1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
18 #include <asm/iommu.h>
21 #include <asm/oplib.h>
25 #include "iommu_common.h"
27 /* All SABRE registers are 64-bits. The following accessor
28 * routines are how they are accessed. The REG parameter
29 * is a physical address.
31 #define sabre_read(__reg) \
33 __asm__ __volatile__("ldxa [%1] %2, %0" \
35 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
39 #define sabre_write(__reg, __val) \
40 __asm__ __volatile__("stxa %0, [%1] %2" \
42 : "r" (__val), "r" (__reg), \
43 "i" (ASI_PHYS_BYPASS_EC_E) \
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR 0x0030UL
48 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
49 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
50 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
51 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
52 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
53 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
54 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
55 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
56 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
57 #define SABRE_UECE_AFAR 0x0038UL
58 #define SABRE_CE_AFSR 0x0040UL
59 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
60 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
61 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
62 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
63 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
64 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
65 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
66 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL 0x0200UL
69 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
70 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
71 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
72 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
73 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
74 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
75 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
76 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
77 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
78 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
79 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
80 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
81 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
83 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
84 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE 0x0208UL
86 #define SABRE_IOMMU_FLUSH 0x0210UL
87 #define SABRE_IMAP_A_SLOT0 0x0c00UL
88 #define SABRE_IMAP_B_SLOT0 0x0c20UL
89 #define SABRE_IMAP_SCSI 0x1000UL
90 #define SABRE_IMAP_ETH 0x1008UL
91 #define SABRE_IMAP_BPP 0x1010UL
92 #define SABRE_IMAP_AU_REC 0x1018UL
93 #define SABRE_IMAP_AU_PLAY 0x1020UL
94 #define SABRE_IMAP_PFAIL 0x1028UL
95 #define SABRE_IMAP_KMS 0x1030UL
96 #define SABRE_IMAP_FLPY 0x1038UL
97 #define SABRE_IMAP_SHW 0x1040UL
98 #define SABRE_IMAP_KBD 0x1048UL
99 #define SABRE_IMAP_MS 0x1050UL
100 #define SABRE_IMAP_SER 0x1058UL
101 #define SABRE_IMAP_UE 0x1070UL
102 #define SABRE_IMAP_CE 0x1078UL
103 #define SABRE_IMAP_PCIERR 0x1080UL
104 #define SABRE_IMAP_GFX 0x1098UL
105 #define SABRE_IMAP_EUPA 0x10a0UL
106 #define SABRE_ICLR_A_SLOT0 0x1400UL
107 #define SABRE_ICLR_B_SLOT0 0x1480UL
108 #define SABRE_ICLR_SCSI 0x1800UL
109 #define SABRE_ICLR_ETH 0x1808UL
110 #define SABRE_ICLR_BPP 0x1810UL
111 #define SABRE_ICLR_AU_REC 0x1818UL
112 #define SABRE_ICLR_AU_PLAY 0x1820UL
113 #define SABRE_ICLR_PFAIL 0x1828UL
114 #define SABRE_ICLR_KMS 0x1830UL
115 #define SABRE_ICLR_FLPY 0x1838UL
116 #define SABRE_ICLR_SHW 0x1840UL
117 #define SABRE_ICLR_KBD 0x1848UL
118 #define SABRE_ICLR_MS 0x1850UL
119 #define SABRE_ICLR_SER 0x1858UL
120 #define SABRE_ICLR_UE 0x1870UL
121 #define SABRE_ICLR_CE 0x1878UL
122 #define SABRE_ICLR_PCIERR 0x1880UL
123 #define SABRE_WRSYNC 0x1c20UL
124 #define SABRE_PCICTRL 0x2000UL
125 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
126 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
127 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
129 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
130 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
131 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR 0x2010UL
134 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
135 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
136 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
137 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
138 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
139 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
140 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
141 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
142 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
143 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
144 #define SABRE_PIOAFAR 0x2018UL
145 #define SABRE_PCIDIAG 0x2020UL
146 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
147 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
148 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
149 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
150 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
151 #define SABRE_PCITASR 0x2028UL
152 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
153 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
154 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
155 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
156 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
157 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
158 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
159 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG 0x5000UL
161 #define SABRE_DMABUF_DIAGLO 0x5100UL
162 #define SABRE_DMABUF_DIAGHI 0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG 0xa400UL
166 #define SABRE_IOMMU_TCDIAG 0xa408UL
167 #define SABRE_IOMMU_TAG 0xa580UL
168 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
169 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
170 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
171 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
172 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
173 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA 0xa600UL
175 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
176 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE 0xa800UL
