2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/seq_file.h>
25 #include <linux/kdev_t.h>
26 #include <linux/major.h>
27 #include <linux/root_dev.h>
28 #include <linux/kernel.h>
30 #include <asm/processor.h>
31 #include <asm/machdep.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cputable.h>
37 #include <asm/sections.h>
38 #include <asm/iommu.h>
39 #include <asm/firmware.h>
40 #include <asm/system.h>
43 #include <asm/cache.h>
44 #include <asm/sections.h>
45 #include <asm/abs_addr.h>
46 #include <asm/iseries/hv_lp_config.h>
47 #include <asm/iseries/hv_call_event.h>
48 #include <asm/iseries/hv_call_xm.h>
49 #include <asm/iseries/it_lp_queue.h>
50 #include <asm/iseries/mf.h>
51 #include <asm/iseries/hv_lp_event.h>
52 #include <asm/iseries/lpar_map.h>
59 #include "vpd_areas.h"
60 #include "processor_vpd.h"
61 #include "it_lp_naca.h"
62 #include "main_store.h"
67 #define DBG(fmt...) udbg_printf(fmt)
72 /* Function Prototypes */
73 static unsigned long build_iSeries_Memory_Map(void);
74 static void iseries_shared_idle(void);
75 static void iseries_dedicated_idle(void);
77 extern void iSeries_pci_final_fixup(void);
79 static void iSeries_pci_final_fixup(void) { }
82 extern unsigned long iSeries_recal_tb
;
83 extern unsigned long iSeries_recal_titan
;
86 unsigned long absStart
;
88 unsigned long logicalStart
;
89 unsigned long logicalEnd
;
93 * Process the main store vpd to determine where the holes in memory are
94 * and return the number of physical blocks and fill in the array of
97 static unsigned long iSeries_process_Condor_mainstore_vpd(
98 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
100 unsigned long holeFirstChunk
, holeSizeChunks
;
101 unsigned long numMemoryBlocks
= 1;
102 struct IoHriMainStoreSegment4
*msVpd
=
103 (struct IoHriMainStoreSegment4
*)xMsVpd
;
104 unsigned long holeStart
= msVpd
->nonInterleavedBlocksStartAdr
;
105 unsigned long holeEnd
= msVpd
->nonInterleavedBlocksEndAdr
;
106 unsigned long holeSize
= holeEnd
- holeStart
;
108 printk("Mainstore_VPD: Condor\n");
110 * Determine if absolute memory has any
111 * holes so that we can interpret the
112 * access map we get back from the hypervisor
115 mb_array
[0].logicalStart
= 0;
116 mb_array
[0].logicalEnd
= 0x100000000;
117 mb_array
[0].absStart
= 0;
118 mb_array
[0].absEnd
= 0x100000000;
122 holeStart
= holeStart
& 0x000fffffffffffff;
123 holeStart
= addr_to_chunk(holeStart
);
124 holeFirstChunk
= holeStart
;
125 holeSize
= addr_to_chunk(holeSize
);
126 holeSizeChunks
= holeSize
;
127 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
128 holeFirstChunk
, holeSizeChunks
);
129 mb_array
[0].logicalEnd
= holeFirstChunk
;
130 mb_array
[0].absEnd
= holeFirstChunk
;
131 mb_array
[1].logicalStart
= holeFirstChunk
;
132 mb_array
[1].logicalEnd
= 0x100000000 - holeSizeChunks
;
133 mb_array
[1].absStart
= holeFirstChunk
+ holeSizeChunks
;
134 mb_array
[1].absEnd
= 0x100000000;
136 return numMemoryBlocks
;
139 #define MaxSegmentAreas 32
140 #define MaxSegmentAdrRangeBlocks 128
141 #define MaxAreaRangeBlocks 4
143 static unsigned long iSeries_process_Regatta_mainstore_vpd(
144 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
146 struct IoHriMainStoreSegment5
*msVpdP
=
147 (struct IoHriMainStoreSegment5
*)xMsVpd
;
148 unsigned long numSegmentBlocks
= 0;
149 u32 existsBits
= msVpdP
->msAreaExists
;
150 unsigned long area_num
;
152 printk("Mainstore_VPD: Regatta\n");
154 for (area_num
= 0; area_num
