2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
13 * Right now, I am very wasteful with the buffers. I allocate memory
14 * pages and then divide them into 2K frame buffers. This way I know I
15 * have buffers large enough to hold one frame within one buffer descriptor.
16 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
17 * will be much more memory efficient and will easily handle lots of
20 * Much better multiple PHY support by Magnus Damm.
21 * Copyright (c) 2000 Ericsson Radio Systems AB.
23 * Make use of MII for PHY control configurable.
25 * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
27 * Support for AMD AM79C874 added.
28 * Thomas Lange, thomas@corelatus.com
31 #include <linux/kernel.h>
32 #include <linux/sched.h>
33 #include <linux/string.h>
34 #include <linux/ptrace.h>
35 #include <linux/errno.h>
36 #include <linux/ioport.h>
37 #include <linux/slab.h>
38 #include <linux/interrupt.h>
39 #include <linux/pci.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/spinlock.h>
46 #include <linux/bitops.h>
47 #ifdef CONFIG_FEC_PACKETHOOK
48 #include <linux/pkthook.h>
51 #include <asm/8xx_immap.h>
52 #include <asm/pgtable.h>
53 #include <asm/mpc8xx.h>
55 #include <asm/uaccess.h>
56 #include <asm/commproc.h>
58 #ifdef CONFIG_USE_MDIO
59 /* Forward declarations of some structures to support different PHYs
64 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
71 const phy_cmd_t
*config
;
72 const phy_cmd_t
*startup
;
73 const phy_cmd_t
*ack_int
;
74 const phy_cmd_t
*shutdown
;
76 #endif /* CONFIG_USE_MDIO */
78 /* The number of Tx and Rx buffers. These are allocated from the page
79 * pool. The code may assume these are power of two, so it is best
80 * to keep them that size.
81 * We don't need to allocate pages for the transmitter. We just use
82 * the skbuffer directly.
84 #ifdef CONFIG_ENET_BIG_BUFFERS
85 #define FEC_ENET_RX_PAGES 16
86 #define FEC_ENET_RX_FRSIZE 2048
87 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
88 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
89 #define TX_RING_SIZE 16 /* Must be power of two */
90 #define TX_RING_MOD_MASK 15 /* for this to work */
92 #define FEC_ENET_RX_PAGES 4
93 #define FEC_ENET_RX_FRSIZE 2048
94 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
95 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
96 #define TX_RING_SIZE 8 /* Must be power of two */
97 #define TX_RING_MOD_MASK 7 /* for this to work */
100 /* Interrupt events/masks.
102 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
103 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
104 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
105 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
106 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
107 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
108 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
109 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
110 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
111 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
115 #define FEC_ECNTRL_PINMUX 0x00000004
116 #define FEC_ECNTRL_ETHER_EN 0x00000002
117 #define FEC_ECNTRL_RESET 0x00000001
119 #define FEC_RCNTRL_BC_REJ 0x00000010
120 #define FEC_RCNTRL_PROM 0x00000008
121 #define FEC_RCNTRL_MII_MODE 0x00000004
122 #define FEC_RCNTRL_DRT 0x00000002
123 #define FEC_RCNTRL_LOOP 0x00000001
125 #define FEC_TCNTRL_FDEN 0x00000004
126 #define FEC_TCNTRL_HBC 0x00000002
127 #define FEC_TCNTRL_GTS 0x00000001
129 /* Delay to wait for FEC reset command to complete (in us)
131 #define FEC_RESET_DELAY 50
133 /* The FEC stores dest/src/type, data, and checksum for receive packets.
135 #define PKT_MAXBUF_SIZE 1518
136 #define PKT_MINBUF_SIZE 64
137 #define PKT_MAXBLR_SIZE 1520
139 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
140 * tx_bd_base always point to the base of the buffer descriptors. The
141 * cur_rx and cur_tx point to the currently available buffer.
142 * The dirty_tx tracks the current buffer that is being sent by the
143 * controller. The cur_tx and dirty_tx are equal under both completely
144 * empty and completely full conditions. The empty/ready indicator in
145 * the buffer descriptor determines the actual condition.
147 struct fec_enet_private
{
148 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
149 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
153 /* CPM dual port RAM relative addresses.
155 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
157 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
158 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
160 /* Virtual addresses for the receive buffers because we can't
161 * do a __va() on them anymore.
163 unsigned char *rx_vaddr
[RX_RING_SIZE
];
165 struct net_device_stats stats
;
169 #ifdef CONFIG_USE_MDIO
175 struct work_struct phy_task
;
176 struct net_device
*dev
;
181 #endif /* CONFIG_USE_MDIO */
187 #ifdef CONFIG_FEC_PACKETHOOK
188 unsigned long ph_lock
;
189 fec_ph_func
*ph_rxhandler
;
190 fec_ph_func
*ph_txhandler
;
192 volatile __u32
*ph_regaddr
;
197 static int fec_enet_open(struct net_device
*dev
);
198 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
199 #ifdef CONFIG_USE_MDIO
200 static void fec_enet_mii(struct net_device
*dev
);
201 #endif /* CONFIG_USE_MDIO */
202 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
203 #ifdef CONFIG_FEC_PACKETHOOK
204 static void fec_enet_tx(struct net_device
*dev
, __u32 regval
);
205 static void fec_enet_rx(struct net_device
*dev
, __u32 regval
);
207 static void fec_enet_tx(struct net_device
*dev
);
208 static void fec_enet_rx(struct net_device
*dev
);
210 static int fec_enet_close(struct net_device
*dev
);
211 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
);
212 static void set_multicast_list(struct net_device
*dev
);
213 static void fec_restart(struct net_device
*dev
, int duplex
);
214 static void fec_stop(struct net_device
*dev
);
215 static ushort my_enet_addr
[3];
217 #ifdef CONFIG_USE_MDIO
218 /* MII processing. We keep this as simple as possible. Requests are
219 * placed on the list (if there is room). When the request is finished
220 * by the MII, an optional function may be called.
222 typedef struct mii_list
{
224 void (*mii_func
)(uint val
, struct net_device
*dev
);
225 struct mii_list
*mii_next
;
229 mii_list_t mii_cmds
[NMII
];
230 mii_list_t
*mii_free
;
231 mii_list_t
*mii_head
;
232 mii_list_t
*mii_tail
;
234 static int mii_queue(struct net_device
*dev
, int request
,
235 void (*func
)(uint
, struct net_device
*));
237 /* Make MII read/write commands for the FEC.
