Linux 2.6.21
[linux/fpc-iii.git] / arch / sparc64 / kernel / time.c
blobf84da4f1b7060a201d71b1c766797730d22fb945
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
7 * Based largely on code which is:
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
35 #include <asm/oplib.h>
36 #include <asm/mostek.h>
37 #include <asm/timer.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/prom.h>
41 #include <asm/of_device.h>
42 #include <asm/starfire.h>
43 #include <asm/smp.h>
44 #include <asm/sections.h>
45 #include <asm/cpudata.h>
46 #include <asm/uaccess.h>
47 #include <asm/prom.h>
48 #include <asm/irq_regs.h>
50 DEFINE_SPINLOCK(mostek_lock);
51 DEFINE_SPINLOCK(rtc_lock);
52 void __iomem *mstk48t02_regs = NULL;
53 #ifdef CONFIG_PCI
54 unsigned long ds1287_regs = 0UL;
55 #endif
57 static void __iomem *mstk48t08_regs;
58 static void __iomem *mstk48t59_regs;
60 static int set_rtc_mmss(unsigned long);
62 #define TICK_PRIV_BIT (1UL << 63)
64 #ifdef CONFIG_SMP
65 unsigned long profile_pc(struct pt_regs *regs)
67 unsigned long pc = instruction_pointer(regs);
69 if (in_lock_functions(pc))
70 return regs->u_regs[UREG_RETPC];
71 return pc;
73 EXPORT_SYMBOL(profile_pc);
74 #endif
76 static void tick_disable_protection(void)
78 /* Set things up so user can access tick register for profiling
79 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
80 * read back of %tick after writing it.
82 __asm__ __volatile__(
83 " ba,pt %%xcc, 1f\n"
84 " nop\n"
85 " .align 64\n"
86 "1: rd %%tick, %%g2\n"
87 " add %%g2, 6, %%g2\n"
88 " andn %%g2, %0, %%g2\n"
89 " wrpr %%g2, 0, %%tick\n"
90 " rdpr %%tick, %%g0"
91 : /* no outputs */
92 : "r" (TICK_PRIV_BIT)
93 : "g2");
96 static void tick_init_tick(unsigned long offset)
98 tick_disable_protection();
100 __asm__ __volatile__(
101 " rd %%tick, %%g1\n"
102 " andn %%g1, %1, %%g1\n"
103 " ba,pt %%xcc, 1f\n"
104 " add %%g1, %0, %%g1\n"
105 " .align 64\n"
106 "1: wr %%g1, 0x0, %%tick_cmpr\n"
107 " rd %%tick_cmpr, %%g0"
108 : /* no outputs */
109 : "r" (offset), "r" (TICK_PRIV_BIT)
110 : "g1");
113 static unsigned long tick_get_tick(void)
115 unsigned long ret;
117 __asm__ __volatile__("rd %%tick, %0\n\t"
118 "mov %0, %0"
119 : "=r" (ret));
121 return ret & ~TICK_PRIV_BIT;
124 static unsigned long tick_get_compare(void)
126 unsigned long ret;
128 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
129 "mov %0, %0"
130 : "=r" (ret));
132 return ret;
135 static unsigned long tick_add_compare(unsigned long adj)
137 unsigned long new_compare;
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * number 103640.
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
148 __asm__ __volatile__("rd %%tick_cmpr, %0\n\t"
149 "ba,pt %%xcc, 1f\n\t"
150 " add %0, %1, %0\n\t"
151 ".align 64\n"
152 "1:\n\t"
153 "wr %0, 0, %%tick_cmpr\n\t"
154 "rd %%tick_cmpr, %%g0"
155 : "=&r" (new_compare)
156 : "r" (adj));
158 return new_compare;
161 static unsigned long tick_add_tick(unsigned long adj, unsigned long offset)
163 unsigned long new_tick, tmp;
165 /* Also need to handle Blackbird bug here too. */
166 __asm__ __volatile__("rd %%tick, %0\n\t"
167 "add %0, %2, %0\n\t"
168 "wrpr %0, 0, %%tick\n\t"
169 "andn %0, %4, %1\n\t"
170 "ba,pt %%xcc, 1f\n\t"
171 " add %1, %3, %1\n\t"
172 ".align 64\n"
173 "1:\n\t"
174 "wr %1, 0, %%tick_cmpr\n\t"
175 "rd %%tick_cmpr, %%g0"
176 : "=&r" (new_tick), "=&r" (tmp)
177 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
179 return new_tick;
182 static struct sparc64_tick_ops tick_operations __read_mostly = {
183 .init_tick = tick_init_tick,
184 .get_tick = tick_get_tick,
185 .get_compare = tick_get_compare,
186 .add_tick = tick_add_tick,
187 .add_compare = tick_add_compare,
188 .softint_mask = 1UL << 0,
191 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
193 static void stick_init_tick(unsigned long offset)
195 /* Writes to the %tick and %stick register are not
196 * allowed on sun4v. The Hypervisor controls that
197 * bit, per-strand.