< MaxSegmentAreas
; ++area_num
) {
155 unsigned long numAreaBlocks
;
156 struct IoHriMainStoreArea4
*currentArea
;
158 if (existsBits
& 0x80000000) {
159 unsigned long block_num
;
161 currentArea
= &msVpdP
->msAreaArray
[area_num
];
162 numAreaBlocks
= currentArea
->numAdrRangeBlocks
;
163 printk("ms_vpd: processing area %2ld blocks=%ld",
164 area_num
, numAreaBlocks
);
165 for (block_num
= 0; block_num
< numAreaBlocks
;
167 /* Process an address range block */
168 struct MemoryBlock tempBlock
;
172 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockStart
;
174 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockEnd
;
175 tempBlock
.logicalStart
= 0;
176 tempBlock
.logicalEnd
= 0;
177 printk("\n block %ld absStart=%016lx absEnd=%016lx",
178 block_num
, tempBlock
.absStart
,
181 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
182 if (mb_array
[i
].absStart
==
186 if (i
== numSegmentBlocks
) {
187 if (numSegmentBlocks
== max_entries
)
188 panic("iSeries_process_mainstore_vpd: too many memory blocks");
189 mb_array
[numSegmentBlocks
] = tempBlock
;
192 printk(" (duplicate)");
198 /* Now sort the blocks found into ascending sequence */
199 if (numSegmentBlocks
> 1) {
202 for (m
= 0; m
< numSegmentBlocks
- 1; ++m
) {
203 for (n
= numSegmentBlocks
- 1; m
< n
; --n
) {
204 if (mb_array
[n
].absStart
<
205 mb_array
[n
-1].absStart
) {
206 struct MemoryBlock tempBlock
;
208 tempBlock
= mb_array
[n
];
209 mb_array
[n
] = mb_array
[n
-1];
210 mb_array
[n
-1] = tempBlock
;
216 * Assign "logical" addresses to each block. These
217 * addresses correspond to the hypervisor "bitmap" space.
218 * Convert all addresses into units of 256K chunks.
221 unsigned long i
, nextBitmapAddress
;
223 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks
);
224 nextBitmapAddress
= 0;
225 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
226 unsigned long length
= mb_array
[i
].absEnd
-
227 mb_array
[i
].absStart
;
229 mb_array
[i
].logicalStart
= nextBitmapAddress
;
230 mb_array
[i
].logicalEnd
= nextBitmapAddress
+ length
;
231 nextBitmapAddress
+= length
;
232 printk(" Bitmap range: %016lx - %016lx\n"
233 " Absolute range: %016lx - %016lx\n",
234 mb_array
[i
].logicalStart
,
235 mb_array
[i
].logicalEnd
,
236 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
237 mb_array
[i
].absStart
= addr_to_chunk(mb_array
[i
].absStart
&
239 mb_array
[i
].absEnd
= addr_to_chunk(mb_array
[i
].absEnd
&
241 mb_array
[i
].logicalStart
=
242 addr_to_chunk(mb_array
[i
].logicalStart
);
243 mb_array
[i
].logicalEnd
= addr_to_chunk(mb_array
[i
].logicalEnd
);
247 return numSegmentBlocks
;
250 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock
*mb_array
,
251 unsigned long max_entries
)
254 unsigned long mem_blocks
= 0;
256 if (cpu_has_feature(CPU_FTR_SLB
))
257 mem_blocks
= iSeries_process_Regatta_mainstore_vpd(mb_array
,
260 mem_blocks
= iSeries_process_Condor_mainstore_vpd(mb_array
,
263 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks
);
264 for (i
= 0; i
< mem_blocks
; ++i
) {
265 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
266 " abs chunks %016lx - %016lx\n",
267 i
, mb_array
[i
].logicalStart
, mb_array
[i
].logicalEnd
,
268 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
273 static void __init
iSeries_get_cmdline(void)
277 /* copy the command line parameter from the primary VSP */
278 HvCallEvent_dmaToSp(cmd_line
, 2 * 64* 1024, 256,
279 HvLpDma_Direction_RemoteToLocal
