Linux 2.6.21
[linux/fpc-iii.git] / drivers / mtd / chips / cfi_cmdset_0002.c
blob1f6445840461a844b51b869473001171105ba8d3
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
18 * This code is GPL
20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <asm/io.h>
30 #include <asm/byteorder.h>
32 #include <linux/errno.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/interrupt.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
45 #define MAX_WORD_RETRIES 3
47 #define MANUFACTURER_AMD 0x0001
48 #define MANUFACTURER_ATMEL 0x001F
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF040B 0x0050
52 #define SST49LF008A 0x005a
53 #define AT49BV6416 0x00d6
55 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_amdstd_sync (struct mtd_info *);
61 static int cfi_amdstd_suspend (struct mtd_info *);
62 static void cfi_amdstd_resume (struct mtd_info *);
63 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static void cfi_amdstd_destroy(struct mtd_info *);
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
85 /* #define DEBUG_CFI_FEATURES */
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 printk(" Address sensitive unlock: %s\n",
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 extp->VppMin >> 4, extp->VppMin & 0xf);
128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 extp->VppMax >> 4, extp->VppMax & 0xf);
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
136 #endif
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
150 if (cfi->id & 0x80) {
151 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
152 extp->TopBottom = 3; /* top boot */
153 } else {
154 extp->TopBottom = 2; /* bottom boot */
158 #endif
160 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
162 struct map_info *map = mtd->priv;
163 struct cfi_private *cfi = map->fldrv_priv;
164 if (cfi->cfiq->BufWriteTimeoutTyp) {
165 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
166 mtd->write = cfi_amdstd_write_buffers;
170 /* Atmel chips don't use the same PRI format as AMD chips */
171 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
173 struct map_info *map = mtd->priv;
174 struct cfi_private *cfi = map->fldrv_priv;
175 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
176 struct cfi_pri_atmel atmel_pri;
178 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
179 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
181 if (atmel_pri.Features & 0x02)
182 extp->EraseSuspend = 2;
184 if (atmel_pri.BottomBoot)
185 extp->TopBottom = 2;
186 else
187 extp->TopBottom = 3;
190 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
192 /* Setup for chips with a secsi area */
193 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
194 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
197 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
199 struct map_info *map = mtd->priv;
200 struct cfi_private *cfi = map->fldrv_priv;
201 if ((cfi->cfiq->NumEraseRegions == 1) &&
202 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
203 mtd->erase = cfi_amdstd_erase_chip;
209 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
210 * locked by default.
212 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
214 mtd->lock = cfi_atmel_lock;
215 mtd->unlock = cfi_atmel_unlock;
216 mtd->flags |= MTD_STUPID_LOCK;
219 static struct cfi_fixup cfi_fixup_table[] = {
220 #ifdef AMD_BOOTLOC_BUG
221 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
222 #endif
223 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
224 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
225 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
226 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
227 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
228 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
229 #if !FORCE_WORD_WRITE
230 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
231 #endif
232 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
233 { 0, 0, NULL, NULL }
235 static struct cfi_fixup jedec_fixup_table[] = {
236 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
237 { MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
238 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
239 { 0, 0, NULL, NULL }
242 static struct cfi_fixup fixup_table[] = {
243 /* The CFI vendor ids and the JEDEC vendor IDs appear
244 * to be common. It is like the devices id's are as
245 * well. This table is to pick all cases where
246 * we know that is the case.
248 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
249 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
250 { 0, 0, NULL, NULL }
254 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
256 struct cfi_private *cfi = map->fldrv_priv;
257 struct mtd_info *mtd;
258 int i;
260 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
261 if (!mtd) {
262 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
263 return NULL;
265 mtd->priv = map;
266 mtd->type = MTD_NORFLASH;
268 /* Fill in the default mtd operations */
269 mtd->erase = cfi_amdstd_erase_varsize;
270 mtd->write = cfi_amdstd_write_words;
271 mtd->read = cfi_amdstd_read;
272 mtd->sync = cfi_amdstd_sync;
273 mtd->suspend = cfi_amdstd_suspend;
274 mtd->resume = cfi_amdstd_resume;
275 mtd->flags = MTD_CAP_NORFLASH;
276 mtd->name = map->name;
277 mtd->writesize = 1;
279 if (cfi->cfi_mode==CFI_MODE_CFI){
280 unsigned char bootloc;
282 * It's a real CFI chip, not one for which the probe
283 * routine faked a CFI structure. So we read the feature
284 * table from it.
286 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
287 struct cfi_pri_amdstd *extp;
289 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
290 if (!extp) {
291 kfree(mtd);
292 return NULL;
295 if (extp->MajorVersion != '1' ||
296 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
297 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
298 "version %c.%c.\n", extp->MajorVersion,
299 extp->MinorVersion);
300 kfree(extp);
301 kfree(mtd);
302 return NULL;
305 /* Install our own private info structure */
306 cfi->cmdset_priv = extp;
308 /* Apply cfi device specific fixups */
309 cfi_fixup(mtd, cfi_fixup_table);
311 #ifdef DEBUG_CFI_FEATURES
312 /* Tell the user about it in lots of lovely detail */
313 cfi_tell_features(extp);
314 #endif
316 bootloc = extp->TopBottom;
317 if ((bootloc != 2) && (bootloc != 3)) {
318 printk(KERN_WARNING "%s: CFI does not contain boot "
319 "bank location. Assuming top.\n", map->name);
320 bootloc = 2;
323 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
324 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
326 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
327 int j = (cfi->cfiq->NumEraseRegions-1)-i;
328 __u32 swap;
330 swap = cfi->cfiq->EraseRegionInfo[i];
331 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
332 cfi->cfiq->EraseRegionInfo[j] = swap;
335 /* Set the default CFI lock/unlock addresses */
336 cfi->addr_unlock1 = 0x555;
337 cfi->addr_unlock2 = 0x2aa;
338 /* Modify the unlock address if we are in compatibility mode */
339 if ( /* x16 in x8 mode */
340 ((cfi->device_type == CFI_DEVICETYPE_X8) &&
341 (cfi->cfiq->InterfaceDesc == 2)) ||
342 /* x32 in x16 mode */
343 ((cfi->device_type == CFI_DEVICETYPE_X16) &&
344 (cfi->cfiq->InterfaceDesc == 4)))
346 cfi->addr_unlock1 = 0xaaa;
347 cfi->addr_unlock2 = 0x555;
350 } /* CFI mode */
351 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
352 /* Apply jedec specific fixups */
353 cfi_fixup(mtd, jedec_fixup_table);
355 /* Apply generic fixups */
356 cfi_fixup(mtd, fixup_table);
358 for (i=0; i< cfi->numchips; i++) {
359 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
360 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
361 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
362 cfi->chips[i].ref_point_counter = 0;
363 init_waitqueue_head(&(cfi->chips[i].wq));
366 map->fldrv = &cfi_amdstd_chipdrv;
368 return cfi_amdstd_setup(mtd);
370 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
372 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
374 struct map_info *map = mtd->priv;
375 struct cfi_private *cfi = map->fldrv_priv;
376 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
377 unsigned long offset = 0;
378 int i,j;
380 printk(KERN_NOTICE "number of %s chips: %d\n",
381 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
382 /* Select the correct geometry setup */
383 mtd->size = devsize * cfi->numchips;
385 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
386 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
387 * mtd->numeraseregions, GFP_KERNEL);
388 if (!mtd->eraseregions) {
389 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
390 goto setup_err;
393 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
394 unsigned long ernum, ersize;
395 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
396 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
398 if (mtd->erasesize < ersize) {
399 mtd->erasesize = ersize;
401 for (j=0; j<cfi->numchips; j++) {
402 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
403 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
404 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
406 offset += (ersize * ernum);
408 if (offset != devsize) {
409 /* Argh */
410 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
411 goto setup_err;
413 #if 0
414 // debug
415 for (i=0; i<mtd->numeraseregions;i++){
416 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
417 i,mtd->eraseregions[i].offset,
418 mtd->eraseregions[i].erasesize,
419 mtd->eraseregions[i].numblocks);
421 #endif
423 /* FIXME: erase-suspend-program is broken. See
424 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
425 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
427 __module_get(THIS_MODULE);
428 return mtd;
430 setup_err:
431 if(mtd) {
432 kfree(mtd->eraseregions);
433 kfree(mtd);
435 kfree(cfi->cmdset_priv);
436 kfree(cfi->cfiq);
437 return NULL;
441 * Return true if the chip is ready.
443 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
444 * non-suspended sector) and is indicated by no toggle bits toggling.
446 * Note that anything more complicated than checking if no bits are toggling
447 * (including checking DQ5 for an error status) is tricky to get working
448 * correctly and is therefore not done (particulary with interleaved chips
449 * as each chip must be checked independantly of the others).
451 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
453 map_word d, t;
455 d = map_read(map, addr);
456 t = map_read(map, addr);
458 return map_word_equal(map, d, t);
462 * Return true if the chip is ready and has the correct value.
464 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
465 * non-suspended sector) and it is indicated by no bits toggling.
467 * Error are indicated by toggling bits or bits held with the wrong value,
468 * or with bits toggling.
470 * Note that anything more complicated than checking if no bits are toggling
471 * (including checking DQ5 for an error status) is tricky to get working
472 * correctly and is therefore not done (particulary with interleaved chips
473 * as each chip must be checked independantly of the others).
476 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
478 map_word oldd, curd;
480 oldd = map_read(map, addr);
481 curd = map_read(map, addr);
483 return map_word_equal(map, oldd, curd) &&
484 map_word_equal(map, curd, expected);
487 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
489 DECLARE_WAITQUEUE(wait, current);
490 struct cfi_private *cfi = map->fldrv_priv;
491 unsigned long timeo;
492 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
494 resettime:
495 timeo = jiffies + HZ;
496 retry:
497 switch (chip->state) {
499 case FL_STATUS:
500 for (;;) {
501 if (chip_ready(map, adr))
502 break;
504 if (time_after(jiffies, timeo)) {
505 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
506 spin_unlock(chip->mutex);
507 return -EIO;
509 spin_unlock(chip->mutex);
510 cfi_udelay(1);
511 spin_lock(chip->mutex);
512 /* Someone else might have been playing with it. */
513 goto retry;
516 case FL_READY:
517 case FL_CFI_QUERY:
518 case FL_JEDEC_QUERY:
519 return 0;
521 case FL_ERASING:
522 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
523 goto sleep;
525 if (!( mode == FL_READY
526 || mode == FL_POINT
527 || !cfip
528 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
529 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
531 goto sleep;
533 /* We could check to see if we're trying to access the sector
534 * that is currently being erased. However, no user will try
535 * anything like that so we just wait for the timeout. */
537 /* Erase suspend */
538 /* It's harmless to issue the Erase-Suspend and Erase-Resume
539 * commands when the erase algorithm isn't in progress. */
540 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
541 chip->oldstate = FL_ERASING;
542 chip->state = FL_ERASE_SUSPENDING;
543 chip->erase_suspended = 1;
544 for (;;) {
545 if (chip_ready(map, adr))
546 break;
548 if (time_after(jiffies, timeo)) {
549 /* Should have suspended the erase by now.
550 * Send an Erase-Resume command as either
551 * there was an error (so leave the erase
552 * routine to recover from it) or we trying to
553 * use the erase-in-progress sector. */
554 map_write(map, CMD(0x30), chip->in_progress_block_addr);
555 chip->state = FL_ERASING;
556 chip->oldstate = FL_READY;
557 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
558 return -EIO;
561 spin_unlock(chip->mutex);
562 cfi_udelay(1);
563 spin_lock(chip->mutex);
564 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
565 So we can just loop here. */
567 chip->state = FL_READY;
568 return 0;
570 case FL_XIP_WHILE_ERASING:
571 if (mode != FL_READY && mode != FL_POINT &&
572 (!cfip || !(cfip->EraseSuspend&2)))
573 goto sleep;
574 chip->oldstate = chip->state;
575 chip->state = FL_READY;
576 return 0;
578 case FL_POINT:
579 /* Only if there's no operation suspended... */
580 if (mode == FL_READY && chip->oldstate == FL_READY)
581 return 0;
583 default:
584 sleep:
585 set_current_state(TASK_UNINTERRUPTIBLE);
586 add_wait_queue(&chip->wq, &wait);
587 spin_unlock(chip->mutex);
588 schedule();
589 remove_wait_queue(&chip->wq, &wait);
590 spin_lock(chip->mutex);
591 goto resettime;
596 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
598 struct cfi_private *cfi = map->fldrv_priv;
600 switch(chip->oldstate) {
601 case FL_ERASING:
602 chip->state = chip->oldstate;
603 map_write(map, CMD(0x30), chip->in_progress_block_addr);
604 chip->oldstate = FL_READY;
605 chip->state = FL_ERASING;
606 break;
608 case FL_XIP_WHILE_ERASING:
609 chip->state = chip->oldstate;
610 chip->oldstate = FL_READY;
611 break;
613 case FL_READY:
614 case FL_STATUS:
615 /* We should really make set_vpp() count, rather than doing this */
616 DISABLE_VPP(map);
617 break;
618 default:
619 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
621 wake_up(&chip->wq);
624 #ifdef CONFIG_MTD_XIP
627 * No interrupt what so ever can be serviced while the flash isn't in array
628 * mode. This is ensured by the xip_disable() and xip_enable() functions
629 * enclosing any code path where the flash is known not to be in array mode.
630 * And within a XIP disabled code path, only functions marked with __xipram
631 * may be called and nothing else (it's a good thing to inspect generated
632 * assembly to make sure inline functions were actually inlined and that gcc
633 * didn't emit calls to its own support functions). Also configuring MTD CFI
634 * support to a single buswidth and a single interleave is also recommended.
637 static void xip_disable(struct map_info *map, struct flchip *chip,
638 unsigned long adr)
640 /* TODO: chips with no XIP use should ignore and return */
641 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
642 local_irq_disable();
645 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
646 unsigned long adr)
648 struct cfi_private *cfi = map->fldrv_priv;
650 if (chip->state != FL_POINT && chip->state != FL_READY) {
651 map_write(map, CMD(0xf0), adr);
652 chip->state = FL_READY;
654 (void) map_read(map, adr);
655 xip_iprefetch();
656 local_irq_enable();
660 * When a delay is required for the flash operation to complete, the
661 * xip_udelay() function is polling for both the given timeout and pending
662 * (but still masked) hardware interrupts. Whenever there is an interrupt
663 * pending then the flash erase operation is suspended, array mode restored
664 * and interrupts unmasked. Task scheduling might also happen at that
665 * point. The CPU eventually returns from the interrupt or the call to
666 * schedule() and the suspended flash operation is resumed for the remaining
667 * of the delay period.
669 * Warning: this function _will_ fool interrupt latency tracing tools.
672 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
673 unsigned long adr, int usec)
675 struct cfi_private *cfi = map->fldrv_priv;
676 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
677 map_word status, OK = CMD(0x80);
678 unsigned long suspended, start = xip_currtime();
679 flstate_t oldstate;
681 do {
682 cpu_relax();
683 if (xip_irqpending() && extp &&
684 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
685 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
687 * Let's suspend the erase operation when supported.
688 * Note that we currently don't try to suspend
689 * interleaved chips if there is already another
690 * operation suspended (imagine what happens
691 * when one chip was already done with the current
692 * operation while another chip suspended it, then
693 * we resume the whole thing at once). Yes, it
694 * can happen!
696 map_write(map, CMD(0xb0), adr);
697 usec -= xip_elapsed_since(start);
698 suspended = xip_currtime();
699 do {
700 if (xip_elapsed_since(suspended) > 100000) {
702 * The chip doesn't want to suspend
703 * after waiting for 100 msecs.
704 * This is a critical error but there
705 * is not much we can do here.
707 return;
709 status = map_read(map, adr);
710 } while (!map_word_andequal(map, status, OK, OK));
712 /* Suspend succeeded */
713 oldstate = chip->state;
714 if (!map_word_bitsset(map, status, CMD(0x40)))
715 break;
716 chip->state = FL_XIP_WHILE_ERASING;
717 chip->erase_suspended = 1;
718 map_write(map, CMD(0xf0), adr);
719 (void) map_read(map, adr);
720 asm volatile (".rep 8; nop; .endr");
721 local_irq_enable();
722 spin_unlock(chip->mutex);
723 asm volatile (".rep 8; nop; .endr");
724 cond_resched();
727 * We're back. However someone else might have
728 * decided to go write to the chip if we are in
729 * a suspended erase state. If so let's wait
730 * until it's done.
732 spin_lock(chip->mutex);
733 while (chip->state != FL_XIP_WHILE_ERASING) {
734 DECLARE_WAITQUEUE(wait, current);
735 set_current_state(TASK_UNINTERRUPTIBLE);
736 add_wait_queue(&chip->wq, &wait);
737 spin_unlock(chip->mutex);
738 schedule();
739 remove_wait_queue(&chip->wq, &wait);
740 spin_lock(chip->mutex);
742 /* Disallow XIP again */
743 local_irq_disable();
745 /* Resume the write or erase operation */
746 map_write(map, CMD(0x30), adr);
747 chip->state = oldstate;
748 start = xip_currtime();
749 } else if (usec >= 1000000/HZ) {
751 * Try to save on CPU power when waiting delay
752 * is at least a system timer tick period.
753 * No need to be extremely accurate here.
755 xip_cpu_idle();
757 status = map_read(map, adr);
758 } while (!map_word_andequal(map, status, OK, OK)
759 && xip_elapsed_since(start) < usec);
762 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
765 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
766 * the flash is actively programming or erasing since we have to poll for
767 * the operation to complete anyway. We can't do that in a generic way with
768 * a XIP setup so do it before the actual flash operation in this case
769 * and stub it out from INVALIDATE_CACHE_UDELAY.
771 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
772 INVALIDATE_CACHED_RANGE(map, from, size)
774 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
775 UDELAY(map, chip, adr, usec)
778 * Extra notes:
780 * Activating this XIP support changes the way the code works a bit. For
781 * example the code to suspend the current process when concurrent access
782 * happens is never executed because xip_udelay() will always return with the
783 * same chip state as it was entered with. This is why there is no care for
784 * the presence of add_wait_queue() or schedule() calls from within a couple
785 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
786 * The queueing and scheduling are always happening within xip_udelay().
788 * Similarly, get_chip() and put_chip() just happen to always be executed
789 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
790 * is in array mode, therefore never executing many cases therein and not
791 * causing any problem with XIP.
794 #else
796 #define xip_disable(map, chip, adr)
797 #define xip_enable(map, chip, adr)
798 #define XIP_INVAL_CACHED_RANGE(x...)
800 #define UDELAY(map, chip, adr, usec) \
801 do { \
802 spin_unlock(chip->mutex); \
803 cfi_udelay(usec); \
804 spin_lock(chip->mutex); \
805 } while (0)
807 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
808 do { \
809 spin_unlock(chip->mutex); \
810 INVALIDATE_CACHED_RANGE(map, adr, len); \
811 cfi_udelay(usec); \
812 spin_lock(chip->mutex); \
813 } while (0)
815 #endif
817 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
819 unsigned long cmd_addr;
820 struct cfi_private *cfi = map->fldrv_priv;
821 int ret;
823 adr += chip->start;
825 /* Ensure cmd read/writes are aligned. */
826 cmd_addr = adr & ~(map_bankwidth(map)-1);
828 spin_lock(chip->mutex);
829 ret = get_chip(map, chip, cmd_addr, FL_READY);
830 if (ret) {
831 spin_unlock(chip->mutex);
832 return ret;
835 if (chip->state != FL_POINT && chip->state != FL_READY) {
836 map_write(map, CMD(0xf0), cmd_addr);
837 chip->state = FL_READY;
840 map_copy_from(map, buf, adr, len);
842 put_chip(map, chip, cmd_addr);
844 spin_unlock(chip->mutex);
845 return 0;
849 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
851 struct map_info *map = mtd->priv;
852 struct cfi_private *cfi = map->fldrv_priv;
853 unsigned long ofs;
854 int chipnum;
855 int ret = 0;
857 /* ofs: offset within the first chip that the first read should start */
859 chipnum = (from >> cfi->chipshift);
860 ofs = from - (chipnum << cfi->chipshift);
863 *retlen = 0;
865 while (len) {
866 unsigned long thislen;
868 if (chipnum >= cfi->numchips)
869 break;
871 if ((len + ofs -1) >> cfi->chipshift)
872 thislen = (1<<cfi->chipshift) - ofs;
873 else
874 thislen = len;
876 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
877 if (ret)
878 break;
880 *retlen += thislen;
881 len -= thislen;
882 buf += thislen;
884 ofs = 0;
885 chipnum++;
887 return ret;
891 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
893 DECLARE_WAITQUEUE(wait, current);
894 unsigned long timeo = jiffies + HZ;
895 struct cfi_private *cfi = map->fldrv_priv;
897 retry:
898 spin_lock(chip->mutex);
900 if (chip->state != FL_READY){
901 #if 0
902 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
903 #endif
904 set_current_state(TASK_UNINTERRUPTIBLE);
905 add_wait_queue(&chip->wq, &wait);
907 spin_unlock(chip->mutex);
909 schedule();
910 remove_wait_queue(&chip->wq, &wait);
911 #if 0
912 if(signal_pending(current))
913 return -EINTR;
914 #endif
915 timeo = jiffies + HZ;
917 goto retry;
920 adr += chip->start;
922 chip->state = FL_READY;
924 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
925 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
926 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
928 map_copy_from(map, buf, adr, len);
930 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
931 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
932 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
933 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
935 wake_up(&chip->wq);
936 spin_unlock(chip->mutex);
938 return 0;
941 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
943 struct map_info *map = mtd->priv;
944 struct cfi_private *cfi = map->fldrv_priv;
945 unsigned long ofs;
946 int chipnum;
947 int ret = 0;
950 /* ofs: offset within the first chip that the first read should start */
952 /* 8 secsi bytes per chip */
953 chipnum=from>>3;
954 ofs=from & 7;
957 *retlen = 0;
959 while (len) {
960 unsigned long thislen;
962 if (chipnum >= cfi->numchips)
963 break;
965 if ((len + ofs -1) >> 3)
966 thislen = (1<<3) - ofs;
967 else
968 thislen = len;
970 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
971 if (ret)
972 break;
974 *retlen += thislen;
975 len -= thislen;
976 buf += thislen;
978 ofs = 0;
979 chipnum++;
981 return ret;
985 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
987 struct cfi_private *cfi = map->fldrv_priv;
988 unsigned long timeo = jiffies + HZ;
990 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
991 * have a max write time of a few hundreds usec). However, we should
992 * use the maximum timeout value given by the chip at probe time
993 * instead. Unfortunately, struct flchip does have a field for
994 * maximum timeout, only for typical which can be far too short
995 * depending of the conditions. The ' + 1' is to avoid having a
996 * timeout of 0 jiffies if HZ is smaller than 1000.
998 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
999 int ret = 0;
1000 map_word oldd;
1001 int retry_cnt = 0;
1003 adr += chip->start;
1005 spin_lock(chip->mutex);
1006 ret = get_chip(map, chip, adr, FL_WRITING);
1007 if (ret) {
1008 spin_unlock(chip->mutex);
1009 return ret;
1012 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1013 __func__, adr, datum.x[0] );
1016 * Check for a NOP for the case when the datum to write is already
1017 * present - it saves time and works around buggy chips that corrupt
1018 * data at other locations when 0xff is written to a location that
1019 * already contains 0xff.
1021 oldd = map_read(map, adr);
1022 if (map_word_equal(map, oldd, datum)) {
1023 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1024 __func__);
1025 goto op_done;
1028 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1029 ENABLE_VPP(map);
1030 xip_disable(map, chip, adr);
1031 retry:
1032 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1033 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1034 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1035 map_write(map, datum, adr);
1036 chip->state = FL_WRITING;
1038 INVALIDATE_CACHE_UDELAY(map, chip,
1039 adr, map_bankwidth(map),
1040 chip->word_write_time);
1042 /* See comment above for timeout value. */
1043 timeo = jiffies + uWriteTimeout;
1044 for (;;) {
1045 if (chip->state != FL_WRITING) {
1046 /* Someone's suspended the write. Sleep */
1047 DECLARE_WAITQUEUE(wait, current);
1049 set_current_state(TASK_UNINTERRUPTIBLE);
1050 add_wait_queue(&chip->wq, &wait);
1051 spin_unlock(chip->mutex);
1052 schedule();
1053 remove_wait_queue(&chip->wq, &wait);
1054 timeo = jiffies + (HZ / 2); /* FIXME */
1055 spin_lock(chip->mutex);
1056 continue;
1059 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1060 xip_enable(map, chip, adr);
1061 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1062 xip_disable(map, chip, adr);
1063 break;
1066 if (chip_ready(map, adr))
1067 break;
1069 /* Latency issues. Drop the lock, wait a while and retry */
1070 UDELAY(map, chip, adr, 1);
1072 /* Did we succeed? */
1073 if (!chip_good(map, adr, datum)) {
1074 /* reset on all failures. */
1075 map_write( map, CMD(0xF0), chip->start );
1076 /* FIXME - should have reset delay before continuing */
1078 if (++retry_cnt <= MAX_WORD_RETRIES)
1079 goto retry;
1081 ret = -EIO;
1083 xip_enable(map, chip, adr);
1084 op_done:
1085 chip->state = FL_READY;
1086 put_chip(map, chip, adr);
1087 spin_unlock(chip->mutex);
1089 return ret;
1093 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1094 size_t *retlen, const u_char *buf)
1096 struct map_info *map = mtd->priv;
1097 struct cfi_private *cfi = map->fldrv_priv;
1098 int ret = 0;
1099 int chipnum;
1100 unsigned long ofs, chipstart;
1101 DECLARE_WAITQUEUE(wait, current);
1103 *retlen = 0;
1104 if (!len)
1105 return 0;
1107 chipnum = to >> cfi->chipshift;
1108 ofs = to - (chipnum << cfi->chipshift);
1109 chipstart = cfi->chips[chipnum].start;
1111 /* If it's not bus-aligned, do the first byte write */
1112 if (ofs & (map_bankwidth(map)-1)) {
1113 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1114 int i = ofs - bus_ofs;
1115 int n = 0;
1116 map_word tmp_buf;
1118 retry:
1119 spin_lock(cfi->chips[chipnum].mutex);
1121 if (cfi->chips[chipnum].state != FL_READY) {
1122 #if 0
1123 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1124 #endif
1125 set_current_state(TASK_UNINTERRUPTIBLE);
1126 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1128 spin_unlock(cfi->chips[chipnum].mutex);
1130 schedule();
1131 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1132 #if 0
1133 if(signal_pending(current))
1134 return -EINTR;
1135 #endif
1136 goto retry;
1139 /* Load 'tmp_buf' with old contents of flash */
1140 tmp_buf = map_read(map, bus_ofs+chipstart);
1142 spin_unlock(cfi->chips[chipnum].mutex);
1144 /* Number of bytes to copy from buffer */
1145 n = min_t(int, len, map_bankwidth(map)-i);
1147 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1149 ret = do_write_oneword(map, &cfi->chips[chipnum],
1150 bus_ofs, tmp_buf);
1151 if (ret)
1152 return ret;
1154 ofs += n;
1155 buf += n;
1156 (*retlen) += n;
1157 len -= n;
1159 if (ofs >> cfi->chipshift) {
1160 chipnum ++;
1161 ofs = 0;
1162 if (chipnum == cfi->numchips)
1163 return 0;
1167 /* We are now aligned, write as much as possible */
1168 while(len >= map_bankwidth(map)) {
1169 map_word datum;
1171 datum = map_word_load(map, buf);
1173 ret = do_write_oneword(map, &cfi->chips[chipnum],
1174 ofs, datum);
1175 if (ret)
1176 return ret;
1178 ofs += map_bankwidth(map);
1179 buf += map_bankwidth(map);
1180 (*retlen) += map_bankwidth(map);
1181 len -= map_bankwidth(map);
1183 if (ofs >> cfi->chipshift) {
1184 chipnum ++;
1185 ofs = 0;
1186 if (chipnum == cfi->numchips)
1187 return 0;
1188 chipstart = cfi->chips[chipnum].start;
1192 /* Write the trailing bytes if any */
1193 if (len & (map_bankwidth(map)-1)) {
1194 map_word tmp_buf;
1196 retry1:
1197 spin_lock(cfi->chips[chipnum].mutex);
1199 if (cfi->chips[chipnum].state != FL_READY) {
1200 #if 0
1201 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1202 #endif
1203 set_current_state(TASK_UNINTERRUPTIBLE);
1204 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1206 spin_unlock(cfi->chips[chipnum].mutex);
1208 schedule();
1209 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1210 #if 0
1211 if(signal_pending(current))
1212 return -EINTR;
1213 #endif
1214 goto retry1;
1217 tmp_buf = map_read(map, ofs + chipstart);
1219 spin_unlock(cfi->chips[chipnum].mutex);
1221 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1223 ret = do_write_oneword(map, &cfi->chips[chipnum],
1224 ofs, tmp_buf);
1225 if (ret)
1226 return ret;
1228 (*retlen) += len;
1231 return 0;
1236 * FIXME: interleaved mode not tested, and probably not supported!
1238 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1239 unsigned long adr, const u_char *buf,
1240 int len)
1242 struct cfi_private *cfi = map->fldrv_priv;
1243 unsigned long timeo = jiffies + HZ;
1244 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1245 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1246 int ret = -EIO;
1247 unsigned long cmd_adr;
1248 int z, words;
1249 map_word datum;
1251 adr += chip->start;
1252 cmd_adr = adr;
1254 spin_lock(chip->mutex);
1255 ret = get_chip(map, chip, adr, FL_WRITING);
1256 if (ret) {
1257 spin_unlock(chip->mutex);
1258 return ret;
1261 datum = map_word_load(map, buf);
1263 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1264 __func__, adr, datum.x[0] );
1266 XIP_INVAL_CACHED_RANGE(map, adr, len);
1267 ENABLE_VPP(map);
1268 xip_disable(map, chip, cmd_adr);
1270 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1271 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1272 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1274 /* Write Buffer Load */
1275 map_write(map, CMD(0x25), cmd_adr);
1277 chip->state = FL_WRITING_TO_BUFFER;
1279 /* Write length of data to come */
1280 words = len / map_bankwidth(map);
1281 map_write(map, CMD(words - 1), cmd_adr);
1282 /* Write data */
1283 z = 0;
1284 while(z < words * map_bankwidth(map)) {
1285 datum = map_word_load(map, buf);
1286 map_write(map, datum, adr + z);
1288 z += map_bankwidth(map);
1289 buf += map_bankwidth(map);
1291 z -= map_bankwidth(map);
1293 adr += z;
1295 /* Write Buffer Program Confirm: GO GO GO */
1296 map_write(map, CMD(0x29), cmd_adr);
1297 chip->state = FL_WRITING;
1299 INVALIDATE_CACHE_UDELAY(map, chip,
1300 adr, map_bankwidth(map),
1301 chip->word_write_time);
1303 timeo = jiffies + uWriteTimeout;
1305 for (;;) {
1306 if (chip->state != FL_WRITING) {
1307 /* Someone's suspended the write. Sleep */
1308 DECLARE_WAITQUEUE(wait, current);
1310 set_current_state(TASK_UNINTERRUPTIBLE);
1311 add_wait_queue(&chip->wq, &wait);
1312 spin_unlock(chip->mutex);
1313 schedule();
1314 remove_wait_queue(&chip->wq, &wait);
1315 timeo = jiffies + (HZ / 2); /* FIXME */
1316 spin_lock(chip->mutex);
1317 continue;
1320 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1321 break;
1323 if (chip_ready(map, adr)) {
1324 xip_enable(map, chip, adr);
1325 goto op_done;
1328 /* Latency issues. Drop the lock, wait a while and retry */
1329 UDELAY(map, chip, adr, 1);
1332 /* reset on all failures. */
1333 map_write( map, CMD(0xF0), chip->start );
1334 xip_enable(map, chip, adr);
1335 /* FIXME - should have reset delay before continuing */
1337 printk(KERN_WARNING "MTD %s(): software timeout\n",
1338 __func__ );
1340 ret = -EIO;
1341 op_done:
1342 chip->state = FL_READY;
1343 put_chip(map, chip, adr);
1344 spin_unlock(chip->mutex);
1346 return ret;
1350 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1351 size_t *retlen, const u_char *buf)
1353 struct map_info *map = mtd->priv;
1354 struct cfi_private *cfi = map->fldrv_priv;
1355 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1356 int ret = 0;
1357 int chipnum;
1358 unsigned long ofs;
1360 *retlen = 0;
1361 if (!len)
1362 return 0;
1364 chipnum = to >> cfi->chipshift;
1365 ofs = to - (chipnum << cfi->chipshift);
1367 /* If it's not bus-aligned, do the first word write */
1368 if (ofs & (map_bankwidth(map)-1)) {
1369 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1370 if (local_len > len)
1371 local_len = len;
1372 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1373 local_len, retlen, buf);
1374 if (ret)
1375 return ret;
1376 ofs += local_len;
1377 buf += local_len;
1378 len -= local_len;
1380 if (ofs >> cfi->chipshift) {
1381 chipnum ++;
1382 ofs = 0;
1383 if (chipnum == cfi->numchips)
1384 return 0;
1388 /* Write buffer is worth it only if more than one word to write... */
1389 while (len >= map_bankwidth(map) * 2) {
1390 /* We must not cross write block boundaries */
1391 int size = wbufsize - (ofs & (wbufsize-1));
1393 if (size > len)
1394 size = len;
1395 if (size % map_bankwidth(map))
1396 size -= size % map_bankwidth(map);
1398 ret = do_write_buffer(map, &cfi->chips[chipnum],
1399 ofs, buf, size);
1400 if (ret)
1401 return ret;
1403 ofs += size;
1404 buf += size;
1405 (*retlen) += size;
1406 len -= size;
1408 if (ofs >> cfi->chipshift) {
1409 chipnum ++;
1410 ofs = 0;
1411 if (chipnum == cfi->numchips)
1412 return 0;
1416 if (len) {
1417 size_t retlen_dregs = 0;
1419 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1420 len, &retlen_dregs, buf);
1422 *retlen += retlen_dregs;
1423 return ret;
1426 return 0;
1431 * Handle devices with one erase region, that only implement
1432 * the chip erase command.
1434 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1436 struct cfi_private *cfi = map->fldrv_priv;
1437 unsigned long timeo = jiffies + HZ;
1438 unsigned long int adr;
1439 DECLARE_WAITQUEUE(wait, current);
1440 int ret = 0;
1442 adr = cfi->addr_unlock1;
1444 spin_lock(chip->mutex);
1445 ret = get_chip(map, chip, adr, FL_WRITING);
1446 if (ret) {
1447 spin_unlock(chip->mutex);
1448 return ret;
1451 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1452 __func__, chip->start );
1454 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1455 ENABLE_VPP(map);
1456 xip_disable(map, chip, adr);
1458 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1459 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1460 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1461 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1462 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1463 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1465 chip->state = FL_ERASING;
1466 chip->erase_suspended = 0;
1467 chip->in_progress_block_addr = adr;
1469 INVALIDATE_CACHE_UDELAY(map, chip,
1470 adr, map->size,
1471 chip->erase_time*500);
1473 timeo = jiffies + (HZ*20);
1475 for (;;) {
1476 if (chip->state != FL_ERASING) {
1477 /* Someone's suspended the erase. Sleep */
1478 set_current_state(TASK_UNINTERRUPTIBLE);
1479 add_wait_queue(&chip->wq, &wait);
1480 spin_unlock(chip->mutex);
1481 schedule();
1482 remove_wait_queue(&chip->wq, &wait);
1483 spin_lock(chip->mutex);
1484 continue;
1486 if (chip->erase_suspended) {
1487 /* This erase was suspended and resumed.
1488 Adjust the timeout */
1489 timeo = jiffies + (HZ*20); /* FIXME */
1490 chip->erase_suspended = 0;
1493 if (chip_ready(map, adr))
1494 break;
1496 if (time_after(jiffies, timeo)) {
1497 printk(KERN_WARNING "MTD %s(): software timeout\n",
1498 __func__ );
1499 break;
1502 /* Latency issues. Drop the lock, wait a while and retry */
1503 UDELAY(map, chip, adr, 1000000/HZ);
1505 /* Did we succeed? */
1506 if (!chip_good(map, adr, map_word_ff(map))) {
1507 /* reset on all failures. */
1508 map_write( map, CMD(0xF0), chip->start );
1509 /* FIXME - should have reset delay before continuing */
1511 ret = -EIO;
1514 chip->state = FL_READY;
1515 xip_enable(map, chip, adr);
1516 put_chip(map, chip, adr);
1517 spin_unlock(chip->mutex);
1519 return ret;
1523 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1525 struct cfi_private *cfi = map->fldrv_priv;
1526 unsigned long timeo = jiffies + HZ;
1527 DECLARE_WAITQUEUE(wait, current);
1528 int ret = 0;
1530 adr += chip->start;
1532 spin_lock(chip->mutex);
1533 ret = get_chip(map, chip, adr, FL_ERASING);
1534 if (ret) {
1535 spin_unlock(chip->mutex);
1536 return ret;
1539 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1540 __func__, adr );
1542 XIP_INVAL_CACHED_RANGE(map, adr, len);
1543 ENABLE_VPP(map);
1544 xip_disable(map, chip, adr);
1546 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1547 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1548 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1549 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1550 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1551 map_write(map, CMD(0x30), adr);
1553 chip->state = FL_ERASING;
1554 chip->erase_suspended = 0;
1555 chip->in_progress_block_addr = adr;
1557 INVALIDATE_CACHE_UDELAY(map, chip,
1558 adr, len,
1559 chip->erase_time*500);
1561 timeo = jiffies + (HZ*20);
1563 for (;;) {
1564 if (chip->state != FL_ERASING) {
1565 /* Someone's suspended the erase. Sleep */
1566 set_current_state(TASK_UNINTERRUPTIBLE);
1567 add_wait_queue(&chip->wq, &wait);
1568 spin_unlock(chip->mutex);
1569 schedule();
1570 remove_wait_queue(&chip->wq, &wait);
1571 spin_lock(chip->mutex);
1572 continue;
1574 if (chip->erase_suspended) {
1575 /* This erase was suspended and resumed.
1576 Adjust the timeout */
1577 timeo = jiffies + (HZ*20); /* FIXME */
1578 chip->erase_suspended = 0;
1581 if (chip_ready(map, adr)) {
1582 xip_enable(map, chip, adr);
1583 break;
1586 if (time_after(jiffies, timeo)) {
1587 xip_enable(map, chip, adr);
1588 printk(KERN_WARNING "MTD %s(): software timeout\n",
1589 __func__ );
1590 break;
1593 /* Latency issues. Drop the lock, wait a while and retry */
1594 UDELAY(map, chip, adr, 1000000/HZ);
1596 /* Did we succeed? */
1597 if (!chip_good(map, adr, map_word_ff(map))) {
1598 /* reset on all failures. */
1599 map_write( map, CMD(0xF0), chip->start );
1600 /* FIXME - should have reset delay before continuing */
1602 ret = -EIO;
1605 chip->state = FL_READY;
1606 put_chip(map, chip, adr);
1607 spin_unlock(chip->mutex);
1608 return ret;
1612 int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1614 unsigned long ofs, len;
1615 int ret;
1617 ofs = instr->addr;
1618 len = instr->len;
1620 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1621 if (ret)
1622 return ret;
1624 instr->state = MTD_ERASE_DONE;
1625 mtd_erase_callback(instr);
1627 return 0;
1631 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1633 struct map_info *map = mtd->priv;
1634 struct cfi_private *cfi = map->fldrv_priv;
1635 int ret = 0;
1637 if (instr->addr != 0)
1638 return -EINVAL;
1640 if (instr->len != mtd->size)
1641 return -EINVAL;
1643 ret = do_erase_chip(map, &cfi->chips[0]);
1644 if (ret)
1645 return ret;
1647 instr->state = MTD_ERASE_DONE;
1648 mtd_erase_callback(instr);
1650 return 0;
1653 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1654 unsigned long adr, int len, void *thunk)
1656 struct cfi_private *cfi = map->fldrv_priv;
1657 int ret;
1659 spin_lock(chip->mutex);
1660 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1661 if (ret)
1662 goto out_unlock;
1663 chip->state = FL_LOCKING;
1665 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1666 __func__, adr, len);
1668 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1669 cfi->device_type, NULL);
1670 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1671 cfi->device_type, NULL);
1672 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1673 cfi->device_type, NULL);
1674 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1675 cfi->device_type, NULL);
1676 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1677 cfi->device_type, NULL);
1678 map_write(map, CMD(0x40), chip->start + adr);
1680 chip->state = FL_READY;
1681 put_chip(map, chip, adr + chip->start);
1682 ret = 0;
1684 out_unlock:
1685 spin_unlock(chip->mutex);
1686 return ret;
1689 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1690 unsigned long adr, int len, void *thunk)
1692 struct cfi_private *cfi = map->fldrv_priv;
1693 int ret;
1695 spin_lock(chip->mutex);
1696 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1697 if (ret)
1698 goto out_unlock;
1699 chip->state = FL_UNLOCKING;
1701 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1702 __func__, adr, len);
1704 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1705 cfi->device_type, NULL);
1706 map_write(map, CMD(0x70), adr);
1708 chip->state = FL_READY;
1709 put_chip(map, chip, adr + chip->start);
1710 ret = 0;
1712 out_unlock:
1713 spin_unlock(chip->mutex);
1714 return ret;
1717 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1719 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1722 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1724 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1728 static void cfi_amdstd_sync (struct mtd_info *mtd)
1730 struct map_info *map = mtd->priv;
1731 struct cfi_private *cfi = map->fldrv_priv;
1732 int i;
1733 struct flchip *chip;
1734 int ret = 0;
1735 DECLARE_WAITQUEUE(wait, current);
1737 for (i=0; !ret && i<cfi->numchips; i++) {
1738 chip = &cfi->chips[i];
1740 retry:
1741 spin_lock(chip->mutex);
1743 switch(chip->state) {
1744 case FL_READY:
1745 case FL_STATUS:
1746 case FL_CFI_QUERY:
1747 case FL_JEDEC_QUERY:
1748 chip->oldstate = chip->state;
1749 chip->state = FL_SYNCING;
1750 /* No need to wake_up() on this state change -
1751 * as the whole point is that nobody can do anything
1752 * with the chip now anyway.
1754 case FL_SYNCING:
1755 spin_unlock(chip->mutex);
1756 break;
1758 default:
1759 /* Not an idle state */
1760 add_wait_queue(&chip->wq, &wait);
1762 spin_unlock(chip->mutex);
1764 schedule();
1766 remove_wait_queue(&chip->wq, &wait);
1768 goto retry;
1772 /* Unlock the chips again */
1774 for (i--; i >=0; i--) {
1775 chip = &cfi->chips[i];
1777 spin_lock(chip->mutex);
1779 if (chip->state == FL_SYNCING) {
1780 chip->state = chip->oldstate;
1781 wake_up(&chip->wq);
1783 spin_unlock(chip->mutex);
1788 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1790 struct map_info *map = mtd->priv;
1791 struct cfi_private *cfi = map->fldrv_priv;
1792 int i;
1793 struct flchip *chip;
1794 int ret = 0;
1796 for (i=0; !ret && i<cfi->numchips; i++) {
1797 chip = &cfi->chips[i];
1799 spin_lock(chip->mutex);
1801 switch(chip->state) {
1802 case FL_READY:
1803 case FL_STATUS:
1804 case FL_CFI_QUERY:
1805 case FL_JEDEC_QUERY:
1806 chip->oldstate = chip->state;
1807 chip->state = FL_PM_SUSPENDED;
1808 /* No need to wake_up() on this state change -
1809 * as the whole point is that nobody can do anything
1810 * with the chip now anyway.
1812 case FL_PM_SUSPENDED:
1813 break;
1815 default:
1816 ret = -EAGAIN;
1817 break;
1819 spin_unlock(chip->mutex);
1822 /* Unlock the chips again */
1824 if (ret) {
1825 for (i--; i >=0; i--) {
1826 chip = &cfi->chips[i];
1828 spin_lock(chip->mutex);
1830 if (chip->state == FL_PM_SUSPENDED) {
1831 chip->state = chip->oldstate;
1832 wake_up(&chip->wq);
1834 spin_unlock(chip->mutex);
1838 return ret;
1842 static void cfi_amdstd_resume(struct mtd_info *mtd)
1844 struct map_info *map = mtd->priv;
1845 struct cfi_private *cfi = map->fldrv_priv;
1846 int i;
1847 struct flchip *chip;
1849 for (i=0; i<cfi->numchips; i++) {
1851 chip = &cfi->chips[i];
1853 spin_lock(chip->mutex);
1855 if (chip->state == FL_PM_SUSPENDED) {
1856 chip->state = FL_READY;
1857 map_write(map, CMD(0xF0), chip->start);
1858 wake_up(&chip->wq);
1860 else
1861 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1863 spin_unlock(chip->mutex);
1867 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1869 struct map_info *map = mtd->priv;
1870 struct cfi_private *cfi = map->fldrv_priv;
1872 kfree(cfi->cmdset_priv);
1873 kfree(cfi->cfiq);
1874 kfree(cfi);
1875 kfree(mtd->eraseregions);
1878 MODULE_LICENSE("GPL");
1879 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1880 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");