1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
28 #include <asm/system.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
39 #include <asm/starfire.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
44 #include <asm/hypervisor.h>
47 extern void device_scan(void);
49 #define MAX_PHYS_ADDRESS (1UL << 42UL)
50 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
51 #define KPTE_BITMAP_BYTES \
52 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
56 /* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings. */
64 struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
69 static struct linux_prom64_registers pavail
[MAX_BANKS
] __initdata
;
70 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
71 static int pavail_ents __initdata
;
72 static int pavail_rescan_ents __initdata
;
74 static int cmp_p64(const void *a
, const void *b
)
76 const struct linux_prom64_registers
*x
= a
, *y
= b
;
78 if (x
->phys_addr
> y
->phys_addr
)
80 if (x
->phys_addr
< y
->phys_addr
)
85 static void __init
read_obp_memory(const char *property
,
86 struct linux_prom64_registers
*regs
,
89 int node
= prom_finddevice("/memory");
90 int prop_size
= prom_getproplen(node
, property
);
93 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
94 if (ents
> MAX_BANKS
) {
95 prom_printf("The machine has more %s property entries than "
96 "this kernel can support (%d).\n",
101 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
103 prom_printf("Couldn't get %s property from /memory.\n");
107 /* Sanitize what we got from the firmware, by page aligning
110 for (i
= 0; i
< ents
; i
++) {
111 unsigned long base
, size
;
113 base
= regs
[i
].phys_addr
;
114 size
= regs
[i
].reg_size
;
117 if (base
& ~PAGE_MASK
) {
118 unsigned long new_base
= PAGE_ALIGN(base
);
120 size
-= new_base
- base
;
121 if ((long) size
< 0L)
125 regs
[i
].phys_addr
= base
;
126 regs
[i
].reg_size
= size
;
129 for (i
= 0; i
< ents
; i
++) {
130 if (regs
[i
].reg_size
== 0UL) {
133 for (j
= i
; j
< ents
- 1; j
++) {
147 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly
;
153 /* Kernel physical address base and size in bytes. */
154 unsigned long kern_base __read_mostly
;
155 unsigned long kern_size __read_mostly
;
157 /* get_new_mmu_context() uses "cache + 1". */
158 DEFINE_SPINLOCK(ctx_alloc_lock
);
159 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
160 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
161 unsigned long mmu_context_bmap
[CTX_BMAP_SLOTS
];
163 /* References to special section boundaries */
164 extern char _start
[], _end
[];
166 /* Initial ramdisk setup */
167 extern unsigned long sparc_ramdisk_image64
;
168 extern unsigned int sparc_ramdisk_image
;
169 extern unsigned int sparc_ramdisk_size
;
171 struct page
*mem_map_zero __read_mostly
;
173 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
175 unsigned long sparc64_kern_pri_context __read_mostly
;
176 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
177 unsigned long sparc64_kern_sec_context __read_mostly
;
181 struct kmem_cache
*pgtable_cache __read_mostly
;
183 static void zero_ctor(void *addr
, struct kmem_cache
*cache
, unsigned long flags
)
188 extern void tsb_cache_init(void);
190 void pgtable_cache_init(void)
192 pgtable_cache
= kmem_cache_create("pgtable_cache",
193 PAGE_SIZE
, PAGE_SIZE
,
195 SLAB_MUST_HWCACHE_ALIGN
,
198 if (!pgtable_cache
) {
199 prom_printf("Could not create pgtable_cache\n");
205 #ifdef CONFIG_DEBUG_DCFLUSH
206 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
208 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
212 inline void flush_dcache_page_impl(struct page
*page
)
214 BUG_ON(tlb_type
== hypervisor
);
215 #ifdef CONFIG_DEBUG_DCFLUSH
216 atomic_inc(&dcpage_flushes
);
219 #ifdef DCACHE_ALIASING_POSSIBLE
220 __flush_dcache_page(page_address(page
),
221 ((tlb_type
== spitfire
) &&
222 page_mapping(page
) != NULL
));
224 if (page_mapping(page
) != NULL
&&
225 tlb_type
== spitfire
)
226 __flush_icache_page(__pa(page_address(page
)));
230 #define PG_dcache_dirty PG_arch_1
231 #define PG_dcache_cpu_shift 24UL
232 #define PG_dcache_cpu_mask (256UL - 1UL)
235 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
238 #define dcache_dirty_cpu(page) \
239 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
241 static __inline__
void set_dcache_dirty(struct page
*page
, int this_cpu
)
243 unsigned long mask
= this_cpu
;
244 unsigned long non_cpu_bits
;
246 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
247 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
249 __asm__
__volatile__("1:\n\t"
251 "and %%g7, %1, %%g1\n\t"
252 "or %%g1, %0, %%g1\n\t"
253 "casx [%2], %%g7, %%g1\n\t"
255 "membar #StoreLoad | #StoreStore\n\t"
256 "bne,pn %%xcc, 1b\n\t"
259 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
263 static __inline__
void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
265 unsigned long mask
= (1UL << PG_dcache_dirty
);
267 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
270 "srlx %%g7, %4, %%g1\n\t"
271 "and %%g1, %3, %%g1\n\t"
273 "bne,pn %%icc, 2f\n\t"
274 " andn %%g7, %1, %%g1\n\t"
275 "casx [%2], %%g7, %%g1\n\t"
277 "membar #StoreLoad | #StoreStore\n\t"
278 "bne,pn %%xcc, 1b\n\t"
282 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
283 "i" (PG_dcache_cpu_mask
),
284 "i" (PG_dcache_cpu_shift
)
288 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
290 unsigned long tsb_addr
= (unsigned long) ent
;
292 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
293 tsb_addr
= __pa(tsb_addr
);
295 __tsb_insert(tsb_addr
, tag
, pte
);
298 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
299 unsigned long _PAGE_SZBITS __read_mostly
;
301 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t pte
)
303 struct mm_struct
*mm
;
305 unsigned long tag
, flags
;
306 unsigned long tsb_index
, tsb_hash_shift
;
308 if (tlb_type
!= hypervisor
) {
309 unsigned long pfn
= pte_pfn(pte
);
310 unsigned long pg_flags
;
313 if (pfn_valid(pfn
) &&
314 (page
= pfn_to_page(pfn
), page_mapping(page
)) &&
315 ((pg_flags
= page
->flags
) & (1UL << PG_dcache_dirty
))) {
316 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
318 int this_cpu
= get_cpu();
320 /* This is just to optimize away some function calls
324 flush_dcache_page_impl(page
);
326 smp_flush_dcache_page_impl(page
, cpu
);
328 clear_dcache_dirty_cpu(page
, cpu
);
336 tsb_index
= MM_TSB_BASE
;
337 tsb_hash_shift
= PAGE_SHIFT
;
339 spin_lock_irqsave(&mm
->context
.lock
, flags
);
341 #ifdef CONFIG_HUGETLB_PAGE
342 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
343 if ((tlb_type
== hypervisor
&&
344 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
345 (tlb_type
!= hypervisor
&&
346 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
347 tsb_index
= MM_TSB_HUGE
;
348 tsb_hash_shift
= HPAGE_SHIFT
;
353 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
354 tsb
+= ((address
>> tsb_hash_shift
) &
355 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
356 tag
= (address
>> 22UL);
357 tsb_insert(tsb
, tag
, pte_val(pte
));
359 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
362 void flush_dcache_page(struct page
*page
)
364 struct address_space
*mapping
;
367 if (tlb_type
== hypervisor
)
370 /* Do not bother with the expensive D-cache flush if it
371 * is merely the zero page. The 'bigcore' testcase in GDB
372 * causes this case to run millions of times.
