Linux 2.6.21
[linux/fpc-iii.git] / drivers / md / raid1.c
blob97ee870b265d866ffa818bdf83dc7f551cd40d7b
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
51 static void unplug_slaves(mddev_t *mddev);
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
65 unplug_slaves(pi->mddev);
67 return r1_bio;
70 static void r1bio_pool_free(void *r1_bio, void *data)
72 kfree(r1_bio);
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
96 * Allocate bios : 1 for reading, n-1 for writing
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
105 * Allocate RESYNC_PAGES data pages and attach them to
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
121 bio->bi_io_vec[i].bv_page = page;
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
132 r1_bio->master_bio = NULL;
134 return r1_bio;
136 out_free_pages:
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 j = -1;
141 out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
148 static void r1buf_pool_free(void *__r1_bio, void *data)
150 struct pool_info *pi = data;
151 int i,j;
152 r1bio_t *r1bio = __r1_bio;
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
164 r1bio_pool_free(r1bio, data);
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
169 int i;
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r1bio(r1bio_t *r1_bio)
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
193 static void put_buf(r1bio_t *r1_bio)
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 int i;
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204 mempool_free(r1_bio, conf->r1buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r1bio_t *r1_bio)
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r1bio_t *r1_bio)
231 struct bio *bio = r1_bio->master_bio;
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
241 bio_endio(bio, bio->bi_size,
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
244 free_r1bio(r1_bio);
248 * Update disk head position estimator based on IRQ completion info.
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
265 if (bio->bi_size)
266 return 1;
268 mirror = r1_bio->read_disk;
270 * this branch is our 'one mirror IO has finished' event handler:
272 update_head_pos(mirror, r1_bio);
274 if (uptodate || (conf->raid_disks - conf->mddev->degraded) <= 1) {
276 * Set R1BIO_Uptodate in our master bio, so that
277 * we will return a good error code for to the higher
278 * levels even if IO on some other mirrored buffer fails.
280 * The 'master' represents the composite IO operation to
281 * user-side. So if something waits for IO, then it will
282 * wait for the 'master' bio.
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
287 raid_end_bio_io(r1_bio);
288 } else {
290 * oops, read error:
292 char b[BDEVNAME_SIZE];
293 if (printk_ratelimit())
294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 reschedule_retry(r1_bio);
299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 return 0;
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 struct bio *to_put = NULL;
311 if (bio->bi_size)
312 return 1;
314 for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 if (r1_bio->bios[mirror] == bio)
316 break;
318 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 r1_bio->mddev->barriers_work = 0;
322 /* Don't rdev_dec_pending in this branch - keep it for the retry */
323 } else {
325 * this branch is our 'one mirror IO has finished' event handler:
327 r1_bio->bios[mirror] = NULL;
328 to_put = bio;
329 if (!uptodate) {
330 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
331 /* an I/O failed, we can't clear the bitmap */
332 set_bit(R1BIO_Degraded, &r1_bio->state);
333 } else
335 * Set R1BIO_Uptodate in our master bio, so that
336 * we will return a good error code for to the higher
337 * levels even if IO on some other mirrored buffer fails.
339 * The 'master' represents the composite IO operation to
340 * user-side. So if something waits for IO, then it will
341 * wait for the 'master' bio.
343 set_bit(R1BIO_Uptodate, &r1_bio->state);
345 update_head_pos(mirror, r1_bio);
347 if (behind) {
348 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
349 atomic_dec(&r1_bio->behind_remaining);
351 /* In behind mode, we ACK the master bio once the I/O has safely
352 * reached all non-writemostly disks. Setting the Returned bit
353 * ensures that this gets done only once -- we don't ever want to
354 * return -EIO here, instead we'll wait */
356 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
357 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
358 /* Maybe we can return now */
359 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
360 struct bio *mbio = r1_bio->master_bio;
361 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
362 (unsigned long long) mbio->bi_sector,
363 (unsigned long long) mbio->bi_sector +
364 (mbio->bi_size >> 9) - 1);
365 bio_endio(mbio, mbio->bi_size, 0);
369 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
373 * Let's see if all mirrored write operations have finished
374 * already.
376 if (atomic_dec_and_test(&r1_bio->remaining)) {
377 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
378 reschedule_retry(r1_bio);
379 else {
380 /* it really is the end of this request */
381 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
382 /* free extra copy of the data pages */
383 int i = bio->bi_vcnt;
384 while (i--)
385 safe_put_page(bio->bi_io_vec[i].bv_page);
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 behind);
392 md_write_end(r1_bio->mddev);
393 raid_end_bio_io(r1_bio);
397 if (to_put)
398 bio_put(to_put);
400 return 0;
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 const unsigned long this_sector = r1_bio->sector;
421 int new_disk = conf->last_used, disk = new_disk;
422 int wonly_disk = -1;
423 const int sectors = r1_bio->sectors;
424 sector_t new_distance, current_distance;
425 mdk_rdev_t *rdev;
427 rcu_read_lock();
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
433 retry:
434 if (conf->mddev->recovery_cp < MaxSector &&
435 (this_sector + sectors >= conf->next_resync)) {
436 /* Choose the first operation device, for consistancy */
437 new_disk = 0;
439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 r1_bio->bios[new_disk] == IO_BLOCKED ||
441 !rdev || !test_bit(In_sync, &rdev->flags)
442 || test_bit(WriteMostly, &rdev->flags);
443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 if (rdev && test_bit(In_sync, &rdev->flags) &&
446 r1_bio->bios[new_disk] != IO_BLOCKED)
447 wonly_disk = new_disk;
449 if (new_disk == conf->raid_disks - 1) {
450 new_disk = wonly_disk;
451 break;
454 goto rb_out;
458 /* make sure the disk is operational */
459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 r1_bio->bios[new_disk] == IO_BLOCKED ||
461 !rdev || !test_bit(In_sync, &rdev->flags) ||
462 test_bit(WriteMostly, &rdev->flags);
463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 if (rdev && test_bit(In_sync, &rdev->flags) &&
466 r1_bio->bios[new_disk] != IO_BLOCKED)
467 wonly_disk = new_disk;
469 if (new_disk <= 0)
470 new_disk = conf->raid_disks;
471 new_disk--;
472 if (new_disk == disk) {
473 new_disk = wonly_disk;
474 break;
478 if (new_disk < 0)
479 goto rb_out;
481 disk = new_disk;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf->next_seq_sect == this_sector)
488 goto rb_out;
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
492 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 /* Find the disk whose head is closest */
496 do {
497 if (disk <= 0)