199 if (tlb_type != hypervisor) {
200 tick_disable_protection();
202 /* Let the user get at STICK too. */
203 __asm__ __volatile__(
204 " rd %%asr24, %%g2\n"
205 " andn %%g2, %0, %%g2\n"
206 " wr %%g2, 0, %%asr24"
207 : /* no outputs */
208 : "r" (TICK_PRIV_BIT)
209 : "g1", "g2");
212 __asm__ __volatile__(
213 " rd %%asr24, %%g1\n"
214 " andn %%g1, %1, %%g1\n"
215 " add %%g1, %0, %%g1\n"
216 " wr %%g1, 0x0, %%asr25"
217 : /* no outputs */
218 : "r" (offset), "r" (TICK_PRIV_BIT)
219 : "g1");
222 static unsigned long stick_get_tick(void)
224 unsigned long ret;
226 __asm__ __volatile__("rd %%asr24, %0"
227 : "=r" (ret));
229 return ret & ~TICK_PRIV_BIT;
232 static unsigned long stick_get_compare(void)
234 unsigned long ret;
236 __asm__ __volatile__("rd %%asr25, %0"
237 : "=r" (ret));
239 return ret;
242 static unsigned long stick_add_tick(unsigned long adj, unsigned long offset)
244 unsigned long new_tick, tmp;
246 __asm__ __volatile__("rd %%asr24, %0\n\t"
247 "add %0, %2, %0\n\t"
248 "wr %0, 0, %%asr24\n\t"
249 "andn %0, %4, %1\n\t"
250 "add %1, %3, %1\n\t"
251 "wr %1, 0, %%asr25"
252 : "=&r" (new_tick), "=&r" (tmp)
253 : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT));
255 return new_tick;
258 static unsigned long stick_add_compare(unsigned long adj)
260 unsigned long new_compare;
262 __asm__ __volatile__("rd %%asr25, %0\n\t"
263 "add %0, %1, %0\n\t"
264 "wr %0, 0, %%asr25"
265 : "=&r" (new_compare)
266 : "r" (adj));
268 return new_compare;
271 static struct sparc64_tick_ops stick_operations __read_mostly = {
272 .init_tick = stick_init_tick,
273 .get_tick = stick_get_tick,
274 .get_compare = stick_get_compare,
275 .add_tick = stick_add_tick,
276 .add_compare = stick_add_compare,
277 .softint_mask = 1UL << 16,
280 /* On Hummingbird the STICK/STICK_CMPR register is implemented
281 * in I/O space. There are two 64-bit registers each, the
282 * first holds the low 32-bits of the value and the second holds
283 * the high 32-bits.
285 * Since STICK is constantly updating, we have to access it carefully.
287 * The sequence we use to read is:
288 * 1) read high
289 * 2) read low
290 * 3) read high again, if it rolled re-read both low and high again.
292 * Writing STICK safely is also tricky:
293 * 1) write low to zero
294 * 2) write high
295 * 3) write low
297 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
298 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
300 static unsigned long __hbird_read_stick(void)
302 unsigned long ret, tmp1, tmp2, tmp3;
303 unsigned long addr = HBIRD_STICK_ADDR+8;
305 __asm__ __volatile__("ldxa [%1] %5, %2\n"
306 "1:\n\t"
307 "sub %1, 0x8, %1\n\t"
308 "ldxa [%1] %5, %3\n\t"
309 "add %1, 0x8, %1\n\t"
310 "ldxa [%1] %5, %4\n\t"
311 "cmp %4, %2\n\t"
312 "bne,a,pn %%xcc, 1b\n\t"
313 " mov %4, %2\n\t"
314 "sllx %4, 32, %4\n\t"
315 "or %3, %4, %0\n\t"
316 : "=&r" (ret), "=&r" (addr),
317 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
318 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
320 return ret;
323 static unsigned long __hbird_read_compare(void)
325 unsigned long low, high;
326 unsigned long addr = HBIRD_STICKCMP_ADDR;
328 __asm__ __volatile__("ldxa [%2] %3, %0\n\t"
329 "add %2, 0x8, %2\n\t"
330 "ldxa [%2] %3, %1"
331 : "=&r" (low), "=&r" (high), "=&r" (addr)
332 : "i" (ASI_PHYS_BYPASS_EC_E), "2" (addr));
334 return (high << 32UL) | low;
337 static void __hbird_write_stick(unsigned long val)
339 unsigned long low = (val & 0xffffffffUL);
340 unsigned long high = (val >> 32UL);
341 unsigned long addr = HBIRD_STICK_ADDR;
343 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
344 "add %0, 0x8, %0\n\t"
345 "stxa %3, [%0] %4\n\t"
346 "sub %0, 0x8, %0\n\t"
347 "stxa %2, [%0] %4"
348 : "=&r" (addr)
349 : "0" (addr), "r" (low), "r" (high),
350 "i" (ASI_PHYS_BYPASS_EC_E));
353 static void __hbird_write_compare(unsigned long val)
355 unsigned long low = (val & 0xffffffffUL);
356 unsigned long high = (val >> 32UL);
357 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
359 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
360 "sub %0, 0x8, %0\n\t"
361 "stxa %2, [%0] %4"
362 : "=&r" (addr)
363 : "0" (addr), "r" (low), "r" (high),
364 "i" (ASI_PHYS_BYPASS_EC_E));
367 static void hbtick_init_tick(unsigned long offset)