374 if (page
== ZERO_PAGE(0))
377 this_cpu
= get_cpu();
379 mapping
= page_mapping(page
);
380 if (mapping
&& !mapping_mapped(mapping
)) {
381 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
383 int dirty_cpu
= dcache_dirty_cpu(page
);
385 if (dirty_cpu
== this_cpu
)
387 smp_flush_dcache_page_impl(page
, dirty_cpu
);
389 set_dcache_dirty(page
, this_cpu
);
391 /* We could delay the flush for the !page_mapping
392 * case too. But that case is for exec env/arg
393 * pages and those are %99 certainly going to get
394 * faulted into the tlb (and thus flushed) anyways.
396 flush_dcache_page_impl(page
);
403 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
405 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406 if (tlb_type
== spitfire
) {
409 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
)
410 __flush_icache_page(__get_phys(kaddr
));
416 printk("Mem-info:\n");
418 printk("Free swap: %6ldkB\n",
419 nr_swap_pages
<< (PAGE_SHIFT
-10));
420 printk("%ld pages of RAM\n", num_physpages
);
421 printk("%lu free pages\n", nr_free_pages());
424 void mmu_info(struct seq_file
*m
)
426 if (tlb_type
== cheetah
)
427 seq_printf(m
, "MMU Type\t: Cheetah\n");
428 else if (tlb_type
== cheetah_plus
)
429 seq_printf(m
, "MMU Type\t: Cheetah+\n");
430 else if (tlb_type
== spitfire
)
431 seq_printf(m
, "MMU Type\t: Spitfire\n");
432 else if (tlb_type
== hypervisor
)
433 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
435 seq_printf(m
, "MMU Type\t: ???\n");
437 #ifdef CONFIG_DEBUG_DCFLUSH
438 seq_printf(m
, "DCPageFlushes\t: %d\n",
439 atomic_read(&dcpage_flushes
));
441 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
442 atomic_read(&dcpage_flushes_xcall
));
443 #endif /* CONFIG_SMP */
444 #endif /* CONFIG_DEBUG_DCFLUSH */
447 struct linux_prom_translation
{
453 /* Exported for kernel TLB miss handling in ktlb.S */
454 struct linux_prom_translation prom_trans
[512] __read_mostly
;
455 unsigned int prom_trans_ents __read_mostly
;
457 /* Exported for SMP bootup purposes. */
458 unsigned long kern_locked_tte_data
;
460 /* The obp translations are saved based on 8k pagesize, since obp can
461 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
462 * HI_OBP_ADDRESS range are handled in ktlb.S.
464 static inline int in_obp_range(unsigned long vaddr
)
466 return (vaddr
>= LOW_OBP_ADDRESS
&&
467 vaddr
< HI_OBP_ADDRESS
);
470 static int cmp_ptrans(const void *a
, const void *b
)
472 const struct linux_prom_translation
*x
= a
, *y
= b
;
474 if (x
->virt
> y
->virt
)
476 if (x
->virt
< y
->virt
)
481 /* Read OBP translations property into 'prom_trans[]'. */
482 static void __init
read_obp_translations(void)
484 int n
, node
, ents
, first
, last
, i
;
486 node
= prom_finddevice("/virtual-memory");
487 n
= prom_getproplen(node
, "translations");
488 if (unlikely(n
== 0 || n
== -1)) {
489 prom_printf("prom_mappings: Couldn't get size.\n");
492 if (unlikely(n
> sizeof(prom_trans
))) {
493 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
497 if ((n
= prom_getproperty(node
, "translations",
498 (char *)&prom_trans
[0],
499 sizeof(prom_trans
))) == -1) {
500 prom_printf("prom_mappings: Couldn't get property.\n");
504 n
= n
/ sizeof(struct linux_prom_translation
);
508 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
511 /* Now kick out all the non-OBP entries. */
512 for (i
= 0; i
< ents
; i
++) {
513 if (in_obp_range(prom_trans
[i
].virt
))
517 for (; i
< ents
; i
++) {
518 if (!in_obp_range(prom_trans
[i
].virt
))
523 for (i
= 0; i
< (last
- first
); i
++) {
524 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
525 struct linux_prom_translation
*dest
= &prom_trans
[i
];
529 for (; i
< ents
; i
++) {
530 struct linux_prom_translation
*dest
= &prom_trans
[i
];
531 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
534 prom_trans_ents
= last
- first
;
536 if (tlb_type
== spitfire
) {
537 /* Clear diag TTE bits. */
538 for (i
= 0; i
< prom_trans_ents
; i
++)
539 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
543 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
547 register unsigned long func
asm("%o5");
548 register unsigned long arg0
asm("%o0");
549 register unsigned long arg1
asm("%o1");
550 register unsigned long arg2
asm("%o2");
551 register unsigned long arg3
asm("%o3");
553 func
= HV_FAST_MMU_MAP_PERM_ADDR
;
558 __asm__
__volatile__("ta 0x80"
559 : "=&r" (func
), "=&r" (arg0
),
560 "=&r" (arg1
), "=&r" (arg2
),
562 : "0" (func
), "1" (arg0
), "2" (arg1
),
563 "3" (arg2
), "4" (arg3
));
565 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
566 "errors with %lx\n", vaddr
, 0, pte
, mmu
, arg0
);
571 static unsigned long kern_large_tte(unsigned long paddr
);
573 static void __init
remap_kernel(void)
575 unsigned long phys_page
, tte_vaddr
, tte_data
;
576 int tlb_ent
= sparc64_highest_locked_tlbent();
578 tte_vaddr
= (unsigned long) KERNBASE
;
579 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
580 tte_data
= kern_large_tte(phys_page
);
582 kern_locked_tte_data
= tte_data
;
584 /* Now lock us into the TLBs via Hypervisor or OBP. */
585 if (tlb_type
== hypervisor
) {
586 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
587 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
589 tte_vaddr
+= 0x400000;
590 tte_data
+= 0x400000;
591 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
592 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
595 prom_dtlb_load(tlb_ent
, tte_data
, tte_vaddr
);
596 prom_itlb_load(tlb_ent
, tte_data
, tte_vaddr
);
599 prom_dtlb_load(tlb_ent
,
601 tte_vaddr
+ 0x400000);
602 prom_itlb_load(tlb_ent
,
604 tte_vaddr
+ 0x400000);
