Linux 2.6.21
[linux/fpc-iii.git] / arch / ia64 / mm / init.c
blob4f36987eea7241bfea99187f0ec5765202426bd1
1 /*
2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
45 extern void ia64_tlb_init (void);
47 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
49 #ifdef CONFIG_VIRTUAL_MEM_MAP
50 unsigned long vmalloc_end = VMALLOC_END_INIT;
51 EXPORT_SYMBOL(vmalloc_end);
52 struct page *vmem_map;
53 EXPORT_SYMBOL(vmem_map);
54 #endif
56 struct page *zero_page_memmap_ptr; /* map entry for zero page */
57 EXPORT_SYMBOL(zero_page_memmap_ptr);
59 #define MIN_PGT_PAGES 25UL
60 #define MAX_PGT_FREES_PER_PASS 16L
61 #define PGT_FRACTION_OF_NODE_MEM 16
63 static inline long
64 max_pgt_pages(void)
66 u64 node_free_pages, max_pgt_pages;
68 #ifndef CONFIG_NUMA
69 node_free_pages = nr_free_pages();
70 #else
71 node_free_pages = node_page_state(numa_node_id(), NR_FREE_PAGES);
72 #endif
73 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75 return max_pgt_pages;
78 static inline long
79 min_pages_to_free(void)
81 long pages_to_free;
83 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85 return pages_to_free;
88 void
89 check_pgt_cache(void)
91 long pages_to_free;
93 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94 return;
96 preempt_disable();
97 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98 while (pages_to_free--) {
99 free_page((unsigned long)pgtable_quicklist_alloc());
101 preempt_enable();
102 preempt_disable();
104 preempt_enable();
107 void
108 lazy_mmu_prot_update (pte_t pte)
110 unsigned long addr;
111 struct page *page;
112 unsigned long order;
114 if (!pte_exec(pte))
115 return; /* not an executable page... */
117 page = pte_page(pte);
118 addr = (unsigned long) page_address(page);
120 if (test_bit(PG_arch_1, &page->flags))
121 return; /* i-cache is already coherent with d-cache */
123 if (PageCompound(page)) {
124 order = (unsigned long) (page[1].lru.prev);
125 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
127 else
128 flush_icache_range(addr, addr + PAGE_SIZE);
129 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
133 * Since DMA is i-cache coherent, any (complete) pages that were written via
134 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
135 * flush them when they get mapped into an executable vm-area.
137 void
138 dma_mark_clean(void *addr, size_t size)
140 unsigned long pg_addr, end;
142 pg_addr = PAGE_ALIGN((unsigned long) addr);
143 end = (unsigned long) addr + size;
144 while (pg_addr + PAGE_SIZE <= end) {
145 struct page *page = virt_to_page(pg_addr);
146 set_bit(PG_arch_1, &page->flags);
147 pg_addr += PAGE_SIZE;
151 inline void
152 ia64_set_rbs_bot (void)
154 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
156 if (stack_size > MAX_USER_STACK_SIZE)
157 stack_size = MAX_USER_STACK_SIZE;
158 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
162 * This performs some platform-dependent address space initialization.
163 * On IA-64, we want to setup the VM area for the register backing
164 * store (which grows upwards) and install the gateway page which is
165 * used for signal trampolines, etc.
167 void
168 ia64_init_addr_space (void)
170 struct vm_area_struct *vma;
172 ia64_set_rbs_bot();
175 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
176 * the problem. When the process attempts to write to the register backing store
177 * for the first time, it will get a SEGFAULT in this case.
