Linux 2.6.21
[linux/fpc-iii.git] / arch / mips / kernel / time.c
blobe5e56bd498dbcf0d650fe22152ad98e6c5d62a8e
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
37 * The integer part of the number of usecs per jiffy is taken from tick,
38 * but the fractional part is not recorded, so we calculate it using the
39 * initial value of HZ. This aids systems where tick isn't really an
40 * integer (e.g. for HZ = 128).
42 #define USECS_PER_JIFFY TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 #define TICK_SIZE (tick_nsec / 1000)
48 * forward reference
50 DEFINE_SPINLOCK(rtc_lock);
53 * By default we provide the null RTC ops
55 static unsigned long null_rtc_get_time(void)
57 return mktime(2000, 1, 1, 0, 0, 0);
60 static int null_rtc_set_time(unsigned long sec)
62 return 0;
65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
67 int (*rtc_mips_set_mmss)(unsigned long);
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
78 * Null timer ack for systems not needing one (e.g. i8254).
80 static void null_timer_ack(void) { /* nothing */ }
83 * Null high precision timer functions for systems lacking one.
85 static cycle_t null_hpt_read(void)
87 return 0;
91 * Timer ack for an R4k-compatible timer of a known frequency.
93 static void c0_timer_ack(void)
95 unsigned int count;
97 /* Ack this timer interrupt and set the next one. */
98 expirelo += cycles_per_jiffy;
99 write_c0_compare(expirelo);
101 /* Check to see if we have missed any timer interrupts. */
102 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
103 /* missed_timer_count++; */
104 expirelo = count + cycles_per_jiffy;
105 write_c0_compare(expirelo);
110 * High precision timer functions for a R4k-compatible timer.
112 static cycle_t c0_hpt_read(void)
114 return read_c0_count();
117 /* For use both as a high precision timer and an interrupt source. */
118 static void __init c0_hpt_timer_init(void)
120 expirelo = read_c0_count() + cycles_per_jiffy;
121 write_c0_compare(expirelo);
124 int (*mips_timer_state)(void);
125 void (*mips_timer_ack)(void);
127 /* last time when xtime and rtc are sync'ed up */
128 static long last_rtc_update;
131 * local_timer_interrupt() does profiling and process accounting
132 * on a per-CPU basis.
134 * In UP mode, it is invoked from the (global) timer_interrupt.
136 * In SMP mode, it might invoked by per-CPU timer interrupt, or
137 * a broadcasted inter-processor interrupt which itself is triggered
138 * by the global timer interrupt.
140 void local_timer_interrupt(int irq, void *dev_id)
142 profile_tick(CPU_PROFILING);
143 update_process_times(user_mode(get_irq_regs()));
147 * High-level timer interrupt service routines. This function
148 * is set as irqaction->handler and is invoked through do_IRQ.
150 irqreturn_t timer_interrupt(int irq, void *dev_id)
152 write_seqlock(&xtime_lock);
154 mips_timer_ack();
157 * call the generic timer interrupt handling
159 do_timer(1);
162 * If we have an externally synchronized Linux clock, then update
163 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
164 * called as close as possible to 500 ms before the new second starts.
166 if (ntp_synced() &&
167 xtime.tv_sec > last_rtc_update + 660 &&
168 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
169 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
170 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
171 last_rtc_update = xtime.tv_sec;
172 } else {
173 /* do it again in 60 s */
174 last_rtc_update = xtime.tv_sec - 600;
178 write_sequnlock(&xtime_lock);
181 * In UP mode, we call local_timer_interrupt() to do profiling
182 * and process accouting.
184 * In SMP mode, local_timer_interrupt() is invoked by appropriate
185 * low-level local timer interrupt handler.
187 local_timer_interrupt(irq, dev_id);
189 return IRQ_HANDLED;
192 int null_perf_irq(void)
194 return 0;
197 int (*perf_irq)(void) = null_perf_irq;
199 EXPORT_SYMBOL(null_perf_irq);
200 EXPORT_SYMBOL(perf_irq);
202 asmlinkage void ll_timer_interrupt(int irq)
204 int r2 = cpu_has_mips_r2;
206 irq_enter();
207 kstat_this_cpu.irqs[irq]++;
210 * Suckage alert:
211 * Before R2 of the architecture there was no way to see if a
212 * performance counter interrupt was pending, so we have to run the
213 * performance counter interrupt handler anyway.
215 if (!r2 || (read_c0_cause() & (1 << 26)))
216 if (perf_irq())
217 goto out;
219 /* we keep interrupt disabled all the time */
220 if (!r2 || (read_c0_cause() & (1 << 30)))
221 timer_interrupt(irq, NULL);
223 out:
224 irq_exit();
227 asmlinkage void ll_local_timer_interrupt(int irq)
229 irq_enter();
230 if (smp_processor_id() != 0)
231 kstat_this_cpu.irqs[irq]++;
233 /* we keep interrupt disabled all the time */
234 local_timer_interrupt(irq, NULL);
236 irq_exit();
240 * time_init() - it does the following things.
242 * 1) board_time_init() -
243 * a) (optional) set up RTC routines,
244 * b) (optional) calibrate and set the mips_hpt_frequency
245 * (only needed if you intended to use cpu counter as timer interrupt
246 * source)
247 * 2) setup xtime based on rtc_mips_get_time().
248 * 3) calculate a couple of cached variables for later usage
249 * 4) plat_timer_setup() -
250 * a) (optional) over-write any choices made above by time_init().
251 * b) machine specific code should setup the timer irqaction.
