1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/cpumask.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/module.h>
11 #include <asm/processor.h>
12 #include <asm/atomic.h>
13 #include <asm/system.h>
14 #include <asm/hardirq.h>
15 #include <asm/hazards.h>
16 #include <asm/mmu_context.h>
18 #include <asm/mips-boards/maltaint.h>
19 #include <asm/mipsregs.h>
20 #include <asm/cacheflush.h>
22 #include <asm/addrspace.h>
24 #include <asm/smtc_ipi.h>
25 #include <asm/smtc_proc.h>
28 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
31 #define MIPS_CPU_IPI_IRQ 1
33 #define LOCK_MT_PRA() \
34 local_irq_save(flags); \
37 #define UNLOCK_MT_PRA() \
39 local_irq_restore(flags)
41 #define LOCK_CORE_PRA() \
42 local_irq_save(flags); \
45 #define UNLOCK_CORE_PRA() \
47 local_irq_restore(flags)
50 * Data structures purely associated with SMTC parallelism
55 * Table for tracking ASIDs whose lifetime is prolonged.
58 asiduse smtc_live_asid
[MAX_SMTC_TLBS
][MAX_SMTC_ASIDS
];
61 * Clock interrupt "latch" buffers, per "CPU"
64 unsigned int ipi_timer_latch
[NR_CPUS
];
67 * Number of InterProcessor Interupt (IPI) message buffers to allocate
70 #define IPIBUF_PER_CPU 4
72 static struct smtc_ipi_q IPIQ
[NR_CPUS
];
73 static struct smtc_ipi_q freeIPIq
;
76 /* Forward declarations */
78 void ipi_decode(struct smtc_ipi
*);
79 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
);
80 static void setup_cross_vpe_interrupts(unsigned int nvpe
);
81 void init_smtc_stats(void);
83 /* Global SMTC Status */
85 unsigned int smtc_status
= 0;
87 /* Boot command line configuration overrides */
89 static int vpelimit
= 0;
90 static int tclimit
= 0;
91 static int ipibuffers
= 0;
92 static int nostlb
= 0;
93 static int asidmask
= 0;
94 unsigned long smtc_asid_mask
= 0xff;
96 static int __init
maxvpes(char *str
)
98 get_option(&str
, &vpelimit
);
102 static int __init
maxtcs(char *str
)
104 get_option(&str
, &tclimit
);
108 static int __init
ipibufs(char *str
)
110 get_option(&str
, &ipibuffers
);
114 static int __init
stlb_disable(char *s
)
120 static int __init
asidmask_set(char *str
)
122 get_option(&str
, &asidmask
);
132 smtc_asid_mask
= (unsigned long)asidmask
;
135 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask
);
140 __setup("maxvpes=", maxvpes
);
141 __setup("maxtcs=", maxtcs
);
142 __setup("ipibufs=", ipibufs
);
143 __setup("nostlb", stlb_disable
);
144 __setup("asidmask=", asidmask_set
);
146 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
148 static int hang_trig
= 0;
150 static int __init
hangtrig_enable(char *s
)
157 __setup("hangtrig", hangtrig_enable
);
159 #define DEFAULT_BLOCKED_IPI_LIMIT 32
161 static int timerq_limit
= DEFAULT_BLOCKED_IPI_LIMIT
;
163 static int __init
tintq(char *str
)
165 get_option(&str
, &timerq_limit
);
169 __setup("tintq=", tintq
);
171 int imstuckcount
[2][8];
172 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
173 int vpemask
[2][8] = {
174 {0, 0, 1, 0, 0, 0, 0, 1},
175 {0, 0, 0, 0, 0, 0, 0, 1}
177 int tcnoprog
[NR_CPUS
];
178 static atomic_t idle_hook_initialized
= {0};
179 static int clock_hang_reported
[NR_CPUS
];
181 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
183 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
185 void __init
sanitize_tlb_entries(void)
187 printk("Deprecated sanitize_tlb_entries() invoked\n");
192 * Configure shared TLB - VPC configuration bit must be set by caller
195 static void smtc_configure_tlb(void)
198 unsigned long mvpconf0
;
199 unsigned long config1val
;
201 /* Set up ASID preservation table */
202 for (vpes
=0; vpes
<MAX_SMTC_TLBS
; vpes
++) {
203 for(i
= 0; i
< MAX_SMTC_ASIDS
; i
++) {
204 smtc_live_asid
[vpes
][i
] = 0;
207 mvpconf0
= read_c0_mvpconf0();
209 if ((vpes
= ((mvpconf0
& MVPCONF0_PVPE
)
210 >> MVPCONF0_PVPE_SHIFT
) + 1) > 1) {
211 /* If we have multiple VPEs, try to share the TLB */
212 if ((mvpconf0
& MVPCONF0_TLBS
) && !nostlb
) {
214 * If TLB sizing is programmable, shared TLB
215 * size is the total available complement.