369 unsigned long val;
371 tick_disable_protection();
373 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
374 * XXX into actually sending STICK interrupts. I think because
375 * XXX of how we store %tick_cmpr in head.S this somehow resets the
376 * XXX {TICK + STICK} interrupt mux. -DaveM
378 __hbird_write_stick(__hbird_read_stick());
380 val = __hbird_read_stick() & ~TICK_PRIV_BIT;
381 __hbird_write_compare(val + offset);
384 static unsigned long hbtick_get_tick(void)
386 return __hbird_read_stick() & ~TICK_PRIV_BIT;
389 static unsigned long hbtick_get_compare(void)
391 return __hbird_read_compare();
394 static unsigned long hbtick_add_tick(unsigned long adj, unsigned long offset)
396 unsigned long val;
398 val = __hbird_read_stick() + adj;
399 __hbird_write_stick(val);
401 val &= ~TICK_PRIV_BIT;
402 __hbird_write_compare(val + offset);
404 return val;
407 static unsigned long hbtick_add_compare(unsigned long adj)
409 unsigned long val = __hbird_read_compare() + adj;
411 val &= ~TICK_PRIV_BIT;
412 __hbird_write_compare(val);
414 return val;
417 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
418 .init_tick = hbtick_init_tick,
419 .get_tick = hbtick_get_tick,
420 .get_compare = hbtick_get_compare,
421 .add_tick = hbtick_add_tick,
422 .add_compare = hbtick_add_compare,
423 .softint_mask = 1UL << 0,
426 /* timer_interrupt() needs to keep up the real-time clock,
427 * as well as call the "do_timer()" routine every clocktick
429 * NOTE: On SUN5 systems the ticker interrupt comes in using 2
430 * interrupts, one at level14 and one with softint bit 0.
432 unsigned long timer_tick_offset __read_mostly;
434 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
436 #define TICK_SIZE (tick_nsec / 1000)
438 static inline void timer_check_rtc(void)
440 /* last time the cmos clock got updated */
441 static long last_rtc_update;
443 /* Determine when to update the Mostek clock. */
444 if (ntp_synced() &&
445 xtime.tv_sec > last_rtc_update + 660 &&
446 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
447 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
448 if (set_rtc_mmss(xtime.tv_sec) == 0)
449 last_rtc_update = xtime.tv_sec;
450 else
451 last_rtc_update = xtime.tv_sec - 600;
452 /* do it again in 60 s */
456 irqreturn_t timer_interrupt(int irq, void *dev_id)
458 unsigned long ticks, compare, pstate;
460 write_seqlock(&xtime_lock);
462 do {
463 #ifndef CONFIG_SMP
464 profile_tick(CPU_PROFILING);
465 update_process_times(user_mode(get_irq_regs()));
466 #endif
467 do_timer(1);
469 /* Guarantee that the following sequences execute
470 * uninterrupted.
472 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
473 "wrpr %0, %1, %%pstate"
474 : "=r" (pstate)
475 : "i" (PSTATE_IE));
477 compare = tick_ops->add_compare(timer_tick_offset);
478 ticks = tick_ops->get_tick();
480 /* Restore PSTATE_IE. */
481 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
482 : /* no outputs */
483 : "r" (pstate));
484 } while (time_after_eq(ticks, compare));
486 timer_check_rtc();
488 write_sequnlock(&xtime_lock);
490 return IRQ_HANDLED;
493 #ifdef CONFIG_SMP
494 void timer_tick_interrupt(struct pt_regs *regs)
496 write_seqlock(&xtime_lock);
498 do_timer(1);
500 timer_check_rtc();
502 write_sequnlock(&xtime_lock);
504 #endif
506 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
507 static void __init kick_start_clock(void)
509 void __iomem *regs = mstk48t02_regs;
510 u8 sec, tmp;
511 int i, count;
513 prom_printf("CLOCK: Clock was stopped. Kick start ");
515 spin_lock_irq(&mostek_lock);
517 /* Turn on the kick start bit to start the oscillator. */
518 tmp = mostek_read(regs + MOSTEK_CREG);
519 tmp |= MSTK_CREG_WRITE;
520 mostek_write(regs + MOSTEK_CREG, tmp);
521 tmp = mostek_read(regs + MOSTEK_SEC);
522 tmp &= ~MSTK_STOP;
523 mostek_write(regs + MOSTEK_SEC, tmp);
524 tmp = mostek_read(regs + MOSTEK_HOUR);
525 tmp |= MSTK_KICK_START;
526 mostek_write(regs + MOSTEK_HOUR, tmp);
527 tmp = mostek_read(regs + MOSTEK_CREG);
528 tmp &= ~MSTK_CREG_WRITE;
529 mostek_write(regs + MOSTEK_CREG, tmp);
531 spin_unlock_irq(&mostek_lock);
533 /* Delay to allow the clock oscillator to start. */
534 sec = MSTK_REG_SEC(regs);
535 for (i = 0; i < 3; i++) {
