapped using pages, ignoring.\n",
497 __pfn_to_phys(md
->pfn
), md
->virtual);
501 while ((virt
& 0xfffff || (virt
+ off
) & 0xfffff) && length
>= PAGE_SIZE
) {
502 alloc_init_page(virt
, virt
+ off
, prot_l1
, prot_pte
);
508 /* N.B. ARMv6 supersections are only defined to work with domain 0.
509 * Since domain assignments can in fact be arbitrary, the
510 * 'domain == 0' check below is required to insure that ARMv6
511 * supersections are only allocated for domain 0 regardless
512 * of the actual domain assignments in use.
514 if ((cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())
517 * Align to supersection boundary if !high pages.
518 * High pages have already been checked for proper
519 * alignment above and they will fail the SUPSERSECTION_MASK
520 * check because of the way the address is encoded into
523 if (md
->pfn
<= 0x100000) {
524 while ((virt
& ~SUPERSECTION_MASK
||
525 (virt
+ off
) & ~SUPERSECTION_MASK
) &&
526 length
>= (PGDIR_SIZE
/ 2)) {
527 alloc_init_section(virt
, virt
+ off
, prot_sect
);
529 virt
+= (PGDIR_SIZE
/ 2);
530 length
-= (PGDIR_SIZE
/ 2);
534 while (length
>= SUPERSECTION_SIZE
) {
535 alloc_init_supersection(virt
, virt
+ off
, prot_sect
);
537 virt
+= SUPERSECTION_SIZE
;
538 length
-= SUPERSECTION_SIZE
;
543 * A section mapping covers half a "pgdir" entry.
545 while (length
>= (PGDIR_SIZE
/ 2)) {
546 alloc_init_section(virt
, virt
+ off
, prot_sect
);
548 virt
+= (PGDIR_SIZE
/ 2);
549 length
-= (PGDIR_SIZE
/ 2);
552 while (length
>= PAGE_SIZE
) {
553 alloc_init_page(virt
, virt
+ off
, prot_l1
, prot_pte
);
561 * Create the architecture specific mappings
563 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
567 for (i
= 0; i
< nr
; i
++)
568 create_mapping(io_desc
+ i
);
571 static inline void prepare_page_table(struct meminfo
*mi
)
576 * Clear out all the mappings below the kernel image.
578 for (addr
= 0; addr
< MODULE_START
; addr
+= PGDIR_SIZE
)
579 pmd_clear(pmd_off_k(addr
));
581 #ifdef CONFIG_XIP_KERNEL
582 /* The XIP kernel is mapped in the module area -- skip over it */
583 addr
= ((unsigned long)&_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
585 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
586 pmd_clear(pmd_off_k(addr
));
589 * Clear out all the kernel space mappings, except for the first
590 * memory bank, up to the end of the vmalloc region.
592 for (addr
= __phys_to_virt(mi
->bank
[0].start
+ mi
->bank
[0].size
);
593 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
594 pmd_clear(pmd_off_k(addr
));
598 * Reserve the various regions of node 0
600 void __init
reserve_node_zero(pg_data_t
*pgdat
)
602 unsigned long res_size
= 0;
605 * Register the kernel text and data with bootmem.
606 * Note that this can only be in node 0.
608 #ifdef CONFIG_XIP_KERNEL
609 reserve_bootmem_node(pgdat
, __pa(&__data_start
), &_end
- &__data_start
);
611 reserve_bootmem_node(pgdat
, __pa(&_stext
), &_end
- &_stext
);
615 * Reserve the page tables. These are already in use,
616 * and can only be in node 0.
618 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
619 PTRS_PER_PGD
* sizeof(pgd_t
));
622 * Hmm... This should go elsewhere, but we really really need to
623 * stop things allocating the low memory; ideally we need a better
624 * implementation of GFP_DMA which does not assume that DMA-able
625 * memory starts at zero.
627 if (machine_is_integrator() || machine_is_cintegrator())
628 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
631 * These should likewise go elsewhere. They pre-reserve the
632 * screen memory region at the start of main system memory.