498 disk = conf->raid_disks;
499 disk--;
501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 !test_bit(In_sync, &rdev->flags) ||
505 test_bit(WriteMostly, &rdev->flags))
506 continue;
508 if (!atomic_read(&rdev->nr_pending)) {
509 new_disk = disk;
510 break;
512 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 if (new_distance < current_distance) {
514 current_distance = new_distance;
515 new_disk = disk;
517 } while (disk != conf->last_used);
519 rb_out:
522 if (new_disk >= 0) {
523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 if (!rdev)
525 goto retry;
526 atomic_inc(&rdev->nr_pending);
527 if (!test_bit(In_sync, &rdev->flags)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev, conf->mddev);
532 goto retry;
534 conf->next_seq_sect = this_sector + sectors;
535 conf->last_used = new_disk;
537 rcu_read_unlock();
539 return new_disk;
542 static void unplug_slaves(mddev_t *mddev)
544 conf_t *conf = mddev_to_conf(mddev);
545 int i;
547 rcu_read_lock();
548 for (i=0; i<mddev->raid_disks; i++) {
549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
553 atomic_inc(&rdev->nr_pending);
554 rcu_read_unlock();
556 if (r_queue->unplug_fn)
557 r_queue->unplug_fn(r_queue);
559 rdev_dec_pending(rdev, mddev);
560 rcu_read_lock();
563 rcu_read_unlock();
566 static void raid1_unplug(request_queue_t *q)
568 mddev_t *mddev = q->queuedata;
570 unplug_slaves(mddev);
571 md_wakeup_thread(mddev->thread);
574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
575 sector_t *error_sector)
577 mddev_t *mddev = q->queuedata;
578 conf_t *conf = mddev_to_conf(mddev);
579 int i, ret = 0;
581 rcu_read_lock();
582 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
583 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
584 if (rdev && !test_bit(Faulty, &rdev->flags)) {
585 struct block_device *bdev = rdev->bdev;
586 request_queue_t *r_queue = bdev_get_queue(bdev);
588 if (!r_queue->issue_flush_fn)
589 ret = -EOPNOTSUPP;
590 else {
591 atomic_inc(&rdev->nr_pending);
592 rcu_read_unlock();
593 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
594 error_sector);
595 rdev_dec_pending(rdev, mddev);
596 rcu_read_lock();
600 rcu_read_unlock();
601 return ret;
604 static int raid1_congested(void *data, int bits)
606 mddev_t *mddev = data;
607 conf_t *conf = mddev_to_conf(mddev);
608 int i, ret = 0;
610 rcu_read_lock();
611 for (i = 0; i < mddev->raid_disks; i++) {
612 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
613 if (rdev && !test_bit(Faulty, &rdev->flags)) {
614 request_queue_t *q = bdev_get_queue(rdev->bdev);
616 /* Note the '|| 1' - when read_balance prefers
617 * non-congested targets, it can be removed
619 if ((bits & (1<<BDI_write_congested)) || 1)
620 ret |= bdi_congested(&q->backing_dev_info, bits);
621 else
622 ret &= bdi_congested(&q->backing_dev_info, bits);
625 rcu_read_unlock();
626 return ret;
630 /* Barriers....
631 * Sometimes we need to suspend IO while we do something else,
632 * either some resync/recovery, or reconfigure the array.
633 * To do this we raise a 'barrier'.
634 * The 'barrier' is a counter that can be raised multiple times
635 * to count how many activities are happening which preclude
636 * normal IO.
637 * We can only raise the barrier if there is no pending IO.
638 * i.e. if nr_pending == 0.
639 * We choose only to raise the barrier if no-one is waiting for the
640 * barrier to go down. This means that as soon as an IO request
641 * is ready, no other operations which require a barrier will start
642 * until the IO request has had a chance.
644 * So: regular IO calls 'wait_barrier'. When that returns there
645 * is no backgroup IO happening, It must arrange to call
646 * allow_barrier when it has finished its IO.
647 * backgroup IO calls must call raise_barrier. Once that returns
648 * there is no normal IO happeing. It must arrange to call
649 * lower_barrier when the particular background IO completes.
651 #define RESYNC_DEPTH 32
653 static void raise_barrier(conf_t *conf)
655 spin_lock_irq(&conf->resync_lock);
657 /* Wait until no block IO is waiting */
658 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
659 conf->resync_lock,
660 raid1_unplug(conf->mddev->queue));
662 /* block any new IO from starting */
663 conf->barrier++;
665 /* No wait for all pending IO to complete */
666 wait_event_lock_irq(conf->wait_barrier,
667 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
668 conf->resync_lock,
669 raid1_unplug(conf->mddev->queue));
671 spin_unlock_irq(&conf->resync_lock);
674 static void lower_barrier(conf_t *conf)
676 unsigned long flags;
677 spin_lock_irqsave(&conf->resync_lock, flags);
678 conf->barrier--;
679 spin_unlock_irqrestore(&conf->resync_lock, flags);
680 wake_up(&conf->wait_barrier);
683 static void wait_barrier(conf_t *conf)
685 spin_lock_irq(&conf->resync_lock);
686 if (conf->barrier) {
687 conf->nr_waiting++;
688 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
689 conf->resync_lock,
690 raid1_unplug(conf->mddev->queue));
691 conf->nr_waiting--;
693 conf->nr_pending++;
694 spin_unlock_irq(&conf->resync_lock);
697 static void allow_barrier(conf_t *conf)
699 unsigned long flags;
700 spin_lock_irqsave(&conf->resync_lock, flags);
701 conf->nr_pending--;
702 spin_unlock_irqrestore(&conf->resync_lock, flags);
703 wake_up(&conf->wait_barrier);
706 static void freeze_array(conf_t *conf)
708 /* stop syncio and normal IO and wait for everything to
709 * go quite.
710 * We increment barrier and nr_waiting, and then
711 * wait until barrier+nr_pending match nr_queued+2
713 spin_lock_irq(&conf->resync_lock);
714 conf->barrier++;
715 conf->nr_waiting++;
716 wait_event_lock_irq(conf->wait_barrier,
717 conf->barrier+conf->nr_pending == conf->nr_queued+2,
718 conf->resync_lock,
719 raid1_unplug(conf->mddev->queue));
720 spin_unlock_irq(&conf->resync_lock);
722 static void unfreeze_array(conf_t *conf)
724 /* reverse the effect of the freeze */
725 spin_lock_irq(&conf->resync_lock);
726 conf->barrier--;
727 conf->nr_waiting--;
728 wake_up(&conf->wait_barrier);
729 spin_unlock_irq(&conf->resync_lock);
733 /* duplicate the data pages for behind I/O */
734 static struct page **alloc_behind_pages(struct bio *bio)
736 int i;
737 struct bio_vec *bvec;
738 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
739 GFP_NOIO);
740 if (unlikely(!pages))
741 goto do_sync_io;
743 bio_for_each_segment(bvec, bio, i) {
744 pages[i] = alloc_page(GFP_NOIO);
745 if (unlikely(!pages[i]))
746 goto do_sync_io;
747 memcpy(kmap(pages[i]) + bvec->bv_offset,
748 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
749 kunmap(pages[i]);
750 kunmap(bvec->bv_page);
753 return pages;
755 do_sync_io:
756 if (pages)
757 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
758 put_page(pages[i]);
759 kfree(pages);
760 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
761 return NULL;
764 static int make_request(request_queue_t *q, struct bio * bio)
766 mddev_t *mddev = q->queuedata;
767 conf_t *conf = mddev_to_conf(mddev);
768 mirror_info_t *mirror;
769 r1bio_t *r1_bio;
770 struct bio *read_bio;
771 int i, targets = 0, disks;
772 mdk_rdev_t *rdev;
773 struct bitmap *bitmap = mddev->bitmap;
774 unsigned long flags;
775 struct bio_list bl;
776 struct page **behind_pages = NULL;
777 const int rw = bio_data_dir(bio);
778 const int do_sync = bio_sync(bio);
779 int do_barriers;
782 * Register the new request and wait if the reconstruction
783 * thread has put up a bar for new requests.
