Linux 2.6.21
[linux/fpc-iii.git] / drivers / ieee1394 / sbp2.c
blob4edfff46b1e60a8801ef4a1a87a7598a758fd0cd
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 * Brief Description:
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
54 #include <linux/compiler.h>
55 #include <linux/delay.h>
56 #include <linux/device.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/gfp.h>
59 #include <linux/init.h>
60 #include <linux/kernel.h>
61 #include <linux/list.h>
62 #include <linux/module.h>
63 #include <linux/moduleparam.h>
64 #include <linux/slab.h>
65 #include <linux/spinlock.h>
66 #include <linux/stat.h>
67 #include <linux/string.h>
68 #include <linux/stringify.h>
69 #include <linux/types.h>
70 #include <linux/wait.h>
72 #include <asm/byteorder.h>
73 #include <asm/errno.h>
74 #include <asm/param.h>
75 #include <asm/scatterlist.h>
76 #include <asm/system.h>
77 #include <asm/types.h>
79 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
80 #include <asm/io.h> /* for bus_to_virt */
81 #endif
83 #include <scsi/scsi.h>
84 #include <scsi/scsi_cmnd.h>
85 #include <scsi/scsi_dbg.h>
86 #include <scsi/scsi_device.h>
87 #include <scsi/scsi_host.h>
89 #include "csr1212.h"
90 #include "highlevel.h"
91 #include "hosts.h"
92 #include "ieee1394.h"
93 #include "ieee1394_core.h"
94 #include "ieee1394_hotplug.h"
95 #include "ieee1394_transactions.h"
96 #include "ieee1394_types.h"
97 #include "nodemgr.h"
98 #include "sbp2.h"
101 * Module load parameter definitions
105 * Change max_speed on module load if you have a bad IEEE-1394
106 * controller that has trouble running 2KB packets at 400mb.
108 * NOTE: On certain OHCI parts I have seen short packets on async transmit
109 * (probably due to PCI latency/throughput issues with the part). You can
110 * bump down the speed if you are running into problems.
112 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
113 module_param_named(max_speed, sbp2_max_speed, int, 0644);
114 MODULE_PARM_DESC(max_speed, "Force max speed "
115 "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
118 * Set serialize_io to 1 if you'd like only one scsi command sent
119 * down to us at a time (debugging). This might be necessary for very
120 * badly behaved sbp2 devices.
122 static int sbp2_serialize_io = 1;
123 module_param_named(serialize_io, sbp2_serialize_io, int, 0444);
124 MODULE_PARM_DESC(serialize_io, "Serialize I/O coming from scsi drivers "
125 "(default = 1, faster = 0)");
128 * Bump up max_sectors if you'd like to support very large sized
129 * transfers. Please note that some older sbp2 bridge chips are broken for
130 * transfers greater or equal to 128KB. Default is a value of 255
131 * sectors, or just under 128KB (at 512 byte sector size). I can note that
132 * the Oxsemi sbp2 chipsets have no problems supporting very large
133 * transfer sizes.
135 static int sbp2_max_sectors = SBP2_MAX_SECTORS;
136 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
137 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
138 "(default = " __stringify(SBP2_MAX_SECTORS) ")");
141 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
142 * do an exclusive login, as it's generally unsafe to have two hosts
143 * talking to a single sbp2 device at the same time (filesystem coherency,
144 * etc.). If you're running an sbp2 device that supports multiple logins,
145 * and you're either running read-only filesystems or some sort of special
146 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
147 * File System, or Lustre, then set exclusive_login to zero.
149 * So far only bridges from Oxford Semiconductor are known to support
150 * concurrent logins. Depending on firmware, four or two concurrent logins
151 * are possible on OXFW911 and newer Oxsemi bridges.
153 static int sbp2_exclusive_login = 1;
154 module_param_named(exclusive_login, sbp2_exclusive_login, int, 0644);
155 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
156 "(default = 1)");
159 * If any of the following workarounds is required for your device to work,
160 * please submit the kernel messages logged by sbp2 to the linux1394-devel
161 * mailing list.
163 * - 128kB max transfer
164 * Limit transfer size. Necessary for some old bridges.
166 * - 36 byte inquiry
167 * When scsi_mod probes the device, let the inquiry command look like that
168 * from MS Windows.
170 * - skip mode page 8
171 * Suppress sending of mode_sense for mode page 8 if the device pretends to
172 * support the SCSI Primary Block commands instead of Reduced Block Commands.
174 * - fix capacity
175 * Tell sd_mod to correct the last sector number reported by read_capacity.
176 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
177 * Don't use this with devices which don't have this bug.
179 * - override internal blacklist
180 * Instead of adding to the built-in blacklist, use only the workarounds
181 * specified in the module load parameter.
182 * Useful if a blacklist entry interfered with a non-broken device.
184 static int sbp2_default_workarounds;
185 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
186 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
187 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
188 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
189 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
190 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
191 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
192 ", or a combination)");
195 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
196 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
199 * Globals
201 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
202 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
203 void (*)(struct scsi_cmnd *));
204 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
205 static int sbp2_start_device(struct sbp2_lu *);
206 static void sbp2_remove_device(struct sbp2_lu *);
207 static int sbp2_login_device(struct sbp2_lu *);
208 static int sbp2_reconnect_device(struct sbp2_lu *);
209 static int sbp2_logout_device(struct sbp2_lu *);
210 static void sbp2_host_reset(struct hpsb_host *);
211 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
212 u64, size_t, u16);
213 static int sbp2_agent_reset(struct sbp2_lu *, int);
214 static void sbp2_parse_unit_directory(struct sbp2_lu *,
215 struct unit_directory *);
216 static int sbp2_set_busy_timeout(struct sbp2_lu *);
217 static int sbp2_max_speed_and_size(struct sbp2_lu *);
220 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
222 static struct hpsb_highlevel sbp2_highlevel = {
223 .name = SBP2_DEVICE_NAME,
224 .host_reset = sbp2_host_reset,
227 static struct hpsb_address_ops sbp2_ops = {
228 .write = sbp2_handle_status_write
231 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
232 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
233 u64, size_t, u16);
234 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
235 size_t, u16);
237 static struct hpsb_address_ops sbp2_physdma_ops = {
238 .read = sbp2_handle_physdma_read,
239 .write = sbp2_handle_physdma_write,
241 #endif
245 * Interface to driver core and IEEE 1394 core
247 static struct ieee1394_device_id sbp2_id_table[] = {
249 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
250 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
251 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
254 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
256 static int sbp2_probe(struct device *);
257 static int sbp2_remove(struct device *);
258 static int sbp2_update(struct unit_directory *);
260 static struct hpsb_protocol_driver sbp2_driver = {
261 .name = SBP2_DEVICE_NAME,
262 .id_table = sbp2_id_table,
263 .update = sbp2_update,
264 .driver = {
265 .probe = sbp2_probe,
266 .remove = sbp2_remove,
272 * Interface to SCSI core
274 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
275 void (*)(struct scsi_cmnd *));
276 static int sbp2scsi_abort(struct scsi_cmnd *);
277 static int sbp2scsi_reset(struct scsi_cmnd *);
278 static int sbp2scsi_slave_alloc(struct scsi_device *);
279 static int sbp2scsi_slave_configure(struct scsi_device *);
280 static void sbp2scsi_slave_destroy(struct scsi_device *);
281 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
282 struct device_attribute *, char *);
284 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
286 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
287 &dev_attr_ieee1394_id,
288 NULL
291 static struct scsi_host_template sbp2_shost_template = {
292 .module = THIS_MODULE,
293 .name = "SBP-2 IEEE-1394",
294 .proc_name = SBP2_DEVICE_NAME,
295 .queuecommand = sbp2scsi_queuecommand,
296 .eh_abort_handler = sbp2scsi_abort,
297 .eh_device_reset_handler = sbp2scsi_reset,
298 .slave_alloc = sbp2scsi_slave_alloc,
299 .slave_configure = sbp2scsi_slave_configure,
300 .slave_destroy = sbp2scsi_slave_destroy,
301 .this_id = -1,
302 .sg_tablesize = SG_ALL,
303 .use_clustering = ENABLE_CLUSTERING,
304 .cmd_per_lun = SBP2_MAX_CMDS,
305 .can_queue = SBP2_MAX_CMDS,
306 .sdev_attrs = sbp2_sysfs_sdev_attrs,
309 /* for match-all entries in sbp2_workarounds_table */
310 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
313 * List of devices with known bugs.
