2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/smp_lock.h>
23 #include <linux/kernel.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/delay.h>
26 #include <linux/bitops.h>
28 #include <asm/bootinfo.h>
30 #include <asm/mipsregs.h>
31 #include <asm/system.h>
33 #include <asm/processor.h>
34 #include <asm/pci/bridge.h>
35 #include <asm/sn/addrs.h>
36 #include <asm/sn/agent.h>
37 #include <asm/sn/arch.h>
38 #include <asm/sn/hub.h>
39 #include <asm/sn/intr.h>
42 * Linux has a controller-independent x86 interrupt architecture.
43 * every controller has a 'controller-template', that is used
44 * by the main code to do the right thing. Each driver-visible
45 * interrupt source is transparently wired to the apropriate
46 * controller. Thus drivers need not be aware of the
47 * interrupt-controller.
49 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
50 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
51 * (IO-APICs assumed to be messaging to Pentium local-APICs)
53 * the code is designed to be easily extended with new/different
54 * interrupt controllers, without having to do assembly magic.
57 extern asmlinkage
void ip27_irq(void);
59 extern struct bridge_controller
*irq_to_bridge
[];
60 extern int irq_to_slot
[];
63 * use these macros to get the encoded nasid and widget id
66 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
67 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
69 static inline int alloc_level(int cpu
, int irq
)
71 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
72 struct slice_data
*si
= cpu_data
[cpu
].data
;
75 level
= find_first_zero_bit(hub
->irq_alloc_mask
, LEVELS_PER_SLICE
);
76 if (level
>= LEVELS_PER_SLICE
)
77 panic("Cpu %d flooded with devices\n", cpu
);
79 __set_bit(level
, hub
->irq_alloc_mask
);
80 si
->level_to_irq
[level
] = irq
;
85 static inline int find_level(cpuid_t
*cpunum
, int irq
)
89 for_each_online_cpu(cpu
) {
90 struct slice_data
*si
= cpu_data
[cpu
].data
;
92 for (i
= BASE_PCI_IRQ
; i
< LEVELS_PER_SLICE
; i
++)
93 if (si
->level_to_irq
[i
] == irq
) {
100 panic("Could not identify cpu/level for irq %d\n", irq
);
106 static int ms1bit(unsigned long x
)
110 s
= 16; if (x
>> 16 == 0) s
= 0; b
+= s
; x
>>= s
;
111 s
= 8; if (x
>> 8 == 0) s
= 0; b
+= s
; x
>>= s
;
112 s
= 4; if (x
>> 4 == 0) s
= 0; b
+= s
; x
>>= s
;
113 s
= 2; if (x
>> 2 == 0) s
= 0; b
+= s
; x
>>= s
;
114 s
= 1; if (x
>> 1 == 0) s
= 0; b
+= s
;
120 * This code is unnecessarily complex, because we do IRQF_DISABLED
121 * intr enabling. Basically, once we grab the set of intrs we need
122 * to service, we must mask _all_ these interrupts; firstly, to make
123 * sure the same intr does not intr again, causing recursion that
124 * can lead to stack overflow. Secondly, we can not just mask the
125 * one intr we are do_IRQing, because the non-masked intrs in the
126 * first set might intr again, causing multiple servicings of the
127 * same intr. This effect is mostly seen for intercpu intrs.