784 * Continue immediately if no resync is active currently.
785 * We test barriers_work *after* md_write_start as md_write_start
786 * may cause the first superblock write, and that will check out
787 * if barriers work.
790 md_write_start(mddev, bio); /* wait on superblock update early */
792 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
793 if (rw == WRITE)
794 md_write_end(mddev);
795 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
796 return 0;
799 wait_barrier(conf);
801 disk_stat_inc(mddev->gendisk, ios[rw]);
802 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
805 * make_request() can abort the operation when READA is being
806 * used and no empty request is available.
809 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
811 r1_bio->master_bio = bio;
812 r1_bio->sectors = bio->bi_size >> 9;
813 r1_bio->state = 0;
814 r1_bio->mddev = mddev;
815 r1_bio->sector = bio->bi_sector;
817 if (rw == READ) {
819 * read balancing logic:
821 int rdisk = read_balance(conf, r1_bio);
823 if (rdisk < 0) {
824 /* couldn't find anywhere to read from */
825 raid_end_bio_io(r1_bio);
826 return 0;
828 mirror = conf->mirrors + rdisk;
830 r1_bio->read_disk = rdisk;
832 read_bio = bio_clone(bio, GFP_NOIO);
834 r1_bio->bios[rdisk] = read_bio;
836 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
837 read_bio->bi_bdev = mirror->rdev->bdev;
838 read_bio->bi_end_io = raid1_end_read_request;
839 read_bio->bi_rw = READ | do_sync;
840 read_bio->bi_private = r1_bio;
842 generic_make_request(read_bio);
843 return 0;
847 * WRITE:
849 /* first select target devices under spinlock and
850 * inc refcount on their rdev. Record them by setting
851 * bios[x] to bio
853 disks = conf->raid_disks;
854 #if 0
855 { static int first=1;
856 if (first) printk("First Write sector %llu disks %d\n",
857 (unsigned long long)r1_bio->sector, disks);
858 first = 0;
860 #endif
861 rcu_read_lock();
862 for (i = 0; i < disks; i++) {
863 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
864 !test_bit(Faulty, &rdev->flags)) {
865 atomic_inc(&rdev->nr_pending);
866 if (test_bit(Faulty, &rdev->flags)) {
867 rdev_dec_pending(rdev, mddev);
868 r1_bio->bios[i] = NULL;
869 } else
870 r1_bio->bios[i] = bio;
871 targets++;
872 } else
873 r1_bio->bios[i] = NULL;
875 rcu_read_unlock();
877 BUG_ON(targets == 0); /* we never fail the last device */
879 if (targets < conf->raid_disks) {
880 /* array is degraded, we will not clear the bitmap
881 * on I/O completion (see raid1_end_write_request) */
882 set_bit(R1BIO_Degraded, &r1_bio->state);
885 /* do behind I/O ? */
886 if (bitmap &&
887 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
888 (behind_pages = alloc_behind_pages(bio)) != NULL)
889 set_bit(R1BIO_BehindIO, &r1_bio->state);
891 atomic_set(&r1_bio->remaining, 0);
892 atomic_set(&r1_bio->behind_remaining, 0);
894 do_barriers = bio_barrier(bio);
895 if (do_barriers)
896 set_bit(R1BIO_Barrier, &r1_bio->state);
898 bio_list_init(&bl);
899 for (i = 0; i < disks; i++) {
900 struct bio *mbio;
901 if (!r1_bio->bios[i])
902 continue;
904 mbio = bio_clone(bio, GFP_NOIO);
905 r1_bio->bios[i] = mbio;
907 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
908 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
909 mbio->bi_end_io = raid1_end_write_request;
910 mbio->bi_rw = WRITE | do_barriers | do_sync;
911 mbio->bi_private = r1_bio;
913 if (behind_pages) {
914 struct bio_vec *bvec;
915 int j;
917 /* Yes, I really want the '__' version so that
918 * we clear any unused pointer in the io_vec, rather
919 * than leave them unchanged. This is important
920 * because when we come to free the pages, we won't
921 * know the originial bi_idx, so we just free
922 * them all
924 __bio_for_each_segment(bvec, mbio, j, 0)
925 bvec->bv_page = behind_pages[j];
926 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
927 atomic_inc(&r1_bio->behind_remaining);
930 atomic_inc(&r1_bio->remaining);
932 bio_list_add(&bl, mbio);
934 kfree(behind_pages); /* the behind pages are attached to the bios now */
936 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
937 test_bit(R1BIO_BehindIO, &r1_bio->state));
938 spin_lock_irqsave(&conf->device_lock, flags);
939 bio_list_merge(&conf->pending_bio_list, &bl);
940 bio_list_init(&bl);
942 blk_plug_device(mddev->queue);
943 spin_unlock_irqrestore(&conf->device_lock, flags);
945 if (do_sync)
946 md_wakeup_thread(mddev->thread);
947 #if 0
948 while ((bio = bio_list_pop(&bl)) != NULL)
949 generic_make_request(bio);
950 #endif
952 return 0;
955 static void status(struct seq_file *seq, mddev_t *mddev)
957 conf_t *conf = mddev_to_conf(mddev);
958 int i;
960 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
961 conf->raid_disks - mddev->degraded);
962 rcu_read_lock();
963 for (i = 0; i < conf->raid_disks; i++) {
964 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
965 seq_printf(seq, "%s",
966 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
968 rcu_read_unlock();
969 seq_printf(seq, "]");
973 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
975 char b[BDEVNAME_SIZE];
976 conf_t *conf = mddev_to_conf(mddev);
979 * If it is not operational, then we have already marked it as dead
980 * else if it is the last working disks, ignore the error, let the
981 * next level up know.
982 * else mark the drive as failed
984 if (test_bit(In_sync, &rdev->flags)
985 && (conf->raid_disks - mddev->degraded) == 1)
987 * Don't fail the drive, act as though we were just a
988 * normal single drive
990 return;
991 if (test_and_clear_bit(In_sync, &rdev->flags)) {
992 unsigned long flags;
993 spin_lock_irqsave(&conf->device_lock, flags);
994 mddev->degraded++;
995 spin_unlock_irqrestore(&conf->device_lock, flags);
997 * if recovery is running, make sure it aborts.
999 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1001 set_bit(Faulty, &rdev->flags);
1002 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1003 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1004 " Operation continuing on %d devices\n",
1005 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1008 static void print_conf(conf_t *conf)
1010 int i;
1012 printk("RAID1 conf printout:\n");
1013 if (!conf) {
1014 printk("(!conf)\n");
1015 return;
1017 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1018 conf->raid_disks);
1020 rcu_read_lock();
1021 for (i = 0; i < conf->raid_disks; i++) {
1022 char b[BDEVNAME_SIZE];
1023 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1024 if (rdev)
1025 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1026 i, !test_bit(In_sync, &rdev->flags),
1027 !test_bit(Faulty, &rdev->flags),
1028 bdevname(rdev->bdev,b));
1030 rcu_read_unlock();
1033 static void close_sync(conf_t *conf)
1035 wait_barrier(conf);
1036 allow_barrier(conf);
1038 mempool_destroy(conf->r1buf_pool);
1039 conf->r1buf_pool = NULL;
1042 static int raid1_spare_active(mddev_t *mddev)
1044 int i;
1045 conf_t *conf = mddev->private;
1048 * Find all failed disks within the RAID1 configuration
1049 * and mark them readable.
