Linux 2.6.21
[linux/fpc-iii.git] / drivers / scsi / aacraid / aachba.c
blobd789e61bdc49f8cb1e6df119f93bcf8b4ec74b9a
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
43 #include "aacraid.h"
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
47 #define INQD_PDT_PROC 0x03 /* Processor device */
48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
57 * Sense codes
60 #define SENCODE_NO_SENSE 0x00
61 #define SENCODE_END_OF_DATA 0x00
62 #define SENCODE_BECOMING_READY 0x04
63 #define SENCODE_INIT_CMD_REQUIRED 0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
65 #define SENCODE_INVALID_COMMAND 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE 0x21
67 #define SENCODE_INVALID_CDB_FIELD 0x24
68 #define SENCODE_LUN_NOT_SUPPORTED 0x25
69 #define SENCODE_INVALID_PARAM_FIELD 0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
71 #define SENCODE_PARAM_VALUE_INVALID 0x26
72 #define SENCODE_RESET_OCCURRED 0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
80 #define SENCODE_OVERLAPPED_COMMAND 0x4E
83 * Additional sense codes
86 #define ASENCODE_NO_SENSE 0x00
87 #define ASENCODE_END_OF_DATA 0x05
88 #define ASENCODE_BECOMING_READY 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED 0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
91 #define ASENCODE_INVALID_COMMAND 0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
93 #define ASENCODE_INVALID_CDB_FIELD 0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
95 #define ASENCODE_INVALID_PARAM_FIELD 0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
97 #define ASENCODE_PARAM_VALUE_INVALID 0x02
98 #define ASENCODE_RESET_OCCURRED 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
106 #define ASENCODE_OVERLAPPED_COMMAND 0x00
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
113 /*------------------------------------------------------------------------------
114 * S T R U C T S / T Y P E D E F S
115 *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
119 u8 inqd_dtq; /* RMB | Device Type Qualifier */
120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
122 u8 inqd_len; /* Additional length (n-4) */
123 u8 inqd_pad1[2];/* Reserved - must be zero */
124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
125 u8 inqd_vid[8]; /* Vendor ID */
126 u8 inqd_pid[16];/* Product ID */
127 u8 inqd_prl[4]; /* Product Revision Level */
131 * M O D U L E G L O B A L S
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
143 * Non dasd selection is handled entirely in aachba now
146 static int nondasd = -1;
147 static int dacmode = -1;
149 static int commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
155 module_param(dacmode, int, S_IRUGO|S_IWUSR);
156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
157 module_param(commit, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
164 int numacb = -1;
165 module_param(numacb, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
168 int acbsize = -1;
169 module_param(acbsize, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
172 int expose_physicals = -1;
173 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
176 * aac_get_config_status - check the adapter configuration
177 * @common: adapter to query
179 * Query config status, and commit the configuration if needed.
181 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
183 int status = 0;
184 struct fib * fibptr;
186 if (!(fibptr = aac_fib_alloc(dev)))
187 return -ENOMEM;
189 aac_fib_init(fibptr);
191 struct aac_get_config_status *dinfo;
192 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
194 dinfo->command = cpu_to_le32(VM_ContainerConfig);
195 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
196 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
199 status = aac_fib_send(ContainerCommand,
200 fibptr,
201 sizeof (struct aac_get_config_status),
202 FsaNormal,
203 1, 1,
204 NULL, NULL);
205 if (status < 0 ) {
206 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
207 } else {
208 struct aac_get_config_status_resp *reply
209 = (struct aac_get_config_status_resp *) fib_data(fibptr);
210 dprintk((KERN_WARNING
211 "aac_get_config_status: response=%d status=%d action=%d\n",
212 le32_to_cpu(reply->response),
213 le32_to_cpu(reply->status),
214 le32_to_cpu(reply->data.action)));
215 if ((le32_to_cpu(reply->response) != ST_OK) ||
216 (le32_to_cpu(reply->status) != CT_OK) ||
217 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
218 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
219 status = -EINVAL;
222 aac_fib_complete(fibptr);
223 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
224 if (status >= 0) {
225 if ((commit == 1) || commit_flag) {
226 struct aac_commit_config * dinfo;
227 aac_fib_init(fibptr);
228 dinfo = (struct aac_commit_config *) fib_data(fibptr);
230 dinfo->command = cpu_to_le32(VM_ContainerConfig);
231 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
233 status = aac_fib_send(ContainerCommand,
234 fibptr,
235 sizeof (struct aac_commit_config),
236 FsaNormal,
237 1, 1,
238 NULL, NULL);
239 aac_fib_complete(fibptr);
240 } else if (commit == 0) {
241 printk(KERN_WARNING
242 "aac_get_config_status: Foreign device configurations are being ignored\n");
245 aac_fib_free(fibptr);
246 return status;
250 * aac_get_containers - list containers
251 * @common: adapter to probe
253 * Make a list of all containers on this controller
255 int aac_get_containers(struct aac_dev *dev)
257 struct fsa_dev_info *fsa_dev_ptr;
258 u32 index;
259 int status = 0;
260 struct fib * fibptr;
261 unsigned instance;
262 struct aac_get_container_count *dinfo;
263 struct aac_get_container_count_resp *dresp;
264 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
266 instance = dev->scsi_host_ptr->unique_id;
268 if (!(fibptr = aac_fib_alloc(dev)))
269 return -ENOMEM;
271 aac_fib_init(fibptr);
272 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
273 dinfo->command = cpu_to_le32(VM_ContainerConfig);
274 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
276 status = aac_fib_send(ContainerCommand,
277 fibptr,
278 sizeof (struct aac_get_container_count),
279 FsaNormal,
280 1, 1,
281 NULL, NULL);
282 if (status >= 0) {
283 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
284 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
285 aac_fib_complete(fibptr);
288 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
289 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
290 fsa_dev_ptr = kmalloc(
291 sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
292 if (!fsa_dev_ptr) {
293 aac_fib_free(fibptr);
294 return -ENOMEM;
296 memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
298 dev->fsa_dev = fsa_dev_ptr;
299 dev->maximum_num_containers = maximum_num_containers;
301 for (index = 0; index < dev->maximum_num_containers; index++) {
302 struct aac_query_mount *dinfo;
303 struct aac_mount *dresp;
305 fsa_dev_ptr[index].devname[0] = '\0';
307 aac_fib_init(fibptr);
308 dinfo = (struct aac_query_mount *) fib_data(fibptr);
310 dinfo->command = cpu_to_le32(VM_NameServe);
311 dinfo->count = cpu_to_le32(index);
312 dinfo->type = cpu_to_le32(FT_FILESYS);
314 status = aac_fib_send(ContainerCommand,
315 fibptr,
316 sizeof (struct aac_query_mount),
317 FsaNormal,
318 1, 1,
319 NULL, NULL);
320 if (status < 0 ) {
321 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
322 break;
324 dresp = (struct aac_mount *)fib_data(fibptr);
326 if ((le32_to_cpu(dresp->status) == ST_OK) &&
327 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
328 dinfo->command = cpu_to_le32(VM_NameServe64);
329 dinfo->count = cpu_to_le32(index);
330 dinfo->type = cpu_to_le32(FT_FILESYS);
332 if (aac_fib_send(ContainerCommand,
333 fibptr,
334 sizeof(struct aac_query_mount),
335 FsaNormal,
336 1, 1,
337 NULL, NULL) < 0)
338 continue;
339 } else
340 dresp->mnt[0].capacityhigh = 0;
342 dprintk ((KERN_DEBUG
343 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
344 (int)index, (int)le32_to_cpu(dresp->status),
345 (int)le32_to_cpu(dresp->mnt[0].vol),
346 (int)le32_to_cpu(dresp->mnt[0].state),
347 ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
348 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
349 if ((le32_to_cpu(dresp->status) == ST_OK) &&
350 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
351 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
352 fsa_dev_ptr[index].valid = 1;
353 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
354 fsa_dev_ptr[index].size
355 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
356 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
357 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
358 fsa_dev_ptr[index].ro = 1;
360 aac_fib_complete(fibptr);
362 * If there are no more containers, then stop asking.