216 * Otherwise, we have to take the sum of all
217 * static VPE TLB entries.
219 if ((tlbsiz
= ((mvpconf0
& MVPCONF0_PTLBE
)
220 >> MVPCONF0_PTLBE_SHIFT
)) == 0) {
222 * If there's more than one VPE, there had better
223 * be more than one TC, because we need one to bind
224 * to each VPE in turn to be able to read
225 * its configuration state!
228 /* Stop the TC from doing anything foolish */
229 write_tc_c0_tchalt(TCHALT_H
);
231 /* No need to un-Halt - that happens later anyway */
232 for (i
=0; i
< vpes
; i
++) {
233 write_tc_c0_tcbind(i
);
235 * To be 100% sure we're really getting the right
236 * information, we exit the configuration state
237 * and do an IHB after each rebinding.
240 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
243 * Only count if the MMU Type indicated is TLB
245 if (((read_vpe_c0_config() & MIPS_CONF_MT
) >> 7) == 1) {
246 config1val
= read_vpe_c0_config1();
247 tlbsiz
+= ((config1val
>> 25) & 0x3f) + 1;
250 /* Put core back in configuration state */
252 read_c0_mvpcontrol() | MVPCONTROL_VPC
);
256 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB
);
260 * Setup kernel data structures to use software total,
261 * rather than read the per-VPE Config1 value. The values
262 * for "CPU 0" gets copied to all the other CPUs as part
263 * of their initialization in smtc_cpu_setup().
266 /* MIPS32 limits TLB indices to 64 */
269 cpu_data
[0].tlbsize
= current_cpu_data
.tlbsize
= tlbsiz
;
270 smtc_status
|= SMTC_TLB_SHARED
;
271 local_flush_tlb_all();
273 printk("TLB of %d entry pairs shared by %d VPEs\n",
276 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
283 * Incrementally build the CPU map out of constituent MIPS MT cores,
284 * using the specified available VPEs and TCs. Plaform code needs
285 * to ensure that each MIPS MT core invokes this routine on reset,
288 * This version of the build_cpu_map and prepare_cpus routines assumes
289 * that *all* TCs of a MIPS MT core will be used for Linux, and that
290 * they will be spread across *all* available VPEs (to minimise the
291 * loss of efficiency due to exception service serialization).
292 * An improved version would pick up configuration information and
293 * possibly leave some TCs/VPEs as "slave" processors.
295 * Use c0_MVPConf0 to find out how many TCs are available, setting up
296 * phys_cpu_present_map and the logical/physical mappings.
299 int __init
mipsmt_build_cpu_map(int start_cpu_slot
)
304 * The CPU map isn't actually used for anything at this point,
305 * so it's not clear what else we should do apart from set
306 * everything up so that "logical" = "physical".
308 ntcs
= ((read_c0_mvpconf0() & MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
309 for (i
=start_cpu_slot
; i
<NR_CPUS
&& i
<ntcs
; i
++) {
310 cpu_set(i
, phys_cpu_present_map
);
311 __cpu_number_map
[i
] = i
;
312 __cpu_logical_map
[i
] = i
;
314 /* Initialize map of CPUs with FPUs */
315 cpus_clear(mt_fpu_cpumask
);
317 /* One of those TC's is the one booting, and not a secondary... */
318 printk("%i available secondary CPU TC(s)\n", i
- 1);
324 * Common setup before any secondaries are started
325 * Make sure all CPU's are in a sensible state before we boot any of the
328 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
329 * as possible across the available VPEs.
332 static void smtc_tc_setup(int vpe
, int tc
, int cpu
)
335 write_tc_c0_tchalt(TCHALT_H
);
337 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
338 & ~(TCSTATUS_TKSU
| TCSTATUS_DA
| TCSTATUS_IXMT
))
340 write_tc_c0_tccontext(0);
342 write_tc_c0_tcbind(vpe
);
343 /* In general, all TCs should have the same cpu_data indications */
344 memcpy(&cpu_data
[cpu
], &cpu_data
[0], sizeof(struct cpuinfo_mips
));
345 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
346 if (cpu_data
[0].cputype
== CPU_34K
)
347 cpu_data
[cpu
].options
&= ~MIPS_CPU_FPU
;
348 cpu_data
[cpu
].vpe_id
= vpe
;
349 cpu_data
[cpu
].tc_id
= tc
;
353 void mipsmt_prepare_cpus(void)
355 int i
, vpe
, tc
, ntc
, nvpe
, tcpervpe
, slop
, cpu
;
359 struct smtc_ipi
*pipi
;
361 /* disable interrupts so we can disable MT */
362 local_irq_save(flags
);
363 /* disable MT so we can configure */
367 spin_lock_init(&freeIPIq
.lock
);
370 * We probably don't have as many VPEs as we do SMP "CPUs",
371 * but it's possible - and in any case we'll never use more!