180 #define SABRE_OBIO_IRQSTATE 0xa808UL
181 #define SABRE_FFBCFG 0xf000UL
182 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
183 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0 0xf010UL
185 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
186 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
187 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
188 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
189 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
190 #define SABRE_MCCTRL1 0xf018UL
191 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
192 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
193 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
194 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
195 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
196 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
197 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
198 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
199 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
200 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL 0xf020UL
203 #define SABRE_CONFIGSPACE 0x001000000UL
204 #define SABRE_IOSPACE 0x002000000UL
205 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
206 #define SABRE_MEMSPACE 0x100000000UL
207 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210 * configuration space address format:
212 * 32 24 23 16 15 11 10 8 7 2 1 0
213 * ---------------------------------------------------------
214 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215 * ---------------------------------------------------------
217 #define SABRE_CONFIG_BASE(PBM) \
218 ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
220 (((unsigned long)(BUS) << 16) | \
221 ((unsigned long)(DEVFN) << 8) | \
222 ((unsigned long)(REG)))
224 static int hummingbird_p
;
225 static struct pci_bus
*sabre_root_bus
;
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info
*pbm
,
235 (SABRE_CONFIG_BASE(pbm
) |
236 SABRE_CONFIG_ENCODE(bus
, devfn
, where
));
239 static int sabre_out_of_range(unsigned char devfn
)
244 return (((PCI_SLOT(devfn
) == 0) && (PCI_FUNC(devfn
) > 0)) ||
245 ((PCI_SLOT(devfn
) == 1) && (PCI_FUNC(devfn
) > 1)) ||
246 (PCI_SLOT(devfn
) > 1));
249 static int __sabre_out_of_range(struct pci_pbm_info
*pbm
,
256 return ((pbm
->parent
== 0) ||
257 ((pbm
== &pbm
->parent
->pbm_B
) &&
258 (bus
== pbm
->pci_first_busno
) &&
259 PCI_SLOT(devfn
) > 8) ||
260 ((pbm
== &pbm
->parent
->pbm_A
) &&
261 (bus
== pbm
->pci_first_busno
) &&
262 PCI_SLOT(devfn
) > 8));
265 static int __sabre_read_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
266 int where
, int size
, u32
*value
)
268 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
269 unsigned char bus
= bus_dev
->number
;
286 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
288 return PCIBIOS_SUCCESSFUL
;
290 if (__sabre_out_of_range(pbm
, bus
, devfn
))
291 return PCIBIOS_SUCCESSFUL
;
295 pci_config_read8((u8
*) addr
, &tmp8
);
301 printk("pci_read_config_word: misaligned reg [%x]\n",
303 return PCIBIOS_SUCCESSFUL
;
305 pci_config_read16((u16
*) addr
, &tmp16
);
311 printk("pci_read_config_dword: misaligned reg [%x]\n",
313 return PCIBIOS_SUCCESSFUL
;
315 pci_config_read32(addr
, value
);
319 return PCIBIOS_SUCCESSFUL
;
322 static int sabre_read_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
323 int where
, int size
, u32
*value
)
325 if (!bus
->number
&& sabre_out_of_range(devfn
)) {
337 return PCIBIOS_SUCCESSFUL
;
340 if (bus
->number
|| PCI_SLOT(devfn
))
341 return __sabre_read_pci_cfg(bus
, devfn
, where
, size
, value
);
343 /* When accessing PCI config space of the PCI controller itself (bus
344 * 0, device slot 0, function 0) there are restrictions. Each
345 * register must be accessed as it's natural size. Thus, for example
346 * the Vendor ID must be accessed as a 16-bit quantity.
355 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
360 *value
= tmp16
& 0xff;
362 return __sabre_read_pci_cfg(bus
, devfn
, where
, 1, value
);
367 return __sabre_read_pci_cfg(bus
, devfn
, where
, 2, value
);
372 __sabre_read_pci_cfg(bus
, devfn
, where
, 1, &tmp32
);
375 __sabre_read_pci_cfg(bus
, devfn
, where
+ 1, 1, &tmp32
);
385 sabre_read_pci_cfg(bus
, devfn
, where
, 2, &tmp32
);
388 sabre_read_pci_cfg(bus
, devfn
, where
+ 2, 2, &tmp32
);
390 *value
|= tmp16
<< 16;
394 return PCIBIOS_SUCCESSFUL
;
397 static int __sabre_write_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
398 int where
, int size
, u32 value
)
400 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
401 unsigned char bus
= bus_dev
->number
;
404 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
406 return PCIBIOS_SUCCESSFUL
;
408 if (__sabre_out_of_range(pbm
, bus
, devfn
))
409 return PCIBIOS_SUCCESSFUL
;
413 pci_config_write8((u8
*) addr
, value
);
418 printk("pci_write_config_word: misaligned reg [%x]\n",
420 return PCIBIOS_SUCCESSFUL
;
422 pci_config_write16((u16
*) addr
, value
);
427 printk("pci_write_config_dword: misaligned reg [%x]\n",
429 return PCIBIOS_SUCCESSFUL
;
431 pci_config_write32(addr
, value
);
435 return PCIBIOS_SUCCESSFUL
;
438 static int sabre_write_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
439 int where
, int size
, u32 value
)
442 return __sabre_write_pci_cfg(bus
, devfn
, where
, size
, value
);
444 if (sabre_out_of_range(devfn
))
445 return PCIBIOS_SUCCESSFUL
;
453 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
463 return __sabre_write_pci_cfg(bus
, devfn
, where
& ~1, 2, tmp32
);
465 return __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
);
469 return __sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
);
471 __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
& 0xff);
472 __sabre_write_pci_cfg(bus
, devfn
, where
+ 1, 1, value
>> 8);
476 sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
& 0xffff);
477 sabre_write_pci_cfg(bus
, devfn
, where
+ 2, 2, value
>> 16);
480 return PCIBIOS_SUCCESSFUL
;
483 static struct pci_ops sabre_ops
= {
484 .read
= sabre_read_pci_cfg
,
485 .write
= sabre_write_pci_cfg
,
488 /* SABRE error handling support. */
489 static void sabre_check_iommu_error(struct pci_controller_info
*p
,
493 struct pci_iommu
*iommu
= p
->pbm_A
.iommu
;
494 unsigned long iommu_tag
[16];
495 unsigned long iommu_data
[16];
500 spin_lock_irqsave(&iommu
->lock
, flags
);
501 control
= sabre_read(iommu
->iommu_control
);
502 if (control
& SABRE_IOMMUCTRL_ERR
) {
505 /* Clear the error encountered bit.
