Linux 2.6.21
[linux/fpc-iii.git] / drivers / atm / lanai.c
blob09f477d4237a5f553d711748dab5ff953f3255b3
1 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version
6 * 2 of the License, or (at your option) any later version.
8 * This driver supports ATM cards based on the Efficient "Lanai"
9 * chipset such as the Speedstream 3010 and the ENI-25p. The
10 * Speedstream 3060 is currently not supported since we don't
11 * have the code to drive the on-board Alcatel DSL chipset (yet).
13 * Thanks to Efficient for supporting this project with hardware,
14 * documentation, and by answering my questions.
16 * Things not working yet:
18 * o We don't support the Speedstream 3060 yet - this card has
19 * an on-board DSL modem chip by Alcatel and the driver will
20 * need some extra code added to handle it
22 * o Note that due to limitations of the Lanai only one VCC can be
23 * in CBR at once
25 * o We don't currently parse the EEPROM at all. The code is all
26 * there as per the spec, but it doesn't actually work. I think
27 * there may be some issues with the docs. Anyway, do NOT
28 * enable it yet - bugs in that code may actually damage your
29 * hardware! Because of this you should hardware an ESI before
30 * trying to use this in a LANE or MPOA environment.
32 * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33 * vcc_tx_aal0() needs to send or queue a SKB
34 * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35 * vcc_rx_aal0() needs to handle AAL0 interrupts
36 * This isn't too much work - I just wanted to get other things
37 * done first.
39 * o lanai_change_qos() isn't written yet
41 * o There aren't any ioctl's yet -- I'd like to eventually support
42 * setting loopback and LED modes that way.
44 * o If the segmentation engine or DMA gets shut down we should restart
45 * card as per section 17.0i. (see lanai_reset)
47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48 * API says it isn't exactly commonly implemented)
51 /* Version history:
52 * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53 * v.0.02 -- 11-JAN-2000 -- Endian fixes
54 * v.0.01 -- 30-NOV-1999 -- Initial release
57 #include <linux/module.h>
58 #include <linux/mm.h>
59 #include <linux/atmdev.h>
60 #include <asm/io.h>
61 #include <asm/byteorder.h>
62 #include <linux/spinlock.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/interrupt.h>
68 #include <linux/dma-mapping.h>
70 /* -------------------- TUNABLE PARAMATERS: */
73 * Maximum number of VCIs per card. Setting it lower could theoretically
74 * save some memory, but since we allocate our vcc list with get_free_pages,
75 * it's not really likely for most architectures
77 #define NUM_VCI (1024)
80 * Enable extra debugging
82 #define DEBUG
84 * Debug _all_ register operations with card, except the memory test.
85 * Also disables the timed poll to prevent extra chattiness. This
86 * isn't for normal use
88 #undef DEBUG_RW
91 * The programming guide specifies a full test of the on-board SRAM
92 * at initialization time. Undefine to remove this
94 #define FULL_MEMORY_TEST
97 * This is the number of (4 byte) service entries that we will
98 * try to allocate at startup. Note that we will end up with
99 * one PAGE_SIZE's worth regardless of what this is set to
101 #define SERVICE_ENTRIES (1024)
102 /* TODO: make above a module load-time option */
105 * We normally read the onboard EEPROM in order to discover our MAC
106 * address. Undefine to _not_ do this
108 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109 /* TODO: make above a module load-time option (also) */
112 * Depth of TX fifo (in 128 byte units; range 2-31)
113 * Smaller numbers are better for network latency
114 * Larger numbers are better for PCI latency
115 * I'm really sure where the best tradeoff is, but the BSD driver uses
116 * 7 and it seems to work ok.
118 #define TX_FIFO_DEPTH (7)
119 /* TODO: make above a module load-time option */
122 * How often (in jiffies) we will try to unstick stuck connections -
123 * shouldn't need to happen much
125 #define LANAI_POLL_PERIOD (10*HZ)
126 /* TODO: make above a module load-time option */
129 * When allocating an AAL5 receiving buffer, try to make it at least
130 * large enough to hold this many max_sdu sized PDUs
132 #define AAL5_RX_MULTIPLIER (3)
133 /* TODO: make above a module load-time option */
136 * Same for transmitting buffer
138 #define AAL5_TX_MULTIPLIER (3)
139 /* TODO: make above a module load-time option */
142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144 * really critical
146 #define AAL0_TX_MULTIPLIER (40)
147 /* TODO: make above a module load-time option */
150 * How large should we make the AAL0 receiving buffer. Remember that this
151 * is shared between all AAL0 VC's
153 #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
154 /* TODO: make above a module load-time option */
157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
159 /* #define USE_POWERDOWN */
160 /* TODO: make above a module load-time option (also) */
162 /* -------------------- DEBUGGING AIDS: */
164 #define DEV_LABEL "lanai"
166 #ifdef DEBUG
168 #define DPRINTK(format, args...) \
169 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170 #define APRINTK(truth, format, args...) \
171 do { \
172 if (unlikely(!(truth))) \
173 printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174 } while (0)
176 #else /* !DEBUG */
178 #define DPRINTK(format, args...)
179 #define APRINTK(truth, format, args...)
181 #endif /* DEBUG */
183 #ifdef DEBUG_RW
184 #define RWDEBUG(format, args...) \
185 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186 #else /* !DEBUG_RW */
187 #define RWDEBUG(format, args...)
188 #endif
190 /* -------------------- DATA DEFINITIONS: */
192 #define LANAI_MAPPING_SIZE (0x40000)
193 #define LANAI_EEPROM_SIZE (128)
195 typedef int vci_t;
196 typedef void __iomem *bus_addr_t;
198 /* DMA buffer in host memory for TX, RX, or service list. */
199 struct lanai_buffer {
200 u32 *start; /* From get_free_pages */
201 u32 *end; /* One past last byte */
202 u32 *ptr; /* Pointer to current host location */
203 dma_addr_t dmaaddr;
206 struct lanai_vcc_stats {
207 unsigned rx_nomem;
208 union {
209 struct {
210 unsigned rx_badlen;
211 unsigned service_trash;
212 unsigned service_stream;
213 unsigned service_rxcrc;
214 } aal5;
215 struct {
216 } aal0;
217 } x;
220 struct lanai_dev; /* Forward declaration */
223 * This is the card-specific per-vcc data. Note that unlike some other
224 * drivers there is NOT a 1-to-1 correspondance between these and
225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227 * direction. To make it weirder, there can even be 0-way vccs
228 * bound to us, waiting to do a change_qos
230 struct lanai_vcc {
231 bus_addr_t vbase; /* Base of VCC's registers */
232 struct lanai_vcc_stats stats;
233 int nref; /* # of atm_vcc's who reference us */
234 vci_t vci;
235 struct {
236 struct lanai_buffer buf;
237 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
238 } rx;
239 struct {
240 struct lanai_buffer buf;
241 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
242 int endptr; /* last endptr from service entry */
243 struct sk_buff_head backlog;
244 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245 } tx;
248 enum lanai_type {
249 lanai2 = PCI_VENDOR_ID_EF_ATM_LANAI2,
250 lanaihb = PCI_VENDOR_ID_EF_ATM_LANAIHB
253 struct lanai_dev_stats {
254 unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
255 unsigned vci_trash; /* # of cells dropped - closed vci */
256 unsigned hec_err; /* # of cells dropped - bad HEC */
257 unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
258 unsigned pcierr_parity_detect;
259 unsigned pcierr_serr_set;
260 unsigned pcierr_master_abort;
261 unsigned pcierr_m_target_abort;
262 unsigned pcierr_s_target_abort;
263 unsigned pcierr_master_parity;
264 unsigned service_notx;
265 unsigned service_norx;
266 unsigned service_rxnotaal5;
267 unsigned dma_reenable;
268 unsigned card_reset;
271 struct lanai_dev {
272 bus_addr_t base;
273 struct lanai_dev_stats stats;
274 struct lanai_buffer service;
275 struct lanai_vcc **vccs;
276 #ifdef USE_POWERDOWN
277 int nbound; /* number of bound vccs */
278 #endif
279 enum lanai_type type;
280 vci_t num_vci; /* Currently just NUM_VCI */
281 u8 eeprom[LANAI_EEPROM_SIZE];
282 u32 serialno, magicno;
283 struct pci_dev *pci;
284 DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
285 DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286 struct timer_list timer;
287 int naal0;
288 struct lanai_buffer aal0buf; /* AAL0 RX buffers */
289 u32 conf1, conf2; /* CONFIG[12] registers */
290 u32 status; /* STATUS register */
291 spinlock_t endtxlock;
292 spinlock_t servicelock;
293 struct atm_vcc *cbrvcc;
294 int number;
295 int board_rev;
296 u8 pci_revision;
297 /* TODO - look at race conditions with maintence of conf1/conf2 */
298 /* TODO - transmit locking: should we use _irq not _irqsave? */
299 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
303 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
304 * This function iterates one of these, calling a given function for each
305 * vci with their bit set
307 static void vci_bitfield_iterate(struct lanai_dev *lanai,
308 const unsigned long *lp,
309 void (*func)(struct lanai_dev *,vci_t vci))
311 vci_t vci = find_first_bit(lp, NUM_VCI);
312 while (vci < NUM_VCI) {
313 func(lanai, vci);
314 vci = find_next_bit(lp, NUM_VCI, vci + 1);
318 /* -------------------- BUFFER UTILITIES: */
321 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
322 * usually any page allocation will do. Just to be safe in case
323 * PAGE_SIZE is insanely tiny, though...
325 #define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
328 * Allocate a buffer in host RAM for service list, RX, or TX
329 * Returns buf->start==NULL if no memory
330 * Note that the size will be rounded up 2^n bytes, and
331 * if we can't allocate that we'll settle for something smaller
332 * until minbytes
334 static void lanai_buf_allocate(struct lanai_buffer *buf,
335 size_t bytes, size_t minbytes, struct pci_dev *pci)
337 int size;
339 if (bytes > (128 * 1024)) /* max lanai buffer size */
340 bytes = 128 * 1024;
341 for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
343 if (minbytes < LANAI_PAGE_SIZE)
344 minbytes = LANAI_PAGE_SIZE;
345 do {
347 * Technically we could use non-consistent mappings for
348 * everything, but the way the lanai uses DMA memory would
349 * make that a terrific pain. This is much simpler.