536 while (sec == MSTK_REG_SEC(regs))
537 for (count = 0; count < 100000; count++)
538 /* nothing */ ;
539 prom_printf(".");
540 sec = MSTK_REG_SEC(regs);
542 prom_printf("\n");
544 spin_lock_irq(&mostek_lock);
546 /* Turn off kick start and set a "valid" time and date. */
547 tmp = mostek_read(regs + MOSTEK_CREG);
548 tmp |= MSTK_CREG_WRITE;
549 mostek_write(regs + MOSTEK_CREG, tmp);
550 tmp = mostek_read(regs + MOSTEK_HOUR);
551 tmp &= ~MSTK_KICK_START;
552 mostek_write(regs + MOSTEK_HOUR, tmp);
553 MSTK_SET_REG_SEC(regs,0);
554 MSTK_SET_REG_MIN(regs,0);
555 MSTK_SET_REG_HOUR(regs,0);
556 MSTK_SET_REG_DOW(regs,5);
557 MSTK_SET_REG_DOM(regs,1);
558 MSTK_SET_REG_MONTH(regs,8);
559 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
560 tmp = mostek_read(regs + MOSTEK_CREG);
561 tmp &= ~MSTK_CREG_WRITE;
562 mostek_write(regs + MOSTEK_CREG, tmp);
564 spin_unlock_irq(&mostek_lock);
566 /* Ensure the kick start bit is off. If it isn't, turn it off. */
567 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
568 prom_printf("CLOCK: Kick start still on!\n");
570 spin_lock_irq(&mostek_lock);
572 tmp = mostek_read(regs + MOSTEK_CREG);
573 tmp |= MSTK_CREG_WRITE;
574 mostek_write(regs + MOSTEK_CREG, tmp);
576 tmp = mostek_read(regs + MOSTEK_HOUR);
577 tmp &= ~MSTK_KICK_START;
578 mostek_write(regs + MOSTEK_HOUR, tmp);
580 tmp = mostek_read(regs + MOSTEK_CREG);
581 tmp &= ~MSTK_CREG_WRITE;
582 mostek_write(regs + MOSTEK_CREG, tmp);
584 spin_unlock_irq(&mostek_lock);
587 prom_printf("CLOCK: Kick start procedure successful.\n");
590 /* Return nonzero if the clock chip battery is low. */
591 static int __init has_low_battery(void)
593 void __iomem *regs = mstk48t02_regs;
594 u8 data1, data2;
596 spin_lock_irq(&mostek_lock);
598 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
599 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
600 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
601 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
603 spin_unlock_irq(&mostek_lock);
605 return (data1 == data2); /* Was the write blocked? */
608 /* Probe for the real time clock chip. */
609 static void __init set_system_time(void)
611 unsigned int year, mon, day, hour, min, sec;
612 void __iomem *mregs = mstk48t02_regs;
613 #ifdef CONFIG_PCI
614 unsigned long dregs = ds1287_regs;
615 #else
616 unsigned long dregs = 0UL;
617 #endif
618 u8 tmp;
620 if (!mregs && !dregs) {
621 prom_printf("Something wrong, clock regs not mapped yet.\n");
622 prom_halt();
625 if (mregs) {
626 spin_lock_irq(&mostek_lock);
628 /* Traditional Mostek chip. */
629 tmp = mostek_read(mregs + MOSTEK_CREG);
630 tmp |= MSTK_CREG_READ;
631 mostek_write(mregs + MOSTEK_CREG, tmp);
633 sec = MSTK_REG_SEC(mregs);
634 min = MSTK_REG_MIN(mregs);
635 hour = MSTK_REG_HOUR(mregs);
636 day = MSTK_REG_DOM(mregs);
637 mon = MSTK_REG_MONTH(mregs);
638 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
639 } else {
640 /* Dallas 12887 RTC chip. */
642 do {
643 sec = CMOS_READ(RTC_SECONDS);
644 min = CMOS_READ(RTC_MINUTES);
645 hour = CMOS_READ(RTC_HOURS);
646 day = CMOS_READ(RTC_DAY_OF_MONTH);
647 mon = CMOS_READ(RTC_MONTH);
648 year = CMOS_READ(RTC_YEAR);
649 } while (sec != CMOS_READ(RTC_SECONDS));
651 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
652 BCD_TO_BIN(sec);
653 BCD_TO_BIN(min);
654 BCD_TO_BIN(hour);
655 BCD_TO_BIN(day);
656 BCD_TO_BIN(mon);
657 BCD_TO_BIN(year);
659 if ((year += 1900) < 1970)
660 year += 100;
663 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
664 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
665 set_normalized_timespec(&wall_to_monotonic,
666 -xtime.tv_sec, -xtime.tv_nsec);
668 if (mregs) {
669 tmp = mostek_read(mregs + MOSTEK_CREG);
670 tmp &= ~MSTK_CREG_READ;
671 mostek_write(mregs + MOSTEK_CREG, tmp);
673 spin_unlock_irq(&mostek_lock);
677 /* davem suggests we keep this within the 4M locked kernel image */
678 static u32 starfire_get_time(void)
680 static char obp_gettod[32];
681 static u32 unix_tod;
683 sprintf(obp_gettod, "h# %08x unix-gettod",
684 (unsigned int) (long) &unix_tod);
685 prom_feval(obp_gettod);
687 return unix_tod;
690 static int starfire_set_time(u32 val)
692 /* Do nothing, time is set using the service processor
693 * console on this platform.