);
284 if (!*p
|| *p
== '\n')
291 static void __init
iSeries_init_early(void)
293 DBG(" -> iSeries_init_early()\n");
295 iSeries_recal_tb
= get_tb();
296 iSeries_recal_titan
= HvCallXm_loadTod();
299 * Initialize the DMA/TCE management
301 iommu_init_early_iSeries();
303 /* Initialize machine-dependency vectors */
308 /* Associate Lp Event Queue 0 with processor 0 */
309 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
313 DBG(" <- iSeries_init_early()\n");
316 struct mschunks_map mschunks_map
= {
317 /* XXX We don't use these, but Piranha might need them. */
318 .chunk_size
= MSCHUNKS_CHUNK_SIZE
,
319 .chunk_shift
= MSCHUNKS_CHUNK_SHIFT
,
320 .chunk_mask
= MSCHUNKS_OFFSET_MASK
,
322 EXPORT_SYMBOL(mschunks_map
);
324 void mschunks_alloc(unsigned long num_chunks
)
326 klimit
= _ALIGN(klimit
, sizeof(u32
));
327 mschunks_map
.mapping
= (u32
*)klimit
;
328 klimit
+= num_chunks
* sizeof(u32
);
329 mschunks_map
.num_chunks
= num_chunks
;
333 * The iSeries may have very large memories ( > 128 GB ) and a partition
334 * may get memory in "chunks" that may be anywhere in the 2**52 real
335 * address space. The chunks are 256K in size. To map this to the
336 * memory model Linux expects, the AS/400 specific code builds a
337 * translation table to translate what Linux thinks are "physical"
338 * addresses to the actual real addresses. This allows us to make
339 * it appear to Linux that we have contiguous memory starting at
340 * physical address zero while in fact this could be far from the truth.
341 * To avoid confusion, I'll let the words physical and/or real address
342 * apply to the Linux addresses while I'll use "absolute address" to
343 * refer to the actual hardware real address.
345 * build_iSeries_Memory_Map gets information from the Hypervisor and
346 * looks at the Main Store VPD to determine the absolute addresses
347 * of the memory that has been assigned to our partition and builds
348 * a table used to translate Linux's physical addresses to these
349 * absolute addresses. Absolute addresses are needed when
350 * communicating with the hypervisor (e.g. to build HPT entries)
352 * Returns the physical memory size
355 static unsigned long __init
build_iSeries_Memory_Map(void)
357 u32 loadAreaFirstChunk
, loadAreaLastChunk
, loadAreaSize
;
359 u32 hptFirstChunk
, hptLastChunk
, hptSizeChunks
, hptSizePages
;
360 u32 totalChunks
,moreChunks
;
361 u32 currChunk
, thisChunk
, absChunk
;
365 struct MemoryBlock mb
[32];
366 unsigned long numMemoryBlocks
, curBlock
;
368 /* Chunk size on iSeries is 256K bytes */
369 totalChunks
= (u32
)HvLpConfig_getMsChunks();
370 mschunks_alloc(totalChunks
);
373 * Get absolute address of our load area
374 * and map it to physical address 0
375 * This guarantees that the loadarea ends up at physical 0
376 * otherwise, it might not be returned by PLIC as the first
380 loadAreaFirstChunk
= (u32
)addr_to_chunk(itLpNaca
.xLoadAreaAddr
);
381 loadAreaSize
= itLpNaca
.xLoadAreaChunks
;
384 * Only add the pages already mapped here.
385 * Otherwise we might add the hpt pages
386 * The rest of the pages of the load area
387 * aren't in the HPT yet and can still
388 * be assigned an arbitrary physical address
390 if ((loadAreaSize
* 64) > HvPagesToMap
)
391 loadAreaSize
= HvPagesToMap
/ 64;
393 loadAreaLastChunk
= loadAreaFirstChunk
+ loadAreaSize
- 1;
396 * TODO Do we need to do something if the HPT is in the 64MB load area?