131 static void ip27_do_irq_mask0(void)
134 hubreg_t pend0
, mask0
;
135 cpuid_t cpu
= smp_processor_id();
137 (cputoslice(cpu
) == 0) ? PI_INT_MASK0_A
: PI_INT_MASK0_B
;
139 /* copied from Irix intpend0() */
140 pend0
= LOCAL_HUB_L(PI_INT_PEND0
);
141 mask0
= LOCAL_HUB_L(pi_int_mask0
);
143 pend0
&= mask0
; /* Pick intrs we should look at */
147 swlevel
= ms1bit(pend0
);
149 if (pend0
& (1UL << CPU_RESCHED_A_IRQ
)) {
150 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
151 } else if (pend0
& (1UL << CPU_RESCHED_B_IRQ
)) {
152 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
153 } else if (pend0
& (1UL << CPU_CALL_A_IRQ
)) {
154 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
155 smp_call_function_interrupt();
156 } else if (pend0
& (1UL << CPU_CALL_B_IRQ
)) {
157 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
158 smp_call_function_interrupt();
162 /* "map" swlevel to irq */
163 struct slice_data
*si
= cpu_data
[cpu
].data
;
165 irq
= si
->level_to_irq
[swlevel
];
169 LOCAL_HUB_L(PI_INT_PEND0
);
172 static void ip27_do_irq_mask1(void)
175 hubreg_t pend1
, mask1
;
176 cpuid_t cpu
= smp_processor_id();
177 int pi_int_mask1
= (cputoslice(cpu
) == 0) ? PI_INT_MASK1_A
: PI_INT_MASK1_B
;
178 struct slice_data
*si
= cpu_data
[cpu
].data
;
180 /* copied from Irix intpend0() */
181 pend1
= LOCAL_HUB_L(PI_INT_PEND1
);
182 mask1
= LOCAL_HUB_L(pi_int_mask1
);
184 pend1
&= mask1
; /* Pick intrs we should look at */
188 swlevel
= ms1bit(pend1
);
189 /* "map" swlevel to irq */
190 irq
= si
->level_to_irq
[swlevel
];
191 LOCAL_HUB_CLR_INTR(swlevel
);
194 LOCAL_HUB_L(PI_INT_PEND1
);
197 static void ip27_prof_timer(void)
199 panic("CPU %d got a profiling interrupt", smp_processor_id());
202 static void ip27_hub_error(void)
204 panic("CPU %d got a hub error interrupt", smp_processor_id());
207 static int intr_connect_level(int cpu
, int bit
)
209 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
210 struct slice_data
*si
= cpu_data
[cpu
].data
;
213 set_bit(bit
, si
->irq_enable_mask
);
215 local_irq_save(flags
);
216 if (!cputoslice(cpu
)) {
217 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
218 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
220 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
221 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
223 local_irq_restore(flags
);
228 static int intr_disconnect_level(int cpu
, int bit
)
230 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
231 struct slice_data
*si
= cpu_data
[cpu
].data
;
233 clear_bit(bit
, si
->irq_enable_mask
);
235 if (!cputoslice(cpu
)) {
236 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
237 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
239 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
240 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
246 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
247 static unsigned int startup_bridge_irq(unsigned int irq
)
249 struct bridge_controller
*bc
;
255 pin
= SLOT_FROM_PCI_IRQ(irq
);
256 bc
= IRQ_TO_BRIDGE(irq
);
259 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", irq
, pin
);
261 * "map" irq to a swlevel greater than 6 since the first 6 bits
262 * of INT_PEND0 are taken
264 swlevel
= find_level(&cpu
, irq
);
265 bridge
->b_int_addr
[pin
].addr
= (0x20000 | swlevel
| (bc
->nasid
<< 8));
266 bridge
->b_int_enable
|= (1 << pin
);
267 bridge
->b_int_enable
|= 0x7ffffe00; /* more stuff in int_enable */
270 * Enable sending of an interrupt clear packt to the hub on a high to
271 * low transition of the interrupt pin.
273 * IRIX sets additional bits in the address which are documented as
274 * reserved in the bridge docs.
276 bridge
->b_int_mode
|= (1UL << pin
);
279 * We assume the bridge to have a 1:1 mapping between devices
280 * (slots) and intr pins.