606 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- 1;
608 if (tlb_type
== cheetah_plus
) {
609 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
610 CTX_CHEETAH_PLUS_NUC
);
611 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
612 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
617 static void __init
inherit_prom_mappings(void)
619 read_obp_translations();
621 /* Now fixup OBP's idea about where we really are mapped. */
622 prom_printf("Remapping the kernel... ");
624 prom_printf("done.\n");
627 void prom_world(int enter
)
630 set_fs((mm_segment_t
) { get_thread_current_ds() });
632 __asm__
__volatile__("flushw");
635 #ifdef DCACHE_ALIASING_POSSIBLE
636 void __flush_dcache_range(unsigned long start
, unsigned long end
)
640 if (tlb_type
== spitfire
) {
643 for (va
= start
; va
< end
; va
+= 32) {
644 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
648 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
651 for (va
= start
; va
< end
; va
+= 32)
652 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
656 "i" (ASI_DCACHE_INVALIDATE
));
659 #endif /* DCACHE_ALIASING_POSSIBLE */
661 /* Caller does TLB context flushing on local CPU if necessary.
662 * The caller also ensures that CTX_VALID(mm->context) is false.
664 * We must be careful about boundary cases so that we never
665 * let the user have CTX 0 (nucleus) or we ever use a CTX
666 * version of zero (and thus NO_CONTEXT would not be caught
667 * by version mis-match tests in mmu_context.h).
669 * Always invoked with interrupts disabled.
671 void get_new_mmu_context(struct mm_struct
*mm
)
673 unsigned long ctx
, new_ctx
;
674 unsigned long orig_pgsz_bits
;
678 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
679 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
680 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
681 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
683 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
684 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
685 if (new_ctx
>= ctx
) {
687 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
690 new_ctx
= CTX_FIRST_VERSION
;
692 /* Don't call memset, for 16 entries that's just
695 mmu_context_bmap
[0] = 3;
696 mmu_context_bmap
[1] = 0;
697 mmu_context_bmap
[2] = 0;
698 mmu_context_bmap
[3] = 0;
699 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
700 mmu_context_bmap
[i
+ 0] = 0;
701 mmu_context_bmap
[i
+ 1] = 0;
702 mmu_context_bmap
[i
+ 2] = 0;
703 mmu_context_bmap
[i
+ 3] = 0;
709 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
710 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
712 tlb_context_cache
= new_ctx
;
713 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
714 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
716 if (unlikely(new_version
))
717 smp_new_mmu_context_version();
720 void sparc_ultra_dump_itlb(void)
724 if (tlb_type
== spitfire
) {
725 printk ("Contents of itlb: ");
726 for (slot
= 0; slot
< 14; slot
++) printk (" ");
727 printk ("%2x:%016lx,%016lx\n",
729 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
730 for (slot
= 1; slot
< 64; slot
+=3) {
731 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
733 spitfire_get_itlb_tag(slot
), spitfire_get_itlb_data(slot
),
735 spitfire_get_itlb_tag(slot
+1), spitfire_get_itlb_data(slot
+1),
737 spitfire_get_itlb_tag(slot
+2), spitfire_get_itlb_data(slot
+2));
739 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
740 printk ("Contents of itlb0:\n");
741 for (slot
= 0; slot
< 16; slot
+=2) {
742 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
744 cheetah_get_litlb_tag(slot
), cheetah_get_litlb_data(slot
),
746 cheetah_get_litlb_tag(slot
+1), cheetah_get_litlb_data(slot
+1));
748 printk ("Contents of itlb2:\n");
749 for (slot
= 0; slot
< 128; slot
+=2) {
750 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
752 cheetah_get_itlb_tag(slot
), cheetah_get_itlb_data(slot
),
754 cheetah_get_itlb_tag(slot
+1), cheetah_get_itlb_data(slot
+1));
759 void sparc_ultra_dump_dtlb(void)
763 if (tlb_type
== spitfire
) {
764 printk ("Contents of dtlb: ");
765 for (slot
= 0; slot
< 14; slot
++) printk (" ");
766 printk ("%2x:%016lx,%016lx\n", 0,
767 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
768 for (slot
= 1; slot
< 64; slot
+=3) {
769 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
771 spitfire_get_dtlb_tag(slot
), spitfire_get_dtlb_data(slot
),
773 spitfire_get_dtlb_tag(slot
+1), spitfire_get_dtlb_data(slot
+1),
775 spitfire_get_dtlb_tag(slot
+2), spitfire_get_dtlb_data(slot
+2));
777 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
778 printk ("Contents of dtlb0:\n");
779 for (slot
= 0; slot
< 16; slot
+=2) {
780 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
782 cheetah_get_ldtlb_tag(slot
), cheetah_get_ldtlb_data(slot
),
784 cheetah_get_ldtlb_tag(slot
+1), cheetah_get_ldtlb_data(slot
+1));
786 printk ("Contents of dtlb2:\n");
787 for (slot
= 0; slot
< 512; slot
+=2) {
788 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
790 cheetah_get_dtlb_tag(slot
, 2), cheetah_get_dtlb_data(slot
, 2),
792 cheetah_get_dtlb_tag(slot
+1, 2), cheetah_get_dtlb_data(slot
+1, 2));
794 if (tlb_type
== cheetah_plus
) {
795 printk ("Contents of dtlb3:\n");
796 for (slot
= 0; slot
< 512; slot
+=2) {
797 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
799 cheetah_get_dtlb_tag(slot
, 3), cheetah_get_dtlb_data(slot
, 3),
801 cheetah_get_dtlb_tag(slot
+1, 3), cheetah_get_dtlb_data(slot
+1, 3));
807 extern unsigned long cmdline_memory_size
;
809 /* Find a free area for the bootmem map, avoiding the kernel image
810 * and the initial ramdisk.