239 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
240 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
243 #endif /* CONFIG_USE_MDIO */
245 /* Transmitter timeout.
247 #define TX_TIMEOUT (2*HZ)
249 #ifdef CONFIG_USE_MDIO
250 /* Register definitions for the PHY.
253 #define MII_REG_CR 0 /* Control Register */
254 #define MII_REG_SR 1 /* Status Register */
255 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
256 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
257 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
258 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
259 #define MII_REG_ANER 6 /* A-N Expansion Register */
260 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
261 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
263 /* values for phy_status */
265 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
266 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
267 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
268 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
269 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
270 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
271 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
273 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
274 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
275 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
276 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
277 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
278 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
279 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
280 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
281 #endif /* CONFIG_USE_MDIO */
283 #ifdef CONFIG_FEC_PACKETHOOK
285 fec_register_ph(struct net_device
*dev
, fec_ph_func
*rxfun
, fec_ph_func
*txfun
,
286 __u16 proto
, volatile __u32
*regaddr
, void *priv
)
288 struct fec_enet_private
*fep
;
293 if (test_and_set_bit(0, (void*)&fep
->ph_lock
) != 0) {
294 /* Someone is messing with the packet hook */
297 if (fep
->ph_rxhandler
!= NULL
|| fep
->ph_txhandler
!= NULL
) {
301 fep
->ph_rxhandler
= rxfun
;
302 fep
->ph_txhandler
= txfun
;
303 fep
->ph_proto
= proto
;
304 fep
->ph_regaddr
= regaddr
;
315 fec_unregister_ph(struct net_device
*dev
)
317 struct fec_enet_private
*fep
;
322 if (test_and_set_bit(0, (void*)&fep
->ph_lock
) != 0) {
323 /* Someone is messing with the packet hook */
327 fep
->ph_rxhandler
= fep
->ph_txhandler
= NULL
;
329 fep
->ph_regaddr
= NULL
;
337 EXPORT_SYMBOL(fec_register_ph
);
338 EXPORT_SYMBOL(fec_unregister_ph
);
340 #endif /* CONFIG_FEC_PACKETHOOK */
343 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
345 struct fec_enet_private
*fep
;
346 volatile fec_t
*fecp
;
350 fecp
= (volatile fec_t
*)dev
->base_addr
;
353 /* Link is down or autonegotiation is in progress. */
357 /* Fill in a Tx ring entry */
360 #ifndef final_version
361 if (bdp
->cbd_sc
& BD_ENET_TX_READY
) {
362 /* Ooops. All transmit buffers are full. Bail out.
363 * This should not happen, since dev->tbusy should be set.
365 printk("%s: tx queue full!.\n", dev
->name
);
370 /* Clear all of the status flags.
372 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
374 /* Set buffer length and buffer pointer.
376 bdp
->cbd_bufaddr
= __pa(skb
->data
);
377 bdp
->cbd_datlen
= skb
->len
;
381 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
383 fep
->stats
.tx_bytes
+= skb
->len
;
384 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
386 /* Push the data cache so the CPM does not get stale memory
389 flush_dcache_range((unsigned long)skb
->data
,
390 (unsigned long)skb
->data
+ skb
->len
);
392 /* disable interrupts while triggering transmit */
393 spin_lock_irq(&fep
->lock
);
395 /* Send it on its way. Tell FEC its ready, interrupt when done,
396 * its the last BD of the frame, and to put the CRC on the end.
399 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
400 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
402 dev
->trans_start
= jiffies
;
404 /* Trigger transmission start */
405 fecp
->fec_x_des_active
= 0x01000000;
407 /* If this was the last BD in the ring, start at the beginning again.
409 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
) {
410 bdp
= fep
->tx_bd_base
;
415 if (bdp
->cbd_sc
& BD_ENET_TX_READY
) {
416 netif_stop_queue(dev
);
420 fep
->cur_tx
= (cbd_t
*)bdp
;
422 spin_unlock_irq(&fep
->lock
);
428 fec_timeout(struct net_device
*dev
)
430 struct fec_enet_private
*fep
= dev
->priv
;
432 printk("%s: transmit timed out.\n", dev
->name
);
433 fep
->stats
.tx_errors
++;
434 #ifndef final_version
439 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
440 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
441 (unsigned long)fep
->dirty_tx
,
442 (unsigned long)fep
->cur_rx
);
444 bdp
= fep
->tx_bd_base
;
445 printk(" tx: %u buffers\n", TX_RING_SIZE
);
446 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
447 printk(" %08x: %04x %04x %08x\n",
455 bdp
= fep
->rx_bd_base
;
456 printk(" rx: %lu buffers\n", RX_RING_SIZE
);
457 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
458 printk(" %08x: %04x %04x %08x\n",
468 netif_wake_queue(dev
);
471 /* The interrupt handler.
472 * This is called from the MPC core interrupt.
475 fec_enet_interrupt(int irq
, void * dev_id
)
477 struct net_device
*dev
= dev_id
;
478 volatile fec_t
*fecp
;
480 #ifdef CONFIG_FEC_PACKETHOOK
481 struct fec_enet_private
*fep
= dev
->priv
;
484 if (fep
->ph_regaddr
) regval
= *fep
->ph_regaddr
;
486 fecp
= (volatile fec_t
*)dev
->base_addr
;
488 /* Get the interrupt events that caused us to be here.
490 while ((int_events
= fecp
->fec_ievent
) != 0) {
491 fecp
->fec_ievent
= int_events
;
492 if ((int_events
& (FEC_ENET_HBERR
| FEC_ENET_BABR
|
493 FEC_ENET_BABT
| FEC_ENET_EBERR
)) != 0) {
494 printk("FEC ERROR %x\n", int_events
);
497 /* Handle receive event in its own function.
499 if (int_events
& FEC_ENET_RXF
) {
500 #ifdef CONFIG_FEC_PACKETHOOK
501 fec_enet_rx(dev
, regval
);
507 /* Transmit OK, or non-fatal error. Update the buffer
508 descriptors. FEC handles all errors, we just discover
509 them as part of the transmit process.