364 if ((index + 1) >= le32_to_cpu(dresp->count)){
365 break;
368 aac_fib_free(fibptr);
369 return status;
372 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
374 void *buf;
375 unsigned int transfer_len;
376 struct scatterlist *sg = scsicmd->request_buffer;
378 if (scsicmd->use_sg) {
379 buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
380 transfer_len = min(sg->length, len + offset);
381 } else {
382 buf = scsicmd->request_buffer;
383 transfer_len = min(scsicmd->request_bufflen, len + offset);
386 memcpy(buf + offset, data, transfer_len - offset);
388 if (scsicmd->use_sg)
389 kunmap_atomic(buf - sg->offset, KM_IRQ0);
393 static void get_container_name_callback(void *context, struct fib * fibptr)
395 struct aac_get_name_resp * get_name_reply;
396 struct scsi_cmnd * scsicmd;
398 scsicmd = (struct scsi_cmnd *) context;
399 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
401 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
402 BUG_ON(fibptr == NULL);
404 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
405 /* Failure is irrelevant, using default value instead */
406 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
407 && (get_name_reply->data[0] != '\0')) {
408 char *sp = get_name_reply->data;
409 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
410 while (*sp == ' ')
411 ++sp;
412 if (*sp) {
413 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
414 int count = sizeof(d);
415 char *dp = d;
416 do {
417 *dp++ = (*sp) ? *sp++ : ' ';
418 } while (--count > 0);
419 aac_internal_transfer(scsicmd, d,
420 offsetof(struct inquiry_data, inqd_pid), sizeof(d));
424 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
426 aac_fib_complete(fibptr);
427 aac_fib_free(fibptr);
428 scsicmd->scsi_done(scsicmd);
432 * aac_get_container_name - get container name, none blocking.
434 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
436 int status;
437 struct aac_get_name *dinfo;
438 struct fib * cmd_fibcontext;
439 struct aac_dev * dev;
441 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
443 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
444 return -ENOMEM;
446 aac_fib_init(cmd_fibcontext);
447 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
449 dinfo->command = cpu_to_le32(VM_ContainerConfig);
450 dinfo->type = cpu_to_le32(CT_READ_NAME);
451 dinfo->cid = cpu_to_le32(cid);
452 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
454 status = aac_fib_send(ContainerCommand,
455 cmd_fibcontext,
456 sizeof (struct aac_get_name),
457 FsaNormal,
458 0, 1,
459 (fib_callback) get_container_name_callback,
460 (void *) scsicmd);
463 * Check that the command queued to the controller
465 if (status == -EINPROGRESS) {
466 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
467 return 0;
470 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
471 aac_fib_complete(cmd_fibcontext);
472 aac_fib_free(cmd_fibcontext);
473 return -1;
477 * aac_probe_container - query a logical volume
478 * @dev: device to query
479 * @cid: container identifier
481 * Queries the controller about the given volume. The volume information
482 * is updated in the struct fsa_dev_info structure rather than returned.
485 int aac_probe_container(struct aac_dev *dev, int cid)
487 struct fsa_dev_info *fsa_dev_ptr;
488 int status;
489 struct aac_query_mount *dinfo;
490 struct aac_mount *dresp;
491 struct fib * fibptr;
492 unsigned instance;
494 fsa_dev_ptr = dev->fsa_dev;
495 if (!fsa_dev_ptr)
496 return -ENOMEM;
497 instance = dev->scsi_host_ptr->unique_id;
499 if (!(fibptr = aac_fib_alloc(dev)))
500 return -ENOMEM;
502 aac_fib_init(fibptr);
504 dinfo = (struct aac_query_mount *)fib_data(fibptr);
506 dinfo->command = cpu_to_le32(VM_NameServe);
507 dinfo->count = cpu_to_le32(cid);
508 dinfo->type = cpu_to_le32(FT_FILESYS);
510 status = aac_fib_send(ContainerCommand,
511 fibptr,
512 sizeof(struct aac_query_mount),
513 FsaNormal,
514 1, 1,
515 NULL, NULL);
516 if (status < 0) {
517 printk(KERN_WARNING "aacraid: aac_probe_container query failed.\n");
518 goto error;
521 dresp = (struct aac_mount *) fib_data(fibptr);
523 if ((le32_to_cpu(dresp->status) == ST_OK) &&
524 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
525 dinfo->command = cpu_to_le32(VM_NameServe64);
526 dinfo->count = cpu_to_le32(cid);
527 dinfo->type = cpu_to_le32(FT_FILESYS);
529 if (aac_fib_send(ContainerCommand,
530 fibptr,
531 sizeof(struct aac_query_mount),
532 FsaNormal,
533 1, 1,
534 NULL, NULL) < 0)
535 goto error;
536 } else
537 dresp->mnt[0].capacityhigh = 0;
539 if ((le32_to_cpu(dresp->status) == ST_OK) &&
540 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
541 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
542 fsa_dev_ptr[cid].valid = 1;
543 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
544 fsa_dev_ptr[cid].size
545 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
546 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
547 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
548 fsa_dev_ptr[cid].ro = 1;
551 error:
552 aac_fib_complete(fibptr);
553 aac_fib_free(fibptr);
555 return status;
558 /* Local Structure to set SCSI inquiry data strings */
559 struct scsi_inq {
560 char vid[8]; /* Vendor ID */
561 char pid[16]; /* Product ID */
562 char prl[4]; /* Product Revision Level */
566 * InqStrCopy - string merge
567 * @a: string to copy from
568 * @b: string to copy to
570 * Copy a String from one location to another
571 * without copying \0
574 static void inqstrcpy(char *a, char *b)
577 while(*a != (char)0)
578 *b++ = *a++;
581 static char *container_types[] = {
582 "None",
583 "Volume",
584 "Mirror",
585 "Stripe",
586 "RAID5",
587 "SSRW",
588 "SSRO",
589 "Morph",
590 "Legacy",
591 "RAID4",
592 "RAID10",
593 "RAID00",
594 "V-MIRRORS",
595 "PSEUDO R4",
596 "RAID50",
597 "RAID5D",
598 "RAID5D0",
599 "RAID1E",
600 "RAID6",
601 "RAID60",
602 "Unknown"
607 /* Function: setinqstr
609 * Arguments: [1] pointer to void [1] int
611 * Purpose: Sets SCSI inquiry data strings for vendor, product
612 * and revision level. Allows strings to be set in platform dependant
613 * files instead of in OS dependant driver source.