812 static unsigned long __init
choose_bootmap_pfn(unsigned long start_pfn
,
813 unsigned long end_pfn
)
815 unsigned long avoid_start
, avoid_end
, bootmap_size
;
818 bootmap_size
= ((end_pfn
- start_pfn
) + 7) / 8;
819 bootmap_size
= ALIGN(bootmap_size
, sizeof(long));
821 avoid_start
= avoid_end
= 0;
822 #ifdef CONFIG_BLK_DEV_INITRD
823 avoid_start
= initrd_start
;
824 avoid_end
= PAGE_ALIGN(initrd_end
);
827 #ifdef CONFIG_DEBUG_BOOTMEM
828 prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
829 kern_base
, PAGE_ALIGN(kern_base
+ kern_size
),
830 avoid_start
, avoid_end
);
832 for (i
= 0; i
< pavail_ents
; i
++) {
833 unsigned long start
, end
;
835 start
= pavail
[i
].phys_addr
;
836 end
= start
+ pavail
[i
].reg_size
;
838 while (start
< end
) {
839 if (start
>= kern_base
&&
840 start
< PAGE_ALIGN(kern_base
+ kern_size
)) {
841 start
= PAGE_ALIGN(kern_base
+ kern_size
);
844 if (start
>= avoid_start
&& start
< avoid_end
) {
849 if ((end
- start
) < bootmap_size
)
852 if (start
< kern_base
&&
853 (start
+ bootmap_size
) > kern_base
) {
854 start
= PAGE_ALIGN(kern_base
+ kern_size
);
858 if (start
< avoid_start
&&
859 (start
+ bootmap_size
) > avoid_start
) {
864 /* OK, it doesn't overlap anything, use it. */
865 #ifdef CONFIG_DEBUG_BOOTMEM
866 prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
867 start
>> PAGE_SHIFT
, start
);
869 return start
>> PAGE_SHIFT
;
873 prom_printf("Cannot find free area for bootmap, aborting.\n");
877 static void __init
trim_pavail(unsigned long *cur_size_p
,
878 unsigned long *end_of_phys_p
)
880 unsigned long to_trim
= *cur_size_p
- cmdline_memory_size
;
881 unsigned long avoid_start
, avoid_end
;
884 to_trim
= PAGE_ALIGN(to_trim
);
886 avoid_start
= avoid_end
= 0;
887 #ifdef CONFIG_BLK_DEV_INITRD
888 avoid_start
= initrd_start
;
889 avoid_end
= PAGE_ALIGN(initrd_end
);
892 /* Trim some pavail[] entries in order to satisfy the
893 * requested "mem=xxx" kernel command line specification.
895 * We must not trim off the kernel image area nor the
896 * initial ramdisk range (if any). Also, we must not trim
897 * any pavail[] entry down to zero in order to preserve
898 * the invariant that all pavail[] entries have a non-zero
899 * size which is assumed by all of the code in here.
901 for (i
= 0; i
< pavail_ents
; i
++) {
902 unsigned long start
, end
, kern_end
;
903 unsigned long trim_low
, trim_high
, n
;
905 kern_end
= PAGE_ALIGN(kern_base
+ kern_size
);
907 trim_low
= start
= pavail
[i
].phys_addr
;
908 trim_high
= end
= start
+ pavail
[i
].reg_size
;
910 if (kern_base
>= start
&&
912 trim_low
= kern_base
;
916 if (kern_end
>= start
&&
918 trim_high
= kern_end
;
921 avoid_start
>= start
&&
923 if (trim_low
> avoid_start
)
924 trim_low
= avoid_start
;
925 if (avoid_end
>= end
)
929 avoid_end
>= start
&&
931 if (trim_high
< avoid_end
)
932 trim_high
= avoid_end
;
935 if (trim_high
<= trim_low
)
938 if (trim_low
== start
&& trim_high
== end
) {
939 /* Whole chunk is available for trimming.
940 * Trim all except one page, in order to keep
943 n
= (end
- start
) - PAGE_SIZE
;
948 pavail
[i
].phys_addr
+= n
;
949 pavail
[i
].reg_size
-= n
;
953 n
= (trim_low
- start
);
958 pavail
[i
].phys_addr
+= n
;
959 pavail
[i
].reg_size
-= n
;
967 pavail
[i
].reg_size
-= n
;
979 for (i
= 0; i
< pavail_ents
; i
++) {
980 *end_of_phys_p
= pavail
[i
].phys_addr
+
982 *cur_size_p
+= pavail
[i
].reg_size
;
986 static unsigned long __init
bootmem_init(unsigned long *pages_avail
,
987 unsigned long phys_base
)
989 unsigned long bootmap_size
, end_pfn
;
990 unsigned long end_of_phys_memory
= 0UL;
991 unsigned long bootmap_pfn
, bytes_avail
, size
;
994 #ifdef CONFIG_DEBUG_BOOTMEM
995 prom_printf("bootmem_init: Scan pavail, ");
999 for (i
= 0; i
< pavail_ents
; i
++) {
1000 end_of_phys_memory
= pavail
[i
].phys_addr
+
1002 bytes_avail
+= pavail
[i
].reg_size
;
1005 /* Determine the location of the initial ramdisk before trying
1006 * to honor the "mem=xxx" command line argument. We must know
1007 * where the kernel image and the ramdisk image are so that we
1008 * do not trim those two areas from the physical memory map.