695 return 0;
698 static u32 hypervisor_get_time(void)
700 register unsigned long func asm("%o5");
701 register unsigned long arg0 asm("%o0");
702 register unsigned long arg1 asm("%o1");
703 int retries = 10000;
705 retry:
706 func = HV_FAST_TOD_GET;
707 arg0 = 0;
708 arg1 = 0;
709 __asm__ __volatile__("ta %6"
710 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
711 : "0" (func), "1" (arg0), "2" (arg1),
712 "i" (HV_FAST_TRAP));
713 if (arg0 == HV_EOK)
714 return arg1;
715 if (arg0 == HV_EWOULDBLOCK) {
716 if (--retries > 0) {
717 udelay(100);
718 goto retry;
720 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
721 return 0;
723 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
724 return 0;
727 static int hypervisor_set_time(u32 secs)
729 register unsigned long func asm("%o5");
730 register unsigned long arg0 asm("%o0");
731 int retries = 10000;
733 retry:
734 func = HV_FAST_TOD_SET;
735 arg0 = secs;
736 __asm__ __volatile__("ta %4"
737 : "=&r" (func), "=&r" (arg0)
738 : "0" (func), "1" (arg0),
739 "i" (HV_FAST_TRAP));
740 if (arg0 == HV_EOK)
741 return 0;
742 if (arg0 == HV_EWOULDBLOCK) {
743 if (--retries > 0) {
744 udelay(100);
745 goto retry;
747 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
748 return -EAGAIN;
750 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
751 return -EOPNOTSUPP;
754 static int __init clock_model_matches(char *model)
756 if (strcmp(model, "mk48t02") &&
757 strcmp(model, "mk48t08") &&
758 strcmp(model, "mk48t59") &&
759 strcmp(model, "m5819") &&
760 strcmp(model, "m5819p") &&
761 strcmp(model, "m5823") &&
762 strcmp(model, "ds1287"))
763 return 0;
765 return 1;
768 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
770 struct device_node *dp = op->node;
771 char *model = of_get_property(dp, "model", NULL);
772 unsigned long size, flags;
773 void __iomem *regs;
775 if (!model || !clock_model_matches(model))
776 return -ENODEV;
778 /* On an Enterprise system there can be multiple mostek clocks.
779 * We should only match the one that is on the central FHC bus.
781 if (!strcmp(dp->parent->name, "fhc") &&
782 strcmp(dp->parent->parent->name, "central") != 0)
783 return -ENODEV;
785 size = (op->resource[0].end - op->resource[0].start) + 1;
786 regs = of_ioremap(&op->resource[0], 0, size, "clock");
787 if (!regs)
788 return -ENOMEM;
790 #ifdef CONFIG_PCI
791 if (!strcmp(model, "ds1287") ||
792 !strcmp(model, "m5819") ||
793 !strcmp(model, "m5819p") ||
794 !strcmp(model, "m5823")) {
795 ds1287_regs = (unsigned long) regs;
796 } else
797 #endif
798 if (model[5] == '0' && model[6] == '2') {
799 mstk48t02_regs = regs;
800 } else if(model[5] == '0' && model[6] == '8') {
801 mstk48t08_regs = regs;
802 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
803 } else {
804 mstk48t59_regs = regs;
805 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
808 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
810 local_irq_save(flags);
812 if (mstk48t02_regs != NULL) {
813 /* Report a low battery voltage condition. */
814 if (has_low_battery())
815 prom_printf("NVRAM: Low battery voltage!\n");
817 /* Kick start the clock if it is completely stopped. */
818 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
819 kick_start_clock();
822 set_system_time();
824 local_irq_restore(flags);
826 return 0;
829 static struct of_device_id clock_match[] = {
831 .name = "eeprom",
834 .name = "rtc",
839 static struct of_platform_driver clock_driver = {
840 .name = "clock",
841 .match_table = clock_match,
842 .probe = clock_probe,
845 static int __init clock_init(void)
847 if (this_is_starfire) {
848 xtime.tv_sec = starfire_get_time();
849 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
850 set_normalized_timespec(&wall_to_monotonic,
851 -xtime.tv_sec, -xtime.tv_nsec);
852 return 0;
854 if (tlb_type == hypervisor) {
855 xtime.tv_sec = hypervisor_get_time();
856 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
857 set_normalized_timespec(&wall_to_monotonic,
858 -xtime.tv_sec, -xtime.tv_nsec);
859 return 0;
862 return of_register_driver(&clock_driver, &of_bus_type);
865 /* Must be after subsys_initcall() so that busses are probed. Must
866 * be before device_initcall() because things like the RTC driver
867 * need to see the clock registers.