511 if (int_events
& FEC_ENET_TXF
) {
512 #ifdef CONFIG_FEC_PACKETHOOK
513 fec_enet_tx(dev
, regval
);
519 if (int_events
& FEC_ENET_MII
) {
520 #ifdef CONFIG_USE_MDIO
523 printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__
,__LINE__
,__FUNCTION__
);
524 #endif /* CONFIG_USE_MDIO */
528 return IRQ_RETVAL(IRQ_HANDLED
);
533 #ifdef CONFIG_FEC_PACKETHOOK
534 fec_enet_tx(struct net_device
*dev
, __u32 regval
)
536 fec_enet_tx(struct net_device
*dev
)
539 struct fec_enet_private
*fep
;
544 /* lock while transmitting */
545 spin_lock(&fep
->lock
);
548 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
) == 0) {
549 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
551 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
552 /* Check for errors. */
553 if (bdp
->cbd_sc
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
554 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
556 fep
->stats
.tx_errors
++;
557 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
558 fep
->stats
.tx_heartbeat_errors
++;
559 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
560 fep
->stats
.tx_window_errors
++;
561 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
562 fep
->stats
.tx_aborted_errors
++;
563 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
564 fep
->stats
.tx_fifo_errors
++;
565 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
566 fep
->stats
.tx_carrier_errors
++;
568 #ifdef CONFIG_FEC_PACKETHOOK
569 /* Packet hook ... */
570 if (fep
->ph_txhandler
&&
571 ((struct ethhdr
*)skb
->data
)->h_proto
573 fep
->ph_txhandler((__u8
*)skb
->data
, skb
->len
,
574 regval
, fep
->ph_priv
);
577 fep
->stats
.tx_packets
++;
580 #ifndef final_version
581 if (bdp
->cbd_sc
& BD_ENET_TX_READY
)
582 printk("HEY! Enet xmit interrupt and TX_READY.\n");
584 /* Deferred means some collisions occurred during transmit,
585 * but we eventually sent the packet OK.
587 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
588 fep
->stats
.collisions
++;
590 /* Free the sk buffer associated with this last transmit.
593 printk("TXI: %x %x %x\n", bdp
, skb
, fep
->skb_dirty
);
595 dev_kfree_skb_irq (skb
/*, FREE_WRITE*/);
596 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
597 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
599 /* Update pointer to next buffer descriptor to be transmitted.
601 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
602 bdp
= fep
->tx_bd_base
;
606 /* Since we have freed up a buffer, the ring is no longer
611 if (netif_queue_stopped(dev
))
612 netif_wake_queue(dev
);
614 #ifdef CONFIG_FEC_PACKETHOOK
615 /* Re-read register. Not exactly guaranteed to be correct,
617 if (fep
->ph_regaddr
) regval
= *fep
->ph_regaddr
;
620 fep
->dirty_tx
= (cbd_t
*)bdp
;
621 spin_unlock(&fep
->lock
);
625 /* During a receive, the cur_rx points to the current incoming buffer.
626 * When we update through the ring, if the next incoming buffer has
627 * not been given to the system, we just set the empty indicator,
628 * effectively tossing the packet.
631 #ifdef CONFIG_FEC_PACKETHOOK
632 fec_enet_rx(struct net_device
*dev
, __u32 regval
)
634 fec_enet_rx(struct net_device
*dev
)
637 struct fec_enet_private
*fep
;
638 volatile fec_t
*fecp
;
645 fecp
= (volatile fec_t
*)dev
->base_addr
;
647 /* First, grab all of the stats for the incoming packet.
648 * These get messed up if we get called due to a busy condition.
652 while (!(bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)) {
654 #ifndef final_version
655 /* Since we have allocated space to hold a complete frame,
656 * the last indicator should be set.
658 if ((bdp
->cbd_sc
& BD_ENET_RX_LAST
) == 0)
659 printk("FEC ENET: rcv is not +last\n");
662 /* Check for errors. */
663 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
664 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
665 fep
->stats
.rx_errors
++;
666 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
667 /* Frame too long or too short. */
668 fep
->stats
.rx_length_errors
++;
670 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
671 fep
->stats
.rx_frame_errors
++;
672 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
673 fep
->stats
.rx_crc_errors
++;
674 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
675 fep
->stats
.rx_crc_errors
++;
678 /* Report late collisions as a frame error.
679 * On this error, the BD is closed, but we don't know what we
680 * have in the buffer. So, just drop this frame on the floor.
682 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) {
683 fep
->stats
.rx_errors
++;
684 fep
->stats
.rx_frame_errors
++;
685 goto rx_processing_done
;
688 /* Process the incoming frame.
690 fep
->stats
.rx_packets
++;
691 pkt_len
= bdp
->cbd_datlen
;
692 fep
->stats
.rx_bytes
+= pkt_len
;
693 data
= fep
->rx_vaddr
[bdp
- fep
->rx_bd_base
];
695 #ifdef CONFIG_FEC_PACKETHOOK
696 /* Packet hook ... */
697 if (fep
->ph_rxhandler
) {
698 if (((struct ethhdr
*)data
)->h_proto
== fep
->ph_proto
) {
699 switch (fep
->ph_rxhandler(data
, pkt_len
, regval
,
702 goto rx_processing_done
;
707 fep
->stats
.rx_errors
++;
708 goto rx_processing_done
;
713 /* If it wasn't filtered - copy it to an sk buffer. */
716 /* This does 16 byte alignment, exactly what we need.
717 * The packet length includes FCS, but we don't want to
718 * include that when passing upstream as it messes up
719 * bridging applications.
721 skb
= dev_alloc_skb(pkt_len
-4);
724 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
725 fep
->stats
.rx_dropped
++;
728 skb_put(skb
,pkt_len
-4); /* Make room */
729 eth_copy_and_sum(skb
, data
, pkt_len
-4, 0);
730 skb
->protocol
=eth_type_trans(skb
,dev
);
735 /* Clear the status flags for this buffer.
737 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
739 /* Mark the buffer empty.
741 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
743 /* Update BD pointer to next entry.
745 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
746 bdp
= fep
->rx_bd_base
;
751 /* Doing this here will keep the FEC running while we process
752 * incoming frames. On a heavily loaded network, we should be
753 * able to keep up at the expense of system resources.
