Linux 2.6.21
[linux/fpc-iii.git] / arch / ia64 / pci / pci.c
blob0e83f3b419b5597e8f56899cb238a121a071ac5e
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/smp_lock.h>
22 #include <linux/spinlock.h>
24 #include <asm/machvec.h>
25 #include <asm/page.h>
26 #include <asm/system.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 /* SAL 3.2 adds support for extended config space. */
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 static int
48 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
49 int reg, int len, u32 *value)
51 u64 addr, data = 0;
52 int mode, result;
54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 return -EINVAL;
57 if ((seg | reg) <= 255) {
58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 mode = 0;
60 } else {
61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 mode = 1;
64 result = ia64_sal_pci_config_read(addr, mode, len, &data);
65 if (result != 0)
66 return -EINVAL;
68 *value = (u32) data;
69 return 0;
72 static int
73 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
74 int reg, int len, u32 value)
76 u64 addr;
77 int mode, result;
79 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
80 return -EINVAL;
82 if ((seg | reg) <= 255) {
83 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
84 mode = 0;
85 } else {
86 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
87 mode = 1;
89 result = ia64_sal_pci_config_write(addr, mode, len, value);
90 if (result != 0)
91 return -EINVAL;
92 return 0;
95 static struct pci_raw_ops pci_sal_ops = {
96 .read = pci_sal_read,
97 .write = pci_sal_write
100 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
102 static int
103 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
105 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
106 devfn, where, size, value);
109 static int
110 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
112 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
113 devfn, where, size, value);
116 struct pci_ops pci_root_ops = {
117 .read = pci_read,
118 .write = pci_write,
121 /* Called by ACPI when it finds a new root bus. */
123 static struct pci_controller * __devinit
124 alloc_pci_controller (int seg)
126 struct pci_controller *controller;
128 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
129 if (!controller)
130 return NULL;
132 controller->segment = seg;
133 controller->node = -1;
134 return controller;
137 struct pci_root_info {
138 struct pci_controller *controller;
139 char *name;
142 static unsigned int
143 new_space (u64 phys_base, int sparse)
145 u64 mmio_base;
146 int i;
148 if (phys_base == 0)
149 return 0; /* legacy I/O port space */
151 mmio_base = (u64) ioremap(phys_base, 0);
152 for (i = 0; i < num_io_spaces; i++)
153 if (io_space[i].mmio_base == mmio_base &&
154 io_space[i].sparse == sparse)
155 return i;
157 if (num_io_spaces == MAX_IO_SPACES) {
158 printk(KERN_ERR "PCI: Too many IO port spaces "
159 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
160 return ~0;
163 i = num_io_spaces++;
164 io_space[i].mmio_base = mmio_base;
165 io_space[i].sparse = sparse;
167 return i;
170 static u64 __devinit
171 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
173 struct resource *resource;
174 char *name;
175 u64 base, min, max, base_port;
176 unsigned int sparse = 0, space_nr, len;
178 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
179 if (!resource) {
180 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
181 info->name);
182 goto out;
185 len = strlen(info->name) + 32;
186 name = kzalloc(len, GFP_KERNEL);
187 if (!name) {
188 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
189 info->name);
190 goto free_resource;
193 min = addr->minimum;
194 max = min + addr->address_length - 1;
195 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
196 sparse = 1;
198 space_nr = new_space(addr->translation_offset, sparse);
199 if (space_nr == ~0)
200 goto free_name;
202 base = __pa(io_space[space_nr].mmio_base);
203 base_port = IO_SPACE_BASE(space_nr);
204 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
205 base_port + min, base_port + max);
208 * The SDM guarantees the legacy 0-64K space is sparse, but if the
209 * mapping is done by the processor (not the bridge), ACPI may not
210 * mark it as sparse.