506 * NOTE: On Sabre this is write 1 to clear,
507 * which is different from Psycho.
509 sabre_write(iommu
->iommu_control
, control
);
510 switch((control
& SABRE_IOMMUCTRL_ERRSTS
) >> 25UL) {
512 type_string
= "Invalid Error";
515 type_string
= "ECC Error";
518 type_string
= "Unknown";
521 printk("SABRE%d: IOMMU Error, type[%s]\n",
522 p
->index
, type_string
);
524 /* Enter diagnostic mode and probe for error'd
525 * entries in the IOTLB.
527 control
&= ~(SABRE_IOMMUCTRL_ERRSTS
| SABRE_IOMMUCTRL_ERR
);
528 sabre_write(iommu
->iommu_control
,
529 (control
| SABRE_IOMMUCTRL_DENAB
));
530 for (i
= 0; i
< 16; i
++) {
531 unsigned long base
= p
->pbm_A
.controller_regs
;
534 sabre_read(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL));
536 sabre_read(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL));
537 sabre_write(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
538 sabre_write(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
540 sabre_write(iommu
->iommu_control
, control
);
542 for (i
= 0; i
< 16; i
++) {
543 unsigned long tag
, data
;
546 if (!(tag
& SABRE_IOMMUTAG_ERR
))
549 data
= iommu_data
[i
];
550 switch((tag
& SABRE_IOMMUTAG_ERRSTS
) >> 23UL) {
552 type_string
= "Invalid Error";
555 type_string
= "ECC Error";
558 type_string
= "Unknown";
561 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
562 p
->index
, i
, tag
, type_string
,
563 ((tag
& SABRE_IOMMUTAG_WRITE
) ? 1 : 0),
564 ((tag
& SABRE_IOMMUTAG_SIZE
) ? 64 : 8),
565 ((tag
& SABRE_IOMMUTAG_VPN
) << IOMMU_PAGE_SHIFT
));
566 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
568 ((data
& SABRE_IOMMUDATA_VALID
) ? 1 : 0),
569 ((data
& SABRE_IOMMUDATA_USED
) ? 1 : 0),
570 ((data
& SABRE_IOMMUDATA_CACHE
) ? 1 : 0),
571 ((data
& SABRE_IOMMUDATA_PPN
) << IOMMU_PAGE_SHIFT
));
574 spin_unlock_irqrestore(&iommu
->lock
, flags
);
577 static irqreturn_t
sabre_ue_intr(int irq
, void *dev_id
)
579 struct pci_controller_info
*p
= dev_id
;
580 unsigned long afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_UE_AFSR
;
581 unsigned long afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_UECE_AFAR
;
582 unsigned long afsr
, afar
, error_bits
;
585 /* Latch uncorrectable error status. */
586 afar
= sabre_read(afar_reg
);
587 afsr
= sabre_read(afsr_reg
);
589 /* Clear the primary/secondary error status bits. */
591 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
592 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
593 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
);
596 sabre_write(afsr_reg
, error_bits
);
599 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
601 ((error_bits
& SABRE_UEAFSR_PDRD
) ?
603 ((error_bits
& SABRE_UEAFSR_PDWR
) ?
604 "DMA Write" : "???")),
605 ((error_bits
& SABRE_UEAFSR_PDTE
) ?
606 ":Translation Error" : ""));
607 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
609 (afsr
& SABRE_UEAFSR_BMSK
) >> 32UL,
610 (afsr
& SABRE_UEAFSR_OFF
) >> 29UL,
611 ((afsr
& SABRE_UEAFSR_BLK
) ? 1 : 0));
612 printk("SABRE%d: UE AFAR [%016lx]\n", p
->index
, afar
);
613 printk("SABRE%d: UE Secondary errors [", p
->index
);
615 if (afsr
& SABRE_UEAFSR_SDRD
) {
617 printk("(DMA Read)");
619 if (afsr
& SABRE_UEAFSR_SDWR
) {
621 printk("(DMA Write)");
623 if (afsr
& SABRE_UEAFSR_SDTE
) {
625 printk("(Translation Error)");
631 /* Interrogate IOMMU for error status. */
632 sabre_check_iommu_error(p
, afsr
, afar
);
637 static irqreturn_t
sabre_ce_intr(int irq
, void *dev_id
)
639 struct pci_controller_info
*p
= dev_id
;
640 unsigned long afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_CE_AFSR
;
641 unsigned long afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_UECE_AFAR
;
642 unsigned long afsr
, afar
, error_bits
;
645 /* Latch error status. */
646 afar
= sabre_read(afar_reg
);
647 afsr
= sabre_read(afsr_reg
);
649 /* Clear primary/secondary error status bits. */
651 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
652 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
);
655 sabre_write(afsr_reg
, error_bits
);
658 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
660 ((error_bits
& SABRE_CEAFSR_PDRD
) ?
662 ((error_bits
& SABRE_CEAFSR_PDWR
) ?