179 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
180 if (vma) {
181 vma->vm_mm = current->mm;
182 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
183 vma->vm_end = vma->vm_start + PAGE_SIZE;
184 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
185 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
186 down_write(&current->mm->mmap_sem);
187 if (insert_vm_struct(current->mm, vma)) {
188 up_write(&current->mm->mmap_sem);
189 kmem_cache_free(vm_area_cachep, vma);
190 return;
192 up_write(&current->mm->mmap_sem);
195 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
196 if (!(current->personality & MMAP_PAGE_ZERO)) {
197 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
198 if (vma) {
199 vma->vm_mm = current->mm;
200 vma->vm_end = PAGE_SIZE;
201 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
202 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
203 down_write(&current->mm->mmap_sem);
204 if (insert_vm_struct(current->mm, vma)) {
205 up_write(&current->mm->mmap_sem);
206 kmem_cache_free(vm_area_cachep, vma);
207 return;
209 up_write(&current->mm->mmap_sem);
214 void
215 free_initmem (void)
217 unsigned long addr, eaddr;
219 addr = (unsigned long) ia64_imva(__init_begin);
220 eaddr = (unsigned long) ia64_imva(__init_end);
221 while (addr < eaddr) {
222 ClearPageReserved(virt_to_page(addr));
223 init_page_count(virt_to_page(addr));
224 free_page(addr);
225 ++totalram_pages;
226 addr += PAGE_SIZE;
228 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
229 (__init_end - __init_begin) >> 10);
232 void __init
233 free_initrd_mem (unsigned long start, unsigned long end)
235 struct page *page;
237 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
238 * Thus EFI and the kernel may have different page sizes. It is
239 * therefore possible to have the initrd share the same page as
240 * the end of the kernel (given current setup).
242 * To avoid freeing/using the wrong page (kernel sized) we:
243 * - align up the beginning of initrd
244 * - align down the end of initrd
246 * | |
247 * |=============| a000
248 * | |
249 * | |
250 * | | 9000
251 * |/////////////|
252 * |/////////////|
253 * |=============| 8000
254 * |///INITRD////|
255 * |/////////////|
256 * |/////////////| 7000
257 * | |
258 * |KKKKKKKKKKKKK|
259 * |=============| 6000
260 * |KKKKKKKKKKKKK|
261 * |KKKKKKKKKKKKK|
262 * K=kernel using 8KB pages
264 * In this example, we must free page 8000 ONLY. So we must align up
265 * initrd_start and keep initrd_end as is.
267 start = PAGE_ALIGN(start);
268 end = end & PAGE_MASK;
270 if (start < end)
271 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
273 for (; start < end; start += PAGE_SIZE) {
274 if (!virt_addr_valid(start))
275 continue;
276 page = virt_to_page(start);
277 ClearPageReserved(page);
278 init_page_count(page);
279 free_page(start);
280 ++totalram_pages;
285 * This installs a clean page in the kernel's page table.
287 static struct page * __init
288 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
290 pgd_t *pgd;
291 pud_t *pud;
292 pmd_t *pmd;
293 pte_t *pte;
295 if (!PageReserved(page))
296 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
297 page_address(page));
299 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
302 pud = pud_alloc(&init_mm, pgd, address);
303 if (!pud)
304 goto out;
305 pmd = pmd_alloc(&init_mm, pud, address);
306 if (!pmd)
307 goto out;
308 pte = pte_alloc_kernel(pmd, address);
309 if (!pte)
310 goto out;
311 if (!pte_none(*pte))
312 goto out;
313 set_pte(pte, mk_pte(page, pgprot));
315 out:
316 /* no need for flush_tlb */
317 return page;
320 static void __init
321 setup_gate (void)
323 struct page *page;
326 * Map the gate page twice: once read-only to export the ELF
327 * headers etc. and once execute-only page to enable
328 * privilege-promotion via "epc":
330 page = virt_to_page(ia64_imva(__start_gate_section));
331 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
332 #ifdef HAVE_BUGGY_SEGREL
333 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
334 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
335 #else
336 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
337 /* Fill in the holes (if any) with read-only zero pages: */
339 unsigned long addr;
341 for (addr = GATE_ADDR + PAGE_SIZE;
342 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
343 addr += PAGE_SIZE)
345 put_kernel_page(ZERO_PAGE(0), addr,
346 PAGE_READONLY);
347 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
348 PAGE_READONLY);
351 #endif
352 ia64_patch_gate();
355 void __devinit
356 ia64_mmu_init (void *my_cpu_data)
358 unsigned long psr, pta, impl_va_bits;
359 extern void __devinit tlb_init (void);
361 #ifdef CONFIG_DISABLE_VHPT
362 # define VHPT_ENABLE_BIT 0
363 #else
364 # define VHPT_ENABLE_BIT 1
365 #endif
367 /* Pin mapping for percpu area into TLB */
368 psr = ia64_clear_ic();
369 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
370 pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
371 PERCPU_PAGE_SHIFT);
373 ia64_set_psr(psr);
374 ia64_srlz_i();
377 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
378 * address space. The IA-64 architecture guarantees that at least 50 bits of
379 * virtual address space are implemented but if we pick a large enough page size
380 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
381 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
382 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
383 * problem in practice. Alternatively, we could truncate the top of the mapped
384 * address space to not permit mappings that would overlap with the VMLPT.