315 * The firmware_revision field, masked with 0xffff00, is the best indicator
316 * for the type of bridge chip of a device. It yields a few false positives
317 * but this did not break correctly behaving devices so far.
319 static const struct {
320 u32 firmware_revision;
321 u32 model_id;
322 unsigned workarounds;
323 } sbp2_workarounds_table[] = {
324 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
325 .firmware_revision = 0x002800,
326 .model_id = 0x001010,
327 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
328 SBP2_WORKAROUND_MODE_SENSE_8,
330 /* Initio bridges, actually only needed for some older ones */ {
331 .firmware_revision = 0x000200,
332 .model_id = SBP2_ROM_VALUE_WILDCARD,
333 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
335 /* Symbios bridge */ {
336 .firmware_revision = 0xa0b800,
337 .model_id = SBP2_ROM_VALUE_WILDCARD,
338 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
340 /* iPod 4th generation */ {
341 .firmware_revision = 0x0a2700,
342 .model_id = 0x000021,
343 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
345 /* iPod mini */ {
346 .firmware_revision = 0x0a2700,
347 .model_id = 0x000023,
348 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
350 /* iPod Photo */ {
351 .firmware_revision = 0x0a2700,
352 .model_id = 0x00007e,
353 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
357 /**************************************
358 * General utility functions
359 **************************************/
361 #ifndef __BIG_ENDIAN
363 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
365 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
367 u32 *temp = buffer;
369 for (length = (length >> 2); length--; )
370 temp[length] = be32_to_cpu(temp[length]);
374 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
376 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
378 u32 *temp = buffer;
380 for (length = (length >> 2); length--; )
381 temp[length] = cpu_to_be32(temp[length]);
383 #else /* BIG_ENDIAN */
384 /* Why waste the cpu cycles? */
385 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
386 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
387 #endif
389 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
392 * Waits for completion of an SBP-2 access request.
393 * Returns nonzero if timed out or prematurely interrupted.
395 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
397 long leftover;
399 leftover = wait_event_interruptible_timeout(
400 sbp2_access_wq, lu->access_complete, timeout);
401 lu->access_complete = 0;
402 return leftover <= 0;
405 static void sbp2_free_packet(void *packet)
407 hpsb_free_tlabel(packet);
408 hpsb_free_packet(packet);
412 * This is much like hpsb_node_write(), except it ignores the response
413 * subaction and returns immediately. Can be used from atomic context.
415 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
416 quadlet_t *buf, size_t len)
418 struct hpsb_packet *packet;
420 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
421 if (!packet)
422 return -ENOMEM;
424 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
425 hpsb_node_fill_packet(ne, packet);
426 if (hpsb_send_packet(packet) < 0) {
427 sbp2_free_packet(packet);
428 return -EIO;
430 return 0;
433 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
434 quadlet_t *data, size_t len)
436 /* There is a small window after a bus reset within which the node
437 * entry's generation is current but the reconnect wasn't completed. */
438 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
439 return;
441 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
442 data, len))
443 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
445 /* Now accept new SCSI commands, unless a bus reset happended during
446 * hpsb_node_write. */
447 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
448 scsi_unblock_requests(lu->shost);
451 static void sbp2util_write_orb_pointer(struct work_struct *work)
453 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
454 quadlet_t data[2];
456 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
457 data[1] = lu->last_orb_dma;
458 sbp2util_cpu_to_be32_buffer(data, 8);
459 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
462 static void sbp2util_write_doorbell(struct work_struct *work)
464 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
466 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
469 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
471 struct sbp2_fwhost_info *hi = lu->hi;
472 int i;
473 unsigned long flags, orbs;
474 struct sbp2_command_info *cmd;
476 orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
478 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
479 for (i = 0; i < orbs; i++) {
480 cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
481 if (!cmd) {
482 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
483 return -ENOMEM;
485 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
486 &cmd->command_orb,
487 sizeof(struct sbp2_command_orb),
488 DMA_TO_DEVICE);
489 cmd->sge_dma = dma_map_single(hi->host->device.parent,
490 &cmd->scatter_gather_element,
491 sizeof(cmd->scatter_gather_element),
492 DMA_BIDIRECTIONAL);
493 INIT_LIST_HEAD(&cmd->list);
494 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
496 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
497 return 0;
500 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu)
502 struct hpsb_host *host = lu->hi->host;
503 struct list_head *lh, *next;
504 struct sbp2_command_info *cmd;
505 unsigned long flags;
507 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
508 if (!list_empty(&lu->cmd_orb_completed))
509 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
510 cmd = list_entry(lh, struct sbp2_command_info, list);
511 dma_unmap_single(host->device.parent,
512 cmd->command_orb_dma,
513 sizeof(struct sbp2_command_orb),
514 DMA_TO_DEVICE);
515 dma_unmap_single(host->device.parent, cmd->sge_dma,
516 sizeof(cmd->scatter_gather_element),
517 DMA_BIDIRECTIONAL);
518 kfree(cmd);
520 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
521 return;
525 * Finds the sbp2_command for a given outstanding command ORB.
526 * Only looks at the in-use list.
528 static struct sbp2_command_info *sbp2util_find_command_for_orb(
529 struct sbp2_lu *lu, dma_addr_t orb)
531 struct sbp2_command_info *cmd;
532 unsigned long flags;
534 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
535 if (!list_empty(&lu->cmd_orb_inuse))
536 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
537 if (cmd->command_orb_dma == orb) {
538 spin_unlock_irqrestore(
539 &lu->cmd_orb_lock, flags);
540 return cmd;
542 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
543 return NULL;
547 * Finds the sbp2_command for a given outstanding SCpnt.
548 * Only looks at the in-use list.
549 * Must be called with lu->cmd_orb_lock held.
551 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
552 struct sbp2_lu *lu, void *SCpnt)
554 struct sbp2_command_info *cmd;
556 if (!list_empty(&lu->cmd_orb_inuse))
557 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
558 if (cmd->Current_SCpnt == SCpnt)
559 return cmd;
560 return NULL;
563 static struct sbp2_command_info *sbp2util_allocate_command_orb(
564 struct sbp2_lu *lu,
565 struct scsi_cmnd *Current_SCpnt,
566 void (*Current_done)(struct scsi_cmnd *))
568 struct list_head *lh;
569 struct sbp2_command_info *cmd = NULL;
570 unsigned long flags;
572 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
573 if (!list_empty(&lu->cmd_orb_completed)) {
574 lh = lu->cmd_orb_completed.next;
575 list_del(lh);
576 cmd = list_entry(lh, struct sbp2_command_info, list);
577 cmd->Current_done = Current_done;
578 cmd->Current_SCpnt = Current_SCpnt;
579 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
580 } else
581 SBP2_ERR("%s: no orbs available", __FUNCTION__);
582 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
583 return cmd;
587 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
588 * Must be called with lu->cmd_orb_lock held.