755 fecp
->fec_r_des_active
= 0x01000000;
757 #ifdef CONFIG_FEC_PACKETHOOK
758 /* Re-read register. Not exactly guaranteed to be correct,
760 if (fep
->ph_regaddr
) regval
= *fep
->ph_regaddr
;
762 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
763 fep
->cur_rx
= (cbd_t
*)bdp
;
766 /* Doing this here will allow us to process all frames in the
767 * ring before the FEC is allowed to put more there. On a heavily
768 * loaded network, some frames may be lost. Unfortunately, this
769 * increases the interrupt overhead since we can potentially work
770 * our way back to the interrupt return only to come right back
773 fecp
->fec_r_des_active
= 0x01000000;
778 #ifdef CONFIG_USE_MDIO
780 fec_enet_mii(struct net_device
*dev
)
782 struct fec_enet_private
*fep
;
787 fep
= (struct fec_enet_private
*)dev
->priv
;
788 ep
= &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
);
789 mii_reg
= ep
->fec_mii_data
;
791 if ((mip
= mii_head
) == NULL
) {
792 printk("MII and no head!\n");
796 if (mip
->mii_func
!= NULL
)
797 (*(mip
->mii_func
))(mii_reg
, dev
);
799 mii_head
= mip
->mii_next
;
800 mip
->mii_next
= mii_free
;
803 if ((mip
= mii_head
) != NULL
) {
804 ep
->fec_mii_data
= mip
->mii_regval
;
810 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
812 struct fec_enet_private
*fep
;
817 /* Add PHY address to register command.
820 regval
|= fep
->phy_addr
<< 23;
824 /* lock while modifying mii_list */
825 spin_lock_irqsave(&fep
->lock
, flags
);
827 if ((mip
= mii_free
) != NULL
) {
828 mii_free
= mip
->mii_next
;
829 mip
->mii_regval
= regval
;
830 mip
->mii_func
= func
;
831 mip
->mii_next
= NULL
;
833 mii_tail
->mii_next
= mip
;
836 mii_head
= mii_tail
= mip
;
837 (&(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
))->fec_mii_data
= regval
;
843 spin_unlock_irqrestore(&fep
->lock
, flags
);
848 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
855 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++)
856 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
859 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
861 struct fec_enet_private
*fep
= dev
->priv
;
862 volatile uint
*s
= &(fep
->phy_status
);
864 *s
&= ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
866 if (mii_reg
& 0x0004)
868 if (mii_reg
& 0x0010)
869 *s
|= PHY_STAT_FAULT
;
870 if (mii_reg
& 0x0020)
873 fep
->link
= (*s
& PHY_STAT_LINK
) ? 1 : 0;
876 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
878 struct fec_enet_private
*fep
= dev
->priv
;
879 volatile uint
*s
= &(fep
->phy_status
);
881 *s
&= ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
883 if (mii_reg
& 0x1000)
885 if (mii_reg
& 0x4000)
889 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
891 struct fec_enet_private
*fep
= dev
->priv
;
892 volatile uint
*s
= &(fep
->phy_status
);
894 *s
&= ~(PHY_CONF_SPMASK
);
896 if (mii_reg
& 0x0020)
897 *s
|= PHY_CONF_10HDX
;
898 if (mii_reg
& 0x0040)
899 *s
|= PHY_CONF_10FDX
;
900 if (mii_reg
& 0x0080)
901 *s
|= PHY_CONF_100HDX
;
902 if (mii_reg
& 0x00100)
903 *s
|= PHY_CONF_100FDX
;
906 static void mii_disp_reg(uint mii_reg
, struct net_device
*dev
)
908 printk("reg %u = 0x%04x\n", (mii_reg
>> 18) & 0x1f, mii_reg
& 0xffff);
912 /* ------------------------------------------------------------------------- */
913 /* The Level one LXT970 is used by many boards */
915 #ifdef CONFIG_FEC_LXT970
917 #define MII_LXT970_MIRROR 16 /* Mirror register */
918 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
919 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
920 #define MII_LXT970_CONFIG 19 /* Configuration Register */
921 #define MII_LXT970_CSR 20 /* Chip Status Register */
923 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
925 struct fec_enet_private
*fep
= dev
->priv
;
926 volatile uint
*s
= &(fep
->phy_status
);
928 *s
&= ~(PHY_STAT_SPMASK
);
930 if (mii_reg
& 0x0800) {
931 if (mii_reg
& 0x1000)
932 *s
|= PHY_STAT_100FDX
;
934 *s
|= PHY_STAT_100HDX
;
937 if (mii_reg
& 0x1000)
938 *s
|= PHY_STAT_10FDX
;
940 *s
|= PHY_STAT_10HDX
;
944 static phy_info_t phy_info_lxt970
= {
948 (const phy_cmd_t
[]) { /* config */
950 // { mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
952 /* Set default operation of 100-TX....for some reason
953 * some of these bits are set on power up, which is wrong.
955 { mk_mii_write(MII_LXT970_CONFIG
, 0), NULL
},
957 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
958 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
961 (const phy_cmd_t
[]) { /* startup - enable interrupts */
962 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
963 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
966 (const phy_cmd_t
[]) { /* ack_int */
967 /* read SR and ISR to acknowledge */
969 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
970 { mk_mii_read(MII_LXT970_ISR
), NULL
},
972 /* find out the current status */
974 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
977 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
978 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
983 #endif /* CONFIG_FEC_LXT970 */
985 /* ------------------------------------------------------------------------- */
986 /* The Level one LXT971 is used on some of my custom boards */
988 #ifdef CONFIG_FEC_LXT971
990 /* register definitions for the 971 */
992 #define MII_LXT971_PCR 16 /* Port Control Register */
993 #define MII_LXT971_SR2 17 /* Status Register 2 */
994 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
995 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
996 #define MII_LXT971_LCR 20 /* LED Control Register */
997 #define MII_LXT971_TCR 30 /* Transmit Control Register */
1000 * I had some nice ideas of running the MDIO faster...
1001 * The 971 should support 8MHz and I tried it, but things acted really
1002 * weird, so 2.5 MHz ought to be enough for anyone...
1005 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
1007 struct fec_enet_private
*fep
= dev
->priv
;
1008 volatile uint
*s
= &(fep
->phy_status
);
1010 *s
&= ~(PHY_STAT_SPMASK
);
1012 if (mii_reg
& 0x4000) {
1013 if (mii_reg
& 0x0200)
1014 *s
|= PHY_STAT_100FDX
;
1016 *s
|= PHY_STAT_100HDX
;
1019 if (mii_reg
& 0x0200)
1020 *s
|= PHY_STAT_10FDX
;
1022 *s
|= PHY_STAT_10HDX
;
1024 if (mii_reg
& 0x0008)
1025 *s
|= PHY_STAT_FAULT
;
1028 static phy_info_t phy_info_lxt971
= {
1032 (const phy_cmd_t
[]) { /* config */
1033 // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
1034 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1035 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1038 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1039 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
1040 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1042 /* Somehow does the 971 tell me that the link is down
1043 * the first read after power-up.