385 * --davidm 00/12/06
387 # define pte_bits 3
388 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
390 * The virtual page table has to cover the entire implemented address space within
391 * a region even though not all of this space may be mappable. The reason for
392 * this is that the Access bit and Dirty bit fault handlers perform
393 * non-speculative accesses to the virtual page table, so the address range of the
394 * virtual page table itself needs to be covered by virtual page table.
396 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
397 # define POW2(n) (1ULL << (n))
399 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
401 if (impl_va_bits < 51 || impl_va_bits > 61)
402 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
404 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
405 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
406 * the test makes sure that our mapped space doesn't overlap the
407 * unimplemented hole in the middle of the region.
409 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
410 (mapped_space_bits > impl_va_bits - 1))
411 panic("Cannot build a big enough virtual-linear page table"
412 " to cover mapped address space.\n"
413 " Try using a smaller page size.\n");
416 /* place the VMLPT at the end of each page-table mapped region: */
417 pta = POW2(61) - POW2(vmlpt_bits);
420 * Set the (virtually mapped linear) page table address. Bit
421 * 8 selects between the short and long format, bits 2-7 the
422 * size of the table, and bit 0 whether the VHPT walker is
423 * enabled.
425 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
427 ia64_tlb_init();
429 #ifdef CONFIG_HUGETLB_PAGE
430 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
431 ia64_srlz_d();
432 #endif
435 #ifdef CONFIG_VIRTUAL_MEM_MAP
436 int vmemmap_find_next_valid_pfn(int node, int i)
438 unsigned long end_address, hole_next_pfn;
439 unsigned long stop_address;
440 pg_data_t *pgdat = NODE_DATA(node);
442 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
443 end_address = PAGE_ALIGN(end_address);
445 stop_address = (unsigned long) &vmem_map[
446 pgdat->node_start_pfn + pgdat->node_spanned_pages];
448 do {
449 pgd_t *pgd;
450 pud_t *pud;
451 pmd_t *pmd;
452 pte_t *pte;
454 pgd = pgd_offset_k(end_address);
455 if (pgd_none(*pgd)) {
456 end_address += PGDIR_SIZE;
457 continue;
460 pud = pud_offset(pgd, end_address);
461 if (pud_none(*pud)) {
462 end_address += PUD_SIZE;
463 continue;
466 pmd = pmd_offset(pud, end_address);
467 if (pmd_none(*pmd)) {
468 end_address += PMD_SIZE;
469 continue;
472 pte = pte_offset_kernel(pmd, end_address);
473 retry_pte:
474 if (pte_none(*pte)) {
475 end_address += PAGE_SIZE;
476 pte++;
477 if ((end_address < stop_address) &&
478 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
479 goto retry_pte;
480 continue;
482 /* Found next valid vmem_map page */
483 break;
484 } while (end_address < stop_address);
486 end_address = min(end_address, stop_address);
487 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
488 hole_next_pfn = end_address / sizeof(struct page);
489 return hole_next_pfn - pgdat->node_start_pfn;
492 int __init
493 create_mem_map_page_table (u64 start, u64 end, void *arg)
495 unsigned long address, start_page, end_page;
496 struct page *map_start, *map_end;
497 int node;
498 pgd_t *pgd;
499 pud_t *pud;
500 pmd_t *pmd;
501 pte_t *pte;
503 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
504 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
506 start_page = (unsigned long) map_start & PAGE_MASK;
507 end_page = PAGE_ALIGN((unsigned long) map_end);
508 node = paddr_to_nid(__pa(start));
510 for (address = start_page; address < end_page; address += PAGE_SIZE) {
511 pgd = pgd_offset_k(address);
512 if (pgd_none(*pgd))
513 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
514 pud = pud_offset(pgd, address);
516 if (pud_none(*pud))
517 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
518 pmd = pmd_offset(pud, address);