590 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
591 struct sbp2_command_info *cmd)
593 struct hpsb_host *host = lu->ud->ne->host;
595 if (cmd->cmd_dma) {
596 if (cmd->dma_type == CMD_DMA_SINGLE)
597 dma_unmap_single(host->device.parent, cmd->cmd_dma,
598 cmd->dma_size, cmd->dma_dir);
599 else if (cmd->dma_type == CMD_DMA_PAGE)
600 dma_unmap_page(host->device.parent, cmd->cmd_dma,
601 cmd->dma_size, cmd->dma_dir);
602 /* XXX: Check for CMD_DMA_NONE bug */
603 cmd->dma_type = CMD_DMA_NONE;
604 cmd->cmd_dma = 0;
606 if (cmd->sge_buffer) {
607 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
608 cmd->dma_size, cmd->dma_dir);
609 cmd->sge_buffer = NULL;
611 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
615 * Is lu valid? Is the 1394 node still present?
617 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
619 return lu && lu->ne && !lu->ne->in_limbo;
622 /*********************************************
623 * IEEE-1394 core driver stack related section
624 *********************************************/
626 static int sbp2_probe(struct device *dev)
628 struct unit_directory *ud;
629 struct sbp2_lu *lu;
631 ud = container_of(dev, struct unit_directory, device);
633 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
634 * instead. */
635 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
636 return -ENODEV;
638 lu = sbp2_alloc_device(ud);
639 if (!lu)
640 return -ENOMEM;
642 sbp2_parse_unit_directory(lu, ud);
643 return sbp2_start_device(lu);
646 static int sbp2_remove(struct device *dev)
648 struct unit_directory *ud;
649 struct sbp2_lu *lu;
650 struct scsi_device *sdev;
652 ud = container_of(dev, struct unit_directory, device);
653 lu = ud->device.driver_data;
654 if (!lu)
655 return 0;
657 if (lu->shost) {
658 /* Get rid of enqueued commands if there is no chance to
659 * send them. */
660 if (!sbp2util_node_is_available(lu))
661 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
662 /* scsi_remove_device() may trigger shutdown functions of SCSI
663 * highlevel drivers which would deadlock if blocked. */
664 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
665 scsi_unblock_requests(lu->shost);
667 sdev = lu->sdev;
668 if (sdev) {
669 lu->sdev = NULL;
670 scsi_remove_device(sdev);
673 sbp2_logout_device(lu);
674 sbp2_remove_device(lu);
676 return 0;
679 static int sbp2_update(struct unit_directory *ud)
681 struct sbp2_lu *lu = ud->device.driver_data;
683 if (sbp2_reconnect_device(lu)) {
684 /* Reconnect has failed. Perhaps we didn't reconnect fast
685 * enough. Try a regular login, but first log out just in
686 * case of any weirdness. */
687 sbp2_logout_device(lu);
689 if (sbp2_login_device(lu)) {
690 /* Login failed too, just fail, and the backend
691 * will call our sbp2_remove for us */
692 SBP2_ERR("Failed to reconnect to sbp2 device!");
693 return -EBUSY;
697 sbp2_set_busy_timeout(lu);
698 sbp2_agent_reset(lu, 1);
699 sbp2_max_speed_and_size(lu);
701 /* Complete any pending commands with busy (so they get retried)
702 * and remove them from our queue. */
703 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
705 /* Accept new commands unless there was another bus reset in the
706 * meantime. */
707 if (hpsb_node_entry_valid(lu->ne)) {
708 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
709 scsi_unblock_requests(lu->shost);
711 return 0;
714 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
716 struct sbp2_fwhost_info *hi;
717 struct Scsi_Host *shost = NULL;
718 struct sbp2_lu *lu = NULL;
720 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
721 if (!lu) {
722 SBP2_ERR("failed to create lu");
723 goto failed_alloc;
726 lu->ne = ud->ne;
727 lu->ud = ud;
728 lu->speed_code = IEEE1394_SPEED_100;
729 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
730 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
731 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
732 INIT_LIST_HEAD(&lu->cmd_orb_completed);
733 INIT_LIST_HEAD(&lu->lu_list);
734 spin_lock_init(&lu->cmd_orb_lock);
735 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
736 INIT_WORK(&lu->protocol_work, NULL);
738 ud->device.driver_data = lu;
740 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
741 if (!hi) {
742 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
743 sizeof(*hi));
744 if (!hi) {
745 SBP2_ERR("failed to allocate hostinfo");
746 goto failed_alloc;
748 hi->host = ud->ne->host;
749 INIT_LIST_HEAD(&hi->logical_units);
751 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
752 /* Handle data movement if physical dma is not
753 * enabled or not supported on host controller */
754 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
755 &sbp2_physdma_ops,
756 0x0ULL, 0xfffffffcULL)) {
757 SBP2_ERR("failed to register lower 4GB address range");
758 goto failed_alloc;
760 #endif
763 /* Prevent unloading of the 1394 host */
764 if (!try_module_get(hi->host->driver->owner)) {
765 SBP2_ERR("failed to get a reference on 1394 host driver");
766 goto failed_alloc;
769 lu->hi = hi;
771 list_add_tail(&lu->lu_list, &hi->logical_units);
773 /* Register the status FIFO address range. We could use the same FIFO
774 * for targets at different nodes. However we need different FIFOs per
775 * target in order to support multi-unit devices.
776 * The FIFO is located out of the local host controller's physical range
777 * but, if possible, within the posted write area. Status writes will
778 * then be performed as unified transactions. This slightly reduces
779 * bandwidth usage, and some Prolific based devices seem to require it.