351 buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
352 if (buf->start != NULL) { /* Success */
353 /* Lanai requires 256-byte alignment of DMA bufs */
354 APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
355 "bad dmaaddr: 0x%lx\n",
356 (unsigned long) buf->dmaaddr);
357 buf->ptr = buf->start;
358 buf->end = (u32 *)
359 (&((unsigned char *) buf->start)[size]);
360 memset(buf->start, 0, size);
361 break;
363 size /= 2;
364 } while (size >= minbytes);
367 /* size of buffer in bytes */
368 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
370 return ((unsigned long) buf->end) - ((unsigned long) buf->start);
373 static void lanai_buf_deallocate(struct lanai_buffer *buf,
374 struct pci_dev *pci)
376 if (buf->start != NULL) {
377 pci_free_consistent(pci, lanai_buf_size(buf),
378 buf->start, buf->dmaaddr);
379 buf->start = buf->end = buf->ptr = NULL;
383 /* size of buffer as "card order" (0=1k .. 7=128k) */
384 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
386 int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
388 /* This can only happen if PAGE_SIZE is gigantic, but just in case */
389 if (order > 7)
390 order = 7;
391 return order;
394 /* -------------------- PORT I/O UTILITIES: */
396 /* Registers (and their bit-fields) */
397 enum lanai_register {
398 Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
399 #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
400 #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
401 #define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
402 Endian_Reg = 0x04, /* Endian setting */
403 IntStatus_Reg = 0x08, /* Interrupt status */
404 IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
405 IntAck_Reg = 0x10, /* Interrupt acknowledge */
406 IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
407 IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
408 IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
409 IntControlEna_Reg = 0x20, /* Interrupt control enable */
410 IntControlDis_Reg = 0x24, /* Interrupt control disable */
411 Status_Reg = 0x28, /* Status */
412 #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
413 #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
414 #define STATUS_SOOL (0x00000004) /* SOOL alarm */
415 #define STATUS_LOCD (0x00000008) /* LOCD alarm */
416 #define STATUS_LED (0x00000010) /* LED (HAPPI) output */
417 #define STATUS_GPIN (0x00000020) /* GPIN pin */
418 #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
419 Config1_Reg = 0x2C, /* Config word 1; bits: */
420 #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
421 #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
422 #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
423 #define READMODE_PLAIN (0) /* Plain memory read */
424 #define READMODE_LINE (2) /* Memory read line */
425 #define READMODE_MULTIPLE (3) /* Memory read multiple */
426 #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
427 #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
428 #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
429 #define LOOPMODE_NORMAL (0) /* Normal - no loop */
430 #define LOOPMODE_TIME (1)
431 #define LOOPMODE_DIAG (2)
432 #define LOOPMODE_LINE (3)
433 #define CONFIG1_MASK_LOOPMODE (0x00000180)
434 #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
435 #define LEDMODE_NOT_SOOL (0) /* !SOOL */
436 #define LEDMODE_OFF (1) /* 0 */
437 #define LEDMODE_ON (2) /* 1 */
438 #define LEDMODE_NOT_LOCD (3) /* !LOCD */
439 #define LEDMORE_GPIN (4) /* GPIN */
440 #define LEDMODE_NOT_GPIN (7) /* !GPIN */
441 #define CONFIG1_MASK_LEDMODE (0x00000E00)
442 #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
443 #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
444 #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
445 Config2_Reg = 0x30, /* Config word 2; bits: */
446 #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
447 #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
448 #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
449 #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
450 #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
451 #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
452 #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
453 #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
454 #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
455 Statistics_Reg = 0x34, /* Statistics; bits: */
456 #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
457 #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
458 #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
459 #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
460 ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
461 #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
462 #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
463 ServWrite_Reg = 0x3C, /* ServWrite Pointer */
464 ServRead_Reg = 0x40, /* ServRead Pointer */
465 TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
466 Butt_Reg = 0x48, /* Butt register */
467 CBR_ICG_Reg = 0x50,
468 CBR_PTR_Reg = 0x54,
469 PingCount_Reg = 0x58, /* Ping count */
470 DMA_Addr_Reg = 0x5C /* DMA address */
473 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
474 enum lanai_register reg)
476 return lanai->base + reg;
479 static inline u32 reg_read(const struct lanai_dev *lanai,
480 enum lanai_register reg)
482 u32 t;
483 t = readl(reg_addr(lanai, reg));
484 RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
485 (int) reg, t);
486 return t;
489 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
490 enum lanai_register reg)
492 RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
493 (int) reg, val);
494 writel(val, reg_addr(lanai, reg));
497 static inline void conf1_write(const struct lanai_dev *lanai)
499 reg_write(lanai, lanai->conf1, Config1_Reg);
502 static inline void conf2_write(const struct lanai_dev *lanai)
504 reg_write(lanai, lanai->conf2, Config2_Reg);
507 /* Same as conf2_write(), but defers I/O if we're powered down */
508 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
510 #ifdef USE_POWERDOWN
511 if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
512 return;
513 #endif /* USE_POWERDOWN */
514 conf2_write(lanai);
517 static inline void reset_board(const struct lanai_dev *lanai)
519 DPRINTK("about to reset board\n");
520 reg_write(lanai, 0, Reset_Reg);
522 * If we don't delay a little while here then we can end up
523 * leaving the card in a VERY weird state and lock up the
524 * PCI bus. This isn't documented anywhere but I've convinced
525 * myself after a lot of painful experimentation
527 udelay(5);
530 /* -------------------- CARD SRAM UTILITIES: */
532 /* The SRAM is mapped into normal PCI memory space - the only catch is
533 * that it is only 16-bits wide but must be accessed as 32-bit. The
534 * 16 high bits will be zero. We don't hide this, since they get
535 * programmed mostly like discrete registers anyway
537 #define SRAM_START (0x20000)
538 #define SRAM_BYTES (0x20000) /* Again, half don't really exist */
540 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
542 return lanai->base + SRAM_START + offset;
545 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
547 return readl(sram_addr(lanai, offset));
550 static inline void sram_write(const struct lanai_dev *lanai,
551 u32 val, int offset)
553 writel(val, sram_addr(lanai, offset));
556 static int __init sram_test_word(
557 const struct lanai_dev *lanai, int offset, u32 pattern)
559 u32 readback;
560 sram_write(lanai, pattern, offset);
561 readback = sram_read(lanai, offset);
562 if (likely(readback == pattern))
563 return 0;
564 printk(KERN_ERR DEV_LABEL
565 "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
566 lanai->number, offset,
567 (unsigned int) pattern, (unsigned int) readback);
568 return -EIO;
571 static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
573 int offset, result = 0;
574 for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
575 result = sram_test_word(lanai, offset, pattern);
576 return result;
579 static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
581 #ifdef FULL_MEMORY_TEST
582 int result;
583 DPRINTK("testing SRAM\n");
584 if ((result = sram_test_pass(lanai, 0x5555)) != 0)
585 return result;
586 if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
587 return result;
588 #endif
589 DPRINTK("clearing SRAM\n");
590 return sram_test_pass(lanai, 0x0000);
593 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
595 /* vcc table */
596 enum lanai_vcc_offset {
597 vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
598 #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
599 #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
600 #define RMMODE_TRASH (0) /* discard */
601 #define RMMODE_PRESERVE (1) /* input as AAL0 */
602 #define RMMODE_PIPE (2) /* pipe to coscheduler */
603 #define RMMODE_PIPEALL (3) /* pipe non-RM too */
604 #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
605 #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
606 #define RXMODE_TRASH (0) /* discard */
607 #define RXMODE_AAL0 (1) /* non-AAL5 mode */
608 #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
609 #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
610 vcc_rxaddr2 = 0x04, /* Location2 */
611 vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
612 vcc_rxcrc2 = 0x0C,
613 vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
614 #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
615 #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
616 #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
617 vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
618 #define RXBUFSTART_CLP (0x00004000)
619 #define RXBUFSTART_CI (0x00008000)
620 vcc_rxreadptr = 0x18, /* RX readptr */
621 vcc_txicg = 0x1C, /* TX ICG */
622 vcc_txaddr1 = 0x20, /* Location1, plus bits: */
623 #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
624 #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
625 vcc_txaddr2 = 0x24, /* Location2 */
626 vcc_txcrc1 = 0x28, /* TX CRC claculation space */
627 vcc_txcrc2 = 0x2C,
628 vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
629 #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
630 #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
631 vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
632 #define TXENDPTR_CLP (0x00002000)
633 #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
634 #define PDUMODE_AAL0 (0*0x04000)
635 #define PDUMODE_AAL5 (2*0x04000)
636 #define PDUMODE_AAL5STREAM (3*0x04000)
637 vcc_txwriteptr = 0x38, /* TX Writeptr */
638 #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
639 vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
640 #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
643 #define CARDVCC_SIZE (0x40)
645 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
646 vci_t vci)
648 return sram_addr(lanai, vci * CARDVCC_SIZE);
651 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
652 enum lanai_vcc_offset offset)
654 u32 val;
655 APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
656 val= readl(lvcc->vbase + offset);
657 RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
658 lvcc->vci, (int) offset, val);
659 return val;
662 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
663 u32 val, enum lanai_vcc_offset offset)
665 APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
666 APRINTK((val & ~0xFFFF) == 0,
667 "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
668 (unsigned int) val, lvcc->vci, (unsigned int) offset);
669 RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
670 lvcc->vci, (unsigned int) offset, (unsigned int) val);
671 writel(val, lvcc->vbase + offset);
674 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
676 /* How many bytes will an AAL5 PDU take to transmit - remember that:
677 * o we need to add 8 bytes for length, CPI, UU, and CRC
678 * o we need to round up to 48 bytes for cells
680 static inline int aal5_size(int size)
682 int cells = (size + 8 + 47) / 48;
683 return cells * 48;
686 /* How many bytes can we send if we have "space" space, assuming we have
687 * to send full cells
689 static inline int aal5_spacefor(int space)
691 int cells = space / 48;
692 return cells * 48;
695 /* -------------------- FREE AN ATM SKB: */
697 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
699 if (atmvcc->pop != NULL)
700 atmvcc->pop(atmvcc, skb);
701 else
702 dev_kfree_skb_any(skb);
705 /* -------------------- TURN VCCS ON AND OFF: */
707 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
709 u32 addr1;
710 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
711 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
712 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
713 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
714 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
715 cardvcc_write(lvcc, 0, vcc_rxbufstart);
716 cardvcc_write(lvcc, 0, vcc_rxreadptr);
717 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
718 addr1 = ((dmaaddr >> 8) & 0xFF) |
719 RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
720 RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
721 /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
722 RXADDR1_SET_MODE(RXMODE_AAL5);
723 } else
724 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
725 RXADDR1_OAM_PRESERVE | /* ??? */
726 RXADDR1_SET_MODE(RXMODE_AAL0);
727 /* This one must be last! */
728 cardvcc_write(lvcc, addr1, vcc_rxaddr1);
731 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
733 dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
734 cardvcc_write(lvcc, 0, vcc_txicg);
735 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
736 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
737 cardvcc_write(lvcc, 0, vcc_txreadptr);
738 cardvcc_write(lvcc, 0, vcc_txendptr);
739 cardvcc_write(lvcc, 0, vcc_txwriteptr);
740 cardvcc_write(lvcc,
741 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
742 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
743 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
744 cardvcc_write(lvcc,
745 ((dmaaddr >> 8) & 0xFF) |
746 TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
747 vcc_txaddr1);
750 /* Shutdown receiving on card */
751 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
753 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
754 return;
755 /* 15.1.1 - set to trashing, wait one cell time (15us) */
756 cardvcc_write(lvcc,
757 RXADDR1_SET_RMMODE(RMMODE_TRASH) |
758 RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
759 udelay(15);
760 /* 15.1.2 - clear rest of entries */
761 cardvcc_write(lvcc, 0, vcc_rxaddr2);
762 cardvcc_write(lvcc, 0, vcc_rxcrc1);
763 cardvcc_write(lvcc, 0, vcc_rxcrc2);
764 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
765 cardvcc_write(lvcc, 0, vcc_rxbufstart);
766 cardvcc_write(lvcc, 0, vcc_rxreadptr);
769 /* Shutdown transmitting on card.