397 * This would be required if the itLpNaca.xLoadAreaChunks includes
401 printk("Mapping load area - physical addr = 0000000000000000\n"
402 " absolute addr = %016lx\n",
403 chunk_to_addr(loadAreaFirstChunk
));
404 printk("Load area size %dK\n", loadAreaSize
* 256);
406 for (nextPhysChunk
= 0; nextPhysChunk
< loadAreaSize
; ++nextPhysChunk
)
407 mschunks_map
.mapping
[nextPhysChunk
] =
408 loadAreaFirstChunk
+ nextPhysChunk
;
411 * Get absolute address of our HPT and remember it so
412 * we won't map it to any physical address
414 hptFirstChunk
= (u32
)addr_to_chunk(HvCallHpt_getHptAddress());
415 hptSizePages
= (u32
)HvCallHpt_getHptPages();
416 hptSizeChunks
= hptSizePages
>>
417 (MSCHUNKS_CHUNK_SHIFT
- HW_PAGE_SHIFT
);
418 hptLastChunk
= hptFirstChunk
+ hptSizeChunks
- 1;
420 printk("HPT absolute addr = %016lx, size = %dK\n",
421 chunk_to_addr(hptFirstChunk
), hptSizeChunks
* 256);
424 * Determine if absolute memory has any
425 * holes so that we can interpret the
426 * access map we get back from the hypervisor
429 numMemoryBlocks
= iSeries_process_mainstore_vpd(mb
, 32);
432 * Process the main store access map from the hypervisor
433 * to build up our physical -> absolute translation table
438 moreChunks
= totalChunks
;
441 map
= HvCallSm_get64BitsOfAccessMap(itLpNaca
.xLpIndex
,
443 thisChunk
= currChunk
;
445 chunkBit
= map
>> 63;
449 while (thisChunk
>= mb
[curBlock
].logicalEnd
) {
451 if (curBlock
>= numMemoryBlocks
)
452 panic("out of memory blocks");
454 if (thisChunk
< mb
[curBlock
].logicalStart
)
455 panic("memory block error");
457 absChunk
= mb
[curBlock
].absStart
+
458 (thisChunk
- mb
[curBlock
].logicalStart
);
459 if (((absChunk
< hptFirstChunk
) ||
460 (absChunk
> hptLastChunk
)) &&
461 ((absChunk
< loadAreaFirstChunk
) ||
462 (absChunk
> loadAreaLastChunk
))) {
463 mschunks_map
.mapping
[nextPhysChunk
] =
475 * main store size (in chunks) is
476 * totalChunks - hptSizeChunks
477 * which should be equal to
480 return chunk_to_addr(nextPhysChunk
);
486 static void __init
iSeries_setup_arch(void)
488 if (get_lppaca()->shared_proc
) {
489 ppc_md
.idle_loop
= iseries_shared_idle
;
490 printk(KERN_DEBUG
"Using shared processor idle loop\n");
492 ppc_md
.idle_loop
= iseries_dedicated_idle
;
493 printk(KERN_DEBUG
"Using dedicated idle loop\n");
496 /* Setup the Lp Event Queue */
497 setup_hvlpevent_queue();
499 printk("Max logical processors = %d\n",
500 itVpdAreas
.xSlicMaxLogicalProcs
);
501 printk("Max physical processors = %d\n",
502 itVpdAreas
.xSlicMaxPhysicalProcs
);
505 static void iSeries_show_cpuinfo(struct seq_file
*m
)
507 seq_printf(m
, "machine\t\t: 64-bit iSeries Logical Partition\n");
510 static void __init
iSeries_progress(char * st
, unsigned short code
)
512 printk("Progress: [%04x] - %s\n", (unsigned)code
, st
);
513 mf_display_progress(code
);
516 static void __init
iSeries_fixup_klimit(void)
519 * Change klimit to take into account any ram disk
520 * that may be included
523 klimit
= KERNELBASE
+ (u64
)naca
.xRamDisk
+
524 (naca
.xRamDiskSize
* HW_PAGE_SIZE
);
527 static int __init
iSeries_src_init(void)
529 /* clear the progress line */
530 if (firmware_has_feature(FW_FEATURE_ISERIES
))
531 ppc_md
.progress(" ", 0xffff);
535 late_initcall(iSeries_src_init
);
537 static inline void process_iSeries_events(void)
539 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
542 static void yield_shared_processor(void)
546 HvCall_setEnabledInterrupts(HvCall_MaskIPI
|
552 /* Compute future tb value when yield should expire */
553 HvCall_yieldProcessor(HvCall_YieldTimed
, tb
+tb_ticks_per_jiffy
);
556 * The decrementer stops during the yield. Force a fake decrementer
557 * here and let the timer_interrupt code sort out the actual time.