781 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
782 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
783 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
784 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
785 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
786 SBP2_ERR("failed to allocate status FIFO address range");
787 goto failed_alloc;
790 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
791 if (!shost) {
792 SBP2_ERR("failed to register scsi host");
793 goto failed_alloc;
796 shost->hostdata[0] = (unsigned long)lu;
798 if (!scsi_add_host(shost, &ud->device)) {
799 lu->shost = shost;
800 return lu;
803 SBP2_ERR("failed to add scsi host");
804 scsi_host_put(shost);
806 failed_alloc:
807 sbp2_remove_device(lu);
808 return NULL;
811 static void sbp2_host_reset(struct hpsb_host *host)
813 struct sbp2_fwhost_info *hi;
814 struct sbp2_lu *lu;
816 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
817 if (!hi)
818 return;
819 list_for_each_entry(lu, &hi->logical_units, lu_list)
820 if (likely(atomic_read(&lu->state) !=
821 SBP2LU_STATE_IN_SHUTDOWN)) {
822 atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
823 scsi_block_requests(lu->shost);
827 static int sbp2_start_device(struct sbp2_lu *lu)
829 struct sbp2_fwhost_info *hi = lu->hi;
830 int error;
832 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
833 sizeof(struct sbp2_login_response),
834 &lu->login_response_dma, GFP_KERNEL);
835 if (!lu->login_response)
836 goto alloc_fail;
838 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
839 sizeof(struct sbp2_query_logins_orb),
840 &lu->query_logins_orb_dma, GFP_KERNEL);
841 if (!lu->query_logins_orb)
842 goto alloc_fail;
844 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
845 sizeof(struct sbp2_query_logins_response),
846 &lu->query_logins_response_dma, GFP_KERNEL);
847 if (!lu->query_logins_response)
848 goto alloc_fail;
850 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
851 sizeof(struct sbp2_reconnect_orb),
852 &lu->reconnect_orb_dma, GFP_KERNEL);
853 if (!lu->reconnect_orb)
854 goto alloc_fail;
856 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
857 sizeof(struct sbp2_logout_orb),
858 &lu->logout_orb_dma, GFP_KERNEL);
859 if (!lu->logout_orb)
860 goto alloc_fail;
862 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
863 sizeof(struct sbp2_login_orb),
864 &lu->login_orb_dma, GFP_KERNEL);
865 if (!lu->login_orb)
866 goto alloc_fail;
868 if (sbp2util_create_command_orb_pool(lu)) {
869 SBP2_ERR("sbp2util_create_command_orb_pool failed!");
870 sbp2_remove_device(lu);
871 return -ENOMEM;
874 /* Wait a second before trying to log in. Previously logged in
875 * initiators need a chance to reconnect. */
876 if (msleep_interruptible(1000)) {
877 sbp2_remove_device(lu);
878 return -EINTR;
881 if (sbp2_login_device(lu)) {
882 sbp2_remove_device(lu);
883 return -EBUSY;
886 sbp2_set_busy_timeout(lu);
887 sbp2_agent_reset(lu, 1);
888 sbp2_max_speed_and_size(lu);
890 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
891 if (error) {
892 SBP2_ERR("scsi_add_device failed");
893 sbp2_logout_device(lu);
894 sbp2_remove_device(lu);
895 return error;
898 return 0;
900 alloc_fail:
901 SBP2_ERR("Could not allocate memory for lu");
902 sbp2_remove_device(lu);
903 return -ENOMEM;
906 static void sbp2_remove_device(struct sbp2_lu *lu)
908 struct sbp2_fwhost_info *hi;
910 if (!lu)
911 return;
913 hi = lu->hi;
915 if (lu->shost) {
916 scsi_remove_host(lu->shost);
917 scsi_host_put(lu->shost);
919 flush_scheduled_work();
920 sbp2util_remove_command_orb_pool(lu);
922 list_del(&lu->lu_list);
924 if (lu->login_response)
925 dma_free_coherent(hi->host->device.parent,
926 sizeof(struct sbp2_login_response),
927 lu->login_response,
928 lu->login_response_dma);
929 if (lu->login_orb)
930 dma_free_coherent(hi->host->device.parent,
931 sizeof(struct sbp2_login_orb),
932 lu->login_orb,
933 lu->login_orb_dma);
934 if (lu->reconnect_orb)
935 dma_free_coherent(hi->host->device.parent,
936 sizeof(struct sbp2_reconnect_orb),
937 lu->reconnect_orb,
938 lu->reconnect_orb_dma);
939 if (lu->logout_orb)
940 dma_free_coherent(hi->host->device.parent,
941 sizeof(struct sbp2_logout_orb),
942 lu->logout_orb,
943 lu->logout_orb_dma);
944 if (lu->query_logins_orb)
945 dma_free_coherent(hi->host->device.parent,
946 sizeof(struct sbp2_query_logins_orb),
947 lu->query_logins_orb,
948 lu->query_logins_orb_dma);
949 if (lu->query_logins_response)
950 dma_free_coherent(hi->host->device.parent,
951 sizeof(struct sbp2_query_logins_response),
952 lu->query_logins_response,
953 lu->query_logins_response_dma);
955 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
956 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
957 lu->status_fifo_addr);
959 lu->ud->device.driver_data = NULL;
961 if (hi)
962 module_put(hi->host->driver->owner);
964 kfree(lu);
967 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
969 * Deal with write requests on adapters which do not support physical DMA or
970 * have it switched off.
972 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
973 int destid, quadlet_t *data, u64 addr,
974 size_t length, u16 flags)
976 memcpy(bus_to_virt((u32) addr), data, length);
977 return RCODE_COMPLETE;
981 * Deal with read requests on adapters which do not support physical DMA or
982 * have it switched off.
984 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
985 quadlet_t *data, u64 addr, size_t length,
986 u16 flags)
988 memcpy(data, bus_to_virt((u32) addr), length);
989 return RCODE_COMPLETE;
991 #endif
993 /**************************************
994 * SBP-2 protocol related section
995 **************************************/
997 static int sbp2_query_logins(struct sbp2_lu *lu)
999 struct sbp2_fwhost_info *hi = lu->hi;
1000 quadlet_t data[2];
1001 int max_logins;
1002 int active_logins;
1004 lu->query_logins_orb->reserved1 = 0x0;
1005 lu->query_logins_orb->reserved2 = 0x0;
1007 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1008 lu->query_logins_orb->query_response_hi =
1009 ORB_SET_NODE_ID(hi->host->node_id);
1010 lu->query_logins_orb->lun_misc =
1011 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1012 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1013 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1015 lu->query_logins_orb->reserved_resp_length =
1016 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1017 sizeof(struct sbp2_query_logins_response));
1019 lu->query_logins_orb->status_fifo_hi =
1020 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1021 lu->query_logins_orb->status_fifo_lo =
1022 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1024 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1025 sizeof(struct sbp2_query_logins_orb));
1027 memset(lu->query_logins_response, 0,
1028 sizeof(struct sbp2_query_logins_response));
1030 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1031 data[1] = lu->query_logins_orb_dma;
1032 sbp2util_cpu_to_be32_buffer(data, 8);
1034 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1036 if (sbp2util_access_timeout(lu, 2*HZ)) {
1037 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1038 return -EIO;
1041 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1042 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1043 return -EIO;
1046 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1047 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1048 return -EIO;
1051 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1052 sizeof(struct sbp2_query_logins_response));
1054 max_logins = RESPONSE_GET_MAX_LOGINS(
1055 lu->query_logins_response->length_max_logins);
1056 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1058 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1059 lu->query_logins_response->length_max_logins);
1060 SBP2_INFO("Number of active logins: %d", active_logins);
1062 if (active_logins >= max_logins) {
1063 return -EIO;
1066 return 0;
1069 static int sbp2_login_device(struct sbp2_lu *lu)
1071 struct sbp2_fwhost_info *hi = lu->hi;
1072 quadlet_t data[2];
1074 if (!lu->login_orb)
1075 return -EIO;
1077 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1078 SBP2_INFO("Device does not support any more concurrent logins");
1079 return -EIO;
1082 /* assume no password */
1083 lu->login_orb->password_hi = 0;
1084 lu->login_orb->password_lo = 0;
1086 lu->login_orb->login_response_lo = lu->login_response_dma;
1087 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1088 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1090 /* one second reconnect time */