1050 * Called under mddev lock, so rcu protection not needed.
1052 for (i = 0; i < conf->raid_disks; i++) {
1053 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1054 if (rdev
1055 && !test_bit(Faulty, &rdev->flags)
1056 && !test_and_set_bit(In_sync, &rdev->flags)) {
1057 unsigned long flags;
1058 spin_lock_irqsave(&conf->device_lock, flags);
1059 mddev->degraded--;
1060 spin_unlock_irqrestore(&conf->device_lock, flags);
1064 print_conf(conf);
1065 return 0;
1069 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1071 conf_t *conf = mddev->private;
1072 int found = 0;
1073 int mirror = 0;
1074 mirror_info_t *p;
1076 for (mirror=0; mirror < mddev->raid_disks; mirror++)
1077 if ( !(p=conf->mirrors+mirror)->rdev) {
1079 blk_queue_stack_limits(mddev->queue,
1080 rdev->bdev->bd_disk->queue);
1081 /* as we don't honour merge_bvec_fn, we must never risk
1082 * violating it, so limit ->max_sector to one PAGE, as
1083 * a one page request is never in violation.
1085 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1086 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1087 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1089 p->head_position = 0;
1090 rdev->raid_disk = mirror;
1091 found = 1;
1092 /* As all devices are equivalent, we don't need a full recovery
1093 * if this was recently any drive of the array
1095 if (rdev->saved_raid_disk < 0)
1096 conf->fullsync = 1;
1097 rcu_assign_pointer(p->rdev, rdev);
1098 break;
1101 print_conf(conf);
1102 return found;
1105 static int raid1_remove_disk(mddev_t *mddev, int number)
1107 conf_t *conf = mddev->private;
1108 int err = 0;
1109 mdk_rdev_t *rdev;
1110 mirror_info_t *p = conf->mirrors+ number;
1112 print_conf(conf);
1113 rdev = p->rdev;
1114 if (rdev) {
1115 if (test_bit(In_sync, &rdev->flags) ||
1116 atomic_read(&rdev->nr_pending)) {
1117 err = -EBUSY;
1118 goto abort;
1120 p->rdev = NULL;
1121 synchronize_rcu();
1122 if (atomic_read(&rdev->nr_pending)) {
1123 /* lost the race, try later */
1124 err = -EBUSY;
1125 p->rdev = rdev;
1128 abort:
1130 print_conf(conf);
1131 return err;
1135 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1137 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1138 int i;
1140 if (bio->bi_size)
1141 return 1;
1143 for (i=r1_bio->mddev->raid_disks; i--; )
1144 if (r1_bio->bios[i] == bio)
1145 break;
1146 BUG_ON(i < 0);
1147 update_head_pos(i, r1_bio);
1149 * we have read a block, now it needs to be re-written,
1150 * or re-read if the read failed.
1151 * We don't do much here, just schedule handling by raid1d
1153 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1154 set_bit(R1BIO_Uptodate, &r1_bio->state);
1156 if (atomic_dec_and_test(&r1_bio->remaining))
1157 reschedule_retry(r1_bio);
1158 return 0;
1161 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1163 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1164 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1165 mddev_t *mddev = r1_bio->mddev;
1166 conf_t *conf = mddev_to_conf(mddev);
1167 int i;
1168 int mirror=0;
1170 if (bio->bi_size)
1171 return 1;
1173 for (i = 0; i < conf->raid_disks; i++)
1174 if (r1_bio->bios[i] == bio) {
1175 mirror = i;
1176 break;
1178 if (!uptodate) {
1179 int sync_blocks = 0;
1180 sector_t s = r1_bio->sector;
1181 long sectors_to_go = r1_bio->sectors;
1182 /* make sure these bits doesn't get cleared. */
1183 do {
1184 bitmap_end_sync(mddev->bitmap, s,
1185 &sync_blocks, 1);
1186 s += sync_blocks;
1187 sectors_to_go -= sync_blocks;
1188 } while (sectors_to_go > 0);
1189 md_error(mddev, conf->mirrors[mirror].rdev);
1192 update_head_pos(mirror, r1_bio);
1194 if (atomic_dec_and_test(&r1_bio->remaining)) {
1195 md_done_sync(mddev, r1_bio->sectors, uptodate);
1196 put_buf(r1_bio);
1198 return 0;
1201 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1203 conf_t *conf = mddev_to_conf(mddev);
1204 int i;
1205 int disks = conf->raid_disks;
1206 struct bio *bio, *wbio;
1208 bio = r1_bio->bios[r1_bio->read_disk];
1211 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1212 /* We have read all readable devices. If we haven't
1213 * got the block, then there is no hope left.
1214 * If we have, then we want to do a comparison
1215 * and skip the write if everything is the same.
1216 * If any blocks failed to read, then we need to
1217 * attempt an over-write
1219 int primary;
1220 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1221 for (i=0; i<mddev->raid_disks; i++)
1222 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1223 md_error(mddev, conf->mirrors[i].rdev);
1225 md_done_sync(mddev, r1_bio->sectors, 1);
1226 put_buf(r1_bio);
1227 return;
1229 for (primary=0; primary<mddev->raid_disks; primary++)
1230 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1231 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1232 r1_bio->bios[primary]->bi_end_io = NULL;
1233 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1234 break;
1236 r1_bio->read_disk = primary;
1237 for (i=0; i<mddev->raid_disks; i++)
1238 if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1239 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1240 int j;
1241 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1242 struct bio *pbio = r1_bio->bios[primary];
1243 struct bio *sbio = r1_bio->bios[i];
1244 for (j = vcnt; j-- ; )
1245 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1246 page_address(sbio->bi_io_vec[j].bv_page),
1247 PAGE_SIZE))
1248 break;
1249 if (j >= 0)
1250 mddev->resync_mismatches += r1_bio->sectors;
1251 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1252 sbio->bi_end_io = NULL;
1253 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1254 } else {
1255 /* fixup the bio for reuse */
1256 sbio->bi_vcnt = vcnt;
1257 sbio->bi_size = r1_bio->sectors << 9;
1258 sbio->bi_idx = 0;
1259 sbio->bi_phys_segments = 0;
1260 sbio->bi_hw_segments = 0;
1261 sbio->bi_hw_front_size = 0;
1262 sbio->bi_hw_back_size = 0;
1263 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1264 sbio->bi_flags |= 1 << BIO_UPTODATE;
1265 sbio->bi_next = NULL;
1266 sbio->bi_sector = r1_bio->sector +
1267 conf->mirrors[i].rdev->data_offset;
1268 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1269 for (j = 0; j < vcnt ; j++)
1270 memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1271 page_address(pbio->bi_io_vec[j].bv_page),
1272 PAGE_SIZE);
1277 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1278 /* ouch - failed to read all of that.
1279 * Try some synchronous reads of other devices to get
1280 * good data, much like with normal read errors. Only
1281 * read into the pages we already have so we don't
1282 * need to re-issue the read request.
1283 * We don't need to freeze the array, because being in an
1284 * active sync request, there is no normal IO, and
1285 * no overlapping syncs.