770 * Unfortunately the lanai needs us to wait until all the data
771 * drains out of the buffer before we can dealloc it, so this
772 * can take awhile -- up to 370ms for a full 128KB buffer
773 * assuming everone else is quiet. In theory the time is
774 * boundless if there's a CBR VCC holding things up.
776 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
777 struct lanai_vcc *lvcc)
779 struct sk_buff *skb;
780 unsigned long flags, timeout;
781 int read, write, lastread = -1;
782 APRINTK(!in_interrupt(),
783 "lanai_shutdown_tx_vci called w/o process context!\n");
784 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
785 return;
786 /* 15.2.1 - wait for queue to drain */
787 while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
788 lanai_free_skb(lvcc->tx.atmvcc, skb);
789 read_lock_irqsave(&vcc_sklist_lock, flags);
790 __clear_bit(lvcc->vci, lanai->backlog_vccs);
791 read_unlock_irqrestore(&vcc_sklist_lock, flags);
793 * We need to wait for the VCC to drain but don't wait forever. We
794 * give each 1K of buffer size 1/128th of a second to clear out.
795 * TODO: maybe disable CBR if we're about to timeout?
797 timeout = jiffies +
798 (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
799 write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
800 for (;;) {
801 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
802 if (read == write && /* Is TX buffer empty? */
803 (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
804 (cardvcc_read(lvcc, vcc_txcbr_next) &
805 TXCBR_NEXT_BOZO) == 0))
806 break;
807 if (read != lastread) { /* Has there been any progress? */
808 lastread = read;
809 timeout += HZ / 10;
811 if (unlikely(time_after(jiffies, timeout))) {
812 printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
813 "backlog closing vci %d\n",
814 lvcc->tx.atmvcc->dev->number, lvcc->vci);
815 DPRINTK("read, write = %d, %d\n", read, write);
816 break;
818 msleep(40);
820 /* 15.2.2 - clear out all tx registers */
821 cardvcc_write(lvcc, 0, vcc_txreadptr);
822 cardvcc_write(lvcc, 0, vcc_txwriteptr);
823 cardvcc_write(lvcc, 0, vcc_txendptr);
824 cardvcc_write(lvcc, 0, vcc_txcrc1);
825 cardvcc_write(lvcc, 0, vcc_txcrc2);
826 cardvcc_write(lvcc, 0, vcc_txaddr2);
827 cardvcc_write(lvcc, 0, vcc_txaddr1);
830 /* -------------------- MANAGING AAL0 RX BUFFER: */
832 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
834 DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
835 lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
836 lanai->pci);
837 return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
840 static inline void aal0_buffer_free(struct lanai_dev *lanai)
842 DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
843 lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
846 /* -------------------- EEPROM UTILITIES: */
848 /* Offsets of data in the EEPROM */
849 #define EEPROM_COPYRIGHT (0)
850 #define EEPROM_COPYRIGHT_LEN (44)
851 #define EEPROM_CHECKSUM (62)
852 #define EEPROM_CHECKSUM_REV (63)
853 #define EEPROM_MAC (64)
854 #define EEPROM_MAC_REV (70)
855 #define EEPROM_SERIAL (112)
856 #define EEPROM_SERIAL_REV (116)
857 #define EEPROM_MAGIC (120)
858 #define EEPROM_MAGIC_REV (124)
860 #define EEPROM_MAGIC_VALUE (0x5AB478D2)
862 #ifndef READ_EEPROM
864 /* Stub functions to use if EEPROM reading is disabled */
865 static int __devinit eeprom_read(struct lanai_dev *lanai)
867 printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
868 lanai->number);
869 memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
870 return 0;
873 static int __devinit eeprom_validate(struct lanai_dev *lanai)
875 lanai->serialno = 0;
876 lanai->magicno = EEPROM_MAGIC_VALUE;
877 return 0;
880 #else /* READ_EEPROM */
882 static int __devinit eeprom_read(struct lanai_dev *lanai)
884 int i, address;
885 u8 data;
886 u32 tmp;
887 #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
888 } while (0)
889 #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
890 #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
891 #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
892 #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
893 #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
894 #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
895 #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
896 data_h(); udelay(5); } while (0)
897 /* start with both clock and data high */
898 data_h(); clock_h(); udelay(5);
899 for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
900 data = (address << 1) | 1; /* Command=read + address */
901 /* send start bit */
902 data_l(); udelay(5);
903 clock_l(); udelay(5);
904 for (i = 128; i != 0; i >>= 1) { /* write command out */
905 tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
906 (data & i) ? CONFIG1_PROMDATA : 0;
907 if (lanai->conf1 != tmp) {
908 set_config1(tmp);
909 udelay(5); /* Let new data settle */
911 clock_h(); udelay(5); clock_l(); udelay(5);
913 /* look for ack */
914 data_h(); clock_h(); udelay(5);
915 if (read_pin() != 0)
916 goto error; /* No ack seen */
917 clock_l(); udelay(5);
918 /* read back result */
919 for (data = 0, i = 7; i >= 0; i--) {
920 data_h(); clock_h(); udelay(5);
921 data = (data << 1) | !!read_pin();
922 clock_l(); udelay(5);
924 /* look again for ack */
925 data_h(); clock_h(); udelay(5);
926 if (read_pin() == 0)
927 goto error; /* Spurious ack */
928 clock_l(); udelay(5);
929 send_stop();
930 lanai->eeprom[address] = data;
931 DPRINTK("EEPROM 0x%04X %02X\n",
932 (unsigned int) address, (unsigned int) data);
934 return 0;
935 error:
936 clock_l(); udelay(5); /* finish read */
937 send_stop();
938 printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
939 lanai->number, address);
940 return -EIO;
941 #undef set_config1
942 #undef clock_h
943 #undef clock_l
944 #undef data_h
945 #undef data_l
946 #undef pre_read
947 #undef read_pin
948 #undef send_stop
951 /* read a big-endian 4-byte value out of eeprom */
952 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
954 return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
957 /* Checksum/validate EEPROM contents */
958 static int __devinit eeprom_validate(struct lanai_dev *lanai)
960 int i, s;
961 u32 v;
962 const u8 *e = lanai->eeprom;
963 #ifdef DEBUG
964 /* First, see if we can get an ASCIIZ string out of the copyright */
965 for (i = EEPROM_COPYRIGHT;
966 i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
967 if (e[i] < 0x20 || e[i] > 0x7E)
968 break;
969 if ( i != EEPROM_COPYRIGHT &&
970 i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
971 DPRINTK("eeprom: copyright = \"%s\"\n",
972 (char *) &e[EEPROM_COPYRIGHT]);
973 else
974 DPRINTK("eeprom: copyright not found\n");
975 #endif
976 /* Validate checksum */
977 for (i = s = 0; i < EEPROM_CHECKSUM; i++)
978 s += e[i];
979 s &= 0xFF;
980 if (s != e[EEPROM_CHECKSUM]) {
981 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
982 "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
983 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
984 return -EIO;
986 s ^= 0xFF;
987 if (s != e[EEPROM_CHECKSUM_REV]) {
988 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
989 "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
990 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
991 return -EIO;
993 /* Verify MAC address */
994 for (i = 0; i < 6; i++)
995 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
996 printk(KERN_ERR DEV_LABEL
997 "(itf %d) : EEPROM MAC addresses don't match "
998 "(0x%02X, inverse 0x%02X)\n", lanai->number,
999 (unsigned int) e[EEPROM_MAC + i],
1000 (unsigned int) e[EEPROM_MAC_REV + i]);
1001 return -EIO;
1003 DPRINTK("eeprom: MAC address = %02X:%02X:%02X:%02X:%02X:%02X\n",
1004 e[EEPROM_MAC + 0], e[EEPROM_MAC + 1], e[EEPROM_MAC + 2],
1005 e[EEPROM_MAC + 3], e[EEPROM_MAC + 4], e[EEPROM_MAC + 5]);
1006 /* Verify serial number */
1007 lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1008 v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1009 if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1010 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1011 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1012 (unsigned int) lanai->serialno, (unsigned int) v);
1013 return -EIO;
1015 DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1016 /* Verify magic number */
1017 lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1018 v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1019 if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1020 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1021 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1022 lanai->magicno, v);
1023 return -EIO;
1025 DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1026 if (lanai->magicno != EEPROM_MAGIC_VALUE)
1027 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1028 "magic not what expected (got 0x%08X, not 0x%08X)\n",
1029 lanai->number, (unsigned int) lanai->magicno,
1030 (unsigned int) EEPROM_MAGIC_VALUE);
1031 return 0;
1034 #endif /* READ_EEPROM */
1036 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1038 return &lanai->eeprom[EEPROM_MAC];
1041 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1043 /* Interrupt types */
1044 #define INT_STATS (0x00000002) /* Statistics counter overflow */
1045 #define INT_SOOL (0x00000004) /* SOOL changed state */
1046 #define INT_LOCD (0x00000008) /* LOCD changed state */
1047 #define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1048 #define INT_GPIN (0x00000020) /* GPIN changed state */
1049 #define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1050 #define INT_WAKE (0x00000080) /* Lanai wants bus */
1051 #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1052 #define INT_LOCK (0x00000200) /* Service list overflow */
1053 #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1054 #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1055 #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1056 #define INT_SERVICE (0x00002000) /* Service list entries available */
1057 #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1058 #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1059 #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1060 #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1062 /* Sets of the above */
1063 #define INT_ALL (0x0003FFFE) /* All interrupts */
1064 #define INT_STATUS (0x0000003C) /* Some status pin changed */
1065 #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1066 #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1068 static inline u32 intr_pending(const struct lanai_dev *lanai)
1070 return reg_read(lanai, IntStatusMasked_Reg);
1073 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1075 reg_write(lanai, i, IntControlEna_Reg);
1078 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1080 reg_write(lanai, i, IntControlDis_Reg);