869 fs_initcall(clock_init);
871 /* This is gets the master TICK_INT timer going. */
872 static unsigned long sparc64_init_timers(void)
874 struct device_node *dp;
875 struct property *prop;
876 unsigned long clock;
877 #ifdef CONFIG_SMP
878 extern void smp_tick_init(void);
879 #endif
881 dp = of_find_node_by_path("/");
882 if (tlb_type == spitfire) {
883 unsigned long ver, manuf, impl;
885 __asm__ __volatile__ ("rdpr %%ver, %0"
886 : "=&r" (ver));
887 manuf = ((ver >> 48) & 0xffff);
888 impl = ((ver >> 32) & 0xffff);
889 if (manuf == 0x17 && impl == 0x13) {
890 /* Hummingbird, aka Ultra-IIe */
891 tick_ops = &hbtick_operations;
892 prop = of_find_property(dp, "stick-frequency", NULL);
893 } else {
894 tick_ops = &tick_operations;
895 cpu_find_by_instance(0, &dp, NULL);
896 prop = of_find_property(dp, "clock-frequency", NULL);
898 } else {
899 tick_ops = &stick_operations;
900 prop = of_find_property(dp, "stick-frequency", NULL);
902 clock = *(unsigned int *) prop->value;
903 timer_tick_offset = clock / HZ;
905 #ifdef CONFIG_SMP
906 smp_tick_init();
907 #endif
909 return clock;
912 static void sparc64_start_timers(void)
914 unsigned long pstate;
916 /* Guarantee that the following sequences execute
917 * uninterrupted.
919 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
920 "wrpr %0, %1, %%pstate"
921 : "=r" (pstate)
922 : "i" (PSTATE_IE));
924 tick_ops->init_tick(timer_tick_offset);
926 /* Restore PSTATE_IE. */
927 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
928 : /* no outputs */
929 : "r" (pstate));
932 struct freq_table {
933 unsigned long clock_tick_ref;
934 unsigned int ref_freq;
936 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
938 unsigned long sparc64_get_clock_tick(unsigned int cpu)
940 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
942 if (ft->clock_tick_ref)
943 return ft->clock_tick_ref;
944 return cpu_data(cpu).clock_tick;
947 #ifdef CONFIG_CPU_FREQ
949 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
950 void *data)
952 struct cpufreq_freqs *freq = data;
953 unsigned int cpu = freq->cpu;
954 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
956 if (!ft->ref_freq) {
957 ft->ref_freq = freq->old;
958 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
960 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
961 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
962 (val == CPUFREQ_RESUMECHANGE)) {
963 cpu_data(cpu).clock_tick =
964 cpufreq_scale(ft->clock_tick_ref,
965 ft->ref_freq,
966 freq->new);
969 return 0;
972 static struct notifier_block sparc64_cpufreq_notifier_block = {
973 .notifier_call = sparc64_cpufreq_notifier
976 #endif /* CONFIG_CPU_FREQ */
978 static struct time_interpolator sparc64_cpu_interpolator = {
979 .source = TIME_SOURCE_CPU,
980 .shift = 16,
981 .mask = 0xffffffffffffffffLL
984 /* The quotient formula is taken from the IA64 port. */
985 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
986 void __init time_init(void)
988 unsigned long clock = sparc64_init_timers();
990 sparc64_cpu_interpolator.frequency = clock;
991 register_time_interpolator(&sparc64_cpu_interpolator);
993 /* Now that the interpolator is registered, it is
994 * safe to start the timer ticking.
996 sparc64_start_timers();
998 timer_ticks_per_nsec_quotient =
999 (((NSEC_PER_SEC << SPARC64_NSEC_PER_CYC_SHIFT) +
1000 (clock / 2)) / clock);
1002 #ifdef CONFIG_CPU_FREQ
1003 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1004 CPUFREQ_TRANSITION_NOTIFIER);
1005 #endif
1008 unsigned long long sched_clock(void)
1010 unsigned long ticks = tick_ops->get_tick();
1012 return (ticks * timer_ticks_per_nsec_quotient)
1013 >> SPARC64_NSEC_PER_CYC_SHIFT;
1016 static int set_rtc_mmss(unsigned long nowtime)
1018 int real_seconds, real_minutes, chip_minutes;
1019 void __iomem *mregs = mstk48t02_regs;
1020 #ifdef CONFIG_PCI
1021 unsigned long dregs = ds1287_regs;
1022 #else
1023 unsigned long dregs = 0UL;
1024 #endif
1025 unsigned long flags;
1026 u8 tmp;
1029 * Not having a register set can lead to trouble.