373 for (i
=0; i
<NR_CPUS
; i
++) {
374 IPIQ
[i
].head
= IPIQ
[i
].tail
= NULL
;
375 spin_lock_init(&IPIQ
[i
].lock
);
377 ipi_timer_latch
[i
] = 0;
380 /* cpu_data index starts at zero */
382 cpu_data
[cpu
].vpe_id
= 0;
383 cpu_data
[cpu
].tc_id
= 0;
386 /* Report on boot-time options */
387 mips_mt_set_cpuoptions ();
389 printk("Limit of %d VPEs set\n", vpelimit
);
391 printk("Limit of %d TCs set\n", tclimit
);
393 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
396 printk("ASID mask value override to 0x%x\n", asidmask
);
399 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
401 printk("Logic Analyser Trigger on suspected TC hang\n");
402 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
404 /* Put MVPE's into 'configuration state' */
405 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC
);
407 val
= read_c0_mvpconf0();
408 nvpe
= ((val
& MVPCONF0_PVPE
) >> MVPCONF0_PVPE_SHIFT
) + 1;
409 if (vpelimit
> 0 && nvpe
> vpelimit
)
411 ntc
= ((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
414 if (tclimit
> 0 && ntc
> tclimit
)
416 tcpervpe
= ntc
/ nvpe
;
417 slop
= ntc
% nvpe
; /* Residual TCs, < NVPE */
419 /* Set up shared TLB */
420 smtc_configure_tlb();
422 for (tc
= 0, vpe
= 0 ; (vpe
< nvpe
) && (tc
< ntc
) ; vpe
++) {
427 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP
);
430 printk("VPE %d: TC", vpe
);
431 for (i
= 0; i
< tcpervpe
; i
++) {
433 * TC 0 is bound to VPE 0 at reset,
434 * and is presumably executing this
435 * code. Leave it alone!
438 smtc_tc_setup(vpe
,tc
, cpu
);
446 smtc_tc_setup(vpe
,tc
, cpu
);
455 * Clear any stale software interrupts from VPE's Cause
457 write_vpe_c0_cause(0);
460 * Clear ERL/EXL of VPEs other than 0
461 * and set restricted interrupt enable/mask.
463 write_vpe_c0_status((read_vpe_c0_status()
464 & ~(ST0_BEV
| ST0_ERL
| ST0_EXL
| ST0_IM
))
465 | (STATUSF_IP0
| STATUSF_IP1
| STATUSF_IP7
468 * set config to be the same as vpe0,
469 * particularly kseg0 coherency alg
471 write_vpe_c0_config(read_c0_config());
472 /* Clear any pending timer interrupt */
473 write_vpe_c0_compare(0);
474 /* Propagate Config7 */
475 write_vpe_c0_config7(read_c0_config7());
476 write_vpe_c0_count(read_c0_count());
478 /* enable multi-threading within VPE */
479 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE
);
481 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA
);
485 * Pull any physically present but unused TCs out of circulation.
487 while (tc
< (((val
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1)) {
488 cpu_clear(tc
, phys_cpu_present_map
);
489 cpu_clear(tc
, cpu_present_map
);
493 /* release config state */
494 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC
);
498 /* Set up coprocessor affinity CPU mask(s) */
500 for (tc
= 0; tc
< ntc
; tc
++) {
501 if (cpu_data
[tc
].options
& MIPS_CPU_FPU
)
502 cpu_set(tc
, mt_fpu_cpumask
);
505 /* set up ipi interrupts... */
507 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
509 setup_cross_vpe_interrupts(nvpe
);
511 /* Set up queue of free IPI "messages". */
512 nipi
= NR_CPUS
* IPIBUF_PER_CPU
;
516 pipi
= kmalloc(nipi
*sizeof(struct smtc_ipi
), GFP_KERNEL
);
518 panic("kmalloc of IPI message buffers failed\n");
520 printk("IPI buffer pool of %d buffers\n", nipi
);
521 for (i
= 0; i
< nipi
; i
++) {
522 smtc_ipi_nq(&freeIPIq
, pipi
);
526 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
529 local_irq_restore(flags
);
530 /* Initialize SMTC /proc statistics/diagnostics */
536 * Setup the PC, SP, and GP of a secondary processor and start it
538 * smp_bootstrap is the place to resume from
539 * __KSTK_TOS(idle) is apparently the stack pointer
540 * (unsigned long)idle->thread_info the gp
543 void smtc_boot_secondary(int cpu
, struct task_struct
*idle
)
545 extern u32 kernelsp
[NR_CPUS
];
550 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
553 settc(cpu_data
[cpu
].tc_id
);
556 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap
);
559 kernelsp
[cpu
] = __KSTK_TOS(idle
);
560 write_tc_gpr_sp(__KSTK_TOS(idle
));
563 write_tc_gpr_gp((unsigned long)idle
->thread_info
);
565 smtc_status
|= SMTC_MTC_ACTIVE
;
566 write_tc_c0_tchalt(0);
567 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
573 void smtc_init_secondary(void)
576 * Start timer on secondary VPEs if necessary.