520 if (pmd_none(*pmd))
521 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
522 pte = pte_offset_kernel(pmd, address);
524 if (pte_none(*pte))
525 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
526 PAGE_KERNEL));
528 return 0;
531 struct memmap_init_callback_data {
532 struct page *start;
533 struct page *end;
534 int nid;
535 unsigned long zone;
538 static int
539 virtual_memmap_init (u64 start, u64 end, void *arg)
541 struct memmap_init_callback_data *args;
542 struct page *map_start, *map_end;
544 args = (struct memmap_init_callback_data *) arg;
545 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
546 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
548 if (map_start < args->start)
549 map_start = args->start;
550 if (map_end > args->end)
551 map_end = args->end;
554 * We have to initialize "out of bounds" struct page elements that fit completely
555 * on the same pages that were allocated for the "in bounds" elements because they
556 * may be referenced later (and found to be "reserved").
558 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
559 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
560 / sizeof(struct page));
562 if (map_start < map_end)
563 memmap_init_zone((unsigned long)(map_end - map_start),
564 args->nid, args->zone, page_to_pfn(map_start),
565 MEMMAP_EARLY);
566 return 0;
569 void
570 memmap_init (unsigned long size, int nid, unsigned long zone,
571 unsigned long start_pfn)
573 if (!vmem_map)
574 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
575 else {
576 struct page *start;
577 struct memmap_init_callback_data args;
579 start = pfn_to_page(start_pfn);
580 args.start = start;
581 args.end = start + size;
582 args.nid = nid;
583 args.zone = zone;
585 efi_memmap_walk(virtual_memmap_init, &args);
590 ia64_pfn_valid (unsigned long pfn)
592 char byte;
593 struct page *pg = pfn_to_page(pfn);
595 return (__get_user(byte, (char __user *) pg) == 0)
596 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
597 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
599 EXPORT_SYMBOL(ia64_pfn_valid);
601 int __init
602 find_largest_hole (u64 start, u64 end, void *arg)
604 u64 *max_gap = arg;
606 static u64 last_end = PAGE_OFFSET;
608 /* NOTE: this algorithm assumes efi memmap table is ordered */
610 if (*max_gap < (start - last_end))
611 *max_gap = start - last_end;
612 last_end = end;
613 return 0;
616 #endif /* CONFIG_VIRTUAL_MEM_MAP */
618 int __init
619 register_active_ranges(u64 start, u64 end, void *arg)
621 int nid = paddr_to_nid(__pa(start));
623 if (nid < 0)
624 nid = 0;
625 #ifdef CONFIG_KEXEC
626 if (start > crashk_res.start && start < crashk_res.end)
627 start = crashk_res.end;
628 if (end > crashk_res.start && end < crashk_res.end)
629 end = crashk_res.start;
630 #endif
632 if (start < end)
633 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
634 __pa(end) >> PAGE_SHIFT);
635 return 0;
638 static int __init
639 count_reserved_pages (u64 start, u64 end, void *arg)
641 unsigned long num_reserved = 0;
642 unsigned long *count = arg;
644 for (; start < end; start += PAGE_SIZE)
645 if (PageReserved(virt_to_page(start)))
646 ++num_reserved;
647 *count += num_reserved;
648 return 0;
652 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
654 unsigned long pfn_start, pfn_end;
655 #ifdef CONFIG_FLATMEM
656 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
657 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
658 #else
659 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
660 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
661 #endif
662 min_low_pfn = min(min_low_pfn, pfn_start);
663 max_low_pfn = max(max_low_pfn, pfn_end);
664 return 0;
668 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
669 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
670 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
671 * useful for performance testing, but conceivably could also come in handy for debugging
672 * purposes.