616 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
618 struct scsi_inq *str;
620 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
621 memset(str, ' ', sizeof(*str));
623 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
624 char * cp = dev->supplement_adapter_info.AdapterTypeText;
625 int c = sizeof(str->vid);
626 while (*cp && *cp != ' ' && --c)
627 ++cp;
628 c = *cp;
629 *cp = '\0';
630 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
631 str->vid);
632 *cp = c;
633 while (*cp && *cp != ' ')
634 ++cp;
635 while (*cp == ' ')
636 ++cp;
637 /* last six chars reserved for vol type */
638 c = 0;
639 if (strlen(cp) > sizeof(str->pid)) {
640 c = cp[sizeof(str->pid)];
641 cp[sizeof(str->pid)] = '\0';
643 inqstrcpy (cp, str->pid);
644 if (c)
645 cp[sizeof(str->pid)] = c;
646 } else {
647 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
649 inqstrcpy (mp->vname, str->vid);
650 /* last six chars reserved for vol type */
651 inqstrcpy (mp->model, str->pid);
654 if (tindex < ARRAY_SIZE(container_types)){
655 char *findit = str->pid;
657 for ( ; *findit != ' '; findit++); /* walk till we find a space */
658 /* RAID is superfluous in the context of a RAID device */
659 if (memcmp(findit-4, "RAID", 4) == 0)
660 *(findit -= 4) = ' ';
661 if (((findit - str->pid) + strlen(container_types[tindex]))
662 < (sizeof(str->pid) + sizeof(str->prl)))
663 inqstrcpy (container_types[tindex], findit + 1);
665 inqstrcpy ("V1.0", str->prl);
668 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
669 u8 a_sense_code, u8 incorrect_length,
670 u8 bit_pointer, u16 field_pointer,
671 u32 residue)
673 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
674 sense_buf[1] = 0; /* Segment number, always zero */
676 if (incorrect_length) {
677 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
678 sense_buf[3] = BYTE3(residue);
679 sense_buf[4] = BYTE2(residue);
680 sense_buf[5] = BYTE1(residue);
681 sense_buf[6] = BYTE0(residue);
682 } else
683 sense_buf[2] = sense_key; /* Sense key */
685 if (sense_key == ILLEGAL_REQUEST)
686 sense_buf[7] = 10; /* Additional sense length */
687 else
688 sense_buf[7] = 6; /* Additional sense length */
690 sense_buf[12] = sense_code; /* Additional sense code */
691 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
692 if (sense_key == ILLEGAL_REQUEST) {
693 sense_buf[15] = 0;
695 if (sense_code == SENCODE_INVALID_PARAM_FIELD)
696 sense_buf[15] = 0x80;/* Std sense key specific field */
697 /* Illegal parameter is in the parameter block */
699 if (sense_code == SENCODE_INVALID_CDB_FIELD)
700 sense_buf[15] = 0xc0;/* Std sense key specific field */
701 /* Illegal parameter is in the CDB block */
702 sense_buf[15] |= bit_pointer;
703 sense_buf[16] = field_pointer >> 8; /* MSB */
704 sense_buf[17] = field_pointer; /* LSB */
708 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
710 if (lba & 0xffffffff00000000LL) {
711 int cid = scmd_id(cmd);
712 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
713 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
714 SAM_STAT_CHECK_CONDITION;
715 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
716 HARDWARE_ERROR,
717 SENCODE_INTERNAL_TARGET_FAILURE,
718 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
719 0, 0);
720 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
721 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
722 ? sizeof(cmd->sense_buffer)
723 : sizeof(dev->fsa_dev[cid].sense_data));
724 cmd->scsi_done(cmd);
725 return 1;
727 return 0;
730 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
732 return 0;
735 static void io_callback(void *context, struct fib * fibptr);
737 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
739 u16 fibsize;
740 struct aac_raw_io *readcmd;
741 aac_fib_init(fib);
742 readcmd = (struct aac_raw_io *) fib_data(fib);
743 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
744 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
745 readcmd->count = cpu_to_le32(count<<9);
746 readcmd->cid = cpu_to_le16(scmd_id(cmd));
747 readcmd->flags = cpu_to_le16(1);
748 readcmd->bpTotal = 0;
749 readcmd->bpComplete = 0;
751 aac_build_sgraw(cmd, &readcmd->sg);
752 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
753 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
755 * Now send the Fib to the adapter
757 return aac_fib_send(ContainerRawIo,
758 fib,
759 fibsize,
760 FsaNormal,
761 0, 1,
762 (fib_callback) io_callback,
763 (void *) cmd);
766 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
768 u16 fibsize;
769 struct aac_read64 *readcmd;
770 aac_fib_init(fib);
771 readcmd = (struct aac_read64 *) fib_data(fib);
772 readcmd->command = cpu_to_le32(VM_CtHostRead64);
773 readcmd->cid = cpu_to_le16(scmd_id(cmd));
774 readcmd->sector_count = cpu_to_le16(count);
775 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
776 readcmd->pad = 0;
777 readcmd->flags = 0;
779 aac_build_sg64(cmd, &readcmd->sg);
780 fibsize = sizeof(struct aac_read64) +
781 ((le32_to_cpu(readcmd->sg.count) - 1) *
782 sizeof (struct sgentry64));
783 BUG_ON (fibsize > (fib->dev->max_fib_size -
784 sizeof(struct aac_fibhdr)));
786 * Now send the Fib to the adapter
788 return aac_fib_send(ContainerCommand64,
789 fib,
790 fibsize,
791 FsaNormal,
792 0, 1,
793 (fib_callback) io_callback,
794 (void *) cmd);
797 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
799 u16 fibsize;
800 struct aac_read *readcmd;
801 aac_fib_init(fib);
802 readcmd = (struct aac_read *) fib_data(fib);
803 readcmd->command = cpu_to_le32(VM_CtBlockRead);
804 readcmd->cid = cpu_to_le16(scmd_id(cmd));
805 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
806 readcmd->count = cpu_to_le32(count * 512);
808 aac_build_sg(cmd, &readcmd->sg);
809 fibsize = sizeof(struct aac_read) +
810 ((le32_to_cpu(readcmd->sg.count) - 1) *
811 sizeof (struct sgentry));
812 BUG_ON (fibsize > (fib->dev->max_fib_size -
813 sizeof(struct aac_fibhdr)));
815 * Now send the Fib to the adapter
817 return aac_fib_send(ContainerCommand,
818 fib,
819 fibsize,
820 FsaNormal,
821 0, 1,
822 (fib_callback) io_callback,
823 (void *) cmd);
826 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
828 u16 fibsize;
829 struct aac_raw_io *writecmd;
830 aac_fib_init(fib);
831 writecmd = (struct aac_raw_io *) fib_data(fib);
832 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
833 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
834 writecmd->count = cpu_to_le32(count<<9);
835 writecmd->cid = cpu_to_le16(scmd_id(cmd));
836 writecmd->flags = 0;
837 writecmd->bpTotal = 0;
838 writecmd->bpComplete = 0;
840 aac_build_sgraw(cmd, &writecmd->sg);
841 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
842 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
844 * Now send the Fib to the adapter
846 return aac_fib_send(ContainerRawIo,
847 fib,
848 fibsize,
849 FsaNormal,
850 0, 1,
851 (fib_callback) io_callback,
852 (void *) cmd);
855 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
857 u16 fibsize;
858 struct aac_write64 *writecmd;
859 aac_fib_init(fib);
860 writecmd = (struct aac_write64 *) fib_data(fib);
861 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
862 writecmd->cid = cpu_to_le16(scmd_id(cmd));
863 writecmd->sector_count = cpu_to_le16(count);
864 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
865 writecmd->pad = 0;
866 writecmd->flags = 0;
868 aac_build_sg64(cmd, &writecmd->sg);
869 fibsize = sizeof(struct aac_write64) +
870 ((le32_to_cpu(writecmd->sg.count) - 1) *
871 sizeof (struct sgentry64));
872 BUG_ON (fibsize > (fib->dev->max_fib_size -
873 sizeof(struct aac_fibhdr)));
875 * Now send the Fib to the adapter
877 return aac_fib_send(ContainerCommand64,
878 fib,
879 fibsize,
880 FsaNormal,
881 0, 1,
882 (fib_callback) io_callback,
883 (void *) cmd);
886 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
888 u16 fibsize;
889 struct aac_write *writecmd;
890 aac_fib_init(fib);
891 writecmd = (struct aac_write *) fib_data(fib);
892 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
893 writecmd->cid = cpu_to_le16(scmd_id(cmd));
894 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
895 writecmd->count = cpu_to_le32(count * 512);
896 writecmd->sg.count = cpu_to_le32(1);
897 /* ->stable is not used - it did mean which type of write */
899 aac_build_sg(cmd, &writecmd->sg);
900 fibsize = sizeof(struct aac_write) +
901 ((le32_to_cpu(writecmd->sg.count) - 1) *
902 sizeof (struct sgentry));
903 BUG_ON (fibsize > (fib->dev->max_fib_size -
904 sizeof(struct aac_fibhdr)));
906 * Now send the Fib to the adapter
908 return aac_fib_send(ContainerCommand,
909 fib,
910 fibsize,
911 FsaNormal,
912 0, 1,
913 (fib_callback) io_callback,
914 (void *) cmd);
917 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
919 struct aac_srb * srbcmd;
920 u32 flag;
921 u32 timeout;
923 aac_fib_init(fib);
924 switch(cmd->sc_data_direction){
925 case DMA_TO_DEVICE:
926 flag = SRB_DataOut;