1030 * Also starfire doesn't have a tod clock.
1032 if (!mregs && !dregs)
1033 return -1;
1035 if (mregs) {
1036 spin_lock_irqsave(&mostek_lock, flags);
1038 /* Read the current RTC minutes. */
1039 tmp = mostek_read(mregs + MOSTEK_CREG);
1040 tmp |= MSTK_CREG_READ;
1041 mostek_write(mregs + MOSTEK_CREG, tmp);
1043 chip_minutes = MSTK_REG_MIN(mregs);
1045 tmp = mostek_read(mregs + MOSTEK_CREG);
1046 tmp &= ~MSTK_CREG_READ;
1047 mostek_write(mregs + MOSTEK_CREG, tmp);
1050 * since we're only adjusting minutes and seconds,
1051 * don't interfere with hour overflow. This avoids
1052 * messing with unknown time zones but requires your
1053 * RTC not to be off by more than 15 minutes
1055 real_seconds = nowtime % 60;
1056 real_minutes = nowtime / 60;
1057 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1058 real_minutes += 30; /* correct for half hour time zone */
1059 real_minutes %= 60;
1061 if (abs(real_minutes - chip_minutes) < 30) {
1062 tmp = mostek_read(mregs + MOSTEK_CREG);
1063 tmp |= MSTK_CREG_WRITE;
1064 mostek_write(mregs + MOSTEK_CREG, tmp);
1066 MSTK_SET_REG_SEC(mregs,real_seconds);
1067 MSTK_SET_REG_MIN(mregs,real_minutes);
1069 tmp = mostek_read(mregs + MOSTEK_CREG);
1070 tmp &= ~MSTK_CREG_WRITE;
1071 mostek_write(mregs + MOSTEK_CREG, tmp);
1073 spin_unlock_irqrestore(&mostek_lock, flags);
1075 return 0;
1076 } else {
1077 spin_unlock_irqrestore(&mostek_lock, flags);
1079 return -1;
1081 } else {
1082 int retval = 0;
1083 unsigned char save_control, save_freq_select;
1085 /* Stolen from arch/i386/kernel/time.c, see there for
1086 * credits and descriptive comments.
1088 spin_lock_irqsave(&rtc_lock, flags);
1089 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1090 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1092 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1093 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1095 chip_minutes = CMOS_READ(RTC_MINUTES);
1096 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1097 BCD_TO_BIN(chip_minutes);
1098 real_seconds = nowtime % 60;
1099 real_minutes = nowtime / 60;
1100 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1101 real_minutes += 30;
1102 real_minutes %= 60;
1104 if (abs(real_minutes - chip_minutes) < 30) {
1105 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1106 BIN_TO_BCD(real_seconds);
1107 BIN_TO_BCD(real_minutes);
1109 CMOS_WRITE(real_seconds,RTC_SECONDS);
1110 CMOS_WRITE(real_minutes,RTC_MINUTES);
1111 } else {
1112 printk(KERN_WARNING
1113 "set_rtc_mmss: can't update from %d to %d\n",
1114 chip_minutes, real_minutes);
1115 retval = -1;
1118 CMOS_WRITE(save_control, RTC_CONTROL);
1119 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1120 spin_unlock_irqrestore(&rtc_lock, flags);
1122 return retval;
1126 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1127 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1129 /* months start at 0 now */
1130 static unsigned char days_in_mo[] =
1131 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
1133 #define FEBRUARY 2
1134 #define STARTOFTIME 1970
1135 #define SECDAY 86400L
1136 #define SECYR (SECDAY * 365)
1137 #define leapyear(year) ((year) % 4 == 0 && \
1138 ((year) % 100 != 0 || (year) % 400 == 0))
1139 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1140 #define days_in_month(a) (month_days[(a) - 1])
1142 static int month_days[12] = {
1143 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1147 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1149 static void GregorianDay(struct rtc_time * tm)
1151 int leapsToDate;
1152 int lastYear;
1153 int day;
1154 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1156 lastYear = tm->tm_year - 1;
1159 * Number of leap corrections to apply up to end of last year
1161 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1164 * This year is a leap year if it is divisible by 4 except when it is
1165 * divisible by 100 unless it is divisible by 400
1167 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1169 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1171 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1172 tm->tm_mday;
1174 tm->tm_wday = day % 7;
1177 static void to_tm(int tim, struct rtc_time *tm)
1179 register int i;
1180 register long hms, day;
1182 day = tim / SECDAY;
1183 hms = tim % SECDAY;
1185 /* Hours, minutes, seconds are easy */
1186 tm->tm_hour = hms / 3600;
1187 tm->tm_min = (hms % 3600) / 60;
1188 tm->tm_sec = (hms % 3600) % 60;
1190 /* Number of years in days */
1191 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1192 day -= days_in_year(i);
1193 tm->tm_year = i;
1195 /* Number of months in days left */
1196 if (leapyear(tm->tm_year))
1197 days_in_month(FEBRUARY) = 29;
1198 for (i = 1; day >= days_in_month(i); i++)
1199 day -= days_in_month(i);
1200 days_in_month(FEBRUARY) = 28;
1201 tm->tm_mon = i;
1203 /* Days are what is left over (+1) from all that. */
1204 tm->tm_mday = day + 1;
1207 * Determine the day of week
1209 GregorianDay(tm);
1212 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1213 * aka Unix time. So we have to convert to/from rtc_time.
1215 static inline void mini_get_rtc_time(struct rtc_time *time)
1217 unsigned long flags;
1218 u32 seconds;
1220 spin_lock_irqsave(&rtc_lock, flags);
1221 seconds = 0;
1222 if (this_is_starfire)
1223 seconds = starfire_get_time();
1224 else if (tlb_type == hypervisor)
1225 seconds = hypervisor_get_time();
1226 spin_unlock_irqrestore(&rtc_lock, flags);
1228 to_tm(seconds, time);
1229 time->tm_year -= 1900;
1230 time->tm_mon -= 1;
1233 static inline int mini_set_rtc_time(struct rtc_time *time)
1235 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1236 time->tm_mday, time->tm_hour,
1237 time->tm_min, time->tm_sec);
1238 unsigned long flags;
1239 int err;
1241 spin_lock_irqsave(&rtc_lock, flags);
1242 err = -ENODEV;
1243 if (this_is_starfire)
1244 err = starfire_set_time(seconds);
1245 else if (tlb_type == hypervisor)
1246 err = hypervisor_set_time(seconds);
1247 spin_unlock_irqrestore(&rtc_lock, flags);
1249 return err;
1252 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1253 unsigned int cmd, unsigned long arg)
1255 struct rtc_time wtime;
1256 void __user *argp = (void __user *)arg;
1258 switch (cmd) {
1260 case RTC_PLL_GET:
1261 return -EINVAL;
1263 case RTC_PLL_SET:
1264 return -EINVAL;
1266 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1267 return 0;
1269 case RTC_UIE_ON: /* enable ints for RTC updates. */
1270 return -EINVAL;
1272 case RTC_RD_TIME: /* Read the time/date from RTC */
1273 /* this doesn't get week-day, who cares */
1274 memset(&wtime, 0, sizeof(wtime));
1275 mini_get_rtc_time(&wtime);
1277 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1279 case RTC_SET_TIME: /* Set the RTC */
1281 int year;
1282 unsigned char leap_yr;
1284 if (!capable(CAP_SYS_TIME))
1285 return -EACCES;
1287 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1288 return -EFAULT;
1290 year = wtime.tm_year + 1900;
1291 leap_yr = ((!(year % 4) && (year % 100)) ||
1292 !(year % 400));
1294 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || (wtime.tm_mday < 1))
1295 return -EINVAL;
1297 if (wtime.tm_mday < 0 || wtime.tm_mday >
1298 (days_in_mo[wtime.tm_mon] + ((wtime.tm_mon == 1) && leap_yr)))
1299 return -EINVAL;
1301 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1302 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1303 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1304 return -EINVAL;
1306 return mini_set_rtc_time(&wtime);
1310 return -EINVAL;
1313 static int mini_rtc_open(struct inode *inode, struct file *file)
1315 if (mini_rtc_status & RTC_IS_OPEN)
1316 return -EBUSY;
1318 mini_rtc_status |= RTC_IS_OPEN;
1320 return 0;
1323 static int mini_rtc_release(struct inode *inode, struct file *file)
1325 mini_rtc_status &= ~RTC_IS_OPEN;
1326 return 0;
1330 static const struct file_operations mini_rtc_fops = {
1331 .owner = THIS_MODULE,
1332 .ioctl = mini_rtc_ioctl,
1333 .open = mini_rtc_open,
1334 .release = mini_rtc_release,
1337 static struct miscdevice rtc_mini_dev =
1339 .minor = RTC_MINOR,
1340 .name = "rtc",
1341 .fops = &mini_rtc_fops,
1344 static int __init rtc_mini_init(void)
1346 int retval;
1348 if (tlb_type != hypervisor && !this_is_starfire)
1349 return -ENODEV;
1351 printk(KERN_INFO "Mini RTC Driver\n");
1353 retval = misc_register(&rtc_mini_dev);
1354 if (retval < 0)
1355 return retval;
1357 return 0;
1360 static void __exit rtc_mini_exit(void)
1362 misc_deregister(&rtc_mini_dev);
1366 module_init(rtc_mini_init);
1367 module_exit(rtc_mini_exit);