1287 sector_t sect = r1_bio->sector;
1288 int sectors = r1_bio->sectors;
1289 int idx = 0;
1291 while(sectors) {
1292 int s = sectors;
1293 int d = r1_bio->read_disk;
1294 int success = 0;
1295 mdk_rdev_t *rdev;
1297 if (s > (PAGE_SIZE>>9))
1298 s = PAGE_SIZE >> 9;
1299 do {
1300 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1301 /* No rcu protection needed here devices
1302 * can only be removed when no resync is
1303 * active, and resync is currently active
1305 rdev = conf->mirrors[d].rdev;
1306 if (sync_page_io(rdev->bdev,
1307 sect + rdev->data_offset,
1308 s<<9,
1309 bio->bi_io_vec[idx].bv_page,
1310 READ)) {
1311 success = 1;
1312 break;
1315 d++;
1316 if (d == conf->raid_disks)
1317 d = 0;
1318 } while (!success && d != r1_bio->read_disk);
1320 if (success) {
1321 int start = d;
1322 /* write it back and re-read */
1323 set_bit(R1BIO_Uptodate, &r1_bio->state);
1324 while (d != r1_bio->read_disk) {
1325 if (d == 0)
1326 d = conf->raid_disks;
1327 d--;
1328 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1329 continue;
1330 rdev = conf->mirrors[d].rdev;
1331 atomic_add(s, &rdev->corrected_errors);
1332 if (sync_page_io(rdev->bdev,
1333 sect + rdev->data_offset,
1334 s<<9,
1335 bio->bi_io_vec[idx].bv_page,
1336 WRITE) == 0)
1337 md_error(mddev, rdev);
1339 d = start;
1340 while (d != r1_bio->read_disk) {
1341 if (d == 0)
1342 d = conf->raid_disks;
1343 d--;
1344 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1345 continue;
1346 rdev = conf->mirrors[d].rdev;
1347 if (sync_page_io(rdev->bdev,
1348 sect + rdev->data_offset,
1349 s<<9,
1350 bio->bi_io_vec[idx].bv_page,
1351 READ) == 0)
1352 md_error(mddev, rdev);
1354 } else {
1355 char b[BDEVNAME_SIZE];
1356 /* Cannot read from anywhere, array is toast */
1357 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1358 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1359 " for block %llu\n",
1360 bdevname(bio->bi_bdev,b),
1361 (unsigned long long)r1_bio->sector);
1362 md_done_sync(mddev, r1_bio->sectors, 0);
1363 put_buf(r1_bio);
1364 return;
1366 sectors -= s;
1367 sect += s;
1368 idx ++;
1373 * schedule writes
1375 atomic_set(&r1_bio->remaining, 1);
1376 for (i = 0; i < disks ; i++) {
1377 wbio = r1_bio->bios[i];
1378 if (wbio->bi_end_io == NULL ||
1379 (wbio->bi_end_io == end_sync_read &&
1380 (i == r1_bio->read_disk ||
1381 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1382 continue;
1384 wbio->bi_rw = WRITE;
1385 wbio->bi_end_io = end_sync_write;
1386 atomic_inc(&r1_bio->remaining);
1387 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1389 generic_make_request(wbio);
1392 if (atomic_dec_and_test(&r1_bio->remaining)) {
1393 /* if we're here, all write(s) have completed, so clean up */
1394 md_done_sync(mddev, r1_bio->sectors, 1);
1395 put_buf(r1_bio);
1400 * This is a kernel thread which:
1402 * 1. Retries failed read operations on working mirrors.
1403 * 2. Updates the raid superblock when problems encounter.
1404 * 3. Performs writes following reads for array syncronising.
1407 static void fix_read_error(conf_t *conf, int read_disk,
1408 sector_t sect, int sectors)
1410 mddev_t *mddev = conf->mddev;
1411 while(sectors) {
1412 int s = sectors;
1413 int d = read_disk;
1414 int success = 0;
1415 int start;
1416 mdk_rdev_t *rdev;
1418 if (s > (PAGE_SIZE>>9))
1419 s = PAGE_SIZE >> 9;
1421 do {
1422 /* Note: no rcu protection needed here
1423 * as this is synchronous in the raid1d thread
1424 * which is the thread that might remove
1425 * a device. If raid1d ever becomes multi-threaded....
1427 rdev = conf->mirrors[d].rdev;
1428 if (rdev &&
1429 test_bit(In_sync, &rdev->flags) &&
1430 sync_page_io(rdev->bdev,
1431 sect + rdev->data_offset,
1432 s<<9,
1433 conf->tmppage, READ))
1434 success = 1;
1435 else {
1436 d++;
1437 if (d == conf->raid_disks)
1438 d = 0;
1440 } while (!success && d != read_disk);
1442 if (!success) {
1443 /* Cannot read from anywhere -- bye bye array */
1444 md_error(mddev, conf->mirrors[read_disk].rdev);
1445 break;
1447 /* write it back and re-read */
1448 start = d;
1449 while (d != read_disk) {
1450 if (d==0)
1451 d = conf->raid_disks;
1452 d--;
1453 rdev = conf->mirrors[d].rdev;
1454 if (rdev &&
1455 test_bit(In_sync, &rdev->flags)) {
1456 if (sync_page_io(rdev->bdev,
1457 sect + rdev->data_offset,
1458 s<<9, conf->tmppage, WRITE)
1459 == 0)
1460 /* Well, this device is dead */
1461 md_error(mddev, rdev);
1464 d = start;
1465 while (d != read_disk) {
1466 char b[BDEVNAME_SIZE];
1467 if (d==0)
1468 d = conf->raid_disks;
1469 d--;
1470 rdev = conf->mirrors[d].rdev;
1471 if (rdev &&
1472 test_bit(In_sync, &rdev->flags)) {
1473 if (sync_page_io(rdev->bdev,
1474 sect + rdev->data_offset,
1475 s<<9, conf->tmppage, READ)
1476 == 0)
1477 /* Well, this device is dead */
1478 md_error(mddev, rdev);
1479 else {
1480 atomic_add(s, &rdev->corrected_errors);
1481 printk(KERN_INFO
1482 "raid1:%s: read error corrected "
1483 "(%d sectors at %llu on %s)\n",
1484 mdname(mddev), s,
1485 (unsigned long long)(sect +
1486 rdev->data_offset),
1487 bdevname(rdev->bdev, b));
1491 sectors -= s;
1492 sect += s;
1496 static void raid1d(mddev_t *mddev)
1498 r1bio_t *r1_bio;
1499 struct bio *bio;
1500 unsigned long flags;
1501 conf_t *conf = mddev_to_conf(mddev);
1502 struct list_head *head = &conf->retry_list;
1503 int unplug=0;
1504 mdk_rdev_t *rdev;
1506 md_check_recovery(mddev);
1508 for (;;) {
1509 char b[BDEVNAME_SIZE];
1510 spin_lock_irqsave(&conf->device_lock, flags);
1512 if (conf->pending_bio_list.head) {
1513 bio = bio_list_get(&conf->pending_bio_list);
1514 blk_remove_plug(mddev->queue);
1515 spin_unlock_irqrestore(&conf->device_lock, flags);
1516 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1517 if (bitmap_unplug(mddev->bitmap) != 0)
1518 printk("%s: bitmap file write failed!\n", mdname(mddev));
1520 while (bio) { /* submit pending writes */
1521 struct bio *next = bio->bi_next;
1522 bio->bi_next = NULL;
1523 generic_make_request(bio);
1524 bio = next;
1526 unplug = 1;
1528 continue;
1531 if (list_empty(head))
1532 break;
1533 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1534 list_del(head->prev);
1535 conf->nr_queued--;
1536 spin_unlock_irqrestore(&conf->device_lock, flags);
1538 mddev = r1_bio->mddev;
1539 conf = mddev_to_conf(mddev);
1540 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1541 sync_request_write(mddev, r1_bio);
1542 unplug = 1;
1543 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1544 /* some requests in the r1bio were BIO_RW_BARRIER
1545 * requests which failed with -EOPNOTSUPP. Hohumm..