1083 /* -------------------- CARD/PCI STATUS: */
1085 static void status_message(int itf, const char *name, int status)
1087 static const char *onoff[2] = { "off to on", "on to off" };
1088 printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1089 itf, name, onoff[!status]);
1092 static void lanai_check_status(struct lanai_dev *lanai)
1094 u32 new = reg_read(lanai, Status_Reg);
1095 u32 changes = new ^ lanai->status;
1096 lanai->status = new;
1097 #define e(flag, name) \
1098 if (changes & flag) \
1099 status_message(lanai->number, name, new & flag)
1100 e(STATUS_SOOL, "SOOL");
1101 e(STATUS_LOCD, "LOCD");
1102 e(STATUS_LED, "LED");
1103 e(STATUS_GPIN, "GPIN");
1104 #undef e
1107 static void pcistatus_got(int itf, const char *name)
1109 printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1112 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1114 u16 s;
1115 int result;
1116 result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1117 if (result != PCIBIOS_SUCCESSFUL) {
1118 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1119 "%d\n", lanai->number, result);
1120 return;
1122 s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1123 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1124 PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1125 if (s == 0)
1126 return;
1127 result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1128 if (result != PCIBIOS_SUCCESSFUL)
1129 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1130 "%d\n", lanai->number, result);
1131 if (clearonly)
1132 return;
1133 #define e(flag, name, stat) \
1134 if (s & flag) { \
1135 pcistatus_got(lanai->number, name); \
1136 ++lanai->stats.pcierr_##stat; \
1138 e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1139 e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1140 e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1141 e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1142 e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1143 e(PCI_STATUS_PARITY, "master parity", master_parity);
1144 #undef e
1147 /* -------------------- VCC TX BUFFER UTILITIES: */
1149 /* space left in tx buffer in bytes */
1150 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1152 int r;
1153 r = endptr * 16;
1154 r -= ((unsigned long) lvcc->tx.buf.ptr) -
1155 ((unsigned long) lvcc->tx.buf.start);
1156 r -= 16; /* Leave "bubble" - if start==end it looks empty */
1157 if (r < 0)
1158 r += lanai_buf_size(&lvcc->tx.buf);
1159 return r;
1162 /* test if VCC is currently backlogged */
1163 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1165 return !skb_queue_empty(&lvcc->tx.backlog);
1168 /* Bit fields in the segmentation buffer descriptor */
1169 #define DESCRIPTOR_MAGIC (0xD0000000)
1170 #define DESCRIPTOR_AAL5 (0x00008000)
1171 #define DESCRIPTOR_AAL5_STREAM (0x00004000)
1172 #define DESCRIPTOR_CLP (0x00002000)
1174 /* Add 32-bit descriptor with its padding */
1175 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1176 u32 flags, int len)
1178 int pos;
1179 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1180 "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1181 lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1182 pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1183 (unsigned char *) lvcc->tx.buf.start;
1184 APRINTK((pos & ~0x0001FFF0) == 0,
1185 "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1186 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1187 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1188 pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1189 APRINTK((pos & ~0x0001FFF0) == 0,
1190 "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1191 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1192 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1193 lvcc->tx.buf.ptr[-1] =
1194 cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1195 ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1196 DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1197 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1198 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1201 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1202 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1203 int len, int cpi, int uu)
1205 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1206 "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1207 lvcc->tx.buf.ptr += 2;
1208 lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1209 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1210 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1213 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1214 const unsigned char *src, int n)
1216 unsigned char *e;
1217 int m;
1218 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1219 m = e - (unsigned char *) lvcc->tx.buf.end;
1220 if (m < 0)
1221 m = 0;
1222 memcpy(lvcc->tx.buf.ptr, src, n - m);
1223 if (m != 0) {
1224 memcpy(lvcc->tx.buf.start, src + n - m, m);
1225 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1227 lvcc->tx.buf.ptr = (u32 *) e;
1230 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1232 unsigned char *e;
1233 int m;
1234 if (n == 0)
1235 return;
1236 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1237 m = e - (unsigned char *) lvcc->tx.buf.end;
1238 if (m < 0)
1239 m = 0;
1240 memset(lvcc->tx.buf.ptr, 0, n - m);
1241 if (m != 0) {
1242 memset(lvcc->tx.buf.start, 0, m);
1243 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1245 lvcc->tx.buf.ptr = (u32 *) e;
1248 /* Update "butt" register to specify new WritePtr */
1249 static inline void lanai_endtx(struct lanai_dev *lanai,
1250 const struct lanai_vcc *lvcc)
1252 int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1253 (unsigned char *) lvcc->tx.buf.start;
1254 APRINTK((ptr & ~0x0001FFF0) == 0,
1255 "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1256 ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1257 lvcc->tx.buf.end);
1260 * Since the "butt register" is a shared resounce on the card we
1261 * serialize all accesses to it through this spinlock. This is
1262 * mostly just paranoia sicne the register is rarely "busy" anyway
1263 * but is needed for correctness.
1265 spin_lock(&lanai->endtxlock);
1267 * We need to check if the "butt busy" bit is set before
1268 * updating the butt register. In theory this should
1269 * never happen because the ATM card is plenty fast at
1270 * updating the register. Still, we should make sure
1272 for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1273 if (unlikely(i > 50)) {
1274 printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1275 "always busy!\n", lanai->number);
1276 break;
1278 udelay(5);
1281 * Before we tall the card to start work we need to be sure 100% of
1282 * the info in the service buffer has been written before we tell
1283 * the card about it
1285 wmb();
1286 reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1287 spin_unlock(&lanai->endtxlock);
1291 * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1292 * space available. "pdusize" is the number of bytes the PDU will take
1294 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1295 struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1297 int pad;
1298 APRINTK(pdusize == aal5_size(skb->len),
1299 "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1300 pdusize, aal5_size(skb->len));
1301 vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1302 pad = pdusize - skb->len - 8;
1303 APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1304 APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1305 vcc_tx_memcpy(lvcc, skb->data, skb->len);
1306 vcc_tx_memzero(lvcc, pad);
1307 vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1308 lanai_endtx(lanai, lvcc);
1309 lanai_free_skb(lvcc->tx.atmvcc, skb);
1310 atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1313 /* Try to fill the buffer - don't call unless there is backlog */
1314 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1315 struct lanai_vcc *lvcc, int endptr)
1317 int n;
1318 struct sk_buff *skb;
1319 int space = vcc_tx_space(lvcc, endptr);
1320 APRINTK(vcc_is_backlogged(lvcc),
1321 "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1322 lvcc->vci);
1323 while (space >= 64) {
1324 skb = skb_dequeue(&lvcc->tx.backlog);
1325 if (skb == NULL)
1326 goto no_backlog;
1327 n = aal5_size(skb->len);
1328 if (n + 16 > space) {
1329 /* No room for this packet - put it back on queue */
1330 skb_queue_head(&lvcc->tx.backlog, skb);
1331 return;
1333 lanai_send_one_aal5(lanai, lvcc, skb, n);
1334 space -= n + 16;
1336 if (!vcc_is_backlogged(lvcc)) {
1337 no_backlog:
1338 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1342 /* Given an skb that we want to transmit either send it now or queue */
1343 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1344 struct sk_buff *skb)
1346 int space, n;
1347 if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1348 goto queue_it;
1349 space = vcc_tx_space(lvcc,
1350 TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1351 n = aal5_size(skb->len);
1352 APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1353 if (space < n + 16) { /* No space for this PDU */
1354 __set_bit(lvcc->vci, lanai->backlog_vccs);
1355 queue_it:
1356 skb_queue_tail(&lvcc->tx.backlog, skb);
1357 return;
1359 lanai_send_one_aal5(lanai, lvcc, skb, n);
1362 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1363 struct lanai_vcc *lvcc, int endptr)
1365 printk(KERN_INFO DEV_LABEL
1366 ": vcc_tx_unqueue_aal0: not implemented\n");
1369 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1370 struct sk_buff *skb)
1372 printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1373 /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1374 lanai_free_skb(lvcc->tx.atmvcc, skb);
1377 /* -------------------- VCC RX BUFFER UTILITIES: */
1379 /* unlike the _tx_ cousins, this doesn't update ptr */
1380 static inline void vcc_rx_memcpy(unsigned char *dest,
1381 const struct lanai_vcc *lvcc, int n)
1383 int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1384 ((const unsigned char *) (lvcc->rx.buf.end));
1385 if (m < 0)
1386 m = 0;
1387 memcpy(dest, lvcc->rx.buf.ptr, n - m);
1388 memcpy(dest + n - m, lvcc->rx.buf.start, m);
1389 /* Make sure that these copies don't get reordered */
1390 barrier();
1393 /* Receive AAL5 data on a VCC with a particular endptr */
1394 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1396 int size;
1397 struct sk_buff *skb;
1398 const u32 *x;
1399 u32 *end = &lvcc->rx.buf.start[endptr * 4];
1400 int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1401 if (n < 0)
1402 n += lanai_buf_size(&lvcc->rx.buf);
1403 APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1404 "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1405 n, lanai_buf_size(&lvcc->rx.buf));
