2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev
*dev
)
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev
->pdev
, dev
->max_fib_size
, dev
->scsi_host_ptr
->can_queue
,
65 AAC_NUM_MGT_FIB
, &dev
->hw_fib_pa
));
66 if((dev
->hw_fib_va
= pci_alloc_consistent(dev
->pdev
, dev
->max_fib_size
67 * (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
68 &dev
->hw_fib_pa
))==NULL
)
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
81 void aac_fib_map_free(struct aac_dev
*dev
)
83 pci_free_consistent(dev
->pdev
, dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
), dev
->hw_fib_va
, dev
->hw_fib_pa
);
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
94 int aac_fib_setup(struct aac_dev
* dev
)
97 struct hw_fib
*hw_fib_va
;
101 while (((i
= fib_map_alloc(dev
)) == -ENOMEM
)
102 && (dev
->scsi_host_ptr
->can_queue
> (64 - AAC_NUM_MGT_FIB
))) {
103 dev
->init
->MaxIoCommands
= cpu_to_le32((dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) >> 1);
104 dev
->scsi_host_ptr
->can_queue
= le32_to_cpu(dev
->init
->MaxIoCommands
) - AAC_NUM_MGT_FIB
;
109 hw_fib_va
= dev
->hw_fib_va
;
110 hw_fib_pa
= dev
->hw_fib_pa
;
111 memset(hw_fib_va
, 0, dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
));
113 * Initialise the fibs
115 for (i
= 0, fibptr
= &dev
->fibs
[i
]; i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); i
++, fibptr
++)
118 fibptr
->hw_fib
= hw_fib_va
;
119 fibptr
->data
= (void *) fibptr
->hw_fib
->data
;
120 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr
->event_wait
);
122 spin_lock_init(&fibptr
->event_lock
);
123 hw_fib_va
->header
.XferState
= cpu_to_le32(0xffffffff);
124 hw_fib_va
->header
.SenderSize
= cpu_to_le16(dev
->max_fib_size
);
125 fibptr
->hw_fib_pa
= hw_fib_pa
;
126 hw_fib_va
= (struct hw_fib
*)((unsigned char *)hw_fib_va
+ dev
->max_fib_size
);
127 hw_fib_pa
= hw_fib_pa
+ dev
->max_fib_size
;
130 * Add the fib chain to the free list
132 dev
->fibs
[dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1].next
= NULL
;
134 * Enable this to debug out of queue space
136 dev
->free_fib
= &dev
->fibs
[0];
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
148 struct fib
*aac_fib_alloc(struct aac_dev
*dev
)
152 spin_lock_irqsave(&dev
->fib_lock
, flags
);
153 fibptr
= dev
->free_fib
;
155 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
158 dev
->free_fib
= fibptr
->next
;
159 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
161 * Set the proper node type code and node byte size
163 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
164 fibptr
->size
= sizeof(struct fib
);
166 * Null out fields that depend on being zero at the start of
169 fibptr
->hw_fib
->header
.XferState
= 0;
170 fibptr
->callback
= NULL
;
171 fibptr
->callback_data
= NULL
;
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
180 * Frees up a fib and places it on the appropriate queue
181 * (either free or timed out)
184 void aac_fib_free(struct fib
*fibptr
)
188 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
189 if (fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
) {
190 aac_config
.fib_timeouts
++;
191 fibptr
->next
= fibptr
->dev
->timeout_fib
;
192 fibptr
->dev
->timeout_fib
= fibptr
;
194 if (fibptr
->hw_fib
->header
.XferState
!= 0) {
195 printk(KERN_WARNING
"aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
197 le32_to_cpu(fibptr
->hw_fib
->header
.XferState
));
199 fibptr
->next
= fibptr
->dev
->free_fib
;
200 fibptr
->dev
->free_fib
= fibptr
;
202 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
206 * aac_fib_init - initialise a fib
207 * @fibptr: The fib to initialize
209 * Set up the generic fib fields ready for use
212 void aac_fib_init(struct fib
*fibptr
)
214 struct hw_fib
*hw_fib
= fibptr
->hw_fib
;
216 hw_fib
->header
.StructType
= FIB_MAGIC
;
217 hw_fib
->header
.Size
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
218 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
219 hw_fib
->header
.SenderFibAddress
= 0; /* Filled in later if needed */
220 hw_fib
->header
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
221 hw_fib
->header
.SenderSize
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
225 * fib_deallocate - deallocate a fib
226 * @fibptr: fib to deallocate
228 * Will deallocate and return to the free pool the FIB pointed to by the
232 static void fib_dealloc(struct fib
* fibptr
)
234 struct hw_fib
*hw_fib
= fibptr
->hw_fib
;
235 BUG_ON(hw_fib
->header
.StructType
!= FIB_MAGIC
);
236 hw_fib
->header
.XferState
= 0;
240 * Commuication primitives define and support the queuing method we use to
241 * support host to adapter commuication. All queue accesses happen through
242 * these routines and are the only routines which have a knowledge of the
243 * how these queues are implemented.