1546 * Better resubmit without the barrier.
1547 * We know which devices to resubmit for, because
1548 * all others have had their bios[] entry cleared.
1549 * We already have a nr_pending reference on these rdevs.
1551 int i;
1552 const int do_sync = bio_sync(r1_bio->master_bio);
1553 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1554 clear_bit(R1BIO_Barrier, &r1_bio->state);
1555 for (i=0; i < conf->raid_disks; i++)
1556 if (r1_bio->bios[i])
1557 atomic_inc(&r1_bio->remaining);
1558 for (i=0; i < conf->raid_disks; i++)
1559 if (r1_bio->bios[i]) {
1560 struct bio_vec *bvec;
1561 int j;
1563 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1564 /* copy pages from the failed bio, as
1565 * this might be a write-behind device */
1566 __bio_for_each_segment(bvec, bio, j, 0)
1567 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1568 bio_put(r1_bio->bios[i]);
1569 bio->bi_sector = r1_bio->sector +
1570 conf->mirrors[i].rdev->data_offset;
1571 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1572 bio->bi_end_io = raid1_end_write_request;
1573 bio->bi_rw = WRITE | do_sync;
1574 bio->bi_private = r1_bio;
1575 r1_bio->bios[i] = bio;
1576 generic_make_request(bio);
1578 } else {
1579 int disk;
1581 /* we got a read error. Maybe the drive is bad. Maybe just
1582 * the block and we can fix it.
1583 * We freeze all other IO, and try reading the block from
1584 * other devices. When we find one, we re-write
1585 * and check it that fixes the read error.
1586 * This is all done synchronously while the array is
1587 * frozen
1589 if (mddev->ro == 0) {
1590 freeze_array(conf);
1591 fix_read_error(conf, r1_bio->read_disk,
1592 r1_bio->sector,
1593 r1_bio->sectors);
1594 unfreeze_array(conf);
1597 bio = r1_bio->bios[r1_bio->read_disk];
1598 if ((disk=read_balance(conf, r1_bio)) == -1) {
1599 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1600 " read error for block %llu\n",
1601 bdevname(bio->bi_bdev,b),
1602 (unsigned long long)r1_bio->sector);
1603 raid_end_bio_io(r1_bio);
1604 } else {
1605 const int do_sync = bio_sync(r1_bio->master_bio);
1606 r1_bio->bios[r1_bio->read_disk] =
1607 mddev->ro ? IO_BLOCKED : NULL;
1608 r1_bio->read_disk = disk;
1609 bio_put(bio);
1610 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1611 r1_bio->bios[r1_bio->read_disk] = bio;
1612 rdev = conf->mirrors[disk].rdev;
1613 if (printk_ratelimit())
1614 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1615 " another mirror\n",
1616 bdevname(rdev->bdev,b),
1617 (unsigned long long)r1_bio->sector);
1618 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1619 bio->bi_bdev = rdev->bdev;
1620 bio->bi_end_io = raid1_end_read_request;
1621 bio->bi_rw = READ | do_sync;
1622 bio->bi_private = r1_bio;
1623 unplug = 1;
1624 generic_make_request(bio);
1628 spin_unlock_irqrestore(&conf->device_lock, flags);
1629 if (unplug)
1630 unplug_slaves(mddev);
1634 static int init_resync(conf_t *conf)
1636 int buffs;
1638 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1639 BUG_ON(conf->r1buf_pool);
1640 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1641 conf->poolinfo);
1642 if (!conf->r1buf_pool)
1643 return -ENOMEM;
1644 conf->next_resync = 0;
1645 return 0;
1649 * perform a "sync" on one "block"
1651 * We need to make sure that no normal I/O request - particularly write
1652 * requests - conflict with active sync requests.
1654 * This is achieved by tracking pending requests and a 'barrier' concept
1655 * that can be installed to exclude normal IO requests.
1658 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1660 conf_t *conf = mddev_to_conf(mddev);
1661 r1bio_t *r1_bio;
1662 struct bio *bio;
1663 sector_t max_sector, nr_sectors;
1664 int disk = -1;
1665 int i;
1666 int wonly = -1;
1667 int write_targets = 0, read_targets = 0;
1668 int sync_blocks;
1669 int still_degraded = 0;
1671 if (!conf->r1buf_pool)
1674 printk("sync start - bitmap %p\n", mddev->bitmap);
1676 if (init_resync(conf))
1677 return 0;
1680 max_sector = mddev->size << 1;
1681 if (sector_nr >= max_sector) {
1682 /* If we aborted, we need to abort the
1683 * sync on the 'current' bitmap chunk (there will
1684 * only be one in raid1 resync.
1685 * We can find the current addess in mddev->curr_resync
1687 if (mddev->curr_resync < max_sector) /* aborted */
1688 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1689 &sync_blocks, 1);
1690 else /* completed sync */
1691 conf->fullsync = 0;
1693 bitmap_close_sync(mddev->bitmap);
1694 close_sync(conf);
1695 return 0;
1698 if (mddev->bitmap == NULL &&
1699 mddev->recovery_cp == MaxSector &&
1700 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1701 conf->fullsync == 0) {
1702 *skipped = 1;
1703 return max_sector - sector_nr;
1705 /* before building a request, check if we can skip these blocks..
1706 * This call the bitmap_start_sync doesn't actually record anything
1708 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1709 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1710 /* We can skip this block, and probably several more */
1711 *skipped = 1;
1712 return sync_blocks;
1715 * If there is non-resync activity waiting for a turn,
1716 * and resync is going fast enough,
1717 * then let it though before starting on this new sync request.
1719 if (!go_faster && conf->nr_waiting)
1720 msleep_interruptible(1000);
1722 raise_barrier(conf);
1724 conf->next_resync = sector_nr;
1726 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1727 rcu_read_lock();
1729 * If we get a correctably read error during resync or recovery,
1730 * we might want to read from a different device. So we
1731 * flag all drives that could conceivably be read from for READ,
1732 * and any others (which will be non-In_sync devices) for WRITE.
1733 * If a read fails, we try reading from something else for which READ
1734 * is OK.
