Linux 2.6.21
[linux/fpc-iii.git] / arch / s390 / mm / vmem.c
blob92a565190028618e603a067802faa4c7a4caabe3
1 /*
2 * arch/s390/mm/vmem.c
4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6 */
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
18 unsigned long vmalloc_end;
19 EXPORT_SYMBOL(vmalloc_end);
21 static struct page *vmem_map;
22 static DEFINE_MUTEX(vmem_mutex);
24 struct memory_segment {
25 struct list_head list;
26 unsigned long start;
27 unsigned long size;
30 static LIST_HEAD(mem_segs);
32 void memmap_init(unsigned long size, int nid, unsigned long zone,
33 unsigned long start_pfn)
35 struct page *start, *end;
36 struct page *map_start, *map_end;
37 int i;
39 start = pfn_to_page(start_pfn);
40 end = start + size;
42 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
43 unsigned long cstart, cend;
45 cstart = PFN_DOWN(memory_chunk[i].addr);
46 cend = cstart + PFN_DOWN(memory_chunk[i].size);
48 map_start = mem_map + cstart;
49 map_end = mem_map + cend;
51 if (map_start < start)
52 map_start = start;
53 if (map_end > end)
54 map_end = end;
56 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
57 / sizeof(struct page);
58 map_end += ((PFN_ALIGN((unsigned long) map_end)
59 - (unsigned long) map_end)
60 / sizeof(struct page));
62 if (map_start < map_end)
63 memmap_init_zone((unsigned long)(map_end - map_start),
64 nid, zone, page_to_pfn(map_start),
65 MEMMAP_EARLY);
69 static inline void *vmem_alloc_pages(unsigned int order)
71 if (slab_is_available())
72 return (void *)__get_free_pages(GFP_KERNEL, order);
73 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
76 static inline pmd_t *vmem_pmd_alloc(void)
78 pmd_t *pmd;
79 int i;
81 pmd = vmem_alloc_pages(PMD_ALLOC_ORDER);
82 if (!pmd)
83 return NULL;
84 for (i = 0; i < PTRS_PER_PMD; i++)
85 pmd_clear_kernel(pmd + i);
86 return pmd;
89 static inline pte_t *vmem_pte_alloc(void)
91 pte_t *pte;
92 pte_t empty_pte;
93 int i;
95 pte = vmem_alloc_pages(PTE_ALLOC_ORDER);
96 if (!pte)
97 return NULL;
98 pte_val(empty_pte) = _PAGE_TYPE_EMPTY;
99 for (i = 0; i < PTRS_PER_PTE; i++)
100 pte[i] = empty_pte;
101 return pte;
105 * Add a physical memory range to the 1:1 mapping.
107 static int vmem_add_range(unsigned long start, unsigned long size)
109 unsigned long address;
110 pgd_t *pg_dir;
111 pmd_t *pm_dir;
112 pte_t *pt_dir;
113 pte_t pte;
114 int ret = -ENOMEM;
116 for (address = start; address < start + size; address += PAGE_SIZE) {
117 pg_dir = pgd_offset_k(address);
118 if (pgd_none(*pg_dir)) {
119 pm_dir = vmem_pmd_alloc();
120 if (!pm_dir)
121 goto out;
122 pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
125 pm_dir = pmd_offset(pg_dir, address);
126 if (pmd_none(*pm_dir)) {
127 pt_dir = vmem_pte_alloc();
128 if (!pt_dir)
129 goto out;
130 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
133 pt_dir = pte_offset_kernel(pm_dir, address);
134 pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
135 *pt_dir = pte;
137 ret = 0;
138 out:
139 flush_tlb_kernel_range(start, start + size);
140 return ret;
144 * Remove a physical memory range from the 1:1 mapping.
145 * Currently only invalidates page table entries.
147 static void vmem_remove_range(unsigned long start, unsigned long size)
149 unsigned long address;
150 pgd_t *pg_dir;
151 pmd_t *pm_dir;
152 pte_t *pt_dir;
153 pte_t pte;
155 pte_val(pte) = _PAGE_TYPE_EMPTY;
156 for (address = start; address < start + size; address += PAGE_SIZE) {
157 pg_dir = pgd_offset_k(address);
158 if (pgd_none(*pg_dir))
159 continue;
160 pm_dir = pmd_offset(pg_dir, address);
161 if (pmd_none(*pm_dir))
162 continue;
163 pt_dir = pte_offset_kernel(pm_dir, address);
164 *pt_dir = pte;
166 flush_tlb_kernel_range(start, start + size);
170 * Add a backed mem_map array to the virtual mem_map array.
172 static int vmem_add_mem_map(unsigned long start, unsigned long size)
174 unsigned long address, start_addr, end_addr;
175 struct page *map_start, *map_end;
176 pgd_t *pg_dir;
177 pmd_t *pm_dir;
178 pte_t *pt_dir;
179 pte_t pte;
180 int ret = -ENOMEM;
182 map_start = vmem_map + PFN_DOWN(start);
183 map_end = vmem_map + PFN_DOWN(start + size);
185 start_addr = (unsigned long) map_start & PAGE_MASK;
186 end_addr = PFN_ALIGN((unsigned long) map_end);
188 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
189 pg_dir = pgd_offset_k(address);
190 if (pgd_none(*pg_dir)) {
191 pm_dir = vmem_pmd_alloc();
192 if (!pm_dir)
193 goto out;
194 pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
197 pm_dir = pmd_offset(pg_dir, address);
198 if (pmd_none(*pm_dir)) {
199 pt_dir = vmem_pte_alloc();
200 if (!pt_dir)
201 goto out;
202 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
205 pt_dir = pte_offset_kernel(pm_dir, address);
206 if (pte_none(*pt_dir)) {
207 unsigned long new_page;
209 new_page =__pa(vmem_alloc_pages(0));
210 if (!new_page)
211 goto out;
212 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
213 *pt_dir = pte;
216 ret = 0;
217 out:
218 flush_tlb_kernel_range(start_addr, end_addr);
219 return ret;
222 static int vmem_add_mem(unsigned long start, unsigned long size)
224 int ret;
226 ret = vmem_add_range(start, size);
227 if (ret)
228 return ret;
229 return vmem_add_mem_map(start, size);
233 * Add memory segment to the segment list if it doesn't overlap with
234 * an already present segment.
236 static int insert_memory_segment(struct memory_segment *seg)
238 struct memory_segment *tmp;
240 if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
241 seg->start + seg->size < seg->start)
242 return -ERANGE;
244 list_for_each_entry(tmp, &mem_segs, list) {
245 if (seg->start >= tmp->start + tmp->size)
246 continue;
247 if (seg->start + seg->size <= tmp->start)
248 continue;
249 return -ENOSPC;
251 list_add(&seg->list, &mem_segs);
252 return 0;
256 * Remove memory segment from the segment list.
258 static void remove_memory_segment(struct memory_segment *seg)
260 list_del(&seg->list);
263 static void __remove_shared_memory(struct memory_segment *seg)
265 remove_memory_segment(seg);
266 vmem_remove_range(seg->start, seg->size);
269 int remove_shared_memory(unsigned long start, unsigned long size)
271 struct memory_segment *seg;
272 int ret;
274 mutex_lock(&vmem_mutex);
276 ret = -ENOENT;
277 list_for_each_entry(seg, &mem_segs, list) {
278 if (seg->start == start && seg->size == size)
279 break;
282 if (seg->start != start || seg->size != size)
283 goto out;
285 ret = 0;
286 __remove_shared_memory(seg);
287 kfree(seg);
288 out:
289 mutex_unlock(&vmem_mutex);
290 return ret;
293 int add_shared_memory(unsigned long start, unsigned long size)
295 struct memory_segment *seg;
296 struct page *page;
297 unsigned long pfn, num_pfn, end_pfn;
298 int ret;
300 mutex_lock(&vmem_mutex);
301 ret = -ENOMEM;
302 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
303 if (!seg)
304 goto out;
305 seg->start = start;
306 seg->size = size;
308 ret = insert_memory_segment(seg);
309 if (ret)
310 goto out_free;
312 ret = vmem_add_mem(start, size);
313 if (ret)
314 goto out_remove;
316 pfn = PFN_DOWN(start);
317 num_pfn = PFN_DOWN(size);
318 end_pfn = pfn + num_pfn;
320 page = pfn_to_page(pfn);
321 memset(page, 0, num_pfn * sizeof(struct page));
323 for (; pfn < end_pfn; pfn++) {
324 page = pfn_to_page(pfn);
325 init_page_count(page);
326 reset_page_mapcount(page);
327 SetPageReserved(page);
328 INIT_LIST_HEAD(&page->lru);
330 goto out;
332 out_remove:
333 __remove_shared_memory(seg);
334 out_free:
335 kfree(seg);
336 out:
337 mutex_unlock(&vmem_mutex);
338 return ret;
342 * map whole physical memory to virtual memory (identity mapping)
344 void __init vmem_map_init(void)
346 unsigned long map_size;
347 int i;
349 map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
350 vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
351 vmem_map = (struct page *) vmalloc_end;
352 NODE_DATA(0)->node_mem_map = vmem_map;
354 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
355 vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
359 * Convert memory chunk array to a memory segment list so there is a single
360 * list that contains both r/w memory and shared memory segments.
362 static int __init vmem_convert_memory_chunk(void)
364 struct memory_segment *seg;
365 int i;
367 mutex_lock(&vmem_mutex);
368 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
369 if (!memory_chunk[i].size)
370 continue;
371 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
372 if (!seg)
373 panic("Out of memory...\n");
374 seg->start = memory_chunk[i].addr;
375 seg->size = memory_chunk[i].size;
376 insert_memory_segment(seg);
378 mutex_unlock(&vmem_mutex);
379 return 0;
382 core_initcall(vmem_convert_memory_chunk);