663 "DMA Write" : "???")));
665 /* XXX Use syndrome and afar to print out module string just like
666 * XXX UDB CE trap handler does... -DaveM
668 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
671 (afsr
& SABRE_CEAFSR_ESYND
) >> 48UL,
672 (afsr
& SABRE_CEAFSR_BMSK
) >> 32UL,
673 (afsr
& SABRE_CEAFSR_OFF
) >> 29UL,
674 ((afsr
& SABRE_CEAFSR_BLK
) ? 1 : 0));
675 printk("SABRE%d: CE AFAR [%016lx]\n", p
->index
, afar
);
676 printk("SABRE%d: CE Secondary errors [", p
->index
);
678 if (afsr
& SABRE_CEAFSR_SDRD
) {
680 printk("(DMA Read)");
682 if (afsr
& SABRE_CEAFSR_SDWR
) {
684 printk("(DMA Write)");
693 static irqreturn_t
sabre_pcierr_intr_other(struct pci_controller_info
*p
)
695 unsigned long csr_reg
, csr
, csr_error_bits
;
696 irqreturn_t ret
= IRQ_NONE
;
699 csr_reg
= p
->pbm_A
.controller_regs
+ SABRE_PCICTRL
;
700 csr
= sabre_read(csr_reg
);
702 csr
& SABRE_PCICTRL_SERR
;
703 if (csr_error_bits
) {
704 /* Clear the errors. */
705 sabre_write(csr_reg
, csr
);
708 if (csr_error_bits
& SABRE_PCICTRL_SERR
)
709 printk("SABRE%d: PCI SERR signal asserted.\n",
713 pci_read_config_word(sabre_root_bus
->self
,
715 if (stat
& (PCI_STATUS_PARITY
|
716 PCI_STATUS_SIG_TARGET_ABORT
|
717 PCI_STATUS_REC_TARGET_ABORT
|
718 PCI_STATUS_REC_MASTER_ABORT
|
719 PCI_STATUS_SIG_SYSTEM_ERROR
)) {
720 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
722 pci_write_config_word(sabre_root_bus
->self
,
729 static irqreturn_t
sabre_pcierr_intr(int irq
, void *dev_id
)
731 struct pci_controller_info
*p
= dev_id
;
732 unsigned long afsr_reg
, afar_reg
;
733 unsigned long afsr
, afar
, error_bits
;
736 afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_PIOAFSR
;
737 afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_PIOAFAR
;
739 /* Latch error status. */
740 afar
= sabre_read(afar_reg
);
741 afsr
= sabre_read(afsr_reg
);
743 /* Clear primary/secondary error status bits. */
745 (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_PTA
|
746 SABRE_PIOAFSR_PRTRY
| SABRE_PIOAFSR_PPERR
|
747 SABRE_PIOAFSR_SMA
| SABRE_PIOAFSR_STA
|
748 SABRE_PIOAFSR_SRTRY
| SABRE_PIOAFSR_SPERR
);
750 return sabre_pcierr_intr_other(p
);
751 sabre_write(afsr_reg
, error_bits
);
754 printk("SABRE%d: PCI Error, primary error type[%s]\n",
756 (((error_bits
& SABRE_PIOAFSR_PMA
) ?
758 ((error_bits
& SABRE_PIOAFSR_PTA
) ?
760 ((error_bits
& SABRE_PIOAFSR_PRTRY
) ?
761 "Excessive Retries" :
762 ((error_bits
& SABRE_PIOAFSR_PPERR
) ?
763 "Parity Error" : "???"))))));
764 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
766 (afsr
& SABRE_PIOAFSR_BMSK
) >> 32UL,
767 (afsr
& SABRE_PIOAFSR_BLK
) ? 1 : 0);
768 printk("SABRE%d: PCI AFAR [%016lx]\n", p
->index
, afar
);
769 printk("SABRE%d: PCI Secondary errors [", p
->index
);
771 if (afsr
& SABRE_PIOAFSR_SMA
) {
773 printk("(Master Abort)");
775 if (afsr
& SABRE_PIOAFSR_STA
) {
777 printk("(Target Abort)");
779 if (afsr
& SABRE_PIOAFSR_SRTRY
) {
781 printk("(Excessive Retries)");
783 if (afsr
& SABRE_PIOAFSR_SPERR
) {
785 printk("(Parity Error)");
791 /* For the error types shown, scan both PCI buses for devices
792 * which have logged that error type.
795 /* If we see a Target Abort, this could be the result of an
796 * IOMMU translation error of some sort. It is extremely
797 * useful to log this information as usually it indicates
798 * a bug in the IOMMU support code or a PCI device driver.