927 break;
928 case DMA_BIDIRECTIONAL:
929 flag = SRB_DataIn | SRB_DataOut;
930 break;
931 case DMA_FROM_DEVICE:
932 flag = SRB_DataIn;
933 break;
934 case DMA_NONE:
935 default: /* shuts up some versions of gcc */
936 flag = SRB_NoDataXfer;
937 break;
940 srbcmd = (struct aac_srb*) fib_data(fib);
941 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
942 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
943 srbcmd->id = cpu_to_le32(scmd_id(cmd));
944 srbcmd->lun = cpu_to_le32(cmd->device->lun);
945 srbcmd->flags = cpu_to_le32(flag);
946 timeout = cmd->timeout_per_command/HZ;
947 if (timeout == 0)
948 timeout = 1;
949 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
950 srbcmd->retry_limit = 0; /* Obsolete parameter */
951 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
952 return srbcmd;
955 static void aac_srb_callback(void *context, struct fib * fibptr);
957 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
959 u16 fibsize;
960 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
962 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
963 srbcmd->count = cpu_to_le32(cmd->request_bufflen);
965 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
966 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
968 * Build Scatter/Gather list
970 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
971 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
972 sizeof (struct sgentry64));
973 BUG_ON (fibsize > (fib->dev->max_fib_size -
974 sizeof(struct aac_fibhdr)));
977 * Now send the Fib to the adapter
979 return aac_fib_send(ScsiPortCommand64, fib,
980 fibsize, FsaNormal, 0, 1,
981 (fib_callback) aac_srb_callback,
982 (void *) cmd);
985 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
987 u16 fibsize;
988 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
990 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
991 srbcmd->count = cpu_to_le32(cmd->request_bufflen);
993 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
994 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
996 * Build Scatter/Gather list
998 fibsize = sizeof (struct aac_srb) +
999 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1000 sizeof (struct sgentry));
1001 BUG_ON (fibsize > (fib->dev->max_fib_size -
1002 sizeof(struct aac_fibhdr)));
1005 * Now send the Fib to the adapter
1007 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1008 (fib_callback) aac_srb_callback, (void *) cmd);
1011 int aac_get_adapter_info(struct aac_dev* dev)
1013 struct fib* fibptr;
1014 int rcode;
1015 u32 tmp;
1016 struct aac_adapter_info *info;
1017 struct aac_bus_info *command;
1018 struct aac_bus_info_response *bus_info;
1020 if (!(fibptr = aac_fib_alloc(dev)))
1021 return -ENOMEM;
1023 aac_fib_init(fibptr);
1024 info = (struct aac_adapter_info *) fib_data(fibptr);
1025 memset(info,0,sizeof(*info));
1027 rcode = aac_fib_send(RequestAdapterInfo,
1028 fibptr,
1029 sizeof(*info),
1030 FsaNormal,
1031 -1, 1, /* First `interrupt' command uses special wait */
1032 NULL,
1033 NULL);
1035 if (rcode < 0) {
1036 aac_fib_complete(fibptr);
1037 aac_fib_free(fibptr);
1038 return rcode;
1040 memcpy(&dev->adapter_info, info, sizeof(*info));
1042 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1043 struct aac_supplement_adapter_info * info;
1045 aac_fib_init(fibptr);
1047 info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1049 memset(info,0,sizeof(*info));
1051 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1052 fibptr,
1053 sizeof(*info),
1054 FsaNormal,
1055 1, 1,
1056 NULL,
1057 NULL);
1059 if (rcode >= 0)
1060 memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1065 * GetBusInfo
1068 aac_fib_init(fibptr);
1070 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1072 memset(bus_info, 0, sizeof(*bus_info));
1074 command = (struct aac_bus_info *)bus_info;
1076 command->Command = cpu_to_le32(VM_Ioctl);
1077 command->ObjType = cpu_to_le32(FT_DRIVE);
1078 command->MethodId = cpu_to_le32(1);
1079 command->CtlCmd = cpu_to_le32(GetBusInfo);
1081 rcode = aac_fib_send(ContainerCommand,
1082 fibptr,
1083 sizeof (*bus_info),
1084 FsaNormal,
1085 1, 1,
1086 NULL, NULL);
1088 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1089 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1090 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1093 if (!dev->in_reset) {
1094 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1095 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1096 dev->name,
1097 dev->id,
1098 tmp>>24,
1099 (tmp>>16)&0xff,
1100 tmp&0xff,
1101 le32_to_cpu(dev->adapter_info.kernelbuild),
1102 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1103 dev->supplement_adapter_info.BuildDate);
1104 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1105 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1106 dev->name, dev->id,
1107 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1108 le32_to_cpu(dev->adapter_info.monitorbuild));
1109 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1110 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1111 dev->name, dev->id,
1112 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1113 le32_to_cpu(dev->adapter_info.biosbuild));
1114 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1115 printk(KERN_INFO "%s%d: serial %x\n",
1116 dev->name, dev->id,
1117 le32_to_cpu(dev->adapter_info.serial[0]));
1120 dev->nondasd_support = 0;
1121 dev->raid_scsi_mode = 0;
1122 if(dev->adapter_info.options & AAC_OPT_NONDASD){
1123 dev->nondasd_support = 1;
1127 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1128 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1129 * force nondasd support on. If we decide to allow the non-dasd flag
1130 * additional changes changes will have to be made to support
1131 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1132 * changed to support the new dev->raid_scsi_mode flag instead of
1133 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1134 * function aac_detect will have to be modified where it sets up the
1135 * max number of channels based on the aac->nondasd_support flag only.
1137 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1138 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1139 dev->nondasd_support = 1;
1140 dev->raid_scsi_mode = 1;
1142 if (dev->raid_scsi_mode != 0)
1143 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1144 dev->name, dev->id);
1146 if(nondasd != -1) {
1147 dev->nondasd_support = (nondasd!=0);
1149 if(dev->nondasd_support != 0){
1150 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1153 dev->dac_support = 0;
1154 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1155 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1156 dev->dac_support = 1;
1159 if(dacmode != -1) {
1160 dev->dac_support = (dacmode!=0);
1162 if(dev->dac_support != 0) {
1163 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1164 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1165 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1166 dev->name, dev->id);
1167 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1168 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1169 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1170 dev->name, dev->id);
1171 dev->dac_support = 0;
1172 } else {
1173 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1174 dev->name, dev->id);
1175 rcode = -ENOMEM;
1179 * Deal with configuring for the individualized limits of each packet
1180 * interface.
1182 dev->a_ops.adapter_scsi = (dev->dac_support)
1183 ? aac_scsi_64
1184 : aac_scsi_32;
1185 if (dev->raw_io_interface) {
1186 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1187 ? aac_bounds_64
1188 : aac_bounds_32;
1189 dev->a_ops.adapter_read = aac_read_raw_io;
1190 dev->a_ops.adapter_write = aac_write_raw_io;
1191 } else {
1192 dev->a_ops.adapter_bounds = aac_bounds_32;
1193 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1194 sizeof(struct aac_fibhdr) -
1195 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1196 sizeof(struct sgentry);
1197 if (dev->dac_support) {
1198 dev->a_ops.adapter_read = aac_read_block64;
1199 dev->a_ops.adapter_write = aac_write_block64;
1201 * 38 scatter gather elements
1203 dev->scsi_host_ptr->sg_tablesize =
1204 (dev->max_fib_size -
1205 sizeof(struct aac_fibhdr) -
1206 sizeof(struct aac_write64) +
1207 sizeof(struct sgentry64)) /
1208 sizeof(struct sgentry64);
1209 } else {
1210 dev->a_ops.adapter_read = aac_read_block;
1211 dev->a_ops.adapter_write = aac_write_block;
1213 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1214 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1216 * Worst case size that could cause sg overflow when
1217 * we break up SG elements that are larger than 64KB.
1218 * Would be nice if we could tell the SCSI layer what
1219 * the maximum SG element size can be. Worst case is
1220 * (sg_tablesize-1) 4KB elements with one 64KB
1221 * element.