577 * plat_timer_setup has already have been invoked by init/main
578 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
579 * SMTC init code assigns TCs consdecutively and in ascending order
580 * to across available VPEs.
582 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
583 ((read_c0_tcbind() & TCBIND_CURVPE
)
584 != cpu_data
[smp_processor_id() - 1].vpe_id
)){
585 write_c0_compare (read_c0_count() + mips_hpt_frequency
/HZ
);
591 void smtc_smp_finish(void)
593 printk("TC %d going on-line as CPU %d\n",
594 cpu_data
[smp_processor_id()].tc_id
, smp_processor_id());
597 void smtc_cpus_done(void)
602 * Support for SMTC-optimized driver IRQ registration
606 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
607 * in do_IRQ. These are passed in setup_irq_smtc() and stored
611 int setup_irq_smtc(unsigned int irq
, struct irqaction
* new,
612 unsigned long hwmask
)
614 unsigned int vpe
= current_cpu_data
.vpe_id
;
616 irq_hwmask
[irq
] = hwmask
;
617 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
618 vpemask
[vpe
][irq
- MIPSCPU_INT_BASE
] = 1;
621 return setup_irq(irq
, new);
625 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
626 * Within a VPE one TC can interrupt another by different approaches.
627 * The easiest to get right would probably be to make all TCs except
628 * the target IXMT and set a software interrupt, but an IXMT-based
629 * scheme requires that a handler must run before a new IPI could
630 * be sent, which would break the "broadcast" loops in MIPS MT.
631 * A more gonzo approach within a VPE is to halt the TC, extract
632 * its Restart, Status, and a couple of GPRs, and program the Restart
633 * address to emulate an interrupt.
635 * Within a VPE, one can be confident that the target TC isn't in
636 * a critical EXL state when halted, since the write to the Halt
637 * register could not have issued on the writing thread if the
638 * halting thread had EXL set. So k0 and k1 of the target TC
639 * can be used by the injection code. Across VPEs, one can't
640 * be certain that the target TC isn't in a critical exception
641 * state. So we try a two-step process of sending a software
642 * interrupt to the target VPE, which either handles the event
643 * itself (if it was the target) or injects the event within
647 static void smtc_ipi_qdump(void)
651 for (i
= 0; i
< NR_CPUS
;i
++) {
652 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
653 i
, (unsigned)IPIQ
[i
].head
, (unsigned)IPIQ
[i
].tail
,
659 * The standard atomic.h primitives don't quite do what we want
660 * here: We need an atomic add-and-return-previous-value (which
661 * could be done with atomic_add_return and a decrement) and an
662 * atomic set/zero-and-return-previous-value (which can't really
663 * be done with the atomic.h primitives). And since this is
664 * MIPS MT, we can assume that we have LL/SC.
666 static __inline__
int atomic_postincrement(unsigned int *pv
)
668 unsigned long result
;
672 __asm__
__volatile__(
678 : "=&r" (result
), "=&r" (temp
), "=m" (*pv
)
685 void smtc_send_ipi(int cpu
, int type
, unsigned int action
)
688 struct smtc_ipi
*pipi
;
692 if (cpu
== smp_processor_id()) {
693 printk("Cannot Send IPI to self!\n");
696 /* Set up a descriptor, to be delivered either promptly or queued */
697 pipi
= smtc_ipi_dq(&freeIPIq
);
700 mips_mt_regdump(dvpe());
701 panic("IPI Msg. Buffers Depleted\n");
704 pipi
->arg
= (void *)action
;
706 if (cpu_data
[cpu
].vpe_id
!= cpu_data
[smp_processor_id()].vpe_id
) {
707 /* If not on same VPE, enqueue and send cross-VPE interupt */
708 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
710 settc(cpu_data
[cpu
].tc_id
);
711 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1
);
715 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
716 * since ASID shootdown on the other VPE may
717 * collide with this operation.