212 if (space_nr == 0)
213 sparse = 1;
215 resource->name = name;
216 resource->flags = IORESOURCE_MEM;
217 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
218 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
219 insert_resource(&iomem_resource, resource);
221 return base_port;
223 free_name:
224 kfree(name);
225 free_resource:
226 kfree(resource);
227 out:
228 return ~0;
231 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
232 struct acpi_resource_address64 *addr)
234 acpi_status status;
237 * We're only interested in _CRS descriptors that are
238 * - address space descriptors for memory or I/O space
239 * - non-zero size
240 * - producers, i.e., the address space is routed downstream,
241 * not consumed by the bridge itself
243 status = acpi_resource_to_address64(resource, addr);
244 if (ACPI_SUCCESS(status) &&
245 (addr->resource_type == ACPI_MEMORY_RANGE ||
246 addr->resource_type == ACPI_IO_RANGE) &&
247 addr->address_length &&
248 addr->producer_consumer == ACPI_PRODUCER)
249 return AE_OK;
251 return AE_ERROR;
254 static acpi_status __devinit
255 count_window (struct acpi_resource *resource, void *data)
257 unsigned int *windows = (unsigned int *) data;
258 struct acpi_resource_address64 addr;
259 acpi_status status;
261 status = resource_to_window(resource, &addr);
262 if (ACPI_SUCCESS(status))
263 (*windows)++;
265 return AE_OK;
268 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
270 struct pci_root_info *info = data;
271 struct pci_window *window;
272 struct acpi_resource_address64 addr;
273 acpi_status status;
274 unsigned long flags, offset = 0;
275 struct resource *root;
277 /* Return AE_OK for non-window resources to keep scanning for more */
278 status = resource_to_window(res, &addr);
279 if (!ACPI_SUCCESS(status))
280 return AE_OK;
282 if (addr.resource_type == ACPI_MEMORY_RANGE) {
283 flags = IORESOURCE_MEM;
284 root = &iomem_resource;
285 offset = addr.translation_offset;
286 } else if (addr.resource_type == ACPI_IO_RANGE) {
287 flags = IORESOURCE_IO;
288 root = &ioport_resource;
289 offset = add_io_space(info, &addr);
290 if (offset == ~0)
291 return AE_OK;
292 } else
293 return AE_OK;
295 window = &info->controller->window[info->controller->windows++];
296 window->resource.name = info->name;
297 window->resource.flags = flags;
298 window->resource.start = addr.minimum + offset;
299 window->resource.end = window->resource.start + addr.address_length - 1;
300 window->resource.child = NULL;
301 window->offset = offset;
303 if (insert_resource(root, &window->resource)) {
304 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
305 window->resource.start, window->resource.end,
306 root->name, info->name);
309 return AE_OK;
312 static void __devinit
313 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
315 int i, j;
317 j = 0;
318 for (i = 0; i < ctrl->windows; i++) {
319 struct resource *res = &ctrl->window[i].resource;
320 /* HP's firmware has a hack to work around a Windows bug.
321 * Ignore these tiny memory ranges */
322 if ((res->flags & IORESOURCE_MEM) &&
323 (res->end - res->start < 16))
324 continue;
325 if (j >= PCI_BUS_NUM_RESOURCES) {
326 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
327 res->end, res->flags);
328 continue;
330 bus->resource[j++] = res;
334 struct pci_bus * __devinit
335 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
337 struct pci_root_info info;
338 struct pci_controller *controller;
339 unsigned int windows = 0;
340 struct pci_bus *pbus;
341 char *name;
342 int pxm;
344 controller = alloc_pci_controller(domain);
345 if (!controller)
346 goto out1;
348 controller->acpi_handle = device->handle;
350 pxm = acpi_get_pxm(controller->acpi_handle);
351 #ifdef CONFIG_NUMA
352 if (pxm >= 0)
353 controller->node = pxm_to_node(pxm);
354 #endif
356 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
357 &windows);
358 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
359 GFP_KERNEL, controller->node);
360 if (!controller->window)
361 goto out2;
363 name = kmalloc(16, GFP_KERNEL);
364 if (!name)
365 goto out3;
367 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
368 info.controller = controller;
369 info.name = name;
370 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
371 &info);
373 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
374 if (pbus)
375 pcibios_setup_root_windows(pbus, controller);
377 return pbus;
379 out3:
380 kfree(controller->window);
381 out2:
382 kfree(controller);
383 out1:
384 return NULL;
387 void pcibios_resource_to_bus(struct pci_dev *dev,
388 struct pci_bus_region *region, struct resource *res)
390 struct pci_controller *controller = PCI_CONTROLLER(dev);
391 unsigned long offset = 0;
392 int i;
394 for (i = 0; i < controller->windows; i++) {