1222 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1224 dev->scsi_host_ptr->max_sectors =
1225 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1229 aac_fib_complete(fibptr);
1230 aac_fib_free(fibptr);
1232 return rcode;
1236 static void io_callback(void *context, struct fib * fibptr)
1238 struct aac_dev *dev;
1239 struct aac_read_reply *readreply;
1240 struct scsi_cmnd *scsicmd;
1241 u32 cid;
1243 scsicmd = (struct scsi_cmnd *) context;
1244 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
1246 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1247 cid = scmd_id(scsicmd);
1249 if (nblank(dprintk(x))) {
1250 u64 lba;
1251 switch (scsicmd->cmnd[0]) {
1252 case WRITE_6:
1253 case READ_6:
1254 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1255 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1256 break;
1257 case WRITE_16:
1258 case READ_16:
1259 lba = ((u64)scsicmd->cmnd[2] << 56) |
1260 ((u64)scsicmd->cmnd[3] << 48) |
1261 ((u64)scsicmd->cmnd[4] << 40) |
1262 ((u64)scsicmd->cmnd[5] << 32) |
1263 ((u64)scsicmd->cmnd[6] << 24) |
1264 (scsicmd->cmnd[7] << 16) |
1265 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1266 break;
1267 case WRITE_12:
1268 case READ_12:
1269 lba = ((u64)scsicmd->cmnd[2] << 24) |
1270 (scsicmd->cmnd[3] << 16) |
1271 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1272 break;
1273 default:
1274 lba = ((u64)scsicmd->cmnd[2] << 24) |
1275 (scsicmd->cmnd[3] << 16) |
1276 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1277 break;
1279 printk(KERN_DEBUG
1280 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1281 smp_processor_id(), (unsigned long long)lba, jiffies);
1284 BUG_ON(fibptr == NULL);
1286 if(scsicmd->use_sg)
1287 pci_unmap_sg(dev->pdev,
1288 (struct scatterlist *)scsicmd->request_buffer,
1289 scsicmd->use_sg,
1290 scsicmd->sc_data_direction);
1291 else if(scsicmd->request_bufflen)
1292 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
1293 scsicmd->request_bufflen,
1294 scsicmd->sc_data_direction);
1295 readreply = (struct aac_read_reply *)fib_data(fibptr);
1296 if (le32_to_cpu(readreply->status) == ST_OK)
1297 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1298 else {
1299 #ifdef AAC_DETAILED_STATUS_INFO
1300 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1301 le32_to_cpu(readreply->status));
1302 #endif
1303 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1304 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1305 HARDWARE_ERROR,
1306 SENCODE_INTERNAL_TARGET_FAILURE,
1307 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1308 0, 0);
1309 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1310 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1311 ? sizeof(scsicmd->sense_buffer)
1312 : sizeof(dev->fsa_dev[cid].sense_data));
1314 aac_fib_complete(fibptr);
1315 aac_fib_free(fibptr);
1317 scsicmd->scsi_done(scsicmd);
1320 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
1322 u64 lba;
1323 u32 count;
1324 int status;
1325 struct aac_dev *dev;
1326 struct fib * cmd_fibcontext;
1328 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1330 * Get block address and transfer length
1332 switch (scsicmd->cmnd[0]) {
1333 case READ_6:
1334 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
1336 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1337 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1338 count = scsicmd->cmnd[4];
1340 if (count == 0)
1341 count = 256;
1342 break;
1343 case READ_16:
1344 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));
1346 lba = ((u64)scsicmd->cmnd[2] << 56) |
1347 ((u64)scsicmd->cmnd[3] << 48) |
1348 ((u64)scsicmd->cmnd[4] << 40) |
1349 ((u64)scsicmd->cmnd[5] << 32) |
1350 ((u64)scsicmd->cmnd[6] << 24) |
1351 (scsicmd->cmnd[7] << 16) |
1352 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1353 count = (scsicmd->cmnd[10] << 24) |
1354 (scsicmd->cmnd[11] << 16) |
1355 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1356 break;
1357 case READ_12:
1358 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));
1360 lba = ((u64)scsicmd->cmnd[2] << 24) |
1361 (scsicmd->cmnd[3] << 16) |
1362 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1363 count = (scsicmd->cmnd[6] << 24) |
1364 (scsicmd->cmnd[7] << 16) |
1365 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1366 break;
1367 default:
1368 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
1370 lba = ((u64)scsicmd->cmnd[2] << 24) |
1371 (scsicmd->cmnd[3] << 16) |
1372 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1373 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1374 break;
1376 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1377 smp_processor_id(), (unsigned long long)lba, jiffies));
1378 if (aac_adapter_bounds(dev,scsicmd,lba))
1379 return 0;
1381 * Alocate and initialize a Fib
1383 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1384 return -1;
1387 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1390 * Check that the command queued to the controller
1392 if (status == -EINPROGRESS) {
1393 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1394 return 0;
1397 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1399 * For some reason, the Fib didn't queue, return QUEUE_FULL
1401 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1402 scsicmd->scsi_done(scsicmd);
1403 aac_fib_complete(cmd_fibcontext);
1404 aac_fib_free(cmd_fibcontext);
1405 return 0;
1408 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1410 u64 lba;
1411 u32 count;
1412 int status;
1413 struct aac_dev *dev;
1414 struct fib * cmd_fibcontext;
1416 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1418 * Get block address and transfer length
1420 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1422 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1423 count = scsicmd->cmnd[4];
1424 if (count == 0)
1425 count = 256;
1426 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1427 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));
1429 lba = ((u64)scsicmd->cmnd[2] << 56) |
1430 ((u64)scsicmd->cmnd[3] << 48) |
1431 ((u64)scsicmd->cmnd[4] << 40) |
1432 ((u64)scsicmd->cmnd[5] << 32) |
1433 ((u64)scsicmd->cmnd[6] << 24) |
1434 (scsicmd->cmnd[7] << 16) |
1435 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1436 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1437 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1438 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1439 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));
1441 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1442 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1443 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1444 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1445 } else {
1446 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1447 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1448 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1450 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1451 smp_processor_id(), (unsigned long long)lba, jiffies));
1452 if (aac_adapter_bounds(dev,scsicmd,lba))
1453 return 0;
1455 * Allocate and initialize a Fib then setup a BlockWrite command
1457 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1458 scsicmd->result = DID_ERROR << 16;
1459 scsicmd->scsi_done(scsicmd);
1460 return 0;
1463 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count);
1466 * Check that the command queued to the controller
1468 if (status == -EINPROGRESS) {
1469 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1470 return 0;
1473 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1475 * For some reason, the Fib didn't queue, return QUEUE_FULL
1477 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1478 scsicmd->scsi_done(scsicmd);
1480 aac_fib_complete(cmd_fibcontext);
1481 aac_fib_free(cmd_fibcontext);
1482 return 0;
1485 static void synchronize_callback(void *context, struct fib *fibptr)
1487 struct aac_synchronize_reply *synchronizereply;
1488 struct scsi_cmnd *cmd;
1490 cmd = context;
1491 cmd->SCp.phase = AAC_OWNER_MIDLEVEL;
1493 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1494 smp_processor_id(), jiffies));
1495 BUG_ON(fibptr == NULL);
1498 synchronizereply = fib_data(fibptr);
1499 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1500 cmd->result = DID_OK << 16 |
1501 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1502 else {
1503 struct scsi_device *sdev = cmd->device;
1504 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1505 u32 cid = sdev_id(sdev);
1506 printk(KERN_WARNING
1507 "synchronize_callback: synchronize failed, status = %d\n",
1508 le32_to_cpu(synchronizereply->status));
1509 cmd->result = DID_OK << 16 |
1510 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1511 set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1512 HARDWARE_ERROR,
1513 SENCODE_INTERNAL_TARGET_FAILURE,
1514 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1515 0, 0);
1516 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1517 min(sizeof(dev->fsa_dev[cid].sense_data),
1518 sizeof(cmd->sense_buffer)));
1521 aac_fib_complete(fibptr);
1522 aac_fib_free(fibptr);
1523 cmd->scsi_done(cmd);
1526 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1528 int status;
1529 struct fib *cmd_fibcontext;
1530 struct aac_synchronize *synchronizecmd;
1531 struct scsi_cmnd *cmd;
1532 struct scsi_device *sdev = scsicmd->device;
1533 int active = 0;
1534 struct aac_dev *aac;
1535 unsigned long flags;
1538 * Wait for all outstanding queued commands to complete to this
1539 * specific target (block).
1541 spin_lock_irqsave(&sdev->list_lock, flags);
1542 list_for_each_entry(cmd, &sdev->cmd_list, list)
1543 if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1544 ++active;
1545 break;
1548 spin_unlock_irqrestore(&sdev->list_lock, flags);
1551 * Yield the processor (requeue for later)
1553 if (active)
1554 return SCSI_MLQUEUE_DEVICE_BUSY;
1556 aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1557 if (aac->in_reset)
1558 return SCSI_MLQUEUE_HOST_BUSY;
1561 * Allocate and initialize a Fib
1563 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1564 return SCSI_MLQUEUE_HOST_BUSY;
1566 aac_fib_init(cmd_fibcontext);
1568 synchronizecmd = fib_data(cmd_fibcontext);
1569 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1570 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1571 synchronizecmd->cid = cpu_to_le32(cid);
1572 synchronizecmd->count =
1573 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1576 * Now send the Fib to the adapter
1578 status = aac_fib_send(ContainerCommand,
1579 cmd_fibcontext,
1580 sizeof(struct aac_synchronize),
1581 FsaNormal,
1582 0, 1,
1583 (fib_callback)synchronize_callback,
1584 (void *)scsicmd);
1587 * Check that the command queued to the controller
1589 if (status == -EINPROGRESS) {
1590 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1591 return 0;
1594 printk(KERN_WARNING
1595 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1596 aac_fib_complete(cmd_fibcontext);
1597 aac_fib_free(cmd_fibcontext);
1598 return SCSI_MLQUEUE_HOST_BUSY;
1602 * aac_scsi_cmd() - Process SCSI command
1603 * @scsicmd: SCSI command block
1605 * Emulate a SCSI command and queue the required request for the
1606 * aacraid firmware.