720 settc(cpu_data
[cpu
].tc_id
);
721 /* Halt the targeted TC */
722 write_tc_c0_tchalt(TCHALT_H
);
726 * Inspect TCStatus - if IXMT is set, we have to queue
727 * a message. Otherwise, we set up the "interrupt"
730 tcstatus
= read_tc_c0_tcstatus();
732 if ((tcstatus
& TCSTATUS_IXMT
) != 0) {
734 * Spin-waiting here can deadlock,
735 * so we queue the message for the target TC.
737 write_tc_c0_tchalt(0);
739 /* Try to reduce redundant timer interrupt messages */
740 if (type
== SMTC_CLOCK_TICK
) {
741 if (atomic_postincrement(&ipi_timer_latch
[cpu
])!=0){
742 smtc_ipi_nq(&freeIPIq
, pipi
);
746 smtc_ipi_nq(&IPIQ
[cpu
], pipi
);
748 post_direct_ipi(cpu
, pipi
);
749 write_tc_c0_tchalt(0);
756 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
758 static void post_direct_ipi(int cpu
, struct smtc_ipi
*pipi
)
760 struct pt_regs
*kstack
;
761 unsigned long tcstatus
;
762 unsigned long tcrestart
;
763 extern u32 kernelsp
[NR_CPUS
];
764 extern void __smtc_ipi_vector(void);
766 /* Extract Status, EPC from halted TC */
767 tcstatus
= read_tc_c0_tcstatus();
768 tcrestart
= read_tc_c0_tcrestart();
769 /* If TCRestart indicates a WAIT instruction, advance the PC */
770 if ((tcrestart
& 0x80000000)
771 && ((*(unsigned int *)tcrestart
& 0xfe00003f) == 0x42000020)) {
775 * Save on TC's future kernel stack
777 * CU bit of Status is indicator that TC was
778 * already running on a kernel stack...
780 if (tcstatus
& ST0_CU0
) {
781 /* Note that this "- 1" is pointer arithmetic */
782 kstack
= ((struct pt_regs
*)read_tc_gpr_sp()) - 1;
784 kstack
= ((struct pt_regs
*)kernelsp
[cpu
]) - 1;
787 kstack
->cp0_epc
= (long)tcrestart
;
789 kstack
->cp0_tcstatus
= tcstatus
;
790 /* Pass token of operation to be performed kernel stack pad area */
791 kstack
->pad0
[4] = (unsigned long)pipi
;
792 /* Pass address of function to be called likewise */
793 kstack
->pad0
[5] = (unsigned long)&ipi_decode
;
794 /* Set interrupt exempt and kernel mode */
795 tcstatus
|= TCSTATUS_IXMT
;
796 tcstatus
&= ~TCSTATUS_TKSU
;
797 write_tc_c0_tcstatus(tcstatus
);
799 /* Set TC Restart address to be SMTC IPI vector */
800 write_tc_c0_tcrestart(__smtc_ipi_vector
);
803 static void ipi_resched_interrupt(void)
805 /* Return from interrupt should be enough to cause scheduler check */
809 static void ipi_call_interrupt(void)
811 /* Invoke generic function invocation code in smp.c */
812 smp_call_function_interrupt();
815 void ipi_decode(struct smtc_ipi
*pipi
)
817 void *arg_copy
= pipi
->arg
;
818 int type_copy
= pipi
->type
;
819 int dest_copy
= pipi
->dest
;
821 smtc_ipi_nq(&freeIPIq
, pipi
);
823 case SMTC_CLOCK_TICK
:
825 kstat_this_cpu
.irqs
[MIPSCPU_INT_BASE
+ MIPSCPU_INT_CPUCTR
]++;
826 /* Invoke Clock "Interrupt" */
827 ipi_timer_latch
[dest_copy
] = 0;
828 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
829 clock_hang_reported
[dest_copy
] = 0;
830 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
831 local_timer_interrupt(0, NULL
);
835 switch ((int)arg_copy
) {
836 case SMP_RESCHEDULE_YOURSELF
:
837 ipi_resched_interrupt();
839 case SMP_CALL_FUNCTION
:
840 ipi_call_interrupt();
843 printk("Impossible SMTC IPI Argument 0x%x\n",
849 printk("Impossible SMTC IPI Type 0x%x\n", type_copy
);
854 void deferred_smtc_ipi(void)
856 struct smtc_ipi
*pipi
;
859 int q
= smp_processor_id();
862 * Test is not atomic, but much faster than a dequeue,
863 * and the vast majority of invocations will have a null queue.