1011 #ifdef CONFIG_BLK_DEV_INITRD
1012 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
1013 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
1014 unsigned long ramdisk_image
= sparc_ramdisk_image
?
1015 sparc_ramdisk_image
: sparc_ramdisk_image64
;
1016 ramdisk_image
-= KERNBASE
;
1017 initrd_start
= ramdisk_image
+ phys_base
;
1018 initrd_end
= initrd_start
+ sparc_ramdisk_size
;
1019 if (initrd_end
> end_of_phys_memory
) {
1020 printk(KERN_CRIT
"initrd extends beyond end of memory "
1021 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
1022 initrd_end
, end_of_phys_memory
);
1029 if (cmdline_memory_size
&&
1030 bytes_avail
> cmdline_memory_size
)
1031 trim_pavail(&bytes_avail
,
1032 &end_of_phys_memory
);
1034 *pages_avail
= bytes_avail
>> PAGE_SHIFT
;
1036 end_pfn
= end_of_phys_memory
>> PAGE_SHIFT
;
1038 /* Initialize the boot-time allocator. */
1039 max_pfn
= max_low_pfn
= end_pfn
;
1040 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1042 bootmap_pfn
= choose_bootmap_pfn(min_low_pfn
, end_pfn
);
1044 #ifdef CONFIG_DEBUG_BOOTMEM
1045 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1046 min_low_pfn
, bootmap_pfn
, max_low_pfn
);
1048 bootmap_size
= init_bootmem_node(NODE_DATA(0), bootmap_pfn
,
1049 min_low_pfn
, end_pfn
);
1051 /* Now register the available physical memory with the
1054 for (i
= 0; i
< pavail_ents
; i
++) {
1055 #ifdef CONFIG_DEBUG_BOOTMEM
1056 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
1057 i
, pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1059 free_bootmem(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1062 #ifdef CONFIG_BLK_DEV_INITRD
1064 size
= initrd_end
- initrd_start
;
1066 /* Resert the initrd image area. */
1067 #ifdef CONFIG_DEBUG_BOOTMEM
1068 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1069 initrd_start
, initrd_end
);
1071 reserve_bootmem(initrd_start
, size
);
1072 *pages_avail
-= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1074 initrd_start
+= PAGE_OFFSET
;
1075 initrd_end
+= PAGE_OFFSET
;
1078 /* Reserve the kernel text/data/bss. */
1079 #ifdef CONFIG_DEBUG_BOOTMEM
1080 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base
, kern_size
);
1082 reserve_bootmem(kern_base
, kern_size
);
1083 *pages_avail
-= PAGE_ALIGN(kern_size
) >> PAGE_SHIFT
;
1085 /* Reserve the bootmem map. We do not account for it
1086 * in pages_avail because we will release that memory
1087 * in free_all_bootmem.
1089 size
= bootmap_size
;
1090 #ifdef CONFIG_DEBUG_BOOTMEM
1091 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1092 (bootmap_pfn
<< PAGE_SHIFT
), size
);
1094 reserve_bootmem((bootmap_pfn
<< PAGE_SHIFT
), size
);
1095 *pages_avail
-= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1097 for (i
= 0; i
< pavail_ents
; i
++) {
1098 unsigned long start_pfn
, end_pfn
;
1100 start_pfn
= pavail
[i
].phys_addr
>> PAGE_SHIFT
;
1101 end_pfn
= (start_pfn
+ (pavail
[i
].reg_size
>> PAGE_SHIFT
));
1102 #ifdef CONFIG_DEBUG_BOOTMEM
1103 prom_printf("memory_present(0, %lx, %lx)\n",
1104 start_pfn
, end_pfn
);
1106 memory_present(0, start_pfn
, end_pfn
);
1114 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1115 static int pall_ents __initdata
;
1117 #ifdef CONFIG_DEBUG_PAGEALLOC
1118 static unsigned long kernel_map_range(unsigned long pstart
, unsigned long pend
, pgprot_t prot
)
1120 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1121 unsigned long vend
= PAGE_OFFSET
+ pend
;
1122 unsigned long alloc_bytes
= 0UL;
1124 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1125 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1130 while (vstart
< vend
) {
1131 unsigned long this_end
, paddr
= __pa(vstart
);
1132 pgd_t
*pgd
= pgd_offset_k(vstart
);
1137 pud
= pud_offset(pgd
, vstart
);
1138 if (pud_none(*pud
)) {
1141 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1142 alloc_bytes
+= PAGE_SIZE
;
1143 pud_populate(&init_mm
, pud
, new);
1146 pmd
= pmd_offset(pud
, vstart
);
1147 if (!pmd_present(*pmd
)) {
1150 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1151 alloc_bytes
+= PAGE_SIZE
;
1152 pmd_populate_kernel(&init_mm
, pmd
, new);
1155 pte
= pte_offset_kernel(pmd
, vstart
);
1156 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1157 if (this_end
> vend
)
1160 while (vstart
< this_end
) {
1161 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1163 vstart
+= PAGE_SIZE
;
1172 extern unsigned int kvmap_linear_patch
[1];
1173 #endif /* CONFIG_DEBUG_PAGEALLOC */
1175 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1177 const unsigned long shift_256MB
= 28;
1178 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1179 const unsigned long size_256MB
= (1UL << shift_256MB
);
1181 while (start
< end
) {
1184 remains
= end
- start
;
1185 if (remains
< size_256MB
)
1188 if (start
& mask_256MB
) {
1189 start
= (start
+ size_256MB
) & ~mask_256MB
;
1193 while (remains
>= size_256MB
) {
1194 unsigned long index
= start
>> shift_256MB
;
1196 __set_bit(index
, kpte_linear_bitmap
);
1198 start
+= size_256MB
;
1199 remains
-= size_256MB
;
1204 static void __init
kernel_physical_mapping_init(void)
1207 #ifdef CONFIG_DEBUG_PAGEALLOC
1208 unsigned long mem_alloced
= 0UL;
1211 read_obp_memory("reg", &pall
[0], &pall_ents
);
1213 for (i
= 0; i
< pall_ents
; i
++) {
1214 unsigned long phys_start
, phys_end
;
1216 phys_start
= pall
[i
].phys_addr
;
1217 phys_end
= phys_start
+ pall
[i
].reg_size
;
1219 mark_kpte_bitmap(phys_start
, phys_end
);
1221 #ifdef CONFIG_DEBUG_PAGEALLOC
1222 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1227 #ifdef CONFIG_DEBUG_PAGEALLOC
1228 printk("Allocated %ld bytes for kernel page tables.\n",
1231 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1232 flushi(&kvmap_linear_patch
[0]);
1238 #ifdef CONFIG_DEBUG_PAGEALLOC
1239 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1241 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1242 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1244 kernel_map_range(phys_start
, phys_end
,
1245 (enable
? PAGE_KERNEL
: __pgprot(0)));
1247 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1248 PAGE_OFFSET
+ phys_end
);
1250 /* we should perform an IPI and flush all tlbs,
1251 * but that can deadlock->flush only current cpu.