1406 /* Recover the second-to-last word to get true pdu length */
1407 if ((x = &end[-2]) < lvcc->rx.buf.start)
1408 x = &lvcc->rx.buf.end[-2];
1410 * Before we actually read from the buffer, make sure the memory
1411 * changes have arrived
1413 rmb();
1414 size = be32_to_cpup(x) & 0xffff;
1415 if (unlikely(n != aal5_size(size))) {
1416 /* Make sure size matches padding */
1417 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1418 "on vci=%d - size=%d n=%d\n",
1419 lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1420 lvcc->stats.x.aal5.rx_badlen++;
1421 goto out;
1423 skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1424 if (unlikely(skb == NULL)) {
1425 lvcc->stats.rx_nomem++;
1426 goto out;
1428 skb_put(skb, size);
1429 vcc_rx_memcpy(skb->data, lvcc, size);
1430 ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1431 __net_timestamp(skb);
1432 lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1433 atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1434 out:
1435 lvcc->rx.buf.ptr = end;
1436 cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1439 static void vcc_rx_aal0(struct lanai_dev *lanai)
1441 printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1442 /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1443 /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1446 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1448 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1449 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1450 #define VCCTABLE_GETFREEPAGE
1451 #else
1452 #include <linux/vmalloc.h>
1453 #endif
1455 static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1457 #ifdef VCCTABLE_GETFREEPAGE
1458 APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1459 "vcc table > PAGE_SIZE!");
1460 lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1461 return (lanai->vccs == NULL) ? -ENOMEM : 0;
1462 #else
1463 int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1464 lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
1465 if (unlikely(lanai->vccs == NULL))
1466 return -ENOMEM;
1467 memset(lanai->vccs, 0, bytes);
1468 return 0;
1469 #endif
1472 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1474 #ifdef VCCTABLE_GETFREEPAGE
1475 free_page((unsigned long) lanai->vccs);
1476 #else
1477 vfree(lanai->vccs);
1478 #endif
1481 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1482 static inline struct lanai_vcc *new_lanai_vcc(void)
1484 struct lanai_vcc *lvcc;
1485 lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1486 if (likely(lvcc != NULL)) {
1487 skb_queue_head_init(&lvcc->tx.backlog);
1488 #ifdef DEBUG
1489 lvcc->vci = -1;
1490 #endif
1492 return lvcc;
1495 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1496 struct lanai_buffer *buf, int max_sdu, int multiplier,
1497 const char *name)
1499 int size;
1500 if (unlikely(max_sdu < 1))
1501 max_sdu = 1;
1502 max_sdu = aal5_size(max_sdu);
1503 size = (max_sdu + 16) * multiplier + 16;
1504 lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1505 if (unlikely(buf->start == NULL))
1506 return -ENOMEM;
1507 if (unlikely(lanai_buf_size(buf) < size))
1508 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1509 "for %s buffer, got only %Zu\n", lanai->number, size,
1510 name, lanai_buf_size(buf));
1511 DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1512 return 0;
1515 /* Setup a RX buffer for a currently unbound AAL5 vci */
1516 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1517 struct lanai_vcc *lvcc, const struct atm_qos *qos)
1519 return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1520 qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1523 /* Setup a TX buffer for a currently unbound AAL5 vci */
1524 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1525 const struct atm_qos *qos)
1527 int max_sdu, multiplier;
1528 if (qos->aal == ATM_AAL0) {
1529 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1530 max_sdu = ATM_CELL_SIZE - 1;
1531 multiplier = AAL0_TX_MULTIPLIER;
1532 } else {
1533 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1534 max_sdu = qos->txtp.max_sdu;
1535 multiplier = AAL5_TX_MULTIPLIER;
1537 return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1538 multiplier, "TX");
1541 static inline void host_vcc_bind(struct lanai_dev *lanai,
1542 struct lanai_vcc *lvcc, vci_t vci)
1544 if (lvcc->vbase != NULL)
1545 return; /* We already were bound in the other direction */
1546 DPRINTK("Binding vci %d\n", vci);
1547 #ifdef USE_POWERDOWN
1548 if (lanai->nbound++ == 0) {
1549 DPRINTK("Coming out of powerdown\n");
1550 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1551 conf1_write(lanai);
1552 conf2_write(lanai);
1554 #endif
1555 lvcc->vbase = cardvcc_addr(lanai, vci);
1556 lanai->vccs[lvcc->vci = vci] = lvcc;
1559 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1560 struct lanai_vcc *lvcc)
1562 if (lvcc->vbase == NULL)
1563 return; /* This vcc was never bound */
1564 DPRINTK("Unbinding vci %d\n", lvcc->vci);
1565 lvcc->vbase = NULL;
1566 lanai->vccs[lvcc->vci] = NULL;
1567 #ifdef USE_POWERDOWN
1568 if (--lanai->nbound == 0) {
1569 DPRINTK("Going into powerdown\n");
1570 lanai->conf1 |= CONFIG1_POWERDOWN;
1571 conf1_write(lanai);
1573 #endif
1576 /* -------------------- RESET CARD: */
1578 static void lanai_reset(struct lanai_dev *lanai)
1580 printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
1581 "implemented\n", lanai->number);
1582 /* TODO */
1583 /* The following is just a hack until we write the real
1584 * resetter - at least ack whatever interrupt sent us
1585 * here
1587 reg_write(lanai, INT_ALL, IntAck_Reg);
1588 lanai->stats.card_reset++;
1591 /* -------------------- SERVICE LIST UTILITIES: */
1594 * Allocate service buffer and tell card about it
1596 static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1598 lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1599 lanai->pci);
1600 if (unlikely(lanai->service.start == NULL))
1601 return -ENOMEM;
1602 DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1603 (unsigned long) lanai->service.start,
1604 lanai_buf_size(&lanai->service),
1605 lanai_buf_size_cardorder(&lanai->service));
1606 /* Clear ServWrite register to be safe */
1607 reg_write(lanai, 0, ServWrite_Reg);
1608 /* ServiceStuff register contains size and address of buffer */
1609 reg_write(lanai,
1610 SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1611 SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1612 ServiceStuff_Reg);
1613 return 0;
1616 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1618 lanai_buf_deallocate(&lanai->service, lanai->pci);
1621 /* Bitfields in service list */
1622 #define SERVICE_TX (0x80000000) /* Was from transmission */
1623 #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1624 #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1625 #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1626 #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1627 #define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1628 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1629 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1631 /* Handle one thing from the service list - returns true if it marked a
1632 * VCC ready for xmit
1634 static int handle_service(struct lanai_dev *lanai, u32 s)
1636 vci_t vci = SERVICE_GET_VCI(s);
1637 struct lanai_vcc *lvcc;
1638 read_lock(&vcc_sklist_lock);
1639 lvcc = lanai->vccs[vci];
1640 if (unlikely(lvcc == NULL)) {
1641 read_unlock(&vcc_sklist_lock);
1642 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1643 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1644 if (s & SERVICE_TX)
1645 lanai->stats.service_notx++;
1646 else
1647 lanai->stats.service_norx++;
1648 return 0;
1650 if (s & SERVICE_TX) { /* segmentation interrupt */
1651 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1652 read_unlock(&vcc_sklist_lock);
1653 DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1654 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1655 lanai->stats.service_notx++;
1656 return 0;
1658 __set_bit(vci, lanai->transmit_ready);
1659 lvcc->tx.endptr = SERVICE_GET_END(s);
1660 read_unlock(&vcc_sklist_lock);
1661 return 1;
1663 if (unlikely(lvcc->rx.atmvcc == NULL)) {
1664 read_unlock(&vcc_sklist_lock);
1665 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1666 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1667 lanai->stats.service_norx++;
1668 return 0;
1670 if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1671 read_unlock(&vcc_sklist_lock);
1672 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1673 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1674 lanai->stats.service_rxnotaal5++;
1675 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1676 return 0;
1678 if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1679 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1680 read_unlock(&vcc_sklist_lock);
1681 return 0;
1683 if (s & SERVICE_TRASH) {
1684 int bytes;
1685 read_unlock(&vcc_sklist_lock);
1686 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1687 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1688 lvcc->stats.x.aal5.service_trash++;
1689 bytes = (SERVICE_GET_END(s) * 16) -
1690 (((unsigned long) lvcc->rx.buf.ptr) -
1691 ((unsigned long) lvcc->rx.buf.start)) + 47;
1692 if (bytes < 0)
1693 bytes += lanai_buf_size(&lvcc->rx.buf);
1694 lanai->stats.ovfl_trash += (bytes / 48);
1695 return 0;
1697 if (s & SERVICE_STREAM) {
1698 read_unlock(&vcc_sklist_lock);
1699 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1700 lvcc->stats.x.aal5.service_stream++;
1701 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1702 "PDU on VCI %d!\n", lanai->number, vci);
1703 lanai_reset(lanai);
1704 return 0;
1706 DPRINTK("got rx crc error on vci %d\n", vci);
1707 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1708 lvcc->stats.x.aal5.service_rxcrc++;
1709 lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1710 cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1711 read_unlock(&vcc_sklist_lock);
1712 return 0;
1715 /* Try transmitting on all VCIs that we marked ready to serve */
1716 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1718 struct lanai_vcc *lvcc = lanai->vccs[vci];
1719 if (vcc_is_backlogged(lvcc))
1720 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1723 /* Run service queue -- called from interrupt context or with
1724 * interrupts otherwise disabled and with the lanai->servicelock
1725 * lock held
1727 static void run_service(struct lanai_dev *lanai)
1729 int ntx = 0;
1730 u32 wreg = reg_read(lanai, ServWrite_Reg);
1731 const u32 *end = lanai->service.start + wreg;
1732 while (lanai->service.ptr != end) {
1733 ntx += handle_service(lanai,
1734 le32_to_cpup(lanai->service.ptr++));
1735 if (lanai->service.ptr >= lanai->service.end)
1736 lanai->service.ptr = lanai->service.start;