865 if (IPIQ
[q
].head
!= NULL
) {
866 while((pipi
= smtc_ipi_dq(&IPIQ
[q
])) != NULL
) {
867 /* ipi_decode() should be called with interrupts off */
868 local_irq_save(flags
);
870 local_irq_restore(flags
);
876 * Send clock tick to all TCs except the one executing the funtion
879 void smtc_timer_broadcast(int vpe
)
882 int myTC
= cpu_data
[smp_processor_id()].tc_id
;
883 int myVPE
= cpu_data
[smp_processor_id()].vpe_id
;
885 smtc_cpu_stats
[smp_processor_id()].timerints
++;
887 for_each_online_cpu(cpu
) {
888 if (cpu_data
[cpu
].vpe_id
== myVPE
&&
889 cpu_data
[cpu
].tc_id
!= myTC
)
890 smtc_send_ipi(cpu
, SMTC_CLOCK_TICK
, 0);
895 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
896 * set via cross-VPE MTTR manipulation of the Cause register. It would be
897 * in some regards preferable to have external logic for "doorbell" hardware
901 static int cpu_ipi_irq
= MIPS_CPU_IRQ_BASE
+ MIPS_CPU_IPI_IRQ
;
903 static irqreturn_t
ipi_interrupt(int irq
, void *dev_idm
)
905 int my_vpe
= cpu_data
[smp_processor_id()].vpe_id
;
906 int my_tc
= cpu_data
[smp_processor_id()].tc_id
;
908 struct smtc_ipi
*pipi
;
909 unsigned long tcstatus
;
912 unsigned int mtflags
;
913 unsigned int vpflags
;
916 * So long as cross-VPE interrupts are done via
917 * MFTR/MTTR read-modify-writes of Cause, we need
918 * to stop other VPEs whenever the local VPE does
921 local_irq_save(flags
);
923 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ
);
924 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ
);
927 local_irq_restore(flags
);
930 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
931 * queued for TCs on this VPE other than the current one.
932 * Return-from-interrupt should cause us to drain the queue
933 * for the current TC, so we ought not to have to do it explicitly here.
936 for_each_online_cpu(cpu
) {
937 if (cpu_data
[cpu
].vpe_id
!= my_vpe
)
940 pipi
= smtc_ipi_dq(&IPIQ
[cpu
]);
942 if (cpu_data
[cpu
].tc_id
!= my_tc
) {
945 settc(cpu_data
[cpu
].tc_id
);
946 write_tc_c0_tchalt(TCHALT_H
);
948 tcstatus
= read_tc_c0_tcstatus();
949 if ((tcstatus
& TCSTATUS_IXMT
) == 0) {
950 post_direct_ipi(cpu
, pipi
);
953 write_tc_c0_tchalt(0);
956 smtc_ipi_req(&IPIQ
[cpu
], pipi
);
960 * ipi_decode() should be called
961 * with interrupts off
963 local_irq_save(flags
);
965 local_irq_restore(flags
);
973 static void ipi_irq_dispatch(void)
978 static struct irqaction irq_ipi
;
980 static void setup_cross_vpe_interrupts(unsigned int nvpe
)
986 panic("SMTC Kernel requires Vectored Interupt support");
988 set_vi_handler(MIPS_CPU_IPI_IRQ
, ipi_irq_dispatch
);
990 irq_ipi
.handler
= ipi_interrupt
;
991 irq_ipi
.flags
= IRQF_DISABLED
;
992 irq_ipi
.name
= "SMTC_IPI";
994 setup_irq_smtc(cpu_ipi_irq
, &irq_ipi
, (0x100 << MIPS_CPU_IPI_IRQ
));
996 irq_desc
[cpu_ipi_irq
].status
|= IRQ_PER_CPU
;
997 set_irq_handler(cpu_ipi_irq
, handle_percpu_irq
);
1001 * SMTC-specific hacks invoked from elsewhere in the kernel.
1003 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1004 * called with interrupts disabled. We do rely on interrupts being disabled
1005 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1006 * result in a recursive call to raw_local_irq_restore().
1009 static void __smtc_ipi_replay(void)
1011 unsigned int cpu
= smp_processor_id();
1014 * To the extent that we've ever turned interrupts off,
1015 * we may have accumulated deferred IPIs. This is subtle.
1016 * If we use the smtc_ipi_qdepth() macro, we'll get an
1017 * exact number - but we'll also disable interrupts
1018 * and create a window of failure where a new IPI gets
1019 * queued after we test the depth but before we re-enable
1020 * interrupts. So long as IXMT never gets set, however,
1021 * we should be OK: If we pick up something and dispatch
1022 * it here, that's great. If we see nothing, but concurrent
1023 * with this operation, another TC sends us an IPI, IXMT
1024 * is clear, and we'll handle it as a real pseudo-interrupt
1025 * and not a pseudo-pseudo interrupt.