1609 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1611 u32 cid = 0;
1612 struct Scsi_Host *host = scsicmd->device->host;
1613 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1614 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1616 if (fsa_dev_ptr == NULL)
1617 return -1;
1619 * If the bus, id or lun is out of range, return fail
1620 * Test does not apply to ID 16, the pseudo id for the controller
1621 * itself.
1623 if (scmd_id(scsicmd) != host->this_id) {
1624 if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) {
1625 if((scmd_id(scsicmd) >= dev->maximum_num_containers) ||
1626 (scsicmd->device->lun != 0)) {
1627 scsicmd->result = DID_NO_CONNECT << 16;
1628 scsicmd->scsi_done(scsicmd);
1629 return 0;
1631 cid = scmd_id(scsicmd);
1634 * If the target container doesn't exist, it may have
1635 * been newly created
1637 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1638 switch (scsicmd->cmnd[0]) {
1639 case SERVICE_ACTION_IN:
1640 if (!(dev->raw_io_interface) ||
1641 !(dev->raw_io_64) ||
1642 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1643 break;
1644 case INQUIRY:
1645 case READ_CAPACITY:
1646 case TEST_UNIT_READY:
1647 if (dev->in_reset)
1648 return -1;
1649 spin_unlock_irq(host->host_lock);
1650 aac_probe_container(dev, cid);
1651 if ((fsa_dev_ptr[cid].valid & 1) == 0)
1652 fsa_dev_ptr[cid].valid = 0;
1653 spin_lock_irq(host->host_lock);
1654 if (fsa_dev_ptr[cid].valid == 0) {
1655 scsicmd->result = DID_NO_CONNECT << 16;
1656 scsicmd->scsi_done(scsicmd);
1657 return 0;
1659 default:
1660 break;
1664 * If the target container still doesn't exist,
1665 * return failure
1667 if (fsa_dev_ptr[cid].valid == 0) {
1668 scsicmd->result = DID_BAD_TARGET << 16;
1669 scsicmd->scsi_done(scsicmd);
1670 return 0;
1672 } else { /* check for physical non-dasd devices */
1673 if ((dev->nondasd_support == 1) || expose_physicals) {
1674 if (dev->in_reset)
1675 return -1;
1676 return aac_send_srb_fib(scsicmd);
1677 } else {
1678 scsicmd->result = DID_NO_CONNECT << 16;
1679 scsicmd->scsi_done(scsicmd);
1680 return 0;
1685 * else Command for the controller itself
1687 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
1688 (scsicmd->cmnd[0] != TEST_UNIT_READY))
1690 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1691 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1692 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1693 ILLEGAL_REQUEST,
1694 SENCODE_INVALID_COMMAND,
1695 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1696 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1697 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1698 ? sizeof(scsicmd->sense_buffer)
1699 : sizeof(dev->fsa_dev[cid].sense_data));
1700 scsicmd->scsi_done(scsicmd);
1701 return 0;
1705 /* Handle commands here that don't really require going out to the adapter */
1706 switch (scsicmd->cmnd[0]) {
1707 case INQUIRY:
1709 struct inquiry_data inq_data;
1711 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd)));
1712 memset(&inq_data, 0, sizeof (struct inquiry_data));
1714 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
1715 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1716 inq_data.inqd_len = 31;
1717 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
1718 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
1720 * Set the Vendor, Product, and Revision Level
1721 * see: <vendor>.c i.e. aac.c
1723 if (scmd_id(scsicmd) == host->this_id) {
1724 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1725 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
1726 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1727 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1728 scsicmd->scsi_done(scsicmd);
1729 return 0;
1731 if (dev->in_reset)
1732 return -1;
1733 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1734 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
1735 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1736 return aac_get_container_name(scsicmd, cid);
1738 case SERVICE_ACTION_IN:
1739 if (!(dev->raw_io_interface) ||
1740 !(dev->raw_io_64) ||
1741 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1742 break;
1744 u64 capacity;
1745 char cp[13];
1747 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1748 capacity = fsa_dev_ptr[cid].size - 1;
1749 cp[0] = (capacity >> 56) & 0xff;
1750 cp[1] = (capacity >> 48) & 0xff;
1751 cp[2] = (capacity >> 40) & 0xff;
1752 cp[3] = (capacity >> 32) & 0xff;
1753 cp[4] = (capacity >> 24) & 0xff;
1754 cp[5] = (capacity >> 16) & 0xff;
1755 cp[6] = (capacity >> 8) & 0xff;
1756 cp[7] = (capacity >> 0) & 0xff;
1757 cp[8] = 0;
1758 cp[9] = 0;
1759 cp[10] = 2;
1760 cp[11] = 0;
1761 cp[12] = 0;
1762 aac_internal_transfer(scsicmd, cp, 0,
1763 min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1764 if (sizeof(cp) < scsicmd->cmnd[13]) {
1765 unsigned int len, offset = sizeof(cp);
1767 memset(cp, 0, offset);
1768 do {
1769 len = min_t(size_t, scsicmd->cmnd[13] - offset,
1770 sizeof(cp));
1771 aac_internal_transfer(scsicmd, cp, offset, len);
1772 } while ((offset += len) < scsicmd->cmnd[13]);
1775 /* Do not cache partition table for arrays */
1776 scsicmd->device->removable = 1;
1778 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1779 scsicmd->scsi_done(scsicmd);
1781 return 0;
1784 case READ_CAPACITY:
1786 u32 capacity;
1787 char cp[8];
1789 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1790 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1791 capacity = fsa_dev_ptr[cid].size - 1;
1792 else
1793 capacity = (u32)-1;
1795 cp[0] = (capacity >> 24) & 0xff;
1796 cp[1] = (capacity >> 16) & 0xff;
1797 cp[2] = (capacity >> 8) & 0xff;
1798 cp[3] = (capacity >> 0) & 0xff;
1799 cp[4] = 0;
1800 cp[5] = 0;
1801 cp[6] = 2;
1802 cp[7] = 0;
1803 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1804 /* Do not cache partition table for arrays */
1805 scsicmd->device->removable = 1;
1807 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1808 scsicmd->scsi_done(scsicmd);
1810 return 0;
1813 case MODE_SENSE:
1815 char mode_buf[4];
1817 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1818 mode_buf[0] = 3; /* Mode data length */
1819 mode_buf[1] = 0; /* Medium type - default */
1820 mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
1821 mode_buf[3] = 0; /* Block descriptor length */
1823 aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1824 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1825 scsicmd->scsi_done(scsicmd);
1827 return 0;
1829 case MODE_SENSE_10:
1831 char mode_buf[8];
1833 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1834 mode_buf[0] = 0; /* Mode data length (MSB) */
1835 mode_buf[1] = 6; /* Mode data length (LSB) */
1836 mode_buf[2] = 0; /* Medium type - default */
1837 mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
1838 mode_buf[4] = 0; /* reserved */
1839 mode_buf[5] = 0; /* reserved */
1840 mode_buf[6] = 0; /* Block descriptor length (MSB) */
1841 mode_buf[7] = 0; /* Block descriptor length (LSB) */
1842 aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1844 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1845 scsicmd->scsi_done(scsicmd);
1847 return 0;
1849 case REQUEST_SENSE:
1850 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1851 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1852 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1853 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1854 scsicmd->scsi_done(scsicmd);
1855 return 0;
1857 case ALLOW_MEDIUM_REMOVAL:
1858 dprintk((KERN_DEBUG "LOCK command.\n"));
1859 if (scsicmd->cmnd[4])
1860 fsa_dev_ptr[cid].locked = 1;
1861 else
1862 fsa_dev_ptr[cid].locked = 0;
1864 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1865 scsicmd->scsi_done(scsicmd);
1866 return 0;
1868 * These commands are all No-Ops
1870 case TEST_UNIT_READY:
1871 case RESERVE:
1872 case RELEASE:
1873 case REZERO_UNIT:
1874 case REASSIGN_BLOCKS:
1875 case SEEK_10:
1876 case START_STOP:
1877 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1878 scsicmd->scsi_done(scsicmd);
1879 return 0;
1882 switch (scsicmd->cmnd[0])
1884 case READ_6:
1885 case READ_10:
1886 case READ_12:
1887 case READ_16:
1888 if (dev->in_reset)
1889 return -1;
1891 * Hack to keep track of ordinal number of the device that
1892 * corresponds to a container. Needed to convert
1893 * containers to /dev/sd device names
1896 if (scsicmd->request->rq_disk)
1897 strlcpy(fsa_dev_ptr[cid].devname,
1898 scsicmd->request->rq_disk->disk_name,