1091 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1092 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1093 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1094 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1096 lu->login_orb->passwd_resp_lengths =
1097 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1099 lu->login_orb->status_fifo_hi =
1100 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1101 lu->login_orb->status_fifo_lo =
1102 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1104 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1105 sizeof(struct sbp2_login_orb));
1107 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1109 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1110 data[1] = lu->login_orb_dma;
1111 sbp2util_cpu_to_be32_buffer(data, 8);
1113 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1115 /* wait up to 20 seconds for login status */
1116 if (sbp2util_access_timeout(lu, 20*HZ)) {
1117 SBP2_ERR("Error logging into SBP-2 device - timed out");
1118 return -EIO;
1121 /* make sure that the returned status matches the login ORB */
1122 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1123 SBP2_ERR("Error logging into SBP-2 device - timed out");
1124 return -EIO;
1127 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1128 SBP2_ERR("Error logging into SBP-2 device - failed");
1129 return -EIO;
1132 sbp2util_cpu_to_be32_buffer(lu->login_response,
1133 sizeof(struct sbp2_login_response));
1134 lu->command_block_agent_addr =
1135 ((u64)lu->login_response->command_block_agent_hi) << 32;
1136 lu->command_block_agent_addr |=
1137 ((u64)lu->login_response->command_block_agent_lo);
1138 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1140 SBP2_INFO("Logged into SBP-2 device");
1141 return 0;
1144 static int sbp2_logout_device(struct sbp2_lu *lu)
1146 struct sbp2_fwhost_info *hi = lu->hi;
1147 quadlet_t data[2];
1148 int error;
1150 lu->logout_orb->reserved1 = 0x0;
1151 lu->logout_orb->reserved2 = 0x0;
1152 lu->logout_orb->reserved3 = 0x0;
1153 lu->logout_orb->reserved4 = 0x0;
1155 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1156 lu->logout_orb->login_ID_misc |=
1157 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1158 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1160 lu->logout_orb->reserved5 = 0x0;
1161 lu->logout_orb->status_fifo_hi =
1162 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1163 lu->logout_orb->status_fifo_lo =
1164 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1166 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1167 sizeof(struct sbp2_logout_orb));
1169 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1170 data[1] = lu->logout_orb_dma;
1171 sbp2util_cpu_to_be32_buffer(data, 8);
1173 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1174 if (error)
1175 return error;
1177 /* wait up to 1 second for the device to complete logout */
1178 if (sbp2util_access_timeout(lu, HZ))
1179 return -EIO;
1181 SBP2_INFO("Logged out of SBP-2 device");
1182 return 0;
1185 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1187 struct sbp2_fwhost_info *hi = lu->hi;
1188 quadlet_t data[2];
1189 int error;
1191 lu->reconnect_orb->reserved1 = 0x0;
1192 lu->reconnect_orb->reserved2 = 0x0;
1193 lu->reconnect_orb->reserved3 = 0x0;
1194 lu->reconnect_orb->reserved4 = 0x0;
1196 lu->reconnect_orb->login_ID_misc =
1197 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1198 lu->reconnect_orb->login_ID_misc |=
1199 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1200 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1202 lu->reconnect_orb->reserved5 = 0x0;
1203 lu->reconnect_orb->status_fifo_hi =
1204 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1205 lu->reconnect_orb->status_fifo_lo =
1206 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1208 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1209 sizeof(struct sbp2_reconnect_orb));
1211 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1212 data[1] = lu->reconnect_orb_dma;
1213 sbp2util_cpu_to_be32_buffer(data, 8);
1215 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1216 if (error)
1217 return error;
1219 /* wait up to 1 second for reconnect status */
1220 if (sbp2util_access_timeout(lu, HZ)) {
1221 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1222 return -EIO;
1225 /* make sure that the returned status matches the reconnect ORB */
1226 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1227 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1228 return -EIO;
1231 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1232 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1233 return -EIO;
1236 SBP2_INFO("Reconnected to SBP-2 device");
1237 return 0;
1241 * Set the target node's Single Phase Retry limit. Affects the target's retry
1242 * behaviour if our node is too busy to accept requests.
1244 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1246 quadlet_t data;
1248 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1249 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1250 SBP2_ERR("%s error", __FUNCTION__);
1251 return 0;
1254 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1255 struct unit_directory *ud)
1257 struct csr1212_keyval *kv;
1258 struct csr1212_dentry *dentry;
1259 u64 management_agent_addr;
1260 u32 unit_characteristics, firmware_revision;
1261 unsigned workarounds;
1262 int i;
1264 management_agent_addr = 0;
1265 unit_characteristics = 0;
1266 firmware_revision = 0;
1268 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1269 switch (kv->key.id) {
1270 case CSR1212_KV_ID_DEPENDENT_INFO:
1271 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1272 management_agent_addr =
1273 CSR1212_REGISTER_SPACE_BASE +
1274 (kv->value.csr_offset << 2);
1276 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1277 lu->lun = ORB_SET_LUN(kv->value.immediate);
1278 break;
1280 case SBP2_UNIT_CHARACTERISTICS_KEY:
1281 /* FIXME: This is ignored so far.
1282 * See SBP-2 clause 7.4.8. */
1283 unit_characteristics = kv->value.immediate;
1284 break;
1286 case SBP2_FIRMWARE_REVISION_KEY:
1287 firmware_revision = kv->value.immediate;
1288 break;
1290 default:
1291 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1292 * Its "ordered" bit has consequences for command ORB
1293 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1294 break;
1298 workarounds = sbp2_default_workarounds;
1300 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1301 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1302 if (sbp2_workarounds_table[i].firmware_revision !=
1303 SBP2_ROM_VALUE_WILDCARD &&
1304 sbp2_workarounds_table[i].firmware_revision !=
1305 (firmware_revision & 0xffff00))
1306 continue;
1307 if (sbp2_workarounds_table[i].model_id !=
1308 SBP2_ROM_VALUE_WILDCARD &&
1309 sbp2_workarounds_table[i].model_id != ud->model_id)
1310 continue;
1311 workarounds |= sbp2_workarounds_table[i].workarounds;
1312 break;
1315 if (workarounds)
1316 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1317 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1318 " model_id 0x%06x)",
1319 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1320 workarounds, firmware_revision,
1321 ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1322 ud->model_id);
1324 /* We would need one SCSI host template for each target to adjust
1325 * max_sectors on the fly, therefore warn only. */
1326 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1327 (sbp2_max_sectors * 512) > (128 * 1024))
1328 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1329 "max transfer size. WARNING: Current max_sectors "
1330 "setting is larger than 128KB (%d sectors)",
1331 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1332 sbp2_max_sectors);
1334 /* If this is a logical unit directory entry, process the parent
1335 * to get the values. */
1336 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1337 struct unit_directory *parent_ud = container_of(
1338 ud->device.parent, struct unit_directory, device);
1339 sbp2_parse_unit_directory(lu, parent_ud);
1340 } else {
1341 lu->management_agent_addr = management_agent_addr;
1342 lu->workarounds = workarounds;
1343 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1344 lu->lun = ORB_SET_LUN(ud->lun);
1348 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1351 * This function is called in order to determine the max speed and packet
1352 * size we can use in our ORBs. Note, that we (the driver and host) only
1353 * initiate the transaction. The SBP-2 device actually transfers the data
1354 * (by reading from the DMA area we tell it). This means that the SBP-2
1355 * device decides the actual maximum data it can transfer. We just tell it
1356 * the speed that it needs to use, and the max_rec the host supports, and
1357 * it takes care of the rest.