1027 if (IPIQ
[cpu
].depth
> 0) {
1029 struct smtc_ipi_q
*q
= &IPIQ
[cpu
];
1030 struct smtc_ipi
*pipi
;
1031 extern void self_ipi(struct smtc_ipi
*);
1033 spin_lock(&q
->lock
);
1034 pipi
= __smtc_ipi_dq(q
);
1035 spin_unlock(&q
->lock
);
1040 smtc_cpu_stats
[cpu
].selfipis
++;
1045 void smtc_ipi_replay(void)
1047 raw_local_irq_disable();
1048 __smtc_ipi_replay();
1051 EXPORT_SYMBOL(smtc_ipi_replay
);
1053 void smtc_idle_loop_hook(void)
1055 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1064 * printk within DMT-protected regions can deadlock,
1065 * so buffer diagnostic messages for later output.
1068 char id_ho_db_msg
[768]; /* worst-case use should be less than 700 */
1070 if (atomic_read(&idle_hook_initialized
) == 0) { /* fast test */
1071 if (atomic_add_return(1, &idle_hook_initialized
) == 1) {
1073 /* Tedious stuff to just do once */
1074 mvpconf0
= read_c0_mvpconf0();
1075 hook_ntcs
= ((mvpconf0
& MVPCONF0_PTC
) >> MVPCONF0_PTC_SHIFT
) + 1;
1076 if (hook_ntcs
> NR_CPUS
)
1077 hook_ntcs
= NR_CPUS
;
1078 for (tc
= 0; tc
< hook_ntcs
; tc
++) {
1080 clock_hang_reported
[tc
] = 0;
1082 for (vpe
= 0; vpe
< 2; vpe
++)
1083 for (im
= 0; im
< 8; im
++)
1084 imstuckcount
[vpe
][im
] = 0;
1085 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs
);
1086 atomic_set(&idle_hook_initialized
, 1000);
1088 /* Someone else is initializing in parallel - let 'em finish */
1089 while (atomic_read(&idle_hook_initialized
) < 1000)
1094 /* Have we stupidly left IXMT set somewhere? */
1095 if (read_c0_tcstatus() & 0x400) {
1096 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1098 printk("Dangling IXMT in cpu_idle()\n");
1101 /* Have we stupidly left an IM bit turned off? */
1102 #define IM_LIMIT 2000
1103 local_irq_save(flags
);
1105 pdb_msg
= &id_ho_db_msg
[0];
1106 im
= read_c0_status();
1107 vpe
= cpu_data
[smp_processor_id()].vpe_id
;
1108 for (bit
= 0; bit
< 8; bit
++) {
1110 * In current prototype, I/O interrupts
1111 * are masked for VPE > 0
1113 if (vpemask
[vpe
][bit
]) {
1114 if (!(im
& (0x100 << bit
)))
1115 imstuckcount
[vpe
][bit
]++;
1117 imstuckcount
[vpe
][bit
] = 0;
1118 if (imstuckcount
[vpe
][bit
] > IM_LIMIT
) {
1119 set_c0_status(0x100 << bit
);
1121 imstuckcount
[vpe
][bit
] = 0;
1122 pdb_msg
+= sprintf(pdb_msg
,
1123 "Dangling IM %d fixed for VPE %d\n", bit
,
1130 * Now that we limit outstanding timer IPIs, check for hung TC
1132 for (tc
= 0; tc
< NR_CPUS
; tc
++) {
1133 /* Don't check ourself - we'll dequeue IPIs just below */
1134 if ((tc
!= smp_processor_id()) &&
1135 ipi_timer_latch
[tc
] > timerq_limit
) {
1136 if (clock_hang_reported
[tc
] == 0) {
1137 pdb_msg
+= sprintf(pdb_msg
,
1138 "TC %d looks hung with timer latch at %d\n",
1139 tc
, ipi_timer_latch
[tc
]);
1140 clock_hang_reported
[tc
]++;
1145 local_irq_restore(flags
);
1146 if (pdb_msg
!= &id_ho_db_msg
[0])
1147 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg
);
1148 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1151 * Replay any accumulated deferred IPIs. If "Instant Replay"
1152 * is in use, there should never be any.
1154 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1156 unsigned long flags
;
1158 local_irq_save(flags
);
1159 __smtc_ipi_replay();
1160 local_irq_restore(flags
);
1162 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1165 void smtc_soft_dump(void)
1169 printk("Counter Interrupts taken per CPU (TC)\n");
1170 for (i
=0; i
< NR_CPUS
; i
++) {
1171 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].timerints
);
1173 printk("Self-IPI invocations:\n");
1174 for (i
=0; i
< NR_CPUS
; i
++) {
1175 printk("%d: %ld\n", i
, smtc_cpu_stats
[i
].selfipis
);
1178 printk("Timer IPI Backlogs:\n");
1179 for (i
=0; i
< NR_CPUS
; i
++) {
1180 printk("%d: %d\n", i
, ipi_timer_latch
[i
]);
1182 printk("%d Recoveries of \"stolen\" FPU\n",
1183 atomic_read(&smtc_fpu_recoveries
));
1188 * TLB management routines special to SMTC
1191 void smtc_get_new_mmu_context(struct mm_struct
*mm
, unsigned long cpu
)
1193 unsigned long flags
, mtflags
, tcstat
, prevhalt
, asid
;
1197 * It would be nice to be able to use a spinlock here,
1198 * but this is invoked from within TLB flush routines
1199 * that protect themselves with DVPE, so if a lock is
1200 * held by another TC, it'll never be freed.