395 struct pci_window *window = &controller->window[i];
396 if (!(window->resource.flags & res->flags))
397 continue;
398 if (window->resource.start > res->start)
399 continue;
400 if (window->resource.end < res->end)
401 continue;
402 offset = window->offset;
403 break;
406 region->start = res->start - offset;
407 region->end = res->end - offset;
409 EXPORT_SYMBOL(pcibios_resource_to_bus);
411 void pcibios_bus_to_resource(struct pci_dev *dev,
412 struct resource *res, struct pci_bus_region *region)
414 struct pci_controller *controller = PCI_CONTROLLER(dev);
415 unsigned long offset = 0;
416 int i;
418 for (i = 0; i < controller->windows; i++) {
419 struct pci_window *window = &controller->window[i];
420 if (!(window->resource.flags & res->flags))
421 continue;
422 if (window->resource.start - window->offset > region->start)
423 continue;
424 if (window->resource.end - window->offset < region->end)
425 continue;
426 offset = window->offset;
427 break;
430 res->start = region->start + offset;
431 res->end = region->end + offset;
433 EXPORT_SYMBOL(pcibios_bus_to_resource);
435 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
437 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
438 struct resource *devr = &dev->resource[idx];
440 if (!dev->bus)
441 return 0;
442 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
443 struct resource *busr = dev->bus->resource[i];
445 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
446 continue;
447 if ((devr->start) && (devr->start >= busr->start) &&
448 (devr->end <= busr->end))
449 return 1;
451 return 0;
454 static void __devinit
455 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
457 struct pci_bus_region region;
458 int i;
460 for (i = start; i < limit; i++) {
461 if (!dev->resource[i].flags)
462 continue;
463 region.start = dev->resource[i].start;
464 region.end = dev->resource[i].end;
465 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
466 if ((is_valid_resource(dev, i)))
467 pci_claim_resource(dev, i);
471 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
473 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
475 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
477 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
479 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
483 * Called after each bus is probed, but before its children are examined.
485 void __devinit
486 pcibios_fixup_bus (struct pci_bus *b)
488 struct pci_dev *dev;
490 if (b->self) {
491 pci_read_bridge_bases(b);
492 pcibios_fixup_bridge_resources(b->self);
494 list_for_each_entry(dev, &b->devices, bus_list)
495 pcibios_fixup_device_resources(dev);
496 platform_pci_fixup_bus(b);
498 return;
501 void __devinit
502 pcibios_update_irq (struct pci_dev *dev, int irq)
504 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
506 /* ??? FIXME -- record old value for shutdown. */
509 static inline int
510 pcibios_enable_resources (struct pci_dev *dev, int mask)
512 u16 cmd, old_cmd;
513 int idx;
514 struct resource *r;
515 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
517 if (!dev)
518 return -EINVAL;
520 pci_read_config_word(dev, PCI_COMMAND, &cmd);
521 old_cmd = cmd;
522 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
523 /* Only set up the desired resources. */
524 if (!(mask & (1 << idx)))
525 continue;
527 r = &dev->resource[idx];
528 if (!(r->flags & type_mask))
529 continue;
530 if ((idx == PCI_ROM_RESOURCE) &&
531 (!(r->flags & IORESOURCE_ROM_ENABLE)))
532 continue;
533 if (!r->start && r->end) {
534 printk(KERN_ERR
535 "PCI: Device %s not available because of resource collisions\n",
536 pci_name(dev));
537 return -EINVAL;
539 if (r->flags & IORESOURCE_IO)
540 cmd |= PCI_COMMAND_IO;
541 if (r->flags & IORESOURCE_MEM)
542 cmd |= PCI_COMMAND_MEMORY;
544 if (cmd != old_cmd) {
545 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
546 pci_write_config_word(dev, PCI_COMMAND, cmd);
548 return 0;
552 pcibios_enable_device (struct pci_dev *dev, int mask)
554 int ret;
556 ret = pcibios_enable_resources(dev, mask);
557 if (ret < 0)
558 return ret;
560 if (!dev->msi_enabled)
561 return acpi_pci_irq_enable(dev);
562 return 0;
565 void
566 pcibios_disable_device (struct pci_dev *dev)
568 BUG_ON(atomic_read(&dev->enable_cnt));
569 if (!dev->msi_enabled)
570 acpi_pci_irq_disable(dev);
573 void
574 pcibios_align_resource (void *data, struct resource *res,
575 resource_size_t size, resource_size_t align)
580 * PCI BIOS setup, always defaults to SAL interface
582 char * __init
583 pcibios_setup (char *str)
585 return str;
589 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
590 enum pci_mmap_state mmap_state, int write_combine)
593 * I/O space cannot be accessed via normal processor loads and
594 * stores on this platform.