282 device
= bridge
->b_int_device
;
283 device
&= ~(7 << (pin
*3));
284 device
|= (pin
<< (pin
*3));
285 bridge
->b_int_device
= device
;
287 bridge
->b_wid_tflush
;
289 return 0; /* Never anything pending. */
292 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
293 static void shutdown_bridge_irq(unsigned int irq
)
295 struct bridge_controller
*bc
= IRQ_TO_BRIDGE(irq
);
296 struct hub_data
*hub
= hub_data(cpu_to_node(bc
->irq_cpu
));
297 bridge_t
*bridge
= bc
->base
;
301 pr_debug("bridge_shutdown: irq 0x%x\n", irq
);
302 pin
= SLOT_FROM_PCI_IRQ(irq
);
305 * map irq to a swlevel greater than 6 since the first 6 bits
306 * of INT_PEND0 are taken
308 swlevel
= find_level(&cpu
, irq
);
309 intr_disconnect_level(cpu
, swlevel
);
311 __clear_bit(swlevel
, hub
->irq_alloc_mask
);
313 bridge
->b_int_enable
&= ~(1 << pin
);
314 bridge
->b_wid_tflush
;
317 static inline void enable_bridge_irq(unsigned int irq
)
322 swlevel
= find_level(&cpu
, irq
); /* Criminal offence */
323 intr_connect_level(cpu
, swlevel
);
326 static inline void disable_bridge_irq(unsigned int irq
)
331 swlevel
= find_level(&cpu
, irq
); /* Criminal offence */
332 intr_disconnect_level(cpu
, swlevel
);
335 static struct irq_chip bridge_irq_type
= {
337 .startup
= startup_bridge_irq
,
338 .shutdown
= shutdown_bridge_irq
,
339 .ack
= disable_bridge_irq
,
340 .mask
= disable_bridge_irq
,
341 .mask_ack
= disable_bridge_irq
,
342 .unmask
= enable_bridge_irq
,
345 void __devinit
register_bridge_irq(unsigned int irq
)
347 set_irq_chip_and_handler(irq
, &bridge_irq_type
, handle_level_irq
);
350 int __devinit
request_bridge_irq(struct bridge_controller
*bc
)
352 int irq
= allocate_irqno();
360 * "map" irq to a swlevel greater than 6 since the first 6 bits
361 * of INT_PEND0 are taken
364 swlevel
= alloc_level(cpu
, irq
);
365 if (unlikely(swlevel
< 0)) {
371 /* Make sure it's not already pending when we connect it. */
372 nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
373 REMOTE_HUB_CLR_INTR(nasid
, swlevel
);
375 intr_connect_level(cpu
, swlevel
);
377 register_bridge_irq(irq
);
382 extern void ip27_rt_timer_interrupt(void);
384 asmlinkage
void plat_irq_dispatch(void)
386 unsigned long pending
= read_c0_cause() & read_c0_status();
388 if (pending
& CAUSEF_IP4
)
389 ip27_rt_timer_interrupt();
390 else if (pending
& CAUSEF_IP2
) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
392 else if (pending
& CAUSEF_IP3
) /* PI_INT_PEND_1 */
394 else if (pending
& CAUSEF_IP5
)
396 else if (pending
& CAUSEF_IP6
)
400 void __init
arch_init_irq(void)
404 void install_ipi(void)
406 int slice
= LOCAL_HUB_L(PI_CPU_NUM
);
407 int cpu
= smp_processor_id();
408 struct slice_data
*si
= cpu_data
[cpu
].data
;
409 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
412 resched
= CPU_RESCHED_A_IRQ
+ slice
;
413 __set_bit(resched
, hub
->irq_alloc_mask
);
414 __set_bit(resched
, si
->irq_enable_mask
);
415 LOCAL_HUB_CLR_INTR(resched
);
417 call
= CPU_CALL_A_IRQ
+ slice
;
418 __set_bit(call
, hub
->irq_alloc_mask
);
419 __set_bit(call
, si
->irq_enable_mask
);
420 LOCAL_HUB_CLR_INTR(call
);
423 LOCAL_HUB_S(PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
424 LOCAL_HUB_S(PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
426 LOCAL_HUB_S(PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
427 LOCAL_HUB_S(PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);