800 if (error_bits
& (SABRE_PIOAFSR_PTA
| SABRE_PIOAFSR_STA
)) {
801 sabre_check_iommu_error(p
, afsr
, afar
);
802 pci_scan_for_target_abort(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
803 pci_scan_for_target_abort(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
805 if (error_bits
& (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_SMA
)) {
806 pci_scan_for_master_abort(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
807 pci_scan_for_master_abort(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
809 /* For excessive retries, SABRE/PBM will abort the device
810 * and there is no way to specifically check for excessive
811 * retries in the config space status registers. So what
812 * we hope is that we'll catch it via the master/target
816 if (error_bits
& (SABRE_PIOAFSR_PPERR
| SABRE_PIOAFSR_SPERR
)) {
817 pci_scan_for_parity_error(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
818 pci_scan_for_parity_error(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
824 static void sabre_register_error_handlers(struct pci_controller_info
*p
)
826 struct pci_pbm_info
*pbm
= &p
->pbm_A
; /* arbitrary */
827 struct device_node
*dp
= pbm
->prom_node
;
828 struct of_device
*op
;
829 unsigned long base
= pbm
->controller_regs
;
832 if (pbm
->chip_type
== PBM_CHIP_TYPE_SABRE
)
835 op
= of_find_device_by_node(dp
);
839 /* Sabre/Hummingbird IRQ property layout is:
845 if (op
->num_irqs
< 4)
848 /* We clear the error bits in the appropriate AFSR before
849 * registering the handler so that we don't get spurious
852 sabre_write(base
+ SABRE_UE_AFSR
,
853 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
854 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
855 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
));
857 request_irq(op
->irqs
[1], sabre_ue_intr
, IRQF_SHARED
, "SABRE UE", p
);
859 sabre_write(base
+ SABRE_CE_AFSR
,
860 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
861 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
));
863 request_irq(op
->irqs
[2], sabre_ce_intr
, IRQF_SHARED
, "SABRE CE", p
);
864 request_irq(op
->irqs
[0], sabre_pcierr_intr
, IRQF_SHARED
,
867 tmp
= sabre_read(base
+ SABRE_PCICTRL
);
868 tmp
|= SABRE_PCICTRL_ERREN
;
869 sabre_write(base
+ SABRE_PCICTRL
, tmp
);
872 static void sabre_resource_adjust(struct pci_dev
*pdev
,
873 struct resource
*res
,
874 struct resource
*root
)
876 struct pci_pbm_info
*pbm
= pdev
->bus
->sysdata
;
879 if (res
->flags
& IORESOURCE_IO
)
880 base
= pbm
->controller_regs
+ SABRE_IOSPACE
;
882 base
= pbm
->controller_regs
+ SABRE_MEMSPACE
;
888 static void sabre_base_address_update(struct pci_dev
*pdev
, int resource
)
890 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
891 struct pci_pbm_info
*pbm
= pcp
->pbm
;
892 struct resource
*res
;
895 int where
, size
, is_64bit
;
897 res
= &pdev
->resource
[resource
];
899 where
= PCI_BASE_ADDRESS_0
+ (resource
* 4);
900 } else if (resource
== PCI_ROM_RESOURCE
) {
901 where
= pdev
->rom_base_reg
;
903 /* Somebody might have asked allocation of a non-standard resource */
908 if (res
->flags
& IORESOURCE_IO
)
909 base
= pbm
->controller_regs
+ SABRE_IOSPACE
;
911 base
= pbm
->controller_regs
+ SABRE_MEMSPACE
;
912 if ((res
->flags
& PCI_BASE_ADDRESS_MEM_TYPE_MASK
)
913 == PCI_BASE_ADDRESS_MEM_TYPE_64
)
917 size
= res
->end
- res
->start
;
918 pci_read_config_dword(pdev
, where
, ®
);
919 reg
= ((reg
& size
) |
920 (((u32
)(res
->start
- base
)) & ~size
));
921 if (resource
== PCI_ROM_RESOURCE
) {
922 reg
|= PCI_ROM_ADDRESS_ENABLE
;
923 res
->flags
|= IORESOURCE_ROM_ENABLE
;
925 pci_write_config_dword(pdev
, where
, reg
);
927 /* This knows that the upper 32-bits of the address
928 * must be zero. Our PCI common layer enforces this.
931 pci_write_config_dword(pdev
, where
+ 4, 0);
934 static void apb_init(struct pci_controller_info
*p
, struct pci_bus
*sabre_bus
)
936 struct pci_dev
*pdev
;
938 list_for_each_entry(pdev
, &sabre_bus
->devices
, bus_list
) {
940 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
941 pdev
->device
== PCI_DEVICE_ID_SUN_SIMBA
) {
945 sabre_read_pci_cfg(pdev
->bus
, pdev
->devfn
,
946 PCI_COMMAND
, 2, &word32
);
947 word16
= (u16
) word32
;
948 word16
|= PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
|
949 PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
|
951 word32
= (u32
) word16
;
952 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
953 PCI_COMMAND
, 2, word32
);
955 /* Status register bits are "write 1 to clear". */
956 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
957 PCI_STATUS
, 2, 0xffff);
958 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
959 PCI_SEC_STATUS
, 2, 0xffff);
961 /* Use a primary/seconday latency timer value
964 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
965 PCI_LATENCY_TIMER
, 1, 64);
966 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
967 PCI_SEC_LATENCY_TIMER
, 1, 64);
969 /* Enable reporting/forwarding of master aborts,
972 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
973 PCI_BRIDGE_CONTROL
, 1,
974 (PCI_BRIDGE_CTL_PARITY
|
975 PCI_BRIDGE_CTL_SERR
|
976 PCI_BRIDGE_CTL_MASTER_ABORT
));
981 static struct pcidev_cookie
*alloc_bridge_cookie(struct pci_pbm_info
*pbm
)
983 struct pcidev_cookie
*cookie
= kzalloc(sizeof(*cookie
), GFP_KERNEL
);
986 prom_printf("SABRE: Critical allocation failure.\n");
990 /* All we care about is the PBM. */
996 static void sabre_scan_bus(struct pci_controller_info
*p
)
999 struct pci_bus
*sabre_bus
, *pbus
;
1000 struct pci_pbm_info
*pbm
;
1001 struct pcidev_cookie
*cookie
;
1004 /* The APB bridge speaks to the Sabre host PCI bridge
1005 * at 66Mhz, but the front side of APB runs at 33Mhz
1006 * for both segments.