1738 reg_write(lanai, wreg, ServRead_Reg);
1739 if (ntx != 0) {
1740 read_lock(&vcc_sklist_lock);
1741 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1742 iter_transmit);
1743 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1744 read_unlock(&vcc_sklist_lock);
1748 /* -------------------- GATHER STATISTICS: */
1750 static void get_statistics(struct lanai_dev *lanai)
1752 u32 statreg = reg_read(lanai, Statistics_Reg);
1753 lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1754 lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1755 lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1756 lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1759 /* -------------------- POLLING TIMER: */
1761 #ifndef DEBUG_RW
1762 /* Try to undequeue 1 backlogged vcc */
1763 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1765 struct lanai_vcc *lvcc = lanai->vccs[vci];
1766 int endptr;
1767 if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1768 !vcc_is_backlogged(lvcc)) {
1769 __clear_bit(vci, lanai->backlog_vccs);
1770 return;
1772 endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1773 lvcc->tx.unqueue(lanai, lvcc, endptr);
1775 #endif /* !DEBUG_RW */
1777 static void lanai_timed_poll(unsigned long arg)
1779 struct lanai_dev *lanai = (struct lanai_dev *) arg;
1780 #ifndef DEBUG_RW
1781 unsigned long flags;
1782 #ifdef USE_POWERDOWN
1783 if (lanai->conf1 & CONFIG1_POWERDOWN)
1784 return;
1785 #endif /* USE_POWERDOWN */
1786 local_irq_save(flags);
1787 /* If we can grab the spinlock, check if any services need to be run */
1788 if (spin_trylock(&lanai->servicelock)) {
1789 run_service(lanai);
1790 spin_unlock(&lanai->servicelock);
1792 /* ...and see if any backlogged VCs can make progress */
1793 /* unfortunately linux has no read_trylock() currently */
1794 read_lock(&vcc_sklist_lock);
1795 vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1796 read_unlock(&vcc_sklist_lock);
1797 local_irq_restore(flags);
1799 get_statistics(lanai);
1800 #endif /* !DEBUG_RW */
1801 mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1804 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1806 init_timer(&lanai->timer);
1807 lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1808 lanai->timer.data = (unsigned long) lanai;
1809 lanai->timer.function = lanai_timed_poll;
1810 add_timer(&lanai->timer);
1813 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1815 del_timer_sync(&lanai->timer);
1818 /* -------------------- INTERRUPT SERVICE: */
1820 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1822 u32 ack = 0;
1823 if (reason & INT_SERVICE) {
1824 ack = INT_SERVICE;
1825 spin_lock(&lanai->servicelock);
1826 run_service(lanai);
1827 spin_unlock(&lanai->servicelock);
1829 if (reason & (INT_AAL0_STR | INT_AAL0)) {
1830 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1831 vcc_rx_aal0(lanai);
1833 /* The rest of the interrupts are pretty rare */
1834 if (ack == reason)
1835 goto done;
1836 if (reason & INT_STATS) {
1837 reason &= ~INT_STATS; /* No need to ack */
1838 get_statistics(lanai);
1840 if (reason & INT_STATUS) {
1841 ack |= reason & INT_STATUS;
1842 lanai_check_status(lanai);
1844 if (unlikely(reason & INT_DMASHUT)) {
1845 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1846 "shutdown, reason=0x%08X, address=0x%08X\n",
1847 lanai->number, (unsigned int) (reason & INT_DMASHUT),
1848 (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1849 if (reason & INT_TABORTBM) {
1850 lanai_reset(lanai);
1851 return;
1853 ack |= (reason & INT_DMASHUT);
1854 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1855 lanai->number);
1856 conf1_write(lanai);
1857 lanai->stats.dma_reenable++;
1858 pcistatus_check(lanai, 0);
1860 if (unlikely(reason & INT_TABORTSENT)) {
1861 ack |= (reason & INT_TABORTSENT);
1862 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1863 lanai->number);
1864 pcistatus_check(lanai, 0);
1866 if (unlikely(reason & INT_SEGSHUT)) {
1867 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1868 "segmentation shutdown, reason=0x%08X\n", lanai->number,
1869 (unsigned int) (reason & INT_SEGSHUT));
1870 lanai_reset(lanai);
1871 return;
1873 if (unlikely(reason & (INT_PING | INT_WAKE))) {
1874 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1875 "unexpected interrupt 0x%08X, resetting\n",
1876 lanai->number,
1877 (unsigned int) (reason & (INT_PING | INT_WAKE)));
1878 lanai_reset(lanai);
1879 return;
1881 #ifdef DEBUG
1882 if (unlikely(ack != reason)) {
1883 DPRINTK("unacked ints: 0x%08X\n",
1884 (unsigned int) (reason & ~ack));
1885 ack = reason;
1887 #endif
1888 done:
1889 if (ack != 0)
1890 reg_write(lanai, ack, IntAck_Reg);
1893 static irqreturn_t lanai_int(int irq, void *devid)
1895 struct lanai_dev *lanai = devid;
1896 u32 reason;
1898 #ifdef USE_POWERDOWN
1900 * If we're powered down we shouldn't be generating any interrupts -
1901 * so assume that this is a shared interrupt line and it's for someone
1902 * else
1904 if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1905 return IRQ_NONE;
1906 #endif
1908 reason = intr_pending(lanai);
1909 if (reason == 0)
1910 return IRQ_NONE; /* Must be for someone else */
1912 do {
1913 if (unlikely(reason == 0xFFFFFFFF))
1914 break; /* Maybe we've been unplugged? */
1915 lanai_int_1(lanai, reason);
1916 reason = intr_pending(lanai);
1917 } while (reason != 0);
1919 return IRQ_HANDLED;
1922 /* TODO - it would be nice if we could use the "delayed interrupt" system
1923 * to some advantage
1926 /* -------------------- CHECK BOARD ID/REV: */
1929 * The board id and revision are stored both in the reset register and
1930 * in the PCI configuration space - the documentation says to check
1931 * each of them. If revp!=NULL we store the revision there
1933 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1935 DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1936 (int) RESET_GET_BOARD_ID(val),
1937 (int) RESET_GET_BOARD_REV(val));
1938 if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1939 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1940 "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1941 return -ENODEV;
1943 if (revp != NULL)
1944 *revp = RESET_GET_BOARD_REV(val);
1945 return 0;
1948 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1950 static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1952 struct pci_dev *pci = lanai->pci;
1953 int result;
1954 u16 w;
1956 if (pci_enable_device(pci) != 0) {
1957 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1958 "PCI device", lanai->number);
1959 return -ENXIO;
1961 pci_set_master(pci);
1962 if (pci_set_dma_mask(pci, DMA_32BIT_MASK) != 0) {
1963 printk(KERN_WARNING DEV_LABEL
1964 "(itf %d): No suitable DMA available.\n", lanai->number);
1965 return -EBUSY;
1967 if (pci_set_consistent_dma_mask(pci, DMA_32BIT_MASK) != 0) {
1968 printk(KERN_WARNING DEV_LABEL
1969 "(itf %d): No suitable DMA available.\n", lanai->number);
1970 return -EBUSY;
1972 /* Get the pci revision byte */
1973 result = pci_read_config_byte(pci, PCI_REVISION_ID,
1974 &lanai->pci_revision);
1975 if (result != PCIBIOS_SUCCESSFUL) {
1976 printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
1977 "PCI_REVISION_ID: %d\n", lanai->number, result);
1978 return -EINVAL;
1980 result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w);
1981 if (result != PCIBIOS_SUCCESSFUL) {
1982 printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
1983 "PCI_SUBSYSTEM_ID: %d\n", lanai->number, result);
1984 return -EINVAL;
1986 result = check_board_id_and_rev("PCI", w, NULL);
1987 if (result != 0)
1988 return result;
1989 /* Set latency timer to zero as per lanai docs */
1990 result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1991 if (result != PCIBIOS_SUCCESSFUL) {
1992 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1993 "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1994 return -EINVAL;
1996 pcistatus_check(lanai, 1);
1997 pcistatus_check(lanai, 0);
1998 return 0;
2001 /* -------------------- VPI/VCI ALLOCATION: */
2004 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
2005 * get a CBRZERO interrupt), and we can use it only if noone is receiving
2006 * AAL0 traffic (since they will use the same queue) - according to the
2007 * docs we shouldn't even use it for AAL0 traffic
2009 static inline int vci0_is_ok(struct lanai_dev *lanai,
2010 const struct atm_qos *qos)
2012 if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
2013 return 0;
2014 if (qos->rxtp.traffic_class != ATM_NONE) {
2015 if (lanai->naal0 != 0)
2016 return 0;
2017 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
2018 conf2_write_if_powerup(lanai);
2020 return 1;
2023 /* return true if vci is currently unused, or if requested qos is
2024 * compatible
2026 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2027 const struct atm_vcc *atmvcc)
2029 const struct atm_qos *qos = &atmvcc->qos;
2030 const struct lanai_vcc *lvcc = lanai->vccs[vci];
2031 if (vci == 0 && !vci0_is_ok(lanai, qos))
2032 return 0;
2033 if (unlikely(lvcc != NULL)) {
2034 if (qos->rxtp.traffic_class != ATM_NONE &&
2035 lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2036 return 0;
2037 if (qos->txtp.traffic_class != ATM_NONE &&
2038 lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2039 return 0;
2040 if (qos->txtp.traffic_class == ATM_CBR &&
2041 lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2042 return 0;
2044 if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2045 qos->rxtp.traffic_class != ATM_NONE) {
2046 const struct lanai_vcc *vci0 = lanai->vccs[0];
2047 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2048 return 0;
2049 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2050 conf2_write_if_powerup(lanai);
2052 return 1;
2055 static int lanai_normalize_ci(struct lanai_dev *lanai,
2056 const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2058 switch (*vpip) {
2059 case ATM_VPI_ANY:
2060 *vpip = 0;
2061 /* FALLTHROUGH */
2062 case 0:
2063 break;
2064 default:
2065 return -EADDRINUSE;
2067 switch (*vcip) {
2068 case ATM_VCI_ANY:
2069 for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2070 (*vcip)++)
2071 if (vci_is_ok(lanai, *vcip, atmvcc))
2072 return 0;
2073 return -EADDRINUSE;
2074 default:
2075 if (*vcip >= lanai->num_vci || *vcip < 0 ||
2076 !vci_is_ok(lanai, *vcip, atmvcc))
2077 return -EADDRINUSE;
2079 return 0;
2082 /* -------------------- MANAGE CBR: */
2085 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2086 * Note that storing a number greater than 2046.0 will result in
2087 * incorrect shaping
2089 #define CBRICG_FRAC_BITS (4)
2090 #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2093 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2094 * where MAXPCR is (according to the docs) 25600000/(54*8),
2095 * which is equal to (3125<<9)/27.