675 static int nolwsys __initdata;
677 static int __init
678 nolwsys_setup (char *s)
680 nolwsys = 1;
681 return 1;
684 __setup("nolwsys", nolwsys_setup);
686 void __init
687 mem_init (void)
689 long reserved_pages, codesize, datasize, initsize;
690 pg_data_t *pgdat;
691 int i;
692 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
694 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
695 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
696 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
698 #ifdef CONFIG_PCI
700 * This needs to be called _after_ the command line has been parsed but _before_
701 * any drivers that may need the PCI DMA interface are initialized or bootmem has
702 * been freed.
704 platform_dma_init();
705 #endif
707 #ifdef CONFIG_FLATMEM
708 if (!mem_map)
709 BUG();
710 max_mapnr = max_low_pfn;
711 #endif
713 high_memory = __va(max_low_pfn * PAGE_SIZE);
715 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
716 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
717 kclist_add(&kcore_kernel, _stext, _end - _stext);
719 for_each_online_pgdat(pgdat)
720 if (pgdat->bdata->node_bootmem_map)
721 totalram_pages += free_all_bootmem_node(pgdat);
723 reserved_pages = 0;
724 efi_memmap_walk(count_reserved_pages, &reserved_pages);
726 codesize = (unsigned long) _etext - (unsigned long) _stext;
727 datasize = (unsigned long) _edata - (unsigned long) _etext;
728 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
730 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
731 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
732 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
733 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
737 * For fsyscall entrpoints with no light-weight handler, use the ordinary
738 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
739 * code can tell them apart.
741 for (i = 0; i < NR_syscalls; ++i) {
742 extern unsigned long fsyscall_table[NR_syscalls];
743 extern unsigned long sys_call_table[NR_syscalls];
745 if (!fsyscall_table[i] || nolwsys)
746 fsyscall_table[i] = sys_call_table[i] | 1;
748 setup_gate();
750 #ifdef CONFIG_IA32_SUPPORT
751 ia32_mem_init();
752 #endif
755 #ifdef CONFIG_MEMORY_HOTPLUG
756 void online_page(struct page *page)
758 ClearPageReserved(page);
759 init_page_count(page);
760 __free_page(page);
761 totalram_pages++;
762 num_physpages++;
765 int arch_add_memory(int nid, u64 start, u64 size)
767 pg_data_t *pgdat;
768 struct zone *zone;
769 unsigned long start_pfn = start >> PAGE_SHIFT;
770 unsigned long nr_pages = size >> PAGE_SHIFT;
771 int ret;
773 pgdat = NODE_DATA(nid);
775 zone = pgdat->node_zones + ZONE_NORMAL;
776 ret = __add_pages(zone, start_pfn, nr_pages);
778 if (ret)
779 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
780 __FUNCTION__, ret);
782 return ret;
785 int remove_memory(u64 start, u64 size)
787 return -EINVAL;
789 EXPORT_SYMBOL_GPL(remove_memory);
790 #endif