1044 * read here to get a valid value in ack_int */
1046 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1049 (const phy_cmd_t
[]) { /* ack_int */
1050 /* find out the current status */
1052 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1053 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
1055 /* we only need to read ISR to acknowledge */
1057 { mk_mii_read(MII_LXT971_ISR
), NULL
},
1060 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1061 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
1066 #endif /* CONFIG_FEC_LXT970 */
1069 /* ------------------------------------------------------------------------- */
1070 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1072 #ifdef CONFIG_FEC_QS6612
1074 /* register definitions */
1076 #define MII_QS6612_MCR 17 /* Mode Control Register */
1077 #define MII_QS6612_FTR 27 /* Factory Test Register */
1078 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1079 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1080 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1081 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1083 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1085 struct fec_enet_private
*fep
= dev
->priv
;
1086 volatile uint
*s
= &(fep
->phy_status
);
1088 *s
&= ~(PHY_STAT_SPMASK
);
1090 switch((mii_reg
>> 2) & 7) {
1091 case 1: *s
|= PHY_STAT_10HDX
; break;
1092 case 2: *s
|= PHY_STAT_100HDX
; break;
1093 case 5: *s
|= PHY_STAT_10FDX
; break;
1094 case 6: *s
|= PHY_STAT_100FDX
; break;
1098 static phy_info_t phy_info_qs6612
= {
1102 (const phy_cmd_t
[]) { /* config */
1103 // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
1105 /* The PHY powers up isolated on the RPX,
1106 * so send a command to allow operation.
1109 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1111 /* parse cr and anar to get some info */
1113 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1114 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1117 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1118 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1119 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1122 (const phy_cmd_t
[]) { /* ack_int */
1124 /* we need to read ISR, SR and ANER to acknowledge */
1126 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1127 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1128 { mk_mii_read(MII_REG_ANER
), NULL
},
1130 /* read pcr to get info */
1132 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1135 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1136 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1141 #endif /* CONFIG_FEC_QS6612 */
1143 /* ------------------------------------------------------------------------- */
1144 /* The Advanced Micro Devices AM79C874 is used on the ICU862 */
1146 #ifdef CONFIG_FEC_AM79C874
1148 /* register definitions for the 79C874 */
1150 #define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */
1151 #define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */
1152 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1153 #define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */
1154 #define MII_AM79C874_MCR 21 /* Mode Control Register */
1155 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1156 #define MII_AM79C874_REC 24 /* Receiver Error Counter */
1158 static void mii_parse_amd79c874_dr(uint mii_reg
, struct net_device
*dev
, uint data
)
1160 volatile struct fec_enet_private
*fep
= dev
->priv
;
1161 uint s
= fep
->phy_status
;
1163 s
&= ~(PHY_STAT_SPMASK
);
1165 /* Register 18: Bit 10 is data rate, 11 is Duplex */
1166 switch ((mii_reg
>> 10) & 3) {
1167 case 0: s
|= PHY_STAT_10HDX
; break;
1168 case 1: s
|= PHY_STAT_100HDX
; break;
1169 case 2: s
|= PHY_STAT_10FDX
; break;
1170 case 3: s
|= PHY_STAT_100FDX
; break;
1173 fep
->phy_status
= s
;
1176 static phy_info_t phy_info_amd79c874
= {
1180 (const phy_cmd_t
[]) { /* config */
1181 // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
1182 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1183 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1186 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1187 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1188 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1191 (const phy_cmd_t
[]) { /* ack_int */
1192 /* find out the current status */
1194 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1195 { mk_mii_read(MII_AM79C874_DR
), mii_parse_amd79c874_dr
},
1197 /* we only need to read ICSR to acknowledge */
1199 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1202 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1203 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1208 #endif /* CONFIG_FEC_AM79C874 */
1210 static phy_info_t
*phy_info
[] = {
1212 #ifdef CONFIG_FEC_LXT970
1214 #endif /* CONFIG_FEC_LXT970 */
1216 #ifdef CONFIG_FEC_LXT971
1218 #endif /* CONFIG_FEC_LXT971 */
1220 #ifdef CONFIG_FEC_QS6612
1222 #endif /* CONFIG_FEC_QS6612 */
1224 #ifdef CONFIG_FEC_AM79C874
1225 &phy_info_amd79c874
,
1226 #endif /* CONFIG_FEC_AM79C874 */
1231 static void mii_display_status(struct net_device
*dev
)
1233 struct fec_enet_private
*fep
= dev
->priv
;
1234 volatile uint
*s
= &(fep
->phy_status
);
1236 if (!fep
->link
&& !fep
->old_link
) {
1237 /* Link is still down - don't print anything */
1241 printk("%s: status: ", dev
->name
);
1244 printk("link down");
1248 switch(*s
& PHY_STAT_SPMASK
) {
1249 case PHY_STAT_100FDX
: printk(", 100 Mbps Full Duplex"); break;
1250 case PHY_STAT_100HDX
: printk(", 100 Mbps Half Duplex"); break;
1251 case PHY_STAT_10FDX
: printk(", 10 Mbps Full Duplex"); break;
1252 case PHY_STAT_10HDX
: printk(", 10 Mbps Half Duplex"); break;
1254 printk(", Unknown speed/duplex");
1257 if (*s
& PHY_STAT_ANC
)
1258 printk(", auto-negotiation complete");
1261 if (*s
& PHY_STAT_FAULT
)
1262 printk(", remote fault");
1267 static void mii_display_config(struct work_struct
*work
)
1269 struct fec_enet_private
*fep
=
1270 container_of(work
, struct fec_enet_private
, phy_task
);
1271 struct net_device
*dev
= fep
->dev
;
1272 volatile uint
*s
= &(fep
->phy_status
);
1274 printk("%s: config: auto-negotiation ", dev
->name
);
1276 if (*s
& PHY_CONF_ANE
)
1281 if (*s
& PHY_CONF_100FDX
)
1283 if (*s
& PHY_CONF_100HDX
)
1285 if (*s
& PHY_CONF_10FDX
)
1287 if (*s
& PHY_CONF_10HDX
)
1289 if (!(*s
& PHY_CONF_SPMASK
))
1290 printk(", No speed/duplex selected?");
1292 if (*s
& PHY_CONF_LOOP
)
1293 printk(", loopback enabled");
1297 fep
->sequence_done
= 1;
1300 static void mii_relink(struct work_struct
*work
)
1302 struct fec_enet_private
*fep
=
1303 container_of(work
, struct fec_enet_private
, phy_task
);
1304 struct net_device
*dev
= fep
->dev
;
1307 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1308 mii_display_status(dev
);
1309 fep
->old_link
= fep
->link
;
1314 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1316 fec_restart(dev
, duplex
);
1322 enable_irq(fep
->mii_irq
);
1327 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1329 struct fec_enet_private
*fep
= dev
->priv
;
1332 INIT_WORK(&fep
->phy_task
, mii_relink
);
1333 schedule_work(&fep
->phy_task
);
1336 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1338 struct fec_enet_private
*fep
= dev
->priv
;
1341 INIT_WORK(&fep
->phy_task
, mii_display_config
);
1342 schedule_work(&fep
->phy_task
);
1347 phy_cmd_t phy_cmd_relink
[] = { { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
1349 phy_cmd_t phy_cmd_config
[] = { { mk_mii_read(MII_REG_CR
), mii_queue_config
},
1354 /* Read remainder of PHY ID.