1253 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1254 PAGE_OFFSET
+ phys_end
);
1258 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1262 for (i
= 0; i
< pavail_ents
; i
++) {
1263 if (pavail
[i
].reg_size
>= size
)
1264 return pavail
[i
].phys_addr
;
1270 static void __init
tsb_phys_patch(void)
1272 struct tsb_ldquad_phys_patch_entry
*pquad
;
1273 struct tsb_phys_patch_entry
*p
;
1275 pquad
= &__tsb_ldquad_phys_patch
;
1276 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1277 unsigned long addr
= pquad
->addr
;
1279 if (tlb_type
== hypervisor
)
1280 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1282 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1284 __asm__
__volatile__("flush %0"
1291 p
= &__tsb_phys_patch
;
1292 while (p
< &__tsb_phys_patch_end
) {
1293 unsigned long addr
= p
->addr
;
1295 *(unsigned int *) addr
= p
->insn
;
1297 __asm__
__volatile__("flush %0"
1305 /* Don't mark as init, we give this to the Hypervisor. */
1306 #ifndef CONFIG_DEBUG_PAGEALLOC
1307 #define NUM_KTSB_DESCR 2
1309 #define NUM_KTSB_DESCR 1
1311 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1312 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1314 static void __init
sun4v_ktsb_init(void)
1316 unsigned long ktsb_pa
;
1318 /* First KTSB for PAGE_SIZE mappings. */
1319 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1321 switch (PAGE_SIZE
) {
1324 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1325 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1329 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1330 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1334 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1335 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1338 case 4 * 1024 * 1024:
1339 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1340 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1344 ktsb_descr
[0].assoc
= 1;
1345 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1346 ktsb_descr
[0].ctx_idx
= 0;
1347 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1348 ktsb_descr
[0].resv
= 0;
1350 #ifndef CONFIG_DEBUG_PAGEALLOC
1351 /* Second KTSB for 4MB/256MB mappings. */
1352 ktsb_pa
= (kern_base
+
1353 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1355 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1356 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1357 HV_PGSZ_MASK_256MB
);
1358 ktsb_descr
[1].assoc
= 1;
1359 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1360 ktsb_descr
[1].ctx_idx
= 0;
1361 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1362 ktsb_descr
[1].resv
= 0;
1366 void __cpuinit
sun4v_ktsb_register(void)
1368 register unsigned long func
asm("%o5");
1369 register unsigned long arg0
asm("%o0");
1370 register unsigned long arg1
asm("%o1");
1373 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1375 func
= HV_FAST_MMU_TSB_CTX0
;
1376 arg0
= NUM_KTSB_DESCR
;
1378 __asm__
__volatile__("ta %6"
1379 : "=&r" (func
), "=&r" (arg0
), "=&r" (arg1
)
1380 : "0" (func
), "1" (arg0
), "2" (arg1
),
1381 "i" (HV_FAST_TRAP
));
1384 /* paging_init() sets up the page tables */
1386 extern void cheetah_ecache_flush_init(void);
1387 extern void sun4v_patch_tlb_handlers(void);
1389 static unsigned long last_valid_pfn
;
1390 pgd_t swapper_pg_dir
[2048];
1392 static void sun4u_pgprot_init(void);
1393 static void sun4v_pgprot_init(void);
1395 void __init
paging_init(void)
1397 unsigned long end_pfn
, pages_avail
, shift
, phys_base
;
1398 unsigned long real_end
, i
;
1400 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1401 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1403 /* Invalidate both kernel TSBs. */
1404 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1405 #ifndef CONFIG_DEBUG_PAGEALLOC
1406 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1409 if (tlb_type
== hypervisor
)
1410 sun4v_pgprot_init();
1412 sun4u_pgprot_init();
1414 if (tlb_type
== cheetah_plus
||
1415 tlb_type
== hypervisor
)
1418 if (tlb_type
== hypervisor
) {
1419 sun4v_patch_tlb_handlers();
1423 /* Find available physical memory... */
1424 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1426 phys_base
= 0xffffffffffffffffUL
;
1427 for (i
= 0; i
< pavail_ents
; i
++)
1428 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1430 set_bit(0, mmu_context_bmap
);
1432 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1434 real_end
= (unsigned long)_end
;
1435 if ((real_end
> ((unsigned long)KERNBASE
+ 0x400000)))
1437 if ((real_end
> ((unsigned long)KERNBASE
+ 0x800000))) {
1438 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1442 /* Set kernel pgd to upper alias so physical page computations
1445 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1447 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1449 /* Now can init the kernel/bad page tables. */
1450 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1451 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1453 inherit_prom_mappings();
1455 /* Ok, we can use our TLB miss and window trap handlers safely. */
1460 if (tlb_type
== hypervisor
)
1461 sun4v_ktsb_register();
1463 /* Setup bootmem... */
1465 last_valid_pfn
= end_pfn
= bootmem_init(&pages_avail
, phys_base
);
1467 max_mapnr
= last_valid_pfn
;
1469 kernel_physical_mapping_init();
1471 prom_build_devicetree();
1474 unsigned long zones_size
[MAX_NR_ZONES
];
1475 unsigned long zholes_size
[MAX_NR_ZONES
];
1478 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1479 zones_size
[znum
] = zholes_size
[znum
] = 0;
1481 zones_size
[ZONE_NORMAL
] = end_pfn
;
1482 zholes_size
[ZONE_NORMAL
] = end_pfn
- pages_avail
;
1484 free_area_init_node(0, &contig_page_data
, zones_size
,
1485 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
,
1492 static void __init
taint_real_pages(void)
1496 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1498 /* Find changes discovered in the physmem available rescan and
1499 * reserve the lost portions in the bootmem maps.