1008 p
->pbm_A
.is_66mhz_capable
= 0;
1009 p
->pbm_B
.is_66mhz_capable
= 0;
1011 /* This driver has not been verified to handle
1012 * multiple SABREs yet, so trap this.
1014 * Also note that the SABRE host bridge is hardwired
1018 prom_printf("SABRE: Multiple controllers unsupported.\n");
1023 cookie
= alloc_bridge_cookie(&p
->pbm_A
);
1025 sabre_bus
= pci_scan_bus(p
->pci_first_busno
,
1028 pci_fixup_host_bridge_self(sabre_bus
);
1029 sabre_bus
->self
->sysdata
= cookie
;
1031 sabre_root_bus
= sabre_bus
;
1033 apb_init(p
, sabre_bus
);
1037 list_for_each_entry(pbus
, &sabre_bus
->children
, node
) {
1039 if (pbus
->number
== p
->pbm_A
.pci_first_busno
) {
1041 } else if (pbus
->number
== p
->pbm_B
.pci_first_busno
) {
1046 cookie
= alloc_bridge_cookie(pbm
);
1047 pbus
->self
->sysdata
= cookie
;
1051 pbus
->sysdata
= pbm
;
1052 pbm
->pci_bus
= pbus
;
1053 pci_fill_in_pbm_cookies(pbus
, pbm
, pbm
->prom_node
);
1054 pci_record_assignments(pbm
, pbus
);
1055 pci_assign_unassigned(pbm
, pbus
);
1056 pci_fixup_irq(pbm
, pbus
);
1057 pci_determine_66mhz_disposition(pbm
, pbus
);
1058 pci_setup_busmastering(pbm
, pbus
);
1061 if (!sabres_scanned
) {
1062 /* Hummingbird, no APBs. */
1064 sabre_bus
->sysdata
= pbm
;
1065 pbm
->pci_bus
= sabre_bus
;
1066 pci_fill_in_pbm_cookies(sabre_bus
, pbm
, pbm
->prom_node
);
1067 pci_record_assignments(pbm
, sabre_bus
);
1068 pci_assign_unassigned(pbm
, sabre_bus
);
1069 pci_fixup_irq(pbm
, sabre_bus
);
1070 pci_determine_66mhz_disposition(pbm
, sabre_bus
);
1071 pci_setup_busmastering(pbm
, sabre_bus
);
1074 sabre_register_error_handlers(p
);
1077 static void sabre_iommu_init(struct pci_controller_info
*p
,
1078 int tsbsize
, unsigned long dvma_offset
,
1081 struct pci_iommu
*iommu
= p
->pbm_A
.iommu
;
1085 /* Register addresses. */
1086 iommu
->iommu_control
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
;
1087 iommu
->iommu_tsbbase
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TSBBASE
;
1088 iommu
->iommu_flush
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_FLUSH
;
1089 iommu
->write_complete_reg
= p
->pbm_A
.controller_regs
+ SABRE_WRSYNC
;
1090 /* Sabre's IOMMU lacks ctx flushing. */
1091 iommu
->iommu_ctxflush
= 0;
1093 /* Invalidate TLB Entries. */
1094 control
= sabre_read(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
);
1095 control
|= SABRE_IOMMUCTRL_DENAB
;
1096 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
1098 for(i
= 0; i
< 16; i
++) {
1099 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
1100 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
1103 /* Leave diag mode enabled for full-flushing done
1106 pci_iommu_table_init(iommu
, tsbsize
* 1024 * 8, dvma_offset
, dma_mask
);
1108 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TSBBASE
,
1109 __pa(iommu
->page_table
));
1111 control
= sabre_read(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
);
1112 control
&= ~(SABRE_IOMMUCTRL_TSBSZ
| SABRE_IOMMUCTRL_TBWSZ
);
1113 control
|= SABRE_IOMMUCTRL_ENAB
;
1116 control
|= SABRE_IOMMU_TSBSZ_64K
;
1119 control
|= SABRE_IOMMU_TSBSZ_128K
;
1122 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize
);
1126 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
1129 static void pbm_register_toplevel_resources(struct pci_controller_info
*p
,
1130 struct pci_pbm_info
*pbm
)
1132 char *name
= pbm
->name
;
1133 unsigned long ibase
= p
->pbm_A
.controller_regs
+ SABRE_IOSPACE
;
1134 unsigned long mbase
= p
->pbm_A
.controller_regs
+ SABRE_MEMSPACE
;
1136 unsigned long first
, last
, i
;
1139 sprintf(name
, "SABRE%d PBM%c",
1141 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1142 pbm
->io_space
.name
= pbm
->mem_space
.name
= name
;
1144 devfn
= PCI_DEVFN(1, (pbm
== &p
->pbm_A
) ? 0 : 1);
1145 addr
= sabre_pci_config_mkaddr(pbm
, 0, devfn
, APB_IO_ADDRESS_MAP
);
1147 pci_config_read8(addr