1359 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1361 struct sbp2_fwhost_info *hi = lu->hi;
1362 u8 payload;
1364 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1366 if (lu->speed_code > sbp2_max_speed) {
1367 lu->speed_code = sbp2_max_speed;
1368 SBP2_INFO("Reducing speed to %s",
1369 hpsb_speedto_str[sbp2_max_speed]);
1372 /* Payload size is the lesser of what our speed supports and what
1373 * our host supports. */
1374 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1375 (u8) (hi->host->csr.max_rec - 1));
1377 /* If physical DMA is off, work around limitation in ohci1394:
1378 * packet size must not exceed PAGE_SIZE */
1379 if (lu->ne->host->low_addr_space < (1ULL << 32))
1380 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1381 payload)
1382 payload--;
1384 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1385 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1386 hpsb_speedto_str[lu->speed_code],
1387 SBP2_PAYLOAD_TO_BYTES(payload));
1389 lu->max_payload_size = payload;
1390 return 0;
1393 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1395 quadlet_t data;
1396 u64 addr;
1397 int retval;
1398 unsigned long flags;
1400 /* flush lu->protocol_work */
1401 if (wait)
1402 flush_scheduled_work();
1404 data = ntohl(SBP2_AGENT_RESET_DATA);
1405 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1407 if (wait)
1408 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1409 else
1410 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1412 if (retval < 0) {
1413 SBP2_ERR("hpsb_node_write failed.\n");
1414 return -EIO;
1417 /* make sure that the ORB_POINTER is written on next command */
1418 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1419 lu->last_orb = NULL;
1420 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1422 return 0;
1425 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1426 struct sbp2_fwhost_info *hi,
1427 struct sbp2_command_info *cmd,
1428 unsigned int scsi_use_sg,
1429 struct scatterlist *sgpnt,
1430 u32 orb_direction,
1431 enum dma_data_direction dma_dir)
1433 cmd->dma_dir = dma_dir;
1434 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1435 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1437 /* special case if only one element (and less than 64KB in size) */
1438 if ((scsi_use_sg == 1) &&
1439 (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
1441 cmd->dma_size = sgpnt[0].length;
1442 cmd->dma_type = CMD_DMA_PAGE;
1443 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1444 sgpnt[0].page, sgpnt[0].offset,
1445 cmd->dma_size, cmd->dma_dir);
1447 orb->data_descriptor_lo = cmd->cmd_dma;
1448 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1450 } else {
1451 struct sbp2_unrestricted_page_table *sg_element =
1452 &cmd->scatter_gather_element[0];
1453 u32 sg_count, sg_len;
1454 dma_addr_t sg_addr;
1455 int i, count = dma_map_sg(hi->host->device.parent, sgpnt,
1456 scsi_use_sg, dma_dir);
1458 cmd->dma_size = scsi_use_sg;
1459 cmd->sge_buffer = sgpnt;
1461 /* use page tables (s/g) */
1462 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1463 orb->data_descriptor_lo = cmd->sge_dma;
1465 /* loop through and fill out our SBP-2 page tables
1466 * (and split up anything too large) */
1467 for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
1468 sg_len = sg_dma_len(sgpnt);
1469 sg_addr = sg_dma_address(sgpnt);
1470 while (sg_len) {
1471 sg_element[sg_count].segment_base_lo = sg_addr;
1472 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1473 sg_element[sg_count].length_segment_base_hi =
1474 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1475 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1476 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1477 } else {
1478 sg_element[sg_count].length_segment_base_hi =
1479 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1480 sg_len = 0;
1482 sg_count++;
1486 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1488 sbp2util_cpu_to_be32_buffer(sg_element,
1489 (sizeof(struct sbp2_unrestricted_page_table)) *
1490 sg_count);
1494 static void sbp2_prep_command_orb_no_sg(struct sbp2_command_orb *orb,
1495 struct sbp2_fwhost_info *hi,
1496 struct sbp2_command_info *cmd,
1497 struct scatterlist *sgpnt,
1498 u32 orb_direction,
1499 unsigned int scsi_request_bufflen,
1500 void *scsi_request_buffer,
1501 enum dma_data_direction dma_dir)
1503 cmd->dma_dir = dma_dir;
1504 cmd->dma_size = scsi_request_bufflen;
1505 cmd->dma_type = CMD_DMA_SINGLE;
1506 cmd->cmd_dma = dma_map_single(hi->host->device.parent,
1507 scsi_request_buffer,
1508 cmd->dma_size, cmd->dma_dir);
1509 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1510 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1512 /* handle case where we get a command w/o s/g enabled
1513 * (but check for transfers larger than 64K) */
1514 if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1516 orb->data_descriptor_lo = cmd->cmd_dma;
1517 orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen);
1519 } else {
1520 /* The buffer is too large. Turn this into page tables. */
1522 struct sbp2_unrestricted_page_table *sg_element =
1523 &cmd->scatter_gather_element[0];
1524 u32 sg_count, sg_len;
1525 dma_addr_t sg_addr;
1527 orb->data_descriptor_lo = cmd->sge_dma;
1528 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1530 /* fill out our SBP-2 page tables; split up the large buffer */
1531 sg_count = 0;
1532 sg_len = scsi_request_bufflen;
1533 sg_addr = cmd->cmd_dma;
1534 while (sg_len) {
1535 sg_element[sg_count].segment_base_lo = sg_addr;
1536 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1537 sg_element[sg_count].length_segment_base_hi =
1538 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1539 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1540 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1541 } else {
1542 sg_element[sg_count].length_segment_base_hi =
1543 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1544 sg_len = 0;
1546 sg_count++;
1549 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1551 sbp2util_cpu_to_be32_buffer(sg_element,
1552 (sizeof(struct sbp2_unrestricted_page_table)) *
1553 sg_count);
1557 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1558 struct sbp2_command_info *cmd,
1559 unchar *scsi_cmd,
1560 unsigned int scsi_use_sg,
1561 unsigned int scsi_request_bufflen,
1562 void *scsi_request_buffer,
1563 enum dma_data_direction dma_dir)
1565 struct sbp2_fwhost_info *hi = lu->hi;
1566 struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
1567 struct sbp2_command_orb *orb = &cmd->command_orb;
1568 u32 orb_direction;
1571 * Set-up our command ORB.
1573 * NOTE: We're doing unrestricted page tables (s/g), as this is
1574 * best performance (at least with the devices I have). This means
1575 * that data_size becomes the number of s/g elements, and
1576 * page_size should be zero (for unrestricted).
1578 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1579 orb->next_ORB_lo = 0x0;
1580 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1581 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1582 orb->misc |= ORB_SET_NOTIFY(1);
1584 if (dma_dir == DMA_NONE)
1585 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1586 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1587 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1588 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1589 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1590 else {
1591 SBP2_INFO("Falling back to DMA_NONE");
1592 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1595 /* set up our page table stuff */
1596 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1597 orb->data_descriptor_hi = 0x0;
1598 orb->data_descriptor_lo = 0x0;
1599 orb->misc |= ORB_SET_DIRECTION(1);
1600 } else if (scsi_use_sg)
1601 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sgpnt,
1602 orb_direction, dma_dir);
1603 else
1604 sbp2_prep_command_orb_no_sg(orb, hi, cmd, sgpnt, orb_direction,
1605 scsi_request_bufflen,
1606 scsi_request_buffer, dma_dir);
1608 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1610 memset(orb->cdb, 0, 12);
1611 memcpy(orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
1614 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1615 struct sbp2_command_info *cmd)
1617 struct sbp2_fwhost_info *hi = lu->hi;
1618 struct sbp2_command_orb *last_orb;
1619 dma_addr_t last_orb_dma;
1620 u64 addr = lu->command_block_agent_addr;
1621 quadlet_t data[2];
1622 size_t length;
1623 unsigned long flags;
1625 dma_sync_single_for_device(hi->host->device.parent,
1626 cmd->command_orb_dma,
1627 sizeof(struct sbp2_command_orb),
1628 DMA_TO_DEVICE);
1629 dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1630 sizeof(cmd->scatter_gather_element),
1631 DMA_BIDIRECTIONAL);
1633 /* check to see if there are any previous orbs to use */
1634 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1635 last_orb = lu->last_orb;
1636 last_orb_dma = lu->last_orb_dma;
1637 if (!last_orb) {
1639 * last_orb == NULL means: We know that the target's fetch agent
1640 * is not active right now.