1357 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1359 struct fec_enet_private
*fep
;
1363 fep
->phy_id
|= (mii_reg
& 0xffff);
1365 for(i
= 0; phy_info
[i
]; i
++)
1366 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
1370 panic("%s: PHY id 0x%08x is not supported!\n",
1371 dev
->name
, fep
->phy_id
);
1373 fep
->phy
= phy_info
[i
];
1374 fep
->phy_id_done
= 1;
1376 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1377 dev
->name
, fep
->phy_addr
, fep
->phy
->name
, fep
->phy_id
);
1380 /* Scan all of the MII PHY addresses looking for someone to respond
1381 * with a valid ID. This usually happens quickly.
1384 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1386 struct fec_enet_private
*fep
;
1391 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff) {
1393 /* Got first part of ID, now get remainder.
1395 fep
->phy_id
= phytype
<< 16;
1396 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
), mii_discover_phy3
);
1399 if (fep
->phy_addr
< 32) {
1400 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
1403 printk("fec: No PHY device found.\n");
1407 #endif /* CONFIG_USE_MDIO */
1409 /* This interrupt occurs when the PHY detects a link change.
1412 #ifdef CONFIG_RPXCLASSIC
1413 void mii_link_interrupt(void *dev_id
)
1415 irqreturn_t
mii_link_interrupt(int irq
, void * dev_id
)
1418 #ifdef CONFIG_USE_MDIO
1419 struct net_device
*dev
= dev_id
;
1420 struct fec_enet_private
*fep
= dev
->priv
;
1421 volatile immap_t
*immap
= (immap_t
*)IMAP_ADDR
;
1422 volatile fec_t
*fecp
= &(immap
->im_cpm
.cp_fec
);
1423 unsigned int ecntrl
= fecp
->fec_ecntrl
;
1425 /* We need the FEC enabled to access the MII
1427 if ((ecntrl
& FEC_ECNTRL_ETHER_EN
) == 0) {
1428 fecp
->fec_ecntrl
|= FEC_ECNTRL_ETHER_EN
;
1430 #endif /* CONFIG_USE_MDIO */
1433 disable_irq(fep
->mii_irq
); /* disable now, enable later */
1437 #ifdef CONFIG_USE_MDIO
1438 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1439 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
1441 if ((ecntrl
& FEC_ECNTRL_ETHER_EN
) == 0) {
1442 fecp
->fec_ecntrl
= ecntrl
; /* restore old settings */
1445 printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__
,__LINE__
,__FUNCTION__
);
1446 #endif /* CONFIG_USE_MDIO */
1448 #ifndef CONFIG_RPXCLASSIC
1449 return IRQ_RETVAL(IRQ_HANDLED
);
1450 #endif /* CONFIG_RPXCLASSIC */
1454 fec_enet_open(struct net_device
*dev
)
1456 struct fec_enet_private
*fep
= dev
->priv
;
1458 /* I should reset the ring buffers here, but I don't yet know
1459 * a simple way to do that.
1462 #ifdef CONFIG_USE_MDIO
1463 fep
->sequence_done
= 0;
1467 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1468 mii_do_cmd(dev
, fep
->phy
->config
);
1469 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
1470 while(!fep
->sequence_done
)
1473 mii_do_cmd(dev
, fep
->phy
->startup
);
1474 netif_start_queue(dev
);
1475 return 0; /* Success */
1477 return -ENODEV
; /* No PHY we understand */
1480 netif_start_queue(dev
);
1481 return 0; /* Success */
1482 #endif /* CONFIG_USE_MDIO */
1487 fec_enet_close(struct net_device
*dev
)
1489 /* Don't know what to do yet.
1491 netif_stop_queue(dev
);
1497 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
1499 struct fec_enet_private
*fep
= (struct fec_enet_private
*)dev
->priv
;
1504 /* Set or clear the multicast filter for this adaptor.
1505 * Skeleton taken from sunlance driver.
1506 * The CPM Ethernet implementation allows Multicast as well as individual
1507 * MAC address filtering. Some of the drivers check to make sure it is
1508 * a group multicast address, and discard those that are not. I guess I
1509 * will do the same for now, but just remove the test if you want
1510 * individual filtering as well (do the upper net layers want or support
1511 * this kind of feature?).
1514 static void set_multicast_list(struct net_device
*dev
)
1516 struct fec_enet_private
*fep
;
1519 fep
= (struct fec_enet_private
*)dev
->priv
;
1520 ep
= &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
);
1522 if (dev
->flags
&IFF_PROMISC
) {
1524 /* Log any net taps. */
1525 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
1526 ep
->fec_r_cntrl
|= FEC_RCNTRL_PROM
;
1529 ep
->fec_r_cntrl
&= ~FEC_RCNTRL_PROM
;
1531 if (dev
->flags
& IFF_ALLMULTI
) {
1532 /* Catch all multicast addresses, so set the
1533 * filter to all 1's.
1535 ep
->fec_hash_table_high
= 0xffffffff;
1536 ep
->fec_hash_table_low
= 0xffffffff;
1540 /* Clear filter and add the addresses in the list.