, &map
);
1151 for (i
= 0; i
< 8; i
++) {
1152 if ((map
& (1 << i
)) != 0) {
1159 pbm
->io_space
.start
= ibase
+ (first
<< 21UL);
1160 pbm
->io_space
.end
= ibase
+ (last
<< 21UL) + ((1 << 21UL) - 1);
1161 pbm
->io_space
.flags
= IORESOURCE_IO
;
1163 addr
= sabre_pci_config_mkaddr(pbm
, 0, devfn
, APB_MEM_ADDRESS_MAP
);
1165 pci_config_read8(addr
, &map
);
1169 for (i
= 0; i
< 8; i
++) {
1170 if ((map
& (1 << i
)) != 0) {
1177 pbm
->mem_space
.start
= mbase
+ (first
<< 29UL);
1178 pbm
->mem_space
.end
= mbase
+ (last
<< 29UL) + ((1 << 29UL) - 1);
1179 pbm
->mem_space
.flags
= IORESOURCE_MEM
;
1181 if (request_resource(&ioport_resource
, &pbm
->io_space
) < 0) {
1182 prom_printf("Cannot register PBM-%c's IO space.\n",
1183 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1186 if (request_resource(&iomem_resource
, &pbm
->mem_space
) < 0) {
1187 prom_printf("Cannot register PBM-%c's MEM space.\n",
1188 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1192 /* Register legacy regions if this PBM covers that area. */
1193 if (pbm
->io_space
.start
== ibase
&&
1194 pbm
->mem_space
.start
== mbase
)
1195 pci_register_legacy_regions(&pbm
->io_space
,
1199 static void sabre_pbm_init(struct pci_controller_info
*p
, struct device_node
*dp
, u32 dma_start
, u32 dma_end
)
1201 struct pci_pbm_info
*pbm
;
1202 struct device_node
*node
;
1203 struct property
*prop
;
1205 int len
, simbas_found
;
1209 while (node
!= NULL
) {
1210 if (strcmp(node
->name
, "pci"))
1213 prop
= of_find_property(node
, "model", NULL
);
1214 if (!prop
|| strncmp(prop
->value
, "SUNW,simba", prop
->length
))
1219 prop
= of_find_property(node
, "bus-range", NULL
);
1220 busrange
= prop
->value
;
1221 if (busrange
[0] == 1)
1226 pbm
->name
= node
->full_name
;
1227 printk("%s: SABRE PCI Bus Module\n", pbm
->name
);
1229 pbm
->chip_type
= PBM_CHIP_TYPE_SABRE
;
1231 pbm
->prom_node
= node
;
1232 pbm
->pci_first_slot
= 1;
1233 pbm
->pci_first_busno
= busrange
[0];
1234 pbm
->pci_last_busno
= busrange
[1];
1236 prop
= of_find_property(node
, "ranges", &len
);
1238 pbm
->pbm_ranges
= prop
->value
;
1239 pbm
->num_pbm_ranges
=
1240 (len
/ sizeof(struct linux_prom_pci_ranges
));
1242 pbm
->num_pbm_ranges
= 0;
1245 prop
= of_find_property(node
, "interrupt-map", &len
);
1247 pbm
->pbm_intmap
= prop
->value
;
1248 pbm
->num_pbm_intmap
=
1249 (len
/ sizeof(struct linux_prom_pci_intmap
));
1251 prop
= of_find_property(node
, "interrupt-map-mask",
1253 pbm
->pbm_intmask
= prop
->value
;
1255 pbm
->num_pbm_intmap
= 0;
1258 pbm_register_toplevel_resources(p
, pbm
);
1261 node
= node
->sibling
;
1263 if (simbas_found
== 0) {
1264 struct resource
*rp
;
1266 /* No APBs underneath, probably this is a hummingbird
1271 pbm
->prom_node
= dp
;
1272 pbm
->pci_first_busno
= p
->pci_first_busno
;
1273 pbm
->pci_last_busno
= p
->pci_last_busno
;
1275 prop
= of_find_property(dp
, "ranges", &len
);
1277 pbm
->pbm_ranges
= prop
->value
;
1278 pbm
->num_pbm_ranges
=
1279 (len
/ sizeof(struct linux_prom_pci_ranges
));
1281 pbm
->num_pbm_ranges
= 0;
1284 prop
= of_find_property(dp
, "interrupt-map", &len
);
1286 pbm
->pbm_intmap
= prop
->value
;
1287 pbm
->num_pbm_intmap
=
1288 (len
/ sizeof(struct linux_prom_pci_intmap
));
1290 prop
= of_find_property(dp
, "interrupt-map-mask",
1292 pbm
->pbm_intmask
= prop
->value
;
1294 pbm
->num_pbm_intmap
= 0;
1297 pbm
->name
= dp
->full_name
;
1298 printk("%s: SABRE PCI Bus Module\n", pbm
->name
);
1300 pbm
->io_space
.name
= pbm
->mem_space
.name
= pbm
->name
;
1302 /* Hack up top-level resources. */
1303 pbm
->io_space
.start
= p
->pbm_A
.controller_regs
+ SABRE_IOSPACE
;
1304 pbm
->io_space
.end
= pbm
->io_space
.start
+ (1UL << 24) - 1UL;
1305 pbm
->io_space
.flags
= IORESOURCE_IO
;
1307 pbm
->mem_space
.start
=
1308 (p
->pbm_A
.controller_regs
+ SABRE_MEMSPACE
);
1309 pbm
->mem_space
.end
=
1310 (pbm