1642 addr += SBP2_ORB_POINTER_OFFSET;
1643 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1644 data[1] = cmd->command_orb_dma;
1645 sbp2util_cpu_to_be32_buffer(data, 8);
1646 length = 8;
1647 } else {
1649 * last_orb != NULL means: We know that the target's fetch agent
1650 * is (very probably) not dead or in reset state right now.
1651 * We have an ORB already sent that we can append a new one to.
1652 * The target's fetch agent may or may not have read this
1653 * previous ORB yet.
1655 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1656 sizeof(struct sbp2_command_orb),
1657 DMA_TO_DEVICE);
1658 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1659 wmb();
1660 /* Tells hardware that this pointer is valid */
1661 last_orb->next_ORB_hi = 0;
1662 dma_sync_single_for_device(hi->host->device.parent,
1663 last_orb_dma,
1664 sizeof(struct sbp2_command_orb),
1665 DMA_TO_DEVICE);
1666 addr += SBP2_DOORBELL_OFFSET;
1667 data[0] = 0;
1668 length = 4;
1670 lu->last_orb = &cmd->command_orb;
1671 lu->last_orb_dma = cmd->command_orb_dma;
1672 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1674 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1676 * sbp2util_node_write_no_wait failed. We certainly ran out
1677 * of transaction labels, perhaps just because there were no
1678 * context switches which gave khpsbpkt a chance to collect
1679 * free tlabels. Try again in non-atomic context. If necessary,
1680 * the workqueue job will sleep to guaranteedly get a tlabel.
1681 * We do not accept new commands until the job is over.
1683 scsi_block_requests(lu->shost);
1684 PREPARE_WORK(&lu->protocol_work,
1685 last_orb ? sbp2util_write_doorbell:
1686 sbp2util_write_orb_pointer);
1687 schedule_work(&lu->protocol_work);
1691 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1692 void (*done)(struct scsi_cmnd *))
1694 unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
1695 unsigned int request_bufflen = SCpnt->request_bufflen;
1696 struct sbp2_command_info *cmd;
1698 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1699 if (!cmd)
1700 return -EIO;
1702 sbp2_create_command_orb(lu, cmd, scsi_cmd, SCpnt->use_sg,
1703 request_bufflen, SCpnt->request_buffer,
1704 SCpnt->sc_data_direction);
1705 sbp2_link_orb_command(lu, cmd);
1707 return 0;
1711 * Translates SBP-2 status into SCSI sense data for check conditions
1713 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1714 unchar *sense_data)
1716 /* OK, it's pretty ugly... ;-) */
1717 sense_data[0] = 0x70;
1718 sense_data[1] = 0x0;
1719 sense_data[2] = sbp2_status[9];
1720 sense_data[3] = sbp2_status[12];
1721 sense_data[4] = sbp2_status[13];
1722 sense_data[5] = sbp2_status[14];
1723 sense_data[6] = sbp2_status[15];
1724 sense_data[7] = 10;
1725 sense_data[8] = sbp2_status[16];
1726 sense_data[9] = sbp2_status[17];
1727 sense_data[10] = sbp2_status[18];
1728 sense_data[11] = sbp2_status[19];
1729 sense_data[12] = sbp2_status[10];
1730 sense_data[13] = sbp2_status[11];
1731 sense_data[14] = sbp2_status[20];
1732 sense_data[15] = sbp2_status[21];
1734 return sbp2_status[8] & 0x3f;
1737 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1738 int destid, quadlet_t *data, u64 addr,
1739 size_t length, u16 fl)
1741 struct sbp2_fwhost_info *hi;
1742 struct sbp2_lu *lu = NULL, *lu_tmp;
1743 struct scsi_cmnd *SCpnt = NULL;
1744 struct sbp2_status_block *sb;
1745 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1746 struct sbp2_command_info *cmd;
1747 unsigned long flags;
1749 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1750 SBP2_ERR("Wrong size of status block");
1751 return RCODE_ADDRESS_ERROR;
1753 if (unlikely(!host)) {
1754 SBP2_ERR("host is NULL - this is bad!");
1755 return RCODE_ADDRESS_ERROR;
1757 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1758 if (unlikely(!hi)) {
1759 SBP2_ERR("host info is NULL - this is bad!");
1760 return RCODE_ADDRESS_ERROR;
1763 /* Find the unit which wrote the status. */
1764 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1765 if (lu_tmp->ne->nodeid == nodeid &&
1766 lu_tmp->status_fifo_addr == addr) {
1767 lu = lu_tmp;
1768 break;
1771 if (unlikely(!lu)) {
1772 SBP2_ERR("lu is NULL - device is gone?");
1773 return RCODE_ADDRESS_ERROR;
1776 /* Put response into lu status fifo buffer. The first two bytes
1777 * come in big endian bit order. Often the target writes only a
1778 * truncated status block, minimally the first two quadlets. The rest
1779 * is implied to be zeros. */
1780 sb = &lu->status_block;
1781 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1782 memcpy(sb, data, length);
1783 sbp2util_be32_to_cpu_buffer(sb, 8);
1785 /* Ignore unsolicited status. Handle command ORB status. */
1786 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1787 cmd = NULL;
1788 else
1789 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1790 if (cmd) {
1791 dma_sync_single_for_cpu(hi->host->device.parent,
1792 cmd->command_orb_dma,
1793 sizeof(struct sbp2_command_orb),
1794 DMA_TO_DEVICE);
1795 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1796 sizeof(cmd->scatter_gather_element),
1797 DMA_BIDIRECTIONAL);
1798 /* Grab SCSI command pointers and check status. */
1800 * FIXME: If the src field in the status is 1, the ORB DMA must
1801 * not be reused until status for a subsequent ORB is received.
1803 SCpnt = cmd->Current_SCpnt;
1804 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1805 sbp2util_mark_command_completed(lu, cmd);
1806 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1808 if (SCpnt) {
1809 u32 h = sb->ORB_offset_hi_misc;
1810 u32 r = STATUS_GET_RESP(h);
1812 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1813 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1814 r, STATUS_GET_SBP_STATUS(h));
1815 scsi_status =
1816 r == RESP_STATUS_TRANSPORT_FAILURE ?