1202 * DVPE/DMT must not be done with interrupts enabled,
1203 * so even so most callers will already have disabled
1204 * them, let's be really careful...
1207 local_irq_save(flags
);
1208 if (smtc_status
& SMTC_TLB_SHARED
) {
1213 tlb
= cpu_data
[cpu
].vpe_id
;
1215 asid
= asid_cache(cpu
);
1218 if (!((asid
+= ASID_INC
) & ASID_MASK
) ) {
1219 if (cpu_has_vtag_icache
)
1221 /* Traverse all online CPUs (hack requires contigous range) */
1222 for (i
= 0; i
< num_online_cpus(); i
++) {
1224 * We don't need to worry about our own CPU, nor those of
1225 * CPUs who don't share our TLB.
1227 if ((i
!= smp_processor_id()) &&
1228 ((smtc_status
& SMTC_TLB_SHARED
) ||
1229 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))) {
1230 settc(cpu_data
[i
].tc_id
);
1231 prevhalt
= read_tc_c0_tchalt() & TCHALT_H
;
1233 write_tc_c0_tchalt(TCHALT_H
);
1236 tcstat
= read_tc_c0_tcstatus();
1237 smtc_live_asid
[tlb
][(tcstat
& ASID_MASK
)] |= (asiduse
)(0x1 << i
);
1239 write_tc_c0_tchalt(0);
1242 if (!asid
) /* fix version if needed */
1243 asid
= ASID_FIRST_VERSION
;
1244 local_flush_tlb_all(); /* start new asid cycle */
1246 } while (smtc_live_asid
[tlb
][(asid
& ASID_MASK
)]);
1249 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1251 for (i
= 0; i
< num_online_cpus(); i
++) {
1252 if ((smtc_status
& SMTC_TLB_SHARED
) ||
1253 (cpu_data
[i
].vpe_id
== cpu_data
[cpu
].vpe_id
))
1254 cpu_context(i
, mm
) = asid_cache(i
) = asid
;
1257 if (smtc_status
& SMTC_TLB_SHARED
)
1261 local_irq_restore(flags
);
1265 * Invoked from macros defined in mmu_context.h
1266 * which must already have disabled interrupts
1267 * and done a DVPE or DMT as appropriate.
1270 void smtc_flush_tlb_asid(unsigned long asid
)
1275 entry
= read_c0_wired();
1277 /* Traverse all non-wired entries */
1278 while (entry
< current_cpu_data
.tlbsize
) {
1279 write_c0_index(entry
);
1283 ehi
= read_c0_entryhi();
1284 if ((ehi
& ASID_MASK
) == asid
) {
1286 * Invalidate only entries with specified ASID,
1287 * makiing sure all entries differ.
1289 write_c0_entryhi(CKSEG0
+ (entry
<< (PAGE_SHIFT
+ 1)));
1290 write_c0_entrylo0(0);
1291 write_c0_entrylo1(0);
1293 tlb_write_indexed();
1297 write_c0_index(PARKED_INDEX
);
1302 * Support for single-threading cache flush operations.
1305 static int halt_state_save
[NR_CPUS
];
1308 * To really, really be sure that nothing is being done
1309 * by other TCs, halt them all. This code assumes that
1310 * a DVPE has already been done, so while their Halted
1311 * state is theoretically architecturally unstable, in
1312 * practice, it's not going to change while we're looking
1316 void smtc_cflush_lockdown(void)
1320 for_each_online_cpu(cpu
) {
1321 if (cpu
!= smp_processor_id()) {
1322 settc(cpu_data
[cpu
].tc_id
);
1323 halt_state_save
[cpu
] = read_tc_c0_tchalt();
1324 write_tc_c0_tchalt(TCHALT_H
);
1330 /* It would be cheating to change the cpu_online states during a flush! */
1332 void smtc_cflush_release(void)
1337 * Start with a hazard barrier to ensure
1338 * that all CACHE ops have played through.
1342 for_each_online_cpu(cpu
) {
1343 if (cpu
!= smp_processor_id()) {
1344 settc(cpu_data
[cpu
].tc_id
);
1345 write_tc_c0_tchalt(halt_state_save
[cpu
]);