1899 min(sizeof(fsa_dev_ptr[cid].devname),
1900 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1902 return aac_read(scsicmd, cid);
1904 case WRITE_6:
1905 case WRITE_10:
1906 case WRITE_12:
1907 case WRITE_16:
1908 if (dev->in_reset)
1909 return -1;
1910 return aac_write(scsicmd, cid);
1912 case SYNCHRONIZE_CACHE:
1913 /* Issue FIB to tell Firmware to flush it's cache */
1914 return aac_synchronize(scsicmd, cid);
1916 default:
1918 * Unhandled commands
1920 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1921 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1922 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1923 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1924 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1925 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1926 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1927 ? sizeof(scsicmd->sense_buffer)
1928 : sizeof(dev->fsa_dev[cid].sense_data));
1929 scsicmd->scsi_done(scsicmd);
1930 return 0;
1934 static int query_disk(struct aac_dev *dev, void __user *arg)
1936 struct aac_query_disk qd;
1937 struct fsa_dev_info *fsa_dev_ptr;
1939 fsa_dev_ptr = dev->fsa_dev;
1940 if (!fsa_dev_ptr)
1941 return -EBUSY;
1942 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1943 return -EFAULT;
1944 if (qd.cnum == -1)
1945 qd.cnum = qd.id;
1946 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1948 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1949 return -EINVAL;
1950 qd.instance = dev->scsi_host_ptr->host_no;
1951 qd.bus = 0;
1952 qd.id = CONTAINER_TO_ID(qd.cnum);
1953 qd.lun = CONTAINER_TO_LUN(qd.cnum);
1955 else return -EINVAL;
1957 qd.valid = fsa_dev_ptr[qd.cnum].valid;
1958 qd.locked = fsa_dev_ptr[qd.cnum].locked;
1959 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1961 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1962 qd.unmapped = 1;
1963 else
1964 qd.unmapped = 0;
1966 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1967 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1969 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1970 return -EFAULT;
1971 return 0;
1974 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1976 struct aac_delete_disk dd;
1977 struct fsa_dev_info *fsa_dev_ptr;
1979 fsa_dev_ptr = dev->fsa_dev;
1980 if (!fsa_dev_ptr)
1981 return -EBUSY;
1983 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1984 return -EFAULT;
1986 if (dd.cnum >= dev->maximum_num_containers)
1987 return -EINVAL;
1989 * Mark this container as being deleted.
1991 fsa_dev_ptr[dd.cnum].deleted = 1;
1993 * Mark the container as no longer valid
1995 fsa_dev_ptr[dd.cnum].valid = 0;
1996 return 0;
1999 static int delete_disk(struct aac_dev *dev, void __user *arg)
2001 struct aac_delete_disk dd;
2002 struct fsa_dev_info *fsa_dev_ptr;
2004 fsa_dev_ptr = dev->fsa_dev;
2005 if (!fsa_dev_ptr)
2006 return -EBUSY;
2008 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2009 return -EFAULT;
2011 if (dd.cnum >= dev->maximum_num_containers)
2012 return -EINVAL;
2014 * If the container is locked, it can not be deleted by the API.
2016 if (fsa_dev_ptr[dd.cnum].locked)
2017 return -EBUSY;
2018 else {
2020 * Mark the container as no longer being valid.
2022 fsa_dev_ptr[dd.cnum].valid = 0;
2023 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2024 return 0;
2028 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2030 switch (cmd) {
2031 case FSACTL_QUERY_DISK:
2032 return query_disk(dev, arg);
2033 case FSACTL_DELETE_DISK:
2034 return delete_disk(dev, arg);
2035 case FSACTL_FORCE_DELETE_DISK:
2036 return force_delete_disk(dev, arg);
2037 case FSACTL_GET_CONTAINERS:
2038 return aac_get_containers(dev);
2039 default:
2040 return -ENOTTY;
2046 * aac_srb_callback
2047 * @context: the context set in the fib - here it is scsi cmd
2048 * @fibptr: pointer to the fib
2050 * Handles the completion of a scsi command to a non dasd device
2054 static void aac_srb_callback(void *context, struct fib * fibptr)
2056 struct aac_dev *dev;
2057 struct aac_srb_reply *srbreply;
2058 struct scsi_cmnd *scsicmd;
2060 scsicmd = (struct scsi_cmnd *) context;
2061 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
2062 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2064 BUG_ON(fibptr == NULL);
2066 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2068 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2070 * Calculate resid for sg
2073 scsicmd->resid = scsicmd->request_bufflen -
2074 le32_to_cpu(srbreply->data_xfer_length);
2076 if(scsicmd->use_sg)
2077 pci_unmap_sg(dev->pdev,
2078 (struct scatterlist *)scsicmd->request_buffer,
2079 scsicmd->use_sg,
2080 scsicmd->sc_data_direction);
2081 else if(scsicmd->request_bufflen)
2082 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
2083 scsicmd->sc_data_direction);
2086 * First check the fib status
2089 if (le32_to_cpu(srbreply->status) != ST_OK){
2090 int len;
2091 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2092 len = (le32_to_cpu(srbreply->sense_data_size) >
2093 sizeof(scsicmd->sense_buffer)) ?
2094 sizeof(scsicmd->sense_buffer) :
2095 le32_to_cpu(srbreply->sense_data_size);
2096 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2097 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2101 * Next check the srb status
2103 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2104 case SRB_STATUS_ERROR_RECOVERY:
2105 case SRB_STATUS_PENDING:
2106 case SRB_STATUS_SUCCESS:
2107 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2108 break;
2109 case SRB_STATUS_DATA_OVERRUN:
2110 switch(scsicmd->cmnd[0]){
2111 case READ_6:
2112 case WRITE_6:
2113 case READ_10:
2114 case WRITE_10:
2115 case READ_12:
2116 case WRITE_12:
2117 case READ_16:
2118 case WRITE_16:
2119 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2120 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2121 } else {
2122 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2124 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2125 break;
2126 case INQUIRY: {
2127 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2128 break;
2130 default:
2131 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2132 break;
2134 break;
2135 case SRB_STATUS_ABORTED:
2136 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2137 break;
2138 case SRB_STATUS_ABORT_FAILED:
2139 // Not sure about this one - but assuming the hba was trying to abort for some reason
2140 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2141 break;
2142 case SRB_STATUS_PARITY_ERROR:
2143 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2144 break;
2145 case SRB_STATUS_NO_DEVICE:
2146 case SRB_STATUS_INVALID_PATH_ID:
2147 case SRB_STATUS_INVALID_TARGET_ID:
2148 case SRB_STATUS_INVALID_LUN:
2149 case SRB_STATUS_SELECTION_TIMEOUT:
2150 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2151 break;
2153 case SRB_STATUS_COMMAND_TIMEOUT:
2154 case SRB_STATUS_TIMEOUT:
2155 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2156 break;
2158 case SRB_STATUS_BUSY:
2159 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2160 break;
2162 case SRB_STATUS_BUS_RESET:
2163 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2164 break;
2166 case SRB_STATUS_MESSAGE_REJECTED:
2167 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2168 break;
2169 case SRB_STATUS_REQUEST_FLUSHED:
2170 case SRB_STATUS_ERROR:
2171 case SRB_STATUS_INVALID_REQUEST:
2172 case SRB_STATUS_REQUEST_SENSE_FAILED:
2173 case SRB_STATUS_NO_HBA:
2174 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2175 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2176 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2177 case SRB_STATUS_DELAYED_RETRY:
2178 case SRB_STATUS_BAD_FUNCTION:
2179 case SRB_STATUS_NOT_STARTED:
2180 case SRB_STATUS_NOT_IN_USE:
2181 case SRB_STATUS_FORCE_ABORT:
2182 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2183 default:
2184 #ifdef AAC_DETAILED_STATUS_INFO
2185 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2186 le32_to_cpu(srbreply->srb_status) & 0x3F,
2187 aac_get_status_string(
2188 le32_to_cpu(srbreply->srb_status) & 0x3F),
2189 scsicmd->cmnd[0],
2190 le32_to_cpu(srbreply->scsi_status));
2191 #endif
2192 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2193 break;
2195 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
2196 int len;
2197 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2198 len = (le32_to_cpu(srbreply->sense_data_size) >
2199 sizeof(scsicmd->sense_buffer)) ?
