2 * SPARC64 Huge TLB page support.
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
7 #include <linux/init.h>
8 #include <linux/module.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pagemap.h>
13 #include <linux/smp_lock.h>
14 #include <linux/slab.h>
15 #include <linux/sysctl.h>
18 #include <asm/pgalloc.h>
20 #include <asm/tlbflush.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
24 /* Slightly simplified from the non-hugepage variant because by
25 * definition we don't have to worry about any page coloring stuff
27 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
28 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
30 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file
*filp
,
36 struct mm_struct
*mm
= current
->mm
;
37 struct vm_area_struct
* vma
;
38 unsigned long task_size
= TASK_SIZE
;
39 unsigned long start_addr
;
41 if (test_thread_flag(TIF_32BIT
))
42 task_size
= STACK_TOP32
;
43 if (unlikely(len
>= VA_EXCLUDE_START
))
46 if (len
> mm
->cached_hole_size
) {
47 start_addr
= addr
= mm
->free_area_cache
;
49 start_addr
= addr
= TASK_UNMAPPED_BASE
;
50 mm
->cached_hole_size
= 0;
56 addr
= ALIGN(addr
, HPAGE_SIZE
);
58 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
59 /* At this point: (!vma || addr < vma->vm_end). */
60 if (addr
< VA_EXCLUDE_START
&&
61 (addr
+ len
) >= VA_EXCLUDE_START
) {
62 addr
= VA_EXCLUDE_END
;
63 vma
= find_vma(mm
, VA_EXCLUDE_END
);
65 if (unlikely(task_size
< addr
)) {
66 if (start_addr
!= TASK_UNMAPPED_BASE
) {
67 start_addr
= addr
= TASK_UNMAPPED_BASE
;
68 mm
->cached_hole_size
= 0;
73 if (likely(!vma
|| addr
+ len
<= vma
->vm_start
)) {
75 * Remember the place where we stopped the search:
77 mm
->free_area_cache
= addr
+ len
;
80 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
81 mm
->cached_hole_size
= vma
->vm_start
- addr
;
83 addr
= ALIGN(vma
->vm_end
, HPAGE_SIZE
);
88 hugetlb_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
89 const unsigned long len
,
90 const unsigned long pgoff
,
91 const unsigned long flags
)
93 struct vm_area_struct
*vma
;
94 struct mm_struct
*mm
= current
->mm
;
95 unsigned long addr
= addr0
;
97 /* This should only ever run for 32-bit processes. */
98 BUG_ON(!test_thread_flag(TIF_32BIT
));
100 /* check if free_area_cache is useful for us */
101 if (len
<= mm
->cached_hole_size
) {
102 mm
->cached_hole_size
= 0;
103 mm
->free_area_cache
= mm
->mmap_base
;
106 /* either no address requested or can't fit in requested address hole */
107 addr
= mm
->free_area_cache
& HPAGE_MASK
;
109 /* make sure it can fit in the remaining address space */
110 if (likely(addr
> len
)) {
111 vma
= find_vma(mm
, addr
-len
);
112 if (!vma
|| addr
<= vma
->vm_start
) {
113 /* remember the address as a hint for next time */
114 return (mm
->free_area_cache
= addr
-len
);
118 if (unlikely(mm
->mmap_base
< len
))
121 addr
= (mm
->mmap_base
-len
) & HPAGE_MASK
;
125 * Lookup failure means no vma is above this address,
126 * else if new region fits below vma->vm_start,
127 * return with success:
129 vma
= find_vma(mm
, addr
);
130 if (likely(!vma
|| addr
+len
<= vma
->vm_start
)) {
131 /* remember the address as a hint for next time */
132 return (mm
->free_area_cache
= addr
);
135 /* remember the largest hole we saw so far */
136 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
137 mm
->cached_hole_size
= vma
->vm_start
- addr
;
139 /* try just below the current vma->vm_start */
140 addr
= (vma
->vm_start
-len
) & HPAGE_MASK
;
141 } while (likely(len
< vma
->vm_start
));
145 * A failed mmap() very likely causes application failure,
146 * so fall back to the bottom-up function here. This scenario
147 * can happen with large stack limits and large mmap()
150 mm
->cached_hole_size
= ~0UL;
151 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
152 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
154 * Restore the topdown base:
156 mm
->free_area_cache
= mm
->mmap_base
;
157 mm
->cached_hole_size
= ~0UL;
163 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
164 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
166 struct mm_struct
*mm
= current
->mm
;
167 struct vm_area_struct
*vma
;
168 unsigned long task_size
= TASK_SIZE
;
170 if (test_thread_flag(TIF_32BIT
))
171 task_size
= STACK_TOP32
;
173 if (len
& ~HPAGE_MASK
)
179 addr
= ALIGN(addr
, HPAGE_SIZE
);
180 vma
= find_vma(mm
, addr
);
181 if (task_size
- len
>= addr
&&
182 (!vma
|| addr
+ len
<= vma
->vm_start
))
185 if (mm
->get_unmapped_area
== arch_get_unmapped_area
)
186 return hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
189 return hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
193 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
)
200 /* We must align the address, because our caller will run
201 * set_huge_pte_at() on whatever we return, which writes out
202 * all of the sub-ptes for the hugepage range. So we have
203 * to give it the first such sub-pte.
207 pgd
= pgd_offset(mm
, addr
);
208 pud
= pud_alloc(mm
, pgd
, addr
);
210 pmd
= pmd_alloc(mm
, pud
, addr
);
212 pte
= pte_alloc_map(mm
, pmd
, addr
);
217 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
226 pgd
= pgd_offset(mm
, addr
);
227 if (!pgd_none(*pgd
)) {
228 pud
= pud_offset(pgd
, addr
);
229 if (!pud_none(*pud
)) {
230 pmd
= pmd_offset(pud
, addr
);
232 pte
= pte_offset_map(pmd
, addr
);
238 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
243 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
244 pte_t
*ptep
, pte_t entry
)
248 if (!pte_present(*ptep
) && pte_present(entry
))
249 mm
->context
.huge_pte_count
++;
252 for (i
= 0; i
< (1 << HUGETLB_PAGE_ORDER
); i
++) {
253 set_pte_at(mm
, addr
, ptep
, entry
);
256 pte_val(entry
) += PAGE_SIZE
;
260 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
267 if (pte_present(entry
))
268 mm
->context
.huge_pte_count
--;
272 for (i
= 0; i
< (1 << HUGETLB_PAGE_ORDER
); i
++) {
273 pte_clear(mm
, addr
, ptep
);
281 struct page
*follow_huge_addr(struct mm_struct
*mm
,
282 unsigned long address
, int write
)
284 return ERR_PTR(-EINVAL
);
287 int pmd_huge(pmd_t pmd
)
292 struct page
*follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
293 pmd_t
*pmd
, int write
)
298 static void context_reload(void *__data
)
300 struct mm_struct
*mm
= __data
;
302 if (mm
== current
->mm
)
303 load_secondary_context(mm
);
306 void hugetlb_prefault_arch_hook(struct mm_struct
*mm
)
308 struct tsb_config
*tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
310 if (likely(tp
->tsb
!= NULL
))
313 tsb_grow(mm
, MM_TSB_HUGE
, 0);
314 tsb_context_switch(mm
);
317 /* On UltraSPARC-III+ and later, configure the second half of
318 * the Data-TLB for huge pages.
320 if (tlb_type
== cheetah_plus
) {
323 spin_lock(&ctx_alloc_lock
);
324 ctx
= mm
->context
.sparc64_ctx_val
;
325 ctx
&= ~CTX_PGSZ_MASK
;
326 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
327 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
329 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
330 /* When changing the page size fields, we
331 * must perform a context flush so that no
332 * stale entries match. This flush must
333 * occur with the original context register
338 /* Reload the context register of all processors
339 * also executing in this address space.
341 mm
->context
.sparc64_ctx_val
= ctx
;
342 on_each_cpu(context_reload
, mm
, 0, 0);
344 spin_unlock(&ctx_alloc_lock
);