->mem_space
.start
+ ((1UL << 32UL) - 1UL));
1311 pbm
->mem_space
.flags
= IORESOURCE_MEM
;
1313 if (request_resource(&ioport_resource
, &pbm
->io_space
) < 0) {
1314 prom_printf("Cannot register Hummingbird's IO space.\n");
1317 if (request_resource(&iomem_resource
, &pbm
->mem_space
) < 0) {
1318 prom_printf("Cannot register Hummingbird's MEM space.\n");
1322 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
1324 prom_printf("Cannot allocate IOMMU resource.\n");
1328 rp
->start
= pbm
->mem_space
.start
+ (unsigned long) dma_start
;
1329 rp
->end
= pbm
->mem_space
.start
+ (unsigned long) dma_end
- 1UL;
1330 rp
->flags
= IORESOURCE_BUSY
;
1331 request_resource(&pbm
->mem_space
, rp
);
1333 pci_register_legacy_regions(&pbm
->io_space
,
1338 void sabre_init(struct device_node
*dp
, char *model_name
)
1340 struct linux_prom64_registers
*pr_regs
;
1341 struct pci_controller_info
*p
;
1342 struct pci_iommu
*iommu
;
1343 struct property
*prop
;
1347 u32 upa_portid
, dma_mask
;
1351 if (!strcmp(model_name
, "pci108e,a001"))
1353 else if (!strcmp(model_name
, "SUNW,sabre")) {
1354 prop
= of_find_property(dp
, "compatible", NULL
);
1356 const char *compat
= prop
->value
;
1358 if (!strcmp(compat
, "pci108e,a001"))
1361 if (!hummingbird_p
) {
1362 struct device_node
*dp
;
1364 /* Of course, Sun has to encode things a thousand
1365 * different ways, inconsistently.
1367 cpu_find_by_instance(0, &dp
, NULL
);
1368 if (!strcmp(dp
->name
, "SUNW,UltraSPARC-IIe"))
1373 p
= kzalloc(sizeof(*p
), GFP_ATOMIC
);
1375 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1379 iommu
= kzalloc(sizeof(*iommu
), GFP_ATOMIC
);
1381 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1384 p
->pbm_A
.iommu
= p
->pbm_B
.iommu
= iommu
;
1387 prop
= of_find_property(dp
, "upa-portid", NULL
);
1389 upa_portid
= *(u32
*) prop
->value
;
1391 p
->next
= pci_controller_root
;
1392 pci_controller_root
= p
;
1394 p
->pbm_A
.portid
= upa_portid
;
1395 p
->pbm_B
.portid
= upa_portid
;
1396 p
->index
= pci_num_controllers
++;
1397 p
->pbms_same_domain
= 1;
1398 p
->scan_bus
= sabre_scan_bus
;
1399 p
->base_address_update
= sabre_base_address_update
;
1400 p
->resource_adjust
= sabre_resource_adjust
;
1401 p
->pci_ops
= &sabre_ops
;
1404 * Map in SABRE register set and report the presence of this SABRE.
1407 prop
= of_find_property(dp
, "reg", NULL
);
1408 pr_regs
= prop
->value
;
1411 * First REG in property is base of entire SABRE register space.
1413 p
->pbm_A
.controller_regs
= pr_regs
[0].phys_addr
;
1414 p
->pbm_B
.controller_regs
= pr_regs
[0].phys_addr
;
1416 /* Clear interrupts */
1419 for (clear_irq
= SABRE_ICLR_A_SLOT0
; clear_irq
< SABRE_ICLR_B_SLOT0
+ 0x80; clear_irq
+= 8)
1420 sabre_write(p
->pbm_A
.controller_regs
+ clear_irq
, 0x0UL
);
1423 for (clear_irq
= SABRE_ICLR_SCSI
; clear_irq
< SABRE_ICLR_SCSI
+ 0x80; clear_irq
+= 8)
1424 sabre_write(p
->pbm_A
.controller_regs
+ clear_irq
, 0x0UL
);
1426 /* Error interrupts are enabled later after the bus scan. */
1427 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_PCICTRL
,
1428 (SABRE_PCICTRL_MRLEN
| SABRE_PCICTRL_SERR
|
1429 SABRE_PCICTRL_ARBPARK
| SABRE_PCICTRL_AEN
));
1431 /* Now map in PCI config space for entire SABRE. */
1432 p
->pbm_A
.config_space
= p
->pbm_B
.config_space
=
1433 (p
->pbm_A
.controller_regs
+ SABRE_CONFIGSPACE
);
1435 prop
= of_find_property(dp
, "virtual-dma", NULL
);
1441 dma_mask
|= 0x1fffffff;
1445 dma_mask
|= 0x3fffffff;
1450 dma_mask
|= 0x7fffffff;
1454 prom_printf("SABRE: strange virtual-dma size.\n");
1458 sabre_iommu_init(p
, tsbsize
, vdma
[0], dma_mask
);
1460 prop
= of_find_property(dp
, "bus-range", NULL
);
1461 busrange
= prop
->value
;
1462 p
->pci_first_busno
= busrange
[0];
1463 p
->pci_last_busno
= busrange
[1];
1466 * Look for APB underneath.
1468 sabre_pbm_init(p
, dp
, vdma
[0], vdma
[0] + vdma
[1]);