2200 sizeof(scsicmd->sense_buffer) :
2201 le32_to_cpu(srbreply->sense_data_size);
2202 #ifdef AAC_DETAILED_STATUS_INFO
2203 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2204 le32_to_cpu(srbreply->status), len);
2205 #endif
2206 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2210 * OR in the scsi status (already shifted up a bit)
2212 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2214 aac_fib_complete(fibptr);
2215 aac_fib_free(fibptr);
2216 scsicmd->scsi_done(scsicmd);
2221 * aac_send_scb_fib
2222 * @scsicmd: the scsi command block
2224 * This routine will form a FIB and fill in the aac_srb from the
2225 * scsicmd passed in.
2228 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2230 struct fib* cmd_fibcontext;
2231 struct aac_dev* dev;
2232 int status;
2234 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2235 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2236 scsicmd->device->lun > 7) {
2237 scsicmd->result = DID_NO_CONNECT << 16;
2238 scsicmd->scsi_done(scsicmd);
2239 return 0;
2243 * Allocate and initialize a Fib then setup a BlockWrite command
2245 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2246 return -1;
2248 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2251 * Check that the command queued to the controller
2253 if (status == -EINPROGRESS) {
2254 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2255 return 0;
2258 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2259 aac_fib_complete(cmd_fibcontext);
2260 aac_fib_free(cmd_fibcontext);
2262 return -1;
2265 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2267 struct aac_dev *dev;
2268 unsigned long byte_count = 0;
2270 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2271 // Get rid of old data
2272 psg->count = 0;
2273 psg->sg[0].addr = 0;
2274 psg->sg[0].count = 0;
2275 if (scsicmd->use_sg) {
2276 struct scatterlist *sg;
2277 int i;
2278 int sg_count;
2279 sg = (struct scatterlist *) scsicmd->request_buffer;
2281 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2282 scsicmd->sc_data_direction);
2283 psg->count = cpu_to_le32(sg_count);
2285 for (i = 0; i < sg_count; i++) {
2286 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2287 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2288 byte_count += sg_dma_len(sg);
2289 sg++;
2291 /* hba wants the size to be exact */
2292 if(byte_count > scsicmd->request_bufflen){
2293 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2294 (byte_count - scsicmd->request_bufflen);
2295 psg->sg[i-1].count = cpu_to_le32(temp);
2296 byte_count = scsicmd->request_bufflen;
2298 /* Check for command underflow */
2299 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2300 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2301 byte_count, scsicmd->underflow);
2304 else if(scsicmd->request_bufflen) {
2305 u32 addr;
2306 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2307 scsicmd->request_buffer,
2308 scsicmd->request_bufflen,
2309 scsicmd->sc_data_direction);
2310 addr = scsicmd->SCp.dma_handle;
2311 psg->count = cpu_to_le32(1);
2312 psg->sg[0].addr = cpu_to_le32(addr);
2313 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2314 byte_count = scsicmd->request_bufflen;
2316 return byte_count;
2320 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2322 struct aac_dev *dev;
2323 unsigned long byte_count = 0;
2324 u64 addr;
2326 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2327 // Get rid of old data
2328 psg->count = 0;
2329 psg->sg[0].addr[0] = 0;
2330 psg->sg[0].addr[1] = 0;
2331 psg->sg[0].count = 0;
2332 if (scsicmd->use_sg) {
2333 struct scatterlist *sg;
2334 int i;
2335 int sg_count;
2336 sg = (struct scatterlist *) scsicmd->request_buffer;
2338 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2339 scsicmd->sc_data_direction);
2341 for (i = 0; i < sg_count; i++) {
2342 int count = sg_dma_len(sg);
2343 addr = sg_dma_address(sg);
2344 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2345 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2346 psg->sg[i].count = cpu_to_le32(count);
2347 byte_count += count;
2348 sg++;
2350 psg->count = cpu_to_le32(sg_count);
2351 /* hba wants the size to be exact */
2352 if(byte_count > scsicmd->request_bufflen){
2353 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2354 (byte_count - scsicmd->request_bufflen);
2355 psg->sg[i-1].count = cpu_to_le32(temp);
2356 byte_count = scsicmd->request_bufflen;
2358 /* Check for command underflow */
2359 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2360 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2361 byte_count, scsicmd->underflow);
2364 else if(scsicmd->request_bufflen) {
2365 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2366 scsicmd->request_buffer,
2367 scsicmd->request_bufflen,
2368 scsicmd->sc_data_direction);
2369 addr = scsicmd->SCp.dma_handle;
2370 psg->count = cpu_to_le32(1);
2371 psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2372 psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2373 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2374 byte_count = scsicmd->request_bufflen;
2376 return byte_count;
2379 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2381 struct Scsi_Host *host = scsicmd->device->host;
2382 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2383 unsigned long byte_count = 0;
2385 // Get rid of old data
2386 psg->count = 0;
2387 psg->sg[0].next = 0;
2388 psg->sg[0].prev = 0;
2389 psg->sg[0].addr[0] = 0;
2390 psg->sg[0].addr[1] = 0;
2391 psg->sg[0].count = 0;
2392 psg->sg[0].flags = 0;
2393 if (scsicmd->use_sg) {
2394 struct scatterlist *sg;
2395 int i;
2396 int sg_count;
2397 sg = (struct scatterlist *) scsicmd->request_buffer;
2399 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2400 scsicmd->sc_data_direction);
2402 for (i = 0; i < sg_count; i++) {
2403 int count = sg_dma_len(sg);
2404 u64 addr = sg_dma_address(sg);
2405 psg->sg[i].next = 0;
2406 psg->sg[i].prev = 0;
2407 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2408 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2409 psg->sg[i].count = cpu_to_le32(count);
2410 psg->sg[i].flags = 0;
2411 byte_count += count;
2412 sg++;
2414 psg->count = cpu_to_le32(sg_count);
2415 /* hba wants the size to be exact */
2416 if(byte_count > scsicmd->request_bufflen){
2417 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2418 (byte_count - scsicmd->request_bufflen);
2419 psg->sg[i-1].count = cpu_to_le32(temp);
2420 byte_count = scsicmd->request_bufflen;
2422 /* Check for command underflow */
2423 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2424 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2425 byte_count, scsicmd->underflow);
2428 else if(scsicmd->request_bufflen) {
2429 int count;
2430 u64 addr;
2431 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2432 scsicmd->request_buffer,
2433 scsicmd->request_bufflen,
2434 scsicmd->sc_data_direction);
2435 addr = scsicmd->SCp.dma_handle;
2436 count = scsicmd->request_bufflen;
2437 psg->count = cpu_to_le32(1);
2438 psg->sg[0].next = 0;
2439 psg->sg[0].prev = 0;
2440 psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2441 psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2442 psg->sg[0].count = cpu_to_le32(count);
2443 psg->sg[0].flags = 0;
2444 byte_count = scsicmd->request_bufflen;
2446 return byte_count;
2449 #ifdef AAC_DETAILED_STATUS_INFO
2451 struct aac_srb_status_info {
2452 u32 status;
2453 char *str;
2457 static struct aac_srb_status_info srb_status_info[] = {
2458 { SRB_STATUS_PENDING, "Pending Status"},
2459 { SRB_STATUS_SUCCESS, "Success"},
2460 { SRB_STATUS_ABORTED, "Aborted Command"},
2461 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2462 { SRB_STATUS_ERROR, "Error Event"},
2463 { SRB_STATUS_BUSY, "Device Busy"},
2464 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2465 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2466 { SRB_STATUS_NO_DEVICE, "No Device"},
2467 { SRB_STATUS_TIMEOUT, "Timeout"},
2468 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2469 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2470 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2471 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2472 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2473 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2474 { SRB_STATUS_NO_HBA, "No HBA"},
2475 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2476 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2477 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2478 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2479 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2480 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2481 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2482 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2483 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2484 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2485 { SRB_STATUS_NOT_STARTED, "Not Started"},
2486 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2487 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2488 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2489 { 0xff, "Unknown Error"}
2492 char *aac_get_status_string(u32 status)
2494 int i;
2496 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2497 if (srb_status_info[i].status == status)
2498 return srb_status_info[i].str;
2500 return "Bad Status Code";
2503 #endif