1549 for (i
=0; i
<dev
->mc_count
; i
++) {
1551 /* Only support group multicast for now.
1553 if (!(dmi
->dmi_addr
[0] & 1))
1556 /* The address in dmi_addr is LSB first,
1557 * and taddr is MSB first. We have to
1558 * copy bytes MSB first from dmi_addr.
1560 mcptr
= (u_char
*)dmi
->dmi_addr
+ 5;
1561 tdptr
= (u_char
*)&ep
->sen_taddrh
;
1563 *tdptr
++ = *mcptr
--;
1565 /* Ask CPM to run CRC and set bit in
1568 cpmp
->cp_cpcr
= mk_cr_cmd(CPM_CR_CH_SCC1
, CPM_CR_SET_GADDR
) | CPM_CR_FLG
;
1569 /* this delay is necessary here -- Cort */
1571 while (cpmp
->cp_cpcr
& CPM_CR_FLG
);
1578 /* Initialize the FEC Ethernet on 860T.
1580 static int __init
fec_enet_init(void)
1582 struct net_device
*dev
;
1583 struct fec_enet_private
*fep
;
1585 unsigned char *eap
, *iap
, *ba
;
1586 dma_addr_t mem_addr
;
1587 volatile cbd_t
*bdp
;
1589 volatile immap_t
*immap
;
1590 volatile fec_t
*fecp
;
1592 #ifdef CONFIG_SCC_ENET
1593 unsigned char tmpaddr
[6];
1596 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1600 dev
= alloc_etherdev(sizeof(*fep
));
1606 fecp
= &(immap
->im_cpm
.cp_fec
);
1608 /* Whack a reset. We should wait for this.
1610 fecp
->fec_ecntrl
= FEC_ECNTRL_PINMUX
| FEC_ECNTRL_RESET
;
1612 (fecp
->fec_ecntrl
& FEC_ECNTRL_RESET
) && (i
< FEC_RESET_DELAY
);
1616 if (i
== FEC_RESET_DELAY
) {
1617 printk ("FEC Reset timeout!\n");
1620 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1621 * this needs some work to get unique addresses.
1623 eap
= (unsigned char *)my_enet_addr
;
1624 iap
= bd
->bi_enetaddr
;
1626 #ifdef CONFIG_SCC_ENET
1628 * If a board has Ethernet configured both on a SCC and the
1629 * FEC, it needs (at least) 2 MAC addresses (we know that Sun
1630 * disagrees, but anyway). For the FEC port, we create
1631 * another address by setting one of the address bits above
1632 * something that would have (up to now) been allocated.
1635 tmpaddr
[i
] = *iap
++;
1640 for (i
=0; i
<6; i
++) {
1641 dev
->dev_addr
[i
] = *eap
++ = *iap
++;
1644 /* Allocate memory for buffer descriptors.
1646 if (((RX_RING_SIZE
+ TX_RING_SIZE
) * sizeof(cbd_t
)) > PAGE_SIZE
) {
1647 printk("FEC init error. Need more space.\n");
1648 printk("FEC initialization failed.\n");
1651 cbd_base
= (cbd_t
*)dma_alloc_coherent(dev
->class_dev
.dev
, PAGE_SIZE
,
1652 &mem_addr
, GFP_KERNEL
);
1654 /* Set receive and transmit descriptor base.
1656 fep
->rx_bd_base
= cbd_base
;
1657 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1659 fep
->skb_cur
= fep
->skb_dirty
= 0;
1661 /* Initialize the receive buffer descriptors.
1663 bdp
= fep
->rx_bd_base
;
1665 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
1669 ba
= (unsigned char *)dma_alloc_coherent(dev
->class_dev
.dev
,
1673 /* BUG: no check for failure */
1675 /* Initialize the BD for every fragment in the page.
1677 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
1678 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1679 bdp
->cbd_bufaddr
= mem_addr
;
1680 fep
->rx_vaddr
[k
++] = ba
;
1681 mem_addr
+= FEC_ENET_RX_FRSIZE
;
1682 ba
+= FEC_ENET_RX_FRSIZE
;
1687 /* Set the last buffer to wrap.
1690 bdp
->cbd_sc
|= BD_SC_WRAP
;
1692 #ifdef CONFIG_FEC_PACKETHOOK
1694 fep
->ph_rxhandler
= fep
->ph_txhandler
= NULL
;
1696 fep
->ph_regaddr
= NULL
;
1697 fep
->ph_priv
= NULL
;
1700 /* Install our interrupt handler.
1702 if (request_irq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1703 panic("Could not allocate FEC IRQ!");
1705 #ifdef CONFIG_RPXCLASSIC
1706 /* Make Port C, bit 15 an input that causes interrupts.
1708 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1709 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1710 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1711 immap
->im_ioport
.iop_pcint
|= 0x0001;
1712 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1714 /* Make LEDS reflect Link status.
1716 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1719 #ifdef PHY_INTERRUPT
1720 ((immap_t
*)IMAP_ADDR
)->im_siu_conf
.sc_siel
|=
1721 (0x80000000 >> PHY_INTERRUPT
);
1723 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1724 panic("Could not allocate MII IRQ!");
1727 dev
->base_addr
= (unsigned long)fecp
;
1729 /* The FEC Ethernet specific entries in the device structure. */
1730 dev
->open
= fec_enet_open
;
1731 dev
->hard_start_xmit
= fec_enet_start_xmit
;
1732 dev
->tx_timeout
= fec_timeout
;
1733 dev
->watchdog_timeo
= TX_TIMEOUT
;
1734 dev
->stop
= fec_enet_close
;
1735 dev
->get_stats
= fec_enet_get_stats
;
1736 dev
->set_multicast_list
= set_multicast_list
;
1738 #ifdef CONFIG_USE_MDIO
1739 for (i
=0; i
<NMII
-1; i
++)
1740 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
1741 mii_free
= mii_cmds
;
1742 #endif /* CONFIG_USE_MDIO */
1744 /* Configure all of port D for MII.
1746 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1748 /* Bits moved from Rev. D onward.