596 if (mmap_state == pci_mmap_io)
598 * XXX we could relax this for I/O spaces for which ACPI
599 * indicates that the space is 1-to-1 mapped. But at the
600 * moment, we don't support multiple PCI address spaces and
601 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
603 return -EINVAL;
606 * Leave vm_pgoff as-is, the PCI space address is the physical
607 * address on this platform.
609 if (write_combine && efi_range_is_wc(vma->vm_start,
610 vma->vm_end - vma->vm_start))
611 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
612 else
613 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
615 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
616 vma->vm_end - vma->vm_start, vma->vm_page_prot))
617 return -EAGAIN;
619 return 0;
623 * ia64_pci_get_legacy_mem - generic legacy mem routine
624 * @bus: bus to get legacy memory base address for
626 * Find the base of legacy memory for @bus. This is typically the first
627 * megabyte of bus address space for @bus or is simply 0 on platforms whose
628 * chipsets support legacy I/O and memory routing. Returns the base address
629 * or an error pointer if an error occurred.
631 * This is the ia64 generic version of this routine. Other platforms
632 * are free to override it with a machine vector.
634 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
636 return (char *)__IA64_UNCACHED_OFFSET;
640 * pci_mmap_legacy_page_range - map legacy memory space to userland
641 * @bus: bus whose legacy space we're mapping
642 * @vma: vma passed in by mmap
644 * Map legacy memory space for this device back to userspace using a machine
645 * vector to get the base address.
648 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
650 unsigned long size = vma->vm_end - vma->vm_start;
651 pgprot_t prot;
652 char *addr;
655 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
656 * for more details.
658 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
659 return -EINVAL;
660 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
661 vma->vm_page_prot);
662 if (pgprot_val(prot) != pgprot_val(pgprot_noncached(vma->vm_page_prot)))
663 return -EINVAL;
665 addr = pci_get_legacy_mem(bus);
666 if (IS_ERR(addr))
667 return PTR_ERR(addr);
669 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
670 vma->vm_page_prot = prot;
672 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
673 size, vma->vm_page_prot))
674 return -EAGAIN;
676 return 0;
680 * ia64_pci_legacy_read - read from legacy I/O space
681 * @bus: bus to read
682 * @port: legacy port value
683 * @val: caller allocated storage for returned value
684 * @size: number of bytes to read
686 * Simply reads @size bytes from @port and puts the result in @val.
688 * Again, this (and the write routine) are generic versions that can be
689 * overridden by the platform. This is necessary on platforms that don't
690 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
692 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
694 int ret = size;
696 switch (size) {
697 case 1:
698 *val = inb(port);
699 break;
700 case 2:
701 *val = inw(port);
702 break;
703 case 4:
704 *val = inl(port);
705 break;
706 default:
707 ret = -EINVAL;
708 break;
711 return ret;
715 * ia64_pci_legacy_write - perform a legacy I/O write
716 * @bus: bus pointer
717 * @port: port to write
718 * @val: value to write
719 * @size: number of bytes to write from @val
721 * Simply writes @size bytes of @val to @port.
723 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
725 int ret = size;
727 switch (size) {
728 case 1:
729 outb(val, port);
730 break;
731 case 2:
732 outw(val, port);
733 break;
734 case 4:
735 outl(val, port);
736 break;
737 default:
738 ret = -EINVAL;
739 break;
742 return ret;
745 /* It's defined in drivers/pci/pci.c */
746 extern u8 pci_cache_line_size;
749 * set_pci_cacheline_size - determine cacheline size for PCI devices
751 * We want to use the line-size of the outer-most cache. We assume
752 * that this line-size is the same for all CPUs.
754 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
756 static void __init set_pci_cacheline_size(void)
758 u64 levels, unique_caches;
759 s64 status;
760 pal_cache_config_info_t cci;
762 status = ia64_pal_cache_summary(&levels, &unique_caches);
763 if (status != 0) {
764 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
765 "(status=%ld)\n", __FUNCTION__, status);
766 return;
769 status = ia64_pal_cache_config_info(levels - 1,
770 /* cache_type (data_or_unified)= */ 2, &cci);
771 if (status != 0) {
772 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
773 "(status=%ld)\n", __FUNCTION__, status);
774 return;
776 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
779 static int __init pcibios_init(void)
781 set_pci_cacheline_size();
782 return 0;
785 subsys_initcall(pcibios_init);