1501 for (i
= 0; i
< pavail_ents
; i
++) {
1502 unsigned long old_start
, old_end
;
1504 old_start
= pavail
[i
].phys_addr
;
1505 old_end
= old_start
+
1507 while (old_start
< old_end
) {
1510 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1511 unsigned long new_start
, new_end
;
1513 new_start
= pavail_rescan
[n
].phys_addr
;
1514 new_end
= new_start
+
1515 pavail_rescan
[n
].reg_size
;
1517 if (new_start
<= old_start
&&
1518 new_end
>= (old_start
+ PAGE_SIZE
)) {
1519 set_bit(old_start
>> 22,
1520 sparc64_valid_addr_bitmap
);
1524 reserve_bootmem(old_start
, PAGE_SIZE
);
1527 old_start
+= PAGE_SIZE
;
1532 int __init
page_in_phys_avail(unsigned long paddr
)
1538 for (i
= 0; i
< pavail_rescan_ents
; i
++) {
1539 unsigned long start
, end
;
1541 start
= pavail_rescan
[i
].phys_addr
;
1542 end
= start
+ pavail_rescan
[i
].reg_size
;
1544 if (paddr
>= start
&& paddr
< end
)
1547 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1549 #ifdef CONFIG_BLK_DEV_INITRD
1550 if (paddr
>= __pa(initrd_start
) &&
1551 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1558 void __init
mem_init(void)
1560 unsigned long codepages
, datapages
, initpages
;
1561 unsigned long addr
, last
;
1564 i
= last_valid_pfn
>> ((22 - PAGE_SHIFT
) + 6);
1566 sparc64_valid_addr_bitmap
= (unsigned long *) alloc_bootmem(i
<< 3);
1567 if (sparc64_valid_addr_bitmap
== NULL
) {
1568 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1571 memset(sparc64_valid_addr_bitmap
, 0, i
<< 3);
1573 addr
= PAGE_OFFSET
+ kern_base
;
1574 last
= PAGE_ALIGN(kern_size
) + addr
;
1575 while (addr
< last
) {
1576 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1582 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1584 #ifdef CONFIG_DEBUG_BOOTMEM
1585 prom_printf("mem_init: Calling free_all_bootmem().\n");
1587 totalram_pages
= num_physpages
= free_all_bootmem() - 1;
1590 * Set up the zero page, mark it reserved, so that page count
1591 * is not manipulated when freeing the page from user ptes.
1593 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
1594 if (mem_map_zero
== NULL
) {
1595 prom_printf("paging_init: Cannot alloc zero page.\n");
1598 SetPageReserved(mem_map_zero
);
1600 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
1601 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
1602 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
1603 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
1604 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
1605 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
1607 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1608 nr_free_pages() << (PAGE_SHIFT
-10),
1609 codepages
<< (PAGE_SHIFT
-10),
1610 datapages
<< (PAGE_SHIFT
-10),
1611 initpages
<< (PAGE_SHIFT
-10),
1612 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
1614 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1615 cheetah_ecache_flush_init();
1618 void free_initmem(void)
1620 unsigned long addr
, initend
;
1623 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1625 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
1626 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
1627 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
1632 ((unsigned long) __va(kern_base
)) -
1633 ((unsigned long) KERNBASE
));
1634 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
1635 p
= virt_to_page(page
);
1637 ClearPageReserved(p
);
1645 #ifdef CONFIG_BLK_DEV_INITRD
1646 void free_initrd_mem(unsigned long start
, unsigned long end
)
1649 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
1650 for (; start
< end
; start
+= PAGE_SIZE
) {
1651 struct page
*p
= virt_to_page(start
);
1653 ClearPageReserved(p
);
1662 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1663 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1664 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1665 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1666 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1667 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1669 pgprot_t PAGE_KERNEL __read_mostly
;
1670 EXPORT_SYMBOL(PAGE_KERNEL
);
1672 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
1673 pgprot_t PAGE_COPY __read_mostly
;
1675 pgprot_t PAGE_SHARED __read_mostly
;
1676 EXPORT_SYMBOL(PAGE_SHARED
);
1678 pgprot_t PAGE_EXEC __read_mostly
;
1679 unsigned long pg_iobits __read_mostly
;
1681 unsigned long _PAGE_IE __read_mostly
;
1682 EXPORT_SYMBOL(_PAGE_IE
);
1684 unsigned long _PAGE_E __read_mostly
;
1685 EXPORT_SYMBOL(_PAGE_E
);
1687 unsigned long _PAGE_CACHE __read_mostly
;
1688 EXPORT_SYMBOL(_PAGE_CACHE
);
1690 static void prot_init_common(unsigned long page_none
,
1691 unsigned long page_shared
,
1692 unsigned long page_copy
,
1693 unsigned long page_readonly
,
1694 unsigned long page_exec_bit
)
1696 PAGE_COPY
= __pgprot(page_copy
);
1697 PAGE_SHARED
= __pgprot(page_shared
);
1699 protection_map
[0x0] = __pgprot(page_none
);
1700 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
1701 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
1702 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
1703 protection_map
[0x4] = __pgprot(page_readonly
);
1704 protection_map
[0x5] = __pgprot(page_readonly
);
1705 protection_map
[0x6] = __pgprot(page_copy
);
1706 protection_map
[0x7] = __pgprot(page_copy
);
1707 protection_map
[0x8] = __pgprot(page_none
);
1708 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
1709 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
1710 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
1711 protection_map
[0xc] = __pgprot(page_readonly
);
1712 protection_map
[0xd] = __pgprot(page_readonly
);
1713 protection_map
[0xe] = __pgprot(page_shared
);
1714 protection_map
[0xf] = __pgprot(page_shared
);
1717 static void __init
sun4u_pgprot_init(void)
1719 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
1720 unsigned long page_exec_bit
;
1722 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
1723 _PAGE_CACHE_4U
| _PAGE_P_4U
|
1724 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
1726 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
1727 _PAGE_CACHE_4U
| _PAGE_P_4U
|
1728 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
1729 _PAGE_EXEC_4U
| _PAGE_L_4U
);
1730 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4U
);
1732 _PAGE_IE
= _PAGE_IE_4U
;
1733 _PAGE_E
= _PAGE_E_4U
;
1734 _PAGE_CACHE
= _PAGE_CACHE_4U
;
1736 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
1737 __ACCESS_BITS_4U
| _PAGE_E_4U
);
1739 #ifdef CONFIG_DEBUG_PAGEALLOC
1740 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