1737 r1_bio->mddev = mddev;
1738 r1_bio->sector = sector_nr;
1739 r1_bio->state = 0;
1740 set_bit(R1BIO_IsSync, &r1_bio->state);
1742 for (i=0; i < conf->raid_disks; i++) {
1743 mdk_rdev_t *rdev;
1744 bio = r1_bio->bios[i];
1746 /* take from bio_init */
1747 bio->bi_next = NULL;
1748 bio->bi_flags |= 1 << BIO_UPTODATE;
1749 bio->bi_rw = READ;
1750 bio->bi_vcnt = 0;
1751 bio->bi_idx = 0;
1752 bio->bi_phys_segments = 0;
1753 bio->bi_hw_segments = 0;
1754 bio->bi_size = 0;
1755 bio->bi_end_io = NULL;
1756 bio->bi_private = NULL;
1758 rdev = rcu_dereference(conf->mirrors[i].rdev);
1759 if (rdev == NULL ||
1760 test_bit(Faulty, &rdev->flags)) {
1761 still_degraded = 1;
1762 continue;
1763 } else if (!test_bit(In_sync, &rdev->flags)) {
1764 bio->bi_rw = WRITE;
1765 bio->bi_end_io = end_sync_write;
1766 write_targets ++;
1767 } else {
1768 /* may need to read from here */
1769 bio->bi_rw = READ;
1770 bio->bi_end_io = end_sync_read;
1771 if (test_bit(WriteMostly, &rdev->flags)) {
1772 if (wonly < 0)
1773 wonly = i;
1774 } else {
1775 if (disk < 0)
1776 disk = i;
1778 read_targets++;
1780 atomic_inc(&rdev->nr_pending);
1781 bio->bi_sector = sector_nr + rdev->data_offset;
1782 bio->bi_bdev = rdev->bdev;
1783 bio->bi_private = r1_bio;
1785 rcu_read_unlock();
1786 if (disk < 0)
1787 disk = wonly;
1788 r1_bio->read_disk = disk;
1790 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1791 /* extra read targets are also write targets */
1792 write_targets += read_targets-1;
1794 if (write_targets == 0 || read_targets == 0) {
1795 /* There is nowhere to write, so all non-sync
1796 * drives must be failed - so we are finished
1798 sector_t rv = max_sector - sector_nr;
1799 *skipped = 1;
1800 put_buf(r1_bio);
1801 return rv;
1804 nr_sectors = 0;
1805 sync_blocks = 0;
1806 do {
1807 struct page *page;
1808 int len = PAGE_SIZE;
1809 if (sector_nr + (len>>9) > max_sector)
1810 len = (max_sector - sector_nr) << 9;
1811 if (len == 0)
1812 break;
1813 if (sync_blocks == 0) {
1814 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1815 &sync_blocks, still_degraded) &&
1816 !conf->fullsync &&
1817 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1818 break;
1819 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1820 if (len > (sync_blocks<<9))
1821 len = sync_blocks<<9;
1824 for (i=0 ; i < conf->raid_disks; i++) {
1825 bio = r1_bio->bios[i];
1826 if (bio->bi_end_io) {
1827 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1828 if (bio_add_page(bio, page, len, 0) == 0) {
1829 /* stop here */
1830 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1831 while (i > 0) {
1832 i--;
1833 bio = r1_bio->bios[i];
1834 if (bio->bi_end_io==NULL)
1835 continue;
1836 /* remove last page from this bio */
1837 bio->bi_vcnt--;
1838 bio->bi_size -= len;
1839 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1841 goto bio_full;
1845 nr_sectors += len>>9;
1846 sector_nr += len>>9;
1847 sync_blocks -= (len>>9);
1848 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1849 bio_full:
1850 r1_bio->sectors = nr_sectors;
1852 /* For a user-requested sync, we read all readable devices and do a
1853 * compare
1855 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1856 atomic_set(&r1_bio->remaining, read_targets);
1857 for (i=0; i<conf->raid_disks; i++) {
1858 bio = r1_bio->bios[i];
1859 if (bio->bi_end_io == end_sync_read) {
1860 md_sync_acct(bio->bi_bdev, nr_sectors);
1861 generic_make_request(bio);
1864 } else {
1865 atomic_set(&r1_bio->remaining, 1);
1866 bio = r1_bio->bios[r1_bio->read_disk];
1867 md_sync_acct(bio->bi_bdev, nr_sectors);
1868 generic_make_request(bio);
1871 return nr_sectors;
1874 static int run(mddev_t *mddev)
1876 conf_t *conf;
1877 int i, j, disk_idx;
1878 mirror_info_t *disk;
1879 mdk_rdev_t *rdev;
1880 struct list_head *tmp;
1882 if (mddev->level != 1) {
1883 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1884 mdname(mddev), mddev->level);
1885 goto out;
1887 if (mddev->reshape_position != MaxSector) {
1888 printk("raid1: %s: reshape_position set but not supported\n",
1889 mdname(mddev));
1890 goto out;
1893 * copy the already verified devices into our private RAID1
1894 * bookkeeping area. [whatever we allocate in run(),
1895 * should be freed in stop()]
1897 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1898 mddev->private = conf;
1899 if (!conf)
1900 goto out_no_mem;
1902 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1903 GFP_KERNEL);
1904 if (!conf->mirrors)
1905 goto out_no_mem;
1907 conf->tmppage = alloc_page(GFP_KERNEL);
1908 if (!conf->tmppage)
1909 goto out_no_mem;
1911 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1912 if (!conf->poolinfo)
1913 goto out_no_mem;
1914 conf->poolinfo->mddev = mddev;
1915 conf->poolinfo->raid_disks = mddev->raid_disks;
1916 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1917 r1bio_pool_free,
1918 conf->poolinfo);
1919 if (!conf->r1bio_pool)
1920 goto out_no_mem;
1922 ITERATE_RDEV(mddev, rdev, tmp) {
1923 disk_idx = rdev->raid_disk;
1924 if (disk_idx >= mddev->raid_disks
1925 || disk_idx < 0)
1926 continue;
1927 disk = conf->mirrors + disk_idx;
1929 disk->rdev = rdev;
1931 blk_queue_stack_limits(mddev->queue,
1932 rdev->bdev->bd_disk->queue);
1933 /* as we don't honour merge_bvec_fn, we must never risk
1934 * violating it, so limit ->max_sector to one PAGE, as
1935 * a one page request is never in violation.
1937 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1938 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1939 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1941 disk->head_position = 0;
1943 conf->raid_disks = mddev->raid_disks;
1944 conf->mddev = mddev;
1945 spin_lock_init(&conf->device_lock);
1946 INIT_LIST_HEAD(&conf->retry_list);
1948 spin_lock_init(&conf->resync_lock);
1949 init_waitqueue_head(&conf->wait_barrier);
1951 bio_list_init(&conf->pending_bio_list);
1952 bio_list_init(&conf->flushing_bio_list);
1955 mddev->degraded = 0;
1956 for (i = 0; i < conf->raid_disks; i++) {
1958 disk = conf->mirrors + i;
1960 if (!disk->rdev ||
1961 !test_bit(In_sync, &disk->rdev->flags)) {
1962 disk->head_position = 0;
1963 mddev->degraded++;
1964 conf->fullsync = 1;
1967 if (mddev->degraded == conf->raid_disks) {
1968 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1969 mdname(mddev));
1970 goto out_free_conf;
1972 if (conf->raid_disks - mddev->degraded == 1)
1973 mddev->recovery_cp = MaxSector;
1976 * find the first working one and use it as a starting point
1977 * to read balancing.