559 get_lppaca()->int_dword
.fields
.decr_int
= 1;
561 process_iSeries_events();
564 static void iseries_shared_idle(void)
567 while (!need_resched() && !hvlpevent_is_pending()) {
569 ppc64_runlatch_off();
571 /* Recheck with irqs off */
572 if (!need_resched() && !hvlpevent_is_pending())
573 yield_shared_processor();
581 if (hvlpevent_is_pending())
582 process_iSeries_events();
584 preempt_enable_no_resched();
590 static void iseries_dedicated_idle(void)
592 set_thread_flag(TIF_POLLING_NRFLAG
);
595 if (!need_resched()) {
596 while (!need_resched()) {
597 ppc64_runlatch_off();
600 if (hvlpevent_is_pending()) {
603 process_iSeries_events();
611 preempt_enable_no_resched();
618 void __init
iSeries_init_IRQ(void) { }
621 static void __iomem
*iseries_ioremap(phys_addr_t address
, unsigned long size
,
624 return (void __iomem
*)address
;
627 static void iseries_iounmap(volatile void __iomem
*token
)
632 * iSeries has no legacy IO, anything calling this function has to
633 * fail or bad things will happen
635 static int iseries_check_legacy_ioport(unsigned int baseport
)
640 static int __init
iseries_probe(void)
642 unsigned long root
= of_get_flat_dt_root();
643 if (!of_flat_dt_is_compatible(root
, "IBM,iSeries"))
647 /* iSeries does not support 16M pages */
648 cur_cpu_spec
->cpu_features
&= ~CPU_FTR_16M_PAGE
;
653 define_machine(iseries
) {
655 .setup_arch
= iSeries_setup_arch
,
656 .show_cpuinfo
= iSeries_show_cpuinfo
,
657 .init_IRQ
= iSeries_init_IRQ
,
658 .get_irq
= iSeries_get_irq
,
659 .init_early
= iSeries_init_early
,
660 .pcibios_fixup
= iSeries_pci_final_fixup
,
661 .restart
= mf_reboot
,
662 .power_off
= mf_power_off
,
663 .halt
= mf_power_off
,
664 .get_boot_time
= iSeries_get_boot_time
,
665 .set_rtc_time
= iSeries_set_rtc_time
,
666 .get_rtc_time
= iSeries_get_rtc_time
,
667 .calibrate_decr
= generic_calibrate_decr
,
668 .progress
= iSeries_progress
,
669 .probe
= iseries_probe
,
670 .check_legacy_ioport
= iseries_check_legacy_ioport
,
671 .ioremap
= iseries_ioremap
,
672 .iounmap
= iseries_iounmap
,
673 /* XXX Implement enable_pmcs for iSeries */
676 void * __init
iSeries_early_setup(void)
678 unsigned long phys_mem_size
;
680 /* Identify CPU type. This is done again by the common code later
681 * on but calling this function multiple times is fine.
683 identify_cpu(0, mfspr(SPRN_PVR
));
685 powerpc_firmware_features
|= FW_FEATURE_ISERIES
;
686 powerpc_firmware_features
|= FW_FEATURE_LPAR
;
688 iSeries_fixup_klimit();
691 * Initialize the table which translate Linux physical addresses to
692 * AS/400 absolute addresses
694 phys_mem_size
= build_iSeries_Memory_Map();
696 iSeries_get_cmdline();
698 return (void *) __pa(build_flat_dt(phys_mem_size
));
701 static void hvputc(char c
)
706 HvCall_writeLogBuffer(&c
, 1);
709 void __init
udbg_init_iseries(void)