2097 * Solving for ICG, we get:
2098 * ICG = MAXPCR/PCR - 1
2099 * ICG = (3125<<9)/(27*PCR) - 1
2100 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2102 * The end result is supposed to be a fixed-point number with FRAC_BITS
2103 * bits of a fractional part, so we keep everything in the numerator
2104 * shifted by that much as we compute
2107 static int pcr_to_cbricg(const struct atm_qos *qos)
2109 int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2110 int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2111 if (pcr == 0) /* Use maximum bandwidth */
2112 return 0;
2113 if (pcr < 0) {
2114 rounddown = 1;
2115 pcr = -pcr;
2117 x = pcr * 27;
2118 icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2119 if (rounddown)
2120 icg += x - 1;
2121 icg /= x;
2122 if (icg > CBRICG_MAX)
2123 icg = CBRICG_MAX;
2124 DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2125 pcr, rounddown ? 'Y' : 'N', icg);
2126 return icg;
2129 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2131 reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2132 reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2133 lanai->conf2 |= CONFIG2_CBR_ENABLE;
2134 conf2_write(lanai);
2137 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2139 lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2140 conf2_write(lanai);
2143 /* -------------------- OPERATIONS: */
2145 /* setup a newly detected device */
2146 static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2148 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2149 unsigned long raw_base;
2150 int result;
2152 DPRINTK("In lanai_dev_open()\n");
2153 /* Basic device fields */
2154 lanai->number = atmdev->number;
2155 lanai->num_vci = NUM_VCI;
2156 bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2157 bitmap_zero(lanai->transmit_ready, NUM_VCI);
2158 lanai->naal0 = 0;
2159 #ifdef USE_POWERDOWN
2160 lanai->nbound = 0;
2161 #endif
2162 lanai->cbrvcc = NULL;
2163 memset(&lanai->stats, 0, sizeof lanai->stats);
2164 spin_lock_init(&lanai->endtxlock);
2165 spin_lock_init(&lanai->servicelock);
2166 atmdev->ci_range.vpi_bits = 0;
2167 atmdev->ci_range.vci_bits = 0;
2168 while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2169 atmdev->ci_range.vci_bits++;
2170 atmdev->link_rate = ATM_25_PCR;
2172 /* 3.2: PCI initialization */
2173 if ((result = lanai_pci_start(lanai)) != 0)
2174 goto error;
2175 raw_base = lanai->pci->resource[0].start;
2176 lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2177 if (lanai->base == NULL) {
2178 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2179 goto error_pci;
2181 /* 3.3: Reset lanai and PHY */
2182 reset_board(lanai);
2183 lanai->conf1 = reg_read(lanai, Config1_Reg);
2184 lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2185 CONFIG1_MASK_LEDMODE);
2186 lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2187 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2188 udelay(1000);
2189 conf1_write(lanai);
2192 * 3.4: Turn on endian mode for big-endian hardware
2193 * We don't actually want to do this - the actual bit fields
2194 * in the endian register are not documented anywhere.
2195 * Instead we do the bit-flipping ourselves on big-endian
2196 * hardware.
2198 * 3.5: get the board ID/rev by reading the reset register
2200 result = check_board_id_and_rev("register",
2201 reg_read(lanai, Reset_Reg), &lanai->board_rev);
2202 if (result != 0)
2203 goto error_unmap;
2205 /* 3.6: read EEPROM */
2206 if ((result = eeprom_read(lanai)) != 0)
2207 goto error_unmap;
2208 if ((result = eeprom_validate(lanai)) != 0)
2209 goto error_unmap;
2211 /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2212 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2213 udelay(1000);
2214 conf1_write(lanai);
2215 /* TODO - loopback tests */
2216 lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2217 conf1_write(lanai);
2219 /* 3.8/3.9: test and initialize card SRAM */
2220 if ((result = sram_test_and_clear(lanai)) != 0)
2221 goto error_unmap;
2223 /* 3.10: initialize lanai registers */
2224 lanai->conf1 |= CONFIG1_DMA_ENABLE;
2225 conf1_write(lanai);
2226 if ((result = service_buffer_allocate(lanai)) != 0)
2227 goto error_unmap;
2228 if ((result = vcc_table_allocate(lanai)) != 0)
2229 goto error_service;
2230 lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2231 CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2232 conf2_write(lanai);
2233 reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2234 reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2235 if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2236 DEV_LABEL, lanai)) != 0) {
2237 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2238 goto error_vcctable;
2240 mb(); /* Make sure that all that made it */
2241 intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2242 /* 3.11: initialize loop mode (i.e. turn looping off) */
2243 lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2244 CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2245 CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2246 conf1_write(lanai);
2247 lanai->status = reg_read(lanai, Status_Reg);
2248 /* We're now done initializing this card */
2249 #ifdef USE_POWERDOWN
2250 lanai->conf1 |= CONFIG1_POWERDOWN;
2251 conf1_write(lanai);
2252 #endif
2253 memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2254 lanai_timed_poll_start(lanai);
2255 printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2256 "(%02X-%02X-%02X-%02X-%02X-%02X)\n", lanai->number,
2257 (int) lanai->pci_revision, (unsigned long) lanai->base,
2258 lanai->pci->irq,
2259 atmdev->esi[0], atmdev->esi[1], atmdev->esi[2],
2260 atmdev->esi[3], atmdev->esi[4], atmdev->esi[5]);
2261 printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2262 "board_rev=%d\n", lanai->number,
2263 lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2264 (unsigned int) lanai->serialno, lanai->board_rev);
2265 return 0;
2267 error_vcctable:
2268 vcc_table_deallocate(lanai);
2269 error_service:
2270 service_buffer_deallocate(lanai);
2271 error_unmap:
2272 reset_board(lanai);
2273 #ifdef USE_POWERDOWN
2274 lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2275 conf1_write(lanai);
2276 #endif
2277 iounmap(lanai->base);
2278 error_pci:
2279 pci_disable_device(lanai->pci);
2280 error:
2281 return result;
2284 /* called when device is being shutdown, and all vcc's are gone - higher
2285 * levels will deallocate the atm device for us
2287 static void lanai_dev_close(struct atm_dev *atmdev)
2289 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2290 printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2291 lanai->number);
2292 lanai_timed_poll_stop(lanai);
2293 #ifdef USE_POWERDOWN
2294 lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2295 conf1_write(lanai);
2296 #endif
2297 intr_disable(lanai, INT_ALL);
2298 free_irq(lanai->pci->irq, lanai);
2299 reset_board(lanai);
2300 #ifdef USE_POWERDOWN
2301 lanai->conf1 |= CONFIG1_POWERDOWN;
2302 conf1_write(lanai);
2303 #endif
2304 pci_disable_device(lanai->pci);
2305 vcc_table_deallocate(lanai);
2306 service_buffer_deallocate(lanai);
2307 iounmap(lanai->base);
2308 kfree(lanai);
2311 /* close a vcc */
2312 static void lanai_close(struct atm_vcc *atmvcc)
2314 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2315 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2316 if (lvcc == NULL)
2317 return;
2318 clear_bit(ATM_VF_READY, &atmvcc->flags);
2319 clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2320 if (lvcc->rx.atmvcc == atmvcc) {
2321 lanai_shutdown_rx_vci(lvcc);
2322 if (atmvcc->qos.aal == ATM_AAL0) {
2323 if (--lanai->naal0 <= 0)
2324 aal0_buffer_free(lanai);
2325 } else
2326 lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2327 lvcc->rx.atmvcc = NULL;
2329 if (lvcc->tx.atmvcc == atmvcc) {
2330 if (atmvcc == lanai->cbrvcc) {
2331 if (lvcc->vbase != NULL)
2332 lanai_cbr_shutdown(lanai);
2333 lanai->cbrvcc = NULL;
2335 lanai_shutdown_tx_vci(lanai, lvcc);
2336 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2337 lvcc->tx.atmvcc = NULL;
2339 if (--lvcc->nref == 0) {
2340 host_vcc_unbind(lanai, lvcc);
2341 kfree(lvcc);
2343 atmvcc->dev_data = NULL;
2344 clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2347 /* open a vcc on the card to vpi/vci */
2348 static int lanai_open(struct atm_vcc *atmvcc)
2350 struct lanai_dev *lanai;
2351 struct lanai_vcc *lvcc;
2352 int result = 0;
2353 int vci = atmvcc->vci;
2354 short vpi = atmvcc->vpi;
2355 /* we don't support partial open - it's not really useful anyway */
2356 if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2357 (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2358 return -EINVAL;
2359 lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2360 result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2361 if (unlikely(result != 0))
2362 goto out;
2363 set_bit(ATM_VF_ADDR, &atmvcc->flags);
2364 if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2365 return -EINVAL;
2366 DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2367 (int) vpi, vci);
2368 lvcc = lanai->vccs[vci];
2369 if (lvcc == NULL) {
2370 lvcc = new_lanai_vcc();
2371 if (unlikely(lvcc == NULL))
2372 return -ENOMEM;
2373 atmvcc->dev_data = lvcc;
2375 lvcc->nref++;
2376 if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2377 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2378 vci);