1979 for (j = 0; j < conf->raid_disks &&
1980 (!conf->mirrors[j].rdev ||
1981 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1982 /* nothing */;
1983 conf->last_used = j;
1986 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1987 if (!mddev->thread) {
1988 printk(KERN_ERR
1989 "raid1: couldn't allocate thread for %s\n",
1990 mdname(mddev));
1991 goto out_free_conf;
1994 printk(KERN_INFO
1995 "raid1: raid set %s active with %d out of %d mirrors\n",
1996 mdname(mddev), mddev->raid_disks - mddev->degraded,
1997 mddev->raid_disks);
1999 * Ok, everything is just fine now
2001 mddev->array_size = mddev->size;
2003 mddev->queue->unplug_fn = raid1_unplug;
2004 mddev->queue->issue_flush_fn = raid1_issue_flush;
2005 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2006 mddev->queue->backing_dev_info.congested_data = mddev;
2008 return 0;
2010 out_no_mem:
2011 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2012 mdname(mddev));
2014 out_free_conf:
2015 if (conf) {
2016 if (conf->r1bio_pool)
2017 mempool_destroy(conf->r1bio_pool);
2018 kfree(conf->mirrors);
2019 safe_put_page(conf->tmppage);
2020 kfree(conf->poolinfo);
2021 kfree(conf);
2022 mddev->private = NULL;
2024 out:
2025 return -EIO;
2028 static int stop(mddev_t *mddev)
2030 conf_t *conf = mddev_to_conf(mddev);
2031 struct bitmap *bitmap = mddev->bitmap;
2032 int behind_wait = 0;
2034 /* wait for behind writes to complete */
2035 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2036 behind_wait++;
2037 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2038 set_current_state(TASK_UNINTERRUPTIBLE);
2039 schedule_timeout(HZ); /* wait a second */
2040 /* need to kick something here to make sure I/O goes? */
2043 md_unregister_thread(mddev->thread);
2044 mddev->thread = NULL;
2045 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2046 if (conf->r1bio_pool)
2047 mempool_destroy(conf->r1bio_pool);
2048 kfree(conf->mirrors);
2049 kfree(conf->poolinfo);
2050 kfree(conf);
2051 mddev->private = NULL;
2052 return 0;
2055 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2057 /* no resync is happening, and there is enough space
2058 * on all devices, so we can resize.
2059 * We need to make sure resync covers any new space.
2060 * If the array is shrinking we should possibly wait until
2061 * any io in the removed space completes, but it hardly seems
2062 * worth it.
2064 mddev->array_size = sectors>>1;
2065 set_capacity(mddev->gendisk, mddev->array_size << 1);
2066 mddev->changed = 1;
2067 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2068 mddev->recovery_cp = mddev->size << 1;
2069 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2071 mddev->size = mddev->array_size;
2072 mddev->resync_max_sectors = sectors;
2073 return 0;
2076 static int raid1_reshape(mddev_t *mddev)
2078 /* We need to:
2079 * 1/ resize the r1bio_pool
2080 * 2/ resize conf->mirrors
2082 * We allocate a new r1bio_pool if we can.
2083 * Then raise a device barrier and wait until all IO stops.
2084 * Then resize conf->mirrors and swap in the new r1bio pool.
2086 * At the same time, we "pack" the devices so that all the missing
2087 * devices have the higher raid_disk numbers.
2089 mempool_t *newpool, *oldpool;
2090 struct pool_info *newpoolinfo;
2091 mirror_info_t *newmirrors;
2092 conf_t *conf = mddev_to_conf(mddev);
2093 int cnt, raid_disks;
2094 unsigned long flags;
2095 int d, d2;
2097 /* Cannot change chunk_size, layout, or level */
2098 if (mddev->chunk_size != mddev->new_chunk ||
2099 mddev->layout != mddev->new_layout ||
2100 mddev->level != mddev->new_level) {
2101 mddev->new_chunk = mddev->chunk_size;
2102 mddev->new_layout = mddev->layout;
2103 mddev->new_level = mddev->level;
2104 return -EINVAL;
2107 md_allow_write(mddev);
2109 raid_disks = mddev->raid_disks + mddev->delta_disks;
2111 if (raid_disks < conf->raid_disks) {
2112 cnt=0;
2113 for (d= 0; d < conf->raid_disks; d++)
2114 if (conf->mirrors[d].rdev)
2115 cnt++;
2116 if (cnt > raid_disks)
2117 return -EBUSY;
2120 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2121 if (!newpoolinfo)
2122 return -ENOMEM;
2123 newpoolinfo->mddev = mddev;
2124 newpoolinfo->raid_disks = raid_disks;
2126 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2127 r1bio_pool_free, newpoolinfo);
2128 if (!newpool) {
2129 kfree(newpoolinfo);
2130 return -ENOMEM;
2132 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2133 if (!newmirrors) {
2134 kfree(newpoolinfo);
2135 mempool_destroy(newpool);
2136 return -ENOMEM;
2139 raise_barrier(conf);
2141 /* ok, everything is stopped */
2142 oldpool = conf->r1bio_pool;
2143 conf->r1bio_pool = newpool;
2145 for (d=d2=0; d < conf->raid_disks; d++)
2146 if (conf->mirrors[d].rdev) {
2147 conf->mirrors[d].rdev->raid_disk = d2;
2148 newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2150 kfree(conf->mirrors);
2151 conf->mirrors = newmirrors;
2152 kfree(conf->poolinfo);
2153 conf->poolinfo = newpoolinfo;
2155 spin_lock_irqsave(&conf->device_lock, flags);
2156 mddev->degraded += (raid_disks - conf->raid_disks);
2157 spin_unlock_irqrestore(&conf->device_lock, flags);
2158 conf->raid_disks = mddev->raid_disks = raid_disks;
2159 mddev->delta_disks = 0;
2161 conf->last_used = 0; /* just make sure it is in-range */
2162 lower_barrier(conf);
2164 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2165 md_wakeup_thread(mddev->thread);
2167 mempool_destroy(oldpool);
2168 return 0;
2171 static void raid1_quiesce(mddev_t *mddev, int state)
2173 conf_t *conf = mddev_to_conf(mddev);
2175 switch(state) {
2176 case 1:
2177 raise_barrier(conf);
2178 break;
2179 case 0:
2180 lower_barrier(conf);
2181 break;
2186 static struct mdk_personality raid1_personality =
2188 .name = "raid1",
2189 .level = 1,
2190 .owner = THIS_MODULE,
2191 .make_request = make_request,
2192 .run = run,
2193 .stop = stop,
2194 .status = status,
2195 .error_handler = error,
2196 .hot_add_disk = raid1_add_disk,
2197 .hot_remove_disk= raid1_remove_disk,
2198 .spare_active = raid1_spare_active,
2199 .sync_request = sync_request,
2200 .resize = raid1_resize,
2201 .check_reshape = raid1_reshape,
2202 .quiesce = raid1_quiesce,
2205 static int __init raid_init(void)
2207 return register_md_personality(&raid1_personality);
2210 static void raid_exit(void)
2212 unregister_md_personality(&raid1_personality);
2215 module_init(raid_init);
2216 module_exit(raid_exit);
2217 MODULE_LICENSE("GPL");
2218 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2219 MODULE_ALIAS("md-raid1");
2220 MODULE_ALIAS("md-level-1");