634 if (machine_is_edb7211())
635 res_size
= 0x00020000;
636 if (machine_is_p720t())
637 res_size
= 0x00014000;
639 /* H1940 and RX3715 need to reserve this for suspend */
641 if (machine_is_h1940() || machine_is_rx3715()) {
642 reserve_bootmem_node(pgdat
, 0x30003000, 0x1000);
643 reserve_bootmem_node(pgdat
, 0x30081000, 0x1000);
648 * Because of the SA1111 DMA bug, we want to preserve our
649 * precious DMA-able memory...
651 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
654 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
);
658 * Set up device the mappings. Since we clear out the page tables for all
659 * mappings above VMALLOC_END, we will remove any debug device mappings.
660 * This means you have to be careful how you debug this function, or any
661 * called function. This means you can't use any function or debugging
662 * method which may touch any device, otherwise the kernel _will_ crash.
664 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
671 * Allocate the vector page early.
673 vectors
= alloc_bootmem_low_pages(PAGE_SIZE
);
676 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
677 pmd_clear(pmd_off_k(addr
));
680 * Map the kernel if it is XIP.
681 * It is always first in the modulearea.
683 #ifdef CONFIG_XIP_KERNEL
684 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
685 map
.virtual = MODULE_START
;
686 map
.length
= ((unsigned long)&_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
688 create_mapping(&map
);
692 * Map the cache flushing regions.
695 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
696 map
.virtual = FLUSH_BASE
;
698 map
.type
= MT_CACHECLEAN
;
699 create_mapping(&map
);
701 #ifdef FLUSH_BASE_MINICACHE
702 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
703 map
.virtual = FLUSH_BASE_MINICACHE
;
705 map
.type
= MT_MINICLEAN
;
706 create_mapping(&map
);
710 * Create a mapping for the machine vectors at the high-vectors
711 * location (0xffff0000). If we aren't using high-vectors, also
712 * create a mapping at the low-vectors virtual address.
714 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
715 map
.virtual = 0xffff0000;
716 map
.length
= PAGE_SIZE
;
717 map
.type
= MT_HIGH_VECTORS
;
718 create_mapping(&map
);
720 if (!vectors_high()) {
722 map
.type
= MT_LOW_VECTORS
;
723 create_mapping(&map
);
727 * Ask the machine support to map in the statically mapped devices.
733 * Finally flush the caches and tlb to ensure that we're in a
734 * consistent state wrt the writebuffer. This also ensures that
735 * any write-allocated cache lines in the vector page are written
736 * back. After this point, we can start to touch devices again.
738 local_flush_tlb_all();
743 * paging_init() sets up the page tables, initialises the zone memory
744 * maps, and sets up the zero page, bad page and bad page tables.
746 void __init
paging_init(struct meminfo
*mi
, struct machine_desc
*mdesc
)
750 build_mem_type_table();
751 prepare_page_table(mi
);
753 devicemaps_init(mdesc
);
755 top_pmd
= pmd_off_k(0xffff0000);
758 * allocate the zero page. Note that we count on this going ok.
760 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
761 memzero(zero_page
, PAGE_SIZE
);
762 empty_zero_page
= virt_to_page(zero_page
);
763 flush_dcache_page(empty_zero_page
);
767 * In order to soft-boot, we need to insert a 1:1 mapping in place of
768 * the user-mode pages. This will then ensure that we have predictable
769 * results when turning the mmu off
771 void setup_mm_for_reboot(char mode
)
773 unsigned long base_pmdval
;
777 if (current
->mm
&& current
->mm
->pgd
)
778 pgd
= current
->mm
->pgd
;
782 base_pmdval
= PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
| PMD_TYPE_SECT
;
783 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ
&& !cpu_is_xscale())
784 base_pmdval
|= PMD_BIT4
;
786 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
787 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
790 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
791 pmd
[0] = __pmd(pmdval
);
792 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
793 flush_pmd_entry(pmd
);