1743 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
1746 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
1747 _PAGE_P_4U
| _PAGE_W_4U
);
1749 /* XXX Should use 256MB on Panther. XXX */
1750 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1752 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
1753 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
1754 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
1755 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
1758 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
1759 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1760 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
1761 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1762 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
1763 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1764 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
1766 page_exec_bit
= _PAGE_EXEC_4U
;
1768 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
1772 static void __init
sun4v_pgprot_init(void)
1774 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
1775 unsigned long page_exec_bit
;
1777 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
1778 _PAGE_CACHE_4V
| _PAGE_P_4V
|
1779 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
1781 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
1782 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4V
);
1784 _PAGE_IE
= _PAGE_IE_4V
;
1785 _PAGE_E
= _PAGE_E_4V
;
1786 _PAGE_CACHE
= _PAGE_CACHE_4V
;
1788 #ifdef CONFIG_DEBUG_PAGEALLOC
1789 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
1792 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
1795 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1796 _PAGE_P_4V
| _PAGE_W_4V
);
1798 #ifdef CONFIG_DEBUG_PAGEALLOC
1799 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
1802 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1805 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1806 _PAGE_P_4V
| _PAGE_W_4V
);
1808 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
1809 __ACCESS_BITS_4V
| _PAGE_E_4V
);
1811 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
1812 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
1813 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
1814 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
1815 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
1817 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
1818 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1819 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
1820 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1821 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
1822 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1823 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
1825 page_exec_bit
= _PAGE_EXEC_4V
;
1827 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
1831 unsigned long pte_sz_bits(unsigned long sz
)
1833 if (tlb_type
== hypervisor
) {
1837 return _PAGE_SZ8K_4V
;
1839 return _PAGE_SZ64K_4V
;
1841 return _PAGE_SZ512K_4V
;
1842 case 4 * 1024 * 1024:
1843 return _PAGE_SZ4MB_4V
;
1849 return _PAGE_SZ8K_4U
;
1851 return _PAGE_SZ64K_4U
;
1853 return _PAGE_SZ512K_4U
;
1854 case 4 * 1024 * 1024:
1855 return _PAGE_SZ4MB_4U
;
1860 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
1864 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
1865 pte_val(pte
) |= (((unsigned long)space
) << 32);
1866 pte_val(pte
) |= pte_sz_bits(page_size
);
1871 static unsigned long kern_large_tte(unsigned long paddr
)
1875 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
1876 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
1877 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
1878 if (tlb_type
== hypervisor
)
1879 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
1880 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
1881 _PAGE_EXEC_4V
| _PAGE_W_4V
);
1887 * Translate PROM's mapping we capture at boot time into physical address.
1888 * The second parameter is only set from prom_callback() invocations.
1890 unsigned long prom_virt_to_phys(unsigned long promva
, int *error
)
1895 mask
= _PAGE_PADDR_4U
;
1896 if (tlb_type
== hypervisor
)
1897 mask
= _PAGE_PADDR_4V
;
1899 for (i
= 0; i
< prom_trans_ents
; i
++) {
1900 struct linux_prom_translation
*p
= &prom_trans
[i
];
1902 if (promva
>= p
->virt
&&
1903 promva
< (p
->virt
+ p
->size
)) {
1904 unsigned long base
= p
->data
& mask
;
1908 return base
+ (promva
& (8192 - 1));
1916 /* XXX We should kill off this ugly thing at so me point. XXX */
1917 unsigned long sun4u_get_pte(unsigned long addr
)
1923 unsigned long mask
= _PAGE_PADDR_4U
;
1925 if (tlb_type
== hypervisor
)
1926 mask
= _PAGE_PADDR_4V
;
1928 if (addr
>= PAGE_OFFSET
)
1931 if ((addr
>= LOW_OBP_ADDRESS
) && (addr
< HI_OBP_ADDRESS
))
1932 return prom_virt_to_phys(addr
, NULL
);
1934 pgdp
= pgd_offset_k(addr
);
1935 pudp
= pud_offset(pgdp
, addr
);
1936 pmdp
= pmd_offset(pudp
, addr
);
1937 ptep
= pte_offset_kernel(pmdp
, addr
);
1939 return pte_val(*ptep
) & mask
;
1942 /* If not locked, zap it. */
1943 void __flush_tlb_all(void)
1945 unsigned long pstate
;
1948 __asm__
__volatile__("flushw\n\t"
1949 "rdpr %%pstate, %0\n\t"
1950 "wrpr %0, %1, %%pstate"
1953 if (tlb_type
== spitfire
) {
1954 for (i
= 0; i
< 64; i
++) {
1955 /* Spitfire Errata #32 workaround */
1956 /* NOTE: Always runs on spitfire, so no
1957 * cheetah+ page size encodings.
1959 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
1963 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
1965 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
1966 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
1969 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
1970 spitfire_put_dtlb_data(i
, 0x0UL
);
1973 /* Spitfire Errata #32 workaround */
1974 /* NOTE: Always runs on spitfire, so no
1975 * cheetah+ page size encodings.
1977 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
1981 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
1983 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
1984 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
1987 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
1988 spitfire_put_itlb_data(i
, 0x0UL
);
1991 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1992 cheetah_flush_dtlb_all();
1993 cheetah_flush_itlb_all();
1995 __asm__
__volatile__("wrpr %0, 0, %%pstate"
1999 #ifdef CONFIG_MEMORY_HOTPLUG
2001 void online_page(struct page
*page
)
2003 ClearPageReserved(page
);
2004 init_page_count(page
);
2010 int remove_memory(u64 start
, u64 size
)
2015 #endif /* CONFIG_MEMORY_HOTPLUG */