252 * c) enable the timer interrupt
255 void (*board_time_init)(void);
257 unsigned int mips_hpt_frequency;
259 static struct irqaction timer_irqaction = {
260 .handler = timer_interrupt,
261 .flags = IRQF_DISABLED,
262 .name = "timer",
265 static unsigned int __init calibrate_hpt(void)
267 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
269 const int loops = HZ / 10;
270 int log_2_loops = 0;
271 int i;
274 * We want to calibrate for 0.1s, but to avoid a 64-bit
275 * division we round the number of loops up to the nearest
276 * power of 2.
278 while (loops > 1 << log_2_loops)
279 log_2_loops++;
280 i = 1 << log_2_loops;
283 * Wait for a rising edge of the timer interrupt.
285 while (mips_timer_state());
286 while (!mips_timer_state());
289 * Now see how many high precision timer ticks happen
290 * during the calculated number of periods between timer
291 * interrupts.
293 hpt_start = clocksource_mips.read();
294 do {
295 while (mips_timer_state());
296 while (!mips_timer_state());
297 } while (--i);
298 hpt_end = clocksource_mips.read();
300 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
301 hz = HZ;
302 frequency = hpt_count * hz;
304 return frequency >> log_2_loops;
307 struct clocksource clocksource_mips = {
308 .name = "MIPS",
309 .mask = 0xffffffff,
310 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
313 static void __init init_mips_clocksource(void)
315 u64 temp;
316 u32 shift;
318 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
319 return;
321 /* Calclate a somewhat reasonable rating value */
322 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
323 /* Find a shift value */
324 for (shift = 32; shift > 0; shift--) {
325 temp = (u64) NSEC_PER_SEC << shift;
326 do_div(temp, mips_hpt_frequency);
327 if ((temp >> 32) == 0)
328 break;
330 clocksource_mips.shift = shift;
331 clocksource_mips.mult = (u32)temp;
333 clocksource_register(&clocksource_mips);
336 void __init time_init(void)
338 if (board_time_init)
339 board_time_init();
341 if (!rtc_mips_set_mmss)
342 rtc_mips_set_mmss = rtc_mips_set_time;
344 xtime.tv_sec = rtc_mips_get_time();
345 xtime.tv_nsec = 0;
347 set_normalized_timespec(&wall_to_monotonic,
348 -xtime.tv_sec, -xtime.tv_nsec);
350 /* Choose appropriate high precision timer routines. */
351 if (!cpu_has_counter && !clocksource_mips.read)
352 /* No high precision timer -- sorry. */
353 clocksource_mips.read = null_hpt_read;
354 else if (!mips_hpt_frequency && !mips_timer_state) {
355 /* A high precision timer of unknown frequency. */
356 if (!clocksource_mips.read)
357 /* No external high precision timer -- use R4k. */
358 clocksource_mips.read = c0_hpt_read;
359 } else {
360 /* We know counter frequency. Or we can get it. */
361 if (!clocksource_mips.read) {
362 /* No external high precision timer -- use R4k. */
363 clocksource_mips.read = c0_hpt_read;
365 if (!mips_timer_state) {
366 /* No external timer interrupt -- use R4k. */
367 mips_timer_ack = c0_timer_ack;
368 /* Calculate cache parameters. */
369 cycles_per_jiffy =
370 (mips_hpt_frequency + HZ / 2) / HZ;
372 * This sets up the high precision
373 * timer for the first interrupt.
375 c0_hpt_timer_init();
378 if (!mips_hpt_frequency)
379 mips_hpt_frequency = calibrate_hpt();
381 /* Report the high precision timer rate for a reference. */
382 printk("Using %u.%03u MHz high precision timer.\n",
383 ((mips_hpt_frequency + 500) / 1000) / 1000,
384 ((mips_hpt_frequency + 500) / 1000) % 1000);
387 if (!mips_timer_ack)
388 /* No timer interrupt ack (e.g. i8254). */
389 mips_timer_ack = null_timer_ack;
392 * Call board specific timer interrupt setup.
394 * this pointer must be setup in machine setup routine.
396 * Even if a machine chooses to use a low-level timer interrupt,
397 * it still needs to setup the timer_irqaction.
398 * In that case, it might be better to set timer_irqaction.handler
399 * to be NULL function so that we are sure the high-level code
400 * is not invoked accidentally.
402 plat_timer_setup(&timer_irqaction);
404 init_mips_clocksource();
407 #define FEBRUARY 2
408 #define STARTOFTIME 1970
409 #define SECDAY 86400L
410 #define SECYR (SECDAY * 365)
411 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
412 #define days_in_year(y) (leapyear(y) ? 366 : 365)
413 #define days_in_month(m) (month_days[(m) - 1])
415 static int month_days[12] = {
416 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
419 void to_tm(unsigned long tim, struct rtc_time *tm)
421 long hms, day, gday;
422 int i;
424 gday = day = tim / SECDAY;
425 hms = tim % SECDAY;
427 /* Hours, minutes, seconds are easy */
428 tm->tm_hour = hms / 3600;
429 tm->tm_min = (hms % 3600) / 60;
430 tm->tm_sec = (hms % 3600) % 60;
432 /* Number of years in days */
433 for (i = STARTOFTIME; day >= days_in_year(i); i++)
434 day -= days_in_year(i);
435 tm->tm_year = i;
437 /* Number of months in days left */
438 if (leapyear(tm->tm_year))
439 days_in_month(FEBRUARY) = 29;
440 for (i = 1; day >= days_in_month(i); i++)
441 day -= days_in_month(i);
442 days_in_month(FEBRUARY) = 28;
443 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
445 /* Days are what is left over (+1) from all that. */
446 tm->tm_mday = day + 1;
449 * Determine the day of week
451 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
454 EXPORT_SYMBOL(rtc_lock);
455 EXPORT_SYMBOL(to_tm);
456 EXPORT_SYMBOL(rtc_mips_set_time);
457 EXPORT_SYMBOL(rtc_mips_get_time);