1817 SBP2_SCSI_STATUS_BUSY :
1818 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1821 if (STATUS_GET_LEN(h) > 1)
1822 scsi_status = sbp2_status_to_sense_data(
1823 (unchar *)sb, SCpnt->sense_buffer);
1825 if (STATUS_TEST_DEAD(h))
1826 sbp2_agent_reset(lu, 0);
1829 /* Check here to see if there are no commands in-use. If there
1830 * are none, we know that the fetch agent left the active state
1831 * _and_ that we did not reactivate it yet. Therefore clear
1832 * last_orb so that next time we write directly to the
1833 * ORB_POINTER register. That way the fetch agent does not need
1834 * to refetch the next_ORB. */
1835 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1836 if (list_empty(&lu->cmd_orb_inuse))
1837 lu->last_orb = NULL;
1838 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1840 } else {
1841 /* It's probably status after a management request. */
1842 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1843 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1844 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1845 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1846 lu->access_complete = 1;
1847 wake_up_interruptible(&sbp2_access_wq);
1851 if (SCpnt)
1852 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1853 cmd->Current_done);
1854 return RCODE_COMPLETE;
1857 /**************************************
1858 * SCSI interface related section
1859 **************************************/
1861 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1862 void (*done)(struct scsi_cmnd *))
1864 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1865 struct sbp2_fwhost_info *hi;
1866 int result = DID_NO_CONNECT << 16;
1868 if (unlikely(!sbp2util_node_is_available(lu)))
1869 goto done;
1871 hi = lu->hi;
1873 if (unlikely(!hi)) {
1874 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1875 goto done;
1878 /* Multiple units are currently represented to the SCSI core as separate
1879 * targets, not as one target with multiple LUs. Therefore return
1880 * selection time-out to any IO directed at non-zero LUNs. */
1881 if (unlikely(SCpnt->device->lun))
1882 goto done;
1884 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1885 SBP2_ERR("Bus reset in progress - rejecting command");
1886 result = DID_BUS_BUSY << 16;
1887 goto done;
1890 /* Bidirectional commands are not yet implemented,
1891 * and unknown transfer direction not handled. */
1892 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1893 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1894 result = DID_ERROR << 16;
1895 goto done;
1898 if (sbp2_send_command(lu, SCpnt, done)) {
1899 SBP2_ERR("Error sending SCSI command");
1900 sbp2scsi_complete_command(lu,
1901 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1902 SCpnt, done);
1904 return 0;
1906 done:
1907 SCpnt->result = result;
1908 done(SCpnt);
1909 return 0;
1912 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1914 struct sbp2_fwhost_info *hi = lu->hi;
1915 struct list_head *lh;
1916 struct sbp2_command_info *cmd;
1917 unsigned long flags;
1919 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1920 while (!list_empty(&lu->cmd_orb_inuse)) {
1921 lh = lu->cmd_orb_inuse.next;
1922 cmd = list_entry(lh, struct sbp2_command_info, list);
1923 dma_sync_single_for_cpu(hi->host->device.parent,
1924 cmd->command_orb_dma,
1925 sizeof(struct sbp2_command_orb),
1926 DMA_TO_DEVICE);
1927 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1928 sizeof(cmd->scatter_gather_element),
1929 DMA_BIDIRECTIONAL);
1930 sbp2util_mark_command_completed(lu, cmd);
1931 if (cmd->Current_SCpnt) {
1932 cmd->Current_SCpnt->result = status << 16;
1933 cmd->Current_done(cmd->Current_SCpnt);
1936 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1938 return;
1942 * Complete a regular SCSI command. Can be called in atomic context.
1944 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1945 struct scsi_cmnd *SCpnt,
1946 void (*done)(struct scsi_cmnd *))
1948 if (!SCpnt) {
1949 SBP2_ERR("SCpnt is NULL");
1950 return;
1953 switch (scsi_status) {
1954 case SBP2_SCSI_STATUS_GOOD:
1955 SCpnt->result = DID_OK << 16;
1956 break;
1958 case SBP2_SCSI_STATUS_BUSY:
1959 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1960 SCpnt->result = DID_BUS_BUSY << 16;
1961 break;
1963 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1964 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1965 break;
1967 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1968 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1969 SCpnt->result = DID_NO_CONNECT << 16;
1970 scsi_print_command(SCpnt);
1971 break;
1973 case SBP2_SCSI_STATUS_CONDITION_MET:
1974 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1975 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1976 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1977 SCpnt->result = DID_ERROR << 16;
1978 scsi_print_command(SCpnt);
1979 break;
1981 default:
1982 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1983 SCpnt->result = DID_ERROR << 16;
1986 /* If a bus reset is in progress and there was an error, complete
1987 * the command as busy so that it will get retried. */
1988 if (!hpsb_node_entry_valid(lu->ne)
1989 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1990 SBP2_ERR("Completing command with busy (bus reset)");
1991 SCpnt->result = DID_BUS_BUSY << 16;
1994 /* Tell the SCSI stack that we're done with this command. */
1995 done(SCpnt);
1998 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
2000 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2002 lu->sdev = sdev;
2003 sdev->allow_restart = 1;
2005 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2006 sdev->inquiry_len = 36;
2007 return 0;
2010 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2012 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2014 sdev->use_10_for_rw = 1;
2016 if (sdev->type == TYPE_ROM)
2017 sdev->use_10_for_ms = 1;
2018 if (sdev->type == TYPE_DISK &&
2019 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2020 sdev->skip_ms_page_8 = 1;
2021 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2022 sdev->fix_capacity = 1;
2023 return 0;
2026 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2028 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2029 return;
2033 * Called by scsi stack when something has really gone wrong.
2034 * Usually called when a command has timed-out for some reason.
2036 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2038 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2039 struct sbp2_fwhost_info *hi = lu->hi;
2040 struct sbp2_command_info *cmd;
2041 unsigned long flags;
2043 SBP2_INFO("aborting sbp2 command");
2044 scsi_print_command(SCpnt);
2046 if (sbp2util_node_is_available(lu)) {
2047 sbp2_agent_reset(lu, 1);
2049 /* Return a matching command structure to the free pool. */
2050 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2051 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2052 if (cmd) {
2053 dma_sync_single_for_cpu(hi->host->device.parent,
2054 cmd->command_orb_dma,
2055 sizeof(struct sbp2_command_orb),
2056 DMA_TO_DEVICE);
2057 dma_sync_single_for_cpu(hi->host->device.parent,
2058 cmd->sge_dma,
2059 sizeof(cmd->scatter_gather_element),
2060 DMA_BIDIRECTIONAL);
2061 sbp2util_mark_command_completed(lu, cmd);
2062 if (cmd->Current_SCpnt) {
2063 cmd->Current_SCpnt->result = DID_ABORT << 16;
2064 cmd->Current_done(cmd->Current_SCpnt);
2067 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2069 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2072 return SUCCESS;
2076 * Called by scsi stack when something has really gone wrong.
2078 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2080 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2082 SBP2_INFO("reset requested");
2084 if (sbp2util_node_is_available(lu)) {
2085 SBP2_INFO("generating sbp2 fetch agent reset");
2086 sbp2_agent_reset(lu, 1);
2089 return SUCCESS;
2092 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2093 struct device_attribute *attr,
2094 char *buf)
2096 struct scsi_device *sdev;
2097 struct sbp2_lu *lu;
2099 if (!(sdev = to_scsi_device(dev)))
2100 return 0;
2102 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2103 return 0;
2105 return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)lu->ne->guid,
2106 lu->ud->id, ORB_SET_LUN(lu->lun));
2109 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2110 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2111 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2112 MODULE_LICENSE("GPL");
2114 static int sbp2_module_init(void)
2116 int ret;
2118 if (sbp2_serialize_io) {
2119 sbp2_shost_template.can_queue = 1;
2120 sbp2_shost_template.cmd_per_lun = 1;
2123 if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
2124 (sbp2_max_sectors * 512) > (128 * 1024))
2125 sbp2_max_sectors = 128 * 1024 / 512;
2126 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2128 hpsb_register_highlevel(&sbp2_highlevel);
2129 ret = hpsb_register_protocol(&sbp2_driver);
2130 if (ret) {
2131 SBP2_ERR("Failed to register protocol");
2132 hpsb_unregister_highlevel(&sbp2_highlevel);
2133 return ret;
2135 return 0;
2138 static void __exit sbp2_module_exit(void)
2140 hpsb_unregister_protocol(&sbp2_driver);
2141 hpsb_unregister_highlevel(&sbp2_highlevel);
2144 module_init(sbp2_module_init);
2145 module_exit(sbp2_module_exit);