1750 if ((mfspr(SPRN_IMMR
) & 0xffff) < 0x0501)
1751 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1753 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1755 #ifdef CONFIG_USE_MDIO
1756 /* Set MII speed to 2.5 MHz
1758 fecp
->fec_mii_speed
= fep
->phy_speed
=
1759 (( (bd
->bi_intfreq
+ 500000) / 2500000 / 2 ) & 0x3F ) << 1;
1761 fecp
->fec_mii_speed
= 0; /* turn off MDIO */
1762 #endif /* CONFIG_USE_MDIO */
1764 err
= register_netdev(dev
);
1770 printk ("%s: FEC ENET Version 0.2, FEC irq %d"
1771 #ifdef PHY_INTERRUPT
1775 dev
->name
, FEC_INTERRUPT
1776 #ifdef PHY_INTERRUPT
1781 printk("%02x%c", dev
->dev_addr
[i
], (i
==5) ? '\n' : ':');
1783 #ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */
1784 fec_restart (dev
, 1);
1785 #else /* always use half duplex mode only */
1786 fec_restart (dev
, 0);
1789 #ifdef CONFIG_USE_MDIO
1790 /* Queue up command to detect the PHY and initialize the
1791 * remainder of the interface.
1793 fep
->phy_id_done
= 0;
1795 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
1796 #endif /* CONFIG_USE_MDIO */
1800 module_init(fec_enet_init
);
1802 /* This function is called to start or restart the FEC during a link
1803 * change. This only happens when switching between half and full
1807 fec_restart(struct net_device
*dev
, int duplex
)
1809 struct fec_enet_private
*fep
;
1811 volatile cbd_t
*bdp
;
1812 volatile immap_t
*immap
;
1813 volatile fec_t
*fecp
;
1815 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1817 fecp
= &(immap
->im_cpm
.cp_fec
);
1821 /* Whack a reset. We should wait for this.
1823 fecp
->fec_ecntrl
= FEC_ECNTRL_PINMUX
| FEC_ECNTRL_RESET
;
1825 (fecp
->fec_ecntrl
& FEC_ECNTRL_RESET
) && (i
< FEC_RESET_DELAY
);
1829 if (i
== FEC_RESET_DELAY
) {
1830 printk ("FEC Reset timeout!\n");
1833 /* Set station address.
1835 fecp
->fec_addr_low
= (my_enet_addr
[0] << 16) | my_enet_addr
[1];
1836 fecp
->fec_addr_high
= my_enet_addr
[2];
1838 /* Reset all multicast.
1840 fecp
->fec_hash_table_high
= 0;
1841 fecp
->fec_hash_table_low
= 0;
1843 /* Set maximum receive buffer size.
1845 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
1846 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1848 /* Set receive and transmit descriptor base.
1850 fecp
->fec_r_des_start
= iopa((uint
)(fep
->rx_bd_base
));
1851 fecp
->fec_x_des_start
= iopa((uint
)(fep
->tx_bd_base
));
1853 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
1854 fep
->cur_rx
= fep
->rx_bd_base
;
1856 /* Reset SKB transmit buffers.
1858 fep
->skb_cur
= fep
->skb_dirty
= 0;
1859 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
1860 if (fep
->tx_skbuff
[i
] != NULL
) {
1861 dev_kfree_skb(fep
->tx_skbuff
[i
]);
1862 fep
->tx_skbuff
[i
] = NULL
;
1866 /* Initialize the receive buffer descriptors.
1868 bdp
= fep
->rx_bd_base
;
1869 for (i
=0; i
<RX_RING_SIZE
; i
++) {
1871 /* Initialize the BD for every fragment in the page.
1873 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1877 /* Set the last buffer to wrap.
1880 bdp
->cbd_sc
|= BD_SC_WRAP
;
1882 /* ...and the same for transmmit.
1884 bdp
= fep
->tx_bd_base
;
1885 for (i
=0; i
<TX_RING_SIZE
; i
++) {
1887 /* Initialize the BD for every fragment in the page.
1890 bdp
->cbd_bufaddr
= 0;
1894 /* Set the last buffer to wrap.
1897 bdp
->cbd_sc
|= BD_SC_WRAP
;
1902 fecp
->fec_r_cntrl
= FEC_RCNTRL_MII_MODE
; /* MII enable */
1903 fecp
->fec_x_cntrl
= FEC_TCNTRL_FDEN
; /* FD enable */
1906 fecp
->fec_r_cntrl
= FEC_RCNTRL_MII_MODE
| FEC_RCNTRL_DRT
;
1907 fecp
->fec_x_cntrl
= 0;
1909 fep
->full_duplex
= duplex
;
1911 /* Enable big endian and don't care about SDMA FC.
1913 fecp
->fec_fun_code
= 0x78000000;
1915 #ifdef CONFIG_USE_MDIO
1918 fecp
->fec_mii_speed
= fep
->phy_speed
;
1919 #endif /* CONFIG_USE_MDIO */
1921 /* Clear any outstanding interrupt.
1923 fecp
->fec_ievent
= 0xffc0;
1925 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1927 /* Enable interrupts we wish to service.
1929 fecp
->fec_imask
= ( FEC_ENET_TXF
| FEC_ENET_TXB
|
1930 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
1932 /* And last, enable the transmit and receive processing.
1934 fecp
->fec_ecntrl
= FEC_ECNTRL_PINMUX
| FEC_ECNTRL_ETHER_EN
;
1935 fecp
->fec_r_des_active
= 0x01000000;
1939 fec_stop(struct net_device
*dev
)
1941 volatile immap_t
*immap
;
1942 volatile fec_t
*fecp
;
1943 struct fec_enet_private
*fep
;
1946 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1948 fecp
= &(immap
->im_cpm
.cp_fec
);
1950 if ((fecp
->fec_ecntrl
& FEC_ECNTRL_ETHER_EN
) == 0)
1951 return; /* already down */
1956 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
1959 ((fecp
->fec_ievent
& 0x10000000) == 0) && (i
< FEC_RESET_DELAY
);
1963 if (i
== FEC_RESET_DELAY
) {
1964 printk ("FEC timeout on graceful transmit stop\n");
1967 /* Clear outstanding MII command interrupts.
1969 fecp
->fec_ievent
= FEC_ENET_MII
;
1971 /* Enable MII command finished interrupt
1973 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1974 fecp
->fec_imask
= FEC_ENET_MII
;
1976 #ifdef CONFIG_USE_MDIO
1979 fecp
->fec_mii_speed
= fep
->phy_speed
;
1980 #endif /* CONFIG_USE_MDIO */
1984 fecp
->fec_ecntrl
&= ~(FEC_ECNTRL_ETHER_EN
);