2379 if (atmvcc->qos.aal == ATM_AAL0) {
2380 if (lanai->naal0 == 0)
2381 result = aal0_buffer_allocate(lanai);
2382 } else
2383 result = lanai_setup_rx_vci_aal5(
2384 lanai, lvcc, &atmvcc->qos);
2385 if (unlikely(result != 0))
2386 goto out_free;
2387 lvcc->rx.atmvcc = atmvcc;
2388 lvcc->stats.rx_nomem = 0;
2389 lvcc->stats.x.aal5.rx_badlen = 0;
2390 lvcc->stats.x.aal5.service_trash = 0;
2391 lvcc->stats.x.aal5.service_stream = 0;
2392 lvcc->stats.x.aal5.service_rxcrc = 0;
2393 if (atmvcc->qos.aal == ATM_AAL0)
2394 lanai->naal0++;
2396 if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2397 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2398 vci);
2399 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2400 if (unlikely(result != 0))
2401 goto out_free;
2402 lvcc->tx.atmvcc = atmvcc;
2403 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2404 APRINTK(lanai->cbrvcc == NULL,
2405 "cbrvcc!=NULL, vci=%d\n", vci);
2406 lanai->cbrvcc = atmvcc;
2409 host_vcc_bind(lanai, lvcc, vci);
2411 * Make sure everything made it to RAM before we tell the card about
2412 * the VCC
2414 wmb();
2415 if (atmvcc == lvcc->rx.atmvcc)
2416 host_vcc_start_rx(lvcc);
2417 if (atmvcc == lvcc->tx.atmvcc) {
2418 host_vcc_start_tx(lvcc);
2419 if (lanai->cbrvcc == atmvcc)
2420 lanai_cbr_setup(lanai);
2422 set_bit(ATM_VF_READY, &atmvcc->flags);
2423 return 0;
2424 out_free:
2425 lanai_close(atmvcc);
2426 out:
2427 return result;
2430 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2432 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2433 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2434 unsigned long flags;
2435 if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2436 lvcc->tx.atmvcc != atmvcc))
2437 goto einval;
2438 #ifdef DEBUG
2439 if (unlikely(skb == NULL)) {
2440 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2441 goto einval;
2443 if (unlikely(lanai == NULL)) {
2444 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2445 goto einval;
2447 #endif
2448 ATM_SKB(skb)->vcc = atmvcc;
2449 switch (atmvcc->qos.aal) {
2450 case ATM_AAL5:
2451 read_lock_irqsave(&vcc_sklist_lock, flags);
2452 vcc_tx_aal5(lanai, lvcc, skb);
2453 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2454 return 0;
2455 case ATM_AAL0:
2456 if (unlikely(skb->len != ATM_CELL_SIZE-1))
2457 goto einval;
2458 /* NOTE - this next line is technically invalid - we haven't unshared skb */
2459 cpu_to_be32s((u32 *) skb->data);
2460 read_lock_irqsave(&vcc_sklist_lock, flags);
2461 vcc_tx_aal0(lanai, lvcc, skb);
2462 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2463 return 0;
2465 DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2466 atmvcc->vci);
2467 einval:
2468 lanai_free_skb(atmvcc, skb);
2469 return -EINVAL;
2472 static int lanai_change_qos(struct atm_vcc *atmvcc,
2473 /*const*/ struct atm_qos *qos, int flags)
2475 return -EBUSY; /* TODO: need to write this */
2478 #ifndef CONFIG_PROC_FS
2479 #define lanai_proc_read NULL
2480 #else
2481 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2483 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2484 loff_t left = *pos;
2485 struct lanai_vcc *lvcc;
2486 if (left-- == 0)
2487 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2488 "serial=%u, magic=0x%08X, num_vci=%d\n",
2489 atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2490 (unsigned int) lanai->serialno,
2491 (unsigned int) lanai->magicno, lanai->num_vci);
2492 if (left-- == 0)
2493 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2494 lanai->board_rev, (int) lanai->pci_revision);
2495 if (left-- == 0)
2496 return sprintf(page, "EEPROM ESI: "
2497 "%02X:%02X:%02X:%02X:%02X:%02X\n",
2498 lanai->eeprom[EEPROM_MAC + 0],
2499 lanai->eeprom[EEPROM_MAC + 1],
2500 lanai->eeprom[EEPROM_MAC + 2],
2501 lanai->eeprom[EEPROM_MAC + 3],
2502 lanai->eeprom[EEPROM_MAC + 4],
2503 lanai->eeprom[EEPROM_MAC + 5]);
2504 if (left-- == 0)
2505 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2506 "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2507 (lanai->status & STATUS_LOCD) ? 1 : 0,
2508 (lanai->status & STATUS_LED) ? 1 : 0,
2509 (lanai->status & STATUS_GPIN) ? 1 : 0);
2510 if (left-- == 0)
2511 return sprintf(page, "global buffer sizes: service=%Zu, "
2512 "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2513 lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2514 if (left-- == 0) {
2515 get_statistics(lanai);
2516 return sprintf(page, "cells in error: overflow=%u, "
2517 "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2518 lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2519 lanai->stats.hec_err, lanai->stats.atm_ovfl);
2521 if (left-- == 0)
2522 return sprintf(page, "PCI errors: parity_detect=%u, "
2523 "master_abort=%u, master_target_abort=%u,\n",
2524 lanai->stats.pcierr_parity_detect,
2525 lanai->stats.pcierr_serr_set,
2526 lanai->stats.pcierr_m_target_abort);
2527 if (left-- == 0)
2528 return sprintf(page, " slave_target_abort=%u, "
2529 "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2530 lanai->stats.pcierr_master_parity);
2531 if (left-- == 0)
2532 return sprintf(page, " no_tx=%u, "
2533 "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2534 lanai->stats.service_notx,
2535 lanai->stats.service_rxnotaal5);
2536 if (left-- == 0)
2537 return sprintf(page, "resets: dma=%u, card=%u\n",
2538 lanai->stats.dma_reenable, lanai->stats.card_reset);
2539 /* At this point, "left" should be the VCI we're looking for */
2540 read_lock(&vcc_sklist_lock);
2541 for (; ; left++) {
2542 if (left >= NUM_VCI) {
2543 left = 0;
2544 goto out;
2546 if ((lvcc = lanai->vccs[left]) != NULL)
2547 break;
2548 (*pos)++;
2550 /* Note that we re-use "left" here since we're done with it */
2551 left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2552 lvcc->nref, lvcc->stats.rx_nomem);
2553 if (lvcc->rx.atmvcc != NULL) {
2554 left += sprintf(&page[left], ",\n rx_AAL=%d",
2555 lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2556 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2557 left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2558 "rx_bad_len=%u,\n rx_service_trash=%u, "
2559 "rx_service_stream=%u, rx_bad_crc=%u",
2560 lanai_buf_size(&lvcc->rx.buf),
2561 lvcc->stats.x.aal5.rx_badlen,
2562 lvcc->stats.x.aal5.service_trash,
2563 lvcc->stats.x.aal5.service_stream,
2564 lvcc->stats.x.aal5.service_rxcrc);
2566 if (lvcc->tx.atmvcc != NULL)
2567 left += sprintf(&page[left], ",\n tx_AAL=%d, "
2568 "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2569 lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2570 lanai_buf_size(&lvcc->tx.buf),
2571 lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2572 vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2573 page[left++] = '\n';
2574 page[left] = '\0';
2575 out:
2576 read_unlock(&vcc_sklist_lock);
2577 return left;
2579 #endif /* CONFIG_PROC_FS */
2581 /* -------------------- HOOKS: */
2583 static const struct atmdev_ops ops = {
2584 .dev_close = lanai_dev_close,
2585 .open = lanai_open,
2586 .close = lanai_close,
2587 .getsockopt = NULL,
2588 .setsockopt = NULL,
2589 .send = lanai_send,
2590 .phy_put = NULL,
2591 .phy_get = NULL,
2592 .change_qos = lanai_change_qos,
2593 .proc_read = lanai_proc_read,
2594 .owner = THIS_MODULE
2597 /* initialize one probed card */
2598 static int __devinit lanai_init_one(struct pci_dev *pci,
2599 const struct pci_device_id *ident)
2601 struct lanai_dev *lanai;
2602 struct atm_dev *atmdev;
2603 int result;
2605 lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2606 if (lanai == NULL) {
2607 printk(KERN_ERR DEV_LABEL
2608 ": couldn't allocate dev_data structure!\n");
2609 return -ENOMEM;
2612 atmdev = atm_dev_register(DEV_LABEL, &ops, -1, NULL);
2613 if (atmdev == NULL) {
2614 printk(KERN_ERR DEV_LABEL
2615 ": couldn't register atm device!\n");
2616 kfree(lanai);
2617 return -EBUSY;
2620 atmdev->dev_data = lanai;
2621 lanai->pci = pci;
2622 lanai->type = (enum lanai_type) ident->device;
2624 result = lanai_dev_open(atmdev);
2625 if (result != 0) {
2626 DPRINTK("lanai_start() failed, err=%d\n", -result);
2627 atm_dev_deregister(atmdev);
2628 kfree(lanai);
2630 return result;
2633 static struct pci_device_id lanai_pci_tbl[] = {
2635 PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAI2,
2636 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
2639 PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAIHB,
2640 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
2642 { 0, } /* terminal entry */
2644 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2646 static struct pci_driver lanai_driver = {
2647 .name = DEV_LABEL,
2648 .id_table = lanai_pci_tbl,
2649 .probe = lanai_init_one,
2652 static int __init lanai_module_init(void)
2654 int x;
2656 x = pci_register_driver(&lanai_driver);
2657 if (x != 0)
2658 printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2659 return x;
2662 static void __exit lanai_module_exit(void)
2664 /* We'll only get called when all the interfaces are already
2665 * gone, so there isn't much to do
2667 DPRINTK("cleanup_module()\n");
2668 pci_unregister_driver(&lanai_driver);
2671 module_init(lanai_module_init);
2672 module_exit(lanai_module_exit);
2674 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2675 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2676 MODULE_LICENSE("GPL");