247 * aac_get_entry - get a queue entry
250 * @entry: Entry return
251 * @index: Index return
252 * @nonotify: notification control
254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
259 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
261 struct aac_queue
* q
;
265 * All of the queues wrap when they reach the end, so we check
266 * to see if they have reached the end and if they have we just
267 * set the index back to zero. This is a wrap. You could or off
268 * the high bits in all updates but this is a bit faster I think.
271 q
= &dev
->queues
->queue
[qid
];
273 idx
= *index
= le32_to_cpu(*(q
->headers
.producer
));
274 /* Interrupt Moderation, only interrupt for first two entries */
275 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
))) {
277 if (qid
== AdapNormCmdQueue
)
278 idx
= ADAP_NORM_CMD_ENTRIES
;
280 idx
= ADAP_NORM_RESP_ENTRIES
;
282 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
)))
286 if (qid
== AdapNormCmdQueue
) {
287 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
288 *index
= 0; /* Wrap to front of the Producer Queue. */
290 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
291 *index
= 0; /* Wrap to front of the Producer Queue. */
294 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) { /* Queue is full */
295 printk(KERN_WARNING
"Queue %d full, %u outstanding.\n",
299 *entry
= q
->base
+ *index
;
305 * aac_queue_get - get the next free QE
307 * @index: Returned index
308 * @priority: Priority of fib
309 * @fib: Fib to associate with the queue entry
310 * @wait: Wait if queue full
311 * @fibptr: Driver fib object to go with fib
312 * @nonotify: Don't notify the adapter
314 * Gets the next free QE off the requested priorty adapter command
315 * queue and associates the Fib with the QE. The QE represented by
316 * index is ready to insert on the queue when this routine returns
320 int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
322 struct aac_entry
* entry
= NULL
;
325 if (qid
== AdapNormCmdQueue
) {
326 /* if no entries wait for some if caller wants to */
327 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
329 printk(KERN_ERR
"GetEntries failed\n");
332 * Setup queue entry with a command, status and fib mapped
334 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
337 while(!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
339 /* if no entries wait for some if caller wants to */
342 * Setup queue entry with command, status and fib mapped
344 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
345 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
346 /* Restore adapters pointer to the FIB */
347 hw_fib
->header
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
351 * If MapFib is true than we need to map the Fib and put pointers
352 * in the queue entry.
355 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
360 * Define the highest level of host to adapter communication routines.
361 * These routines will support host to adapter FS commuication. These
362 * routines have no knowledge of the commuication method used. This level
363 * sends and receives FIBs. This level has no knowledge of how these FIBs
364 * get passed back and forth.
368 * aac_fib_send - send a fib to the adapter
369 * @command: Command to send
371 * @size: Size of fib data area
372 * @priority: Priority of Fib
373 * @wait: Async/sync select
374 * @reply: True if a reply is wanted
375 * @callback: Called with reply
376 * @callback_data: Passed to callback
378 * Sends the requested FIB to the adapter and optionally will wait for a
379 * response FIB. If the caller does not wish to wait for a response than
380 * an event to wait on must be supplied. This event will be set when a
381 * response FIB is received from the adapter.
384 int aac_fib_send(u16 command
, struct fib
*fibptr
, unsigned long size
,
385 int priority
, int wait
, int reply
, fib_callback callback
,
388 struct aac_dev
* dev
= fibptr
->dev
;
389 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
390 unsigned long flags
= 0;
391 unsigned long qflags
;
393 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
396 * There are 5 cases with the wait and reponse requested flags.
397 * The only invalid cases are if the caller requests to wait and
398 * does not request a response and if the caller does not want a
399 * response and the Fib is not allocated from pool. If a response
400 * is not requesed the Fib will just be deallocaed by the DPC
401 * routine when the response comes back from the adapter. No
402 * further processing will be done besides deleting the Fib. We
403 * will have a debug mode where the adapter can notify the host
404 * it had a problem and the host can log that fact.
406 if (wait
&& !reply
) {
408 } else if (!wait
&& reply
) {
409 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
410 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
411 } else if (!wait
&& !reply
) {
412 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
413 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
414 } else if (wait
&& reply
) {
415 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
416 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
419 * Map the fib into 32bits by using the fib number
422 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(((u32
)(fibptr
- dev
->fibs
)) << 2);
423 hw_fib
->header
.SenderData
= (u32
)(fibptr
- dev
->fibs
);
425 * Set FIB state to indicate where it came from and if we want a
426 * response from the adapter. Also load the command from the
429 * Map the hw fib pointer as a 32bit value
431 hw_fib
->header
.Command
= cpu_to_le16(command
);
432 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
433 fibptr
->hw_fib
->header
.Flags
= 0; /* 0 the flags field - internal only*/
435 * Set the size of the Fib we want to send to the adapter
437 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
438 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
442 * Get a queue entry connect the FIB to it and send an notify
443 * the adapter a command is ready.
445 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
448 * Fill in the Callback and CallbackContext if we are not
452 fibptr
->callback
= callback
;
453 fibptr
->callback_data
= callback_data
;
459 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
461 dprintk((KERN_DEBUG
"Fib contents:.\n"));
462 dprintk((KERN_DEBUG
" Command = %d.\n", le32_to_cpu(hw_fib
->header
.Command
)));
463 dprintk((KERN_DEBUG
" SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount
*)fib_data(fibptr
))->command
)));
464 dprintk((KERN_DEBUG
" XferState = %x.\n", le32_to_cpu(hw_fib
->header
.XferState
)));
465 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib
));
466 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
467 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
473 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
474 aac_adapter_deliver(fibptr
);
477 * If the caller wanted us to wait for response wait now.
481 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
482 /* Only set for first known interruptable command */
485 * *VERY* Dangerous to time out a command, the
486 * assumption is made that we have no hope of
487 * functioning because an interrupt routing or other
488 * hardware failure has occurred.
490 unsigned long count
= 36000000L; /* 3 minutes */
491 while (down_trylock(&fibptr
->event_wait
)) {
494 struct aac_queue
* q
= &dev
->queues
->queue
[AdapNormCmdQueue
];
495 spin_lock_irqsave(q
->lock
, qflags
);
497 spin_unlock_irqrestore(q
->lock
, qflags
);
499 printk(KERN_ERR
"aacraid: aac_fib_send: first asynchronous command timed out.\n"
500 "Usually a result of a PCI interrupt routing problem;\n"
501 "update mother board BIOS or consider utilizing one of\n"
502 "the SAFE mode kernel options (acpi, apic etc)\n");
506 if ((blink
= aac_adapter_check_health(dev
)) > 0) {
508 printk(KERN_ERR
"aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
509 "Usually a result of a serious unrecoverable hardware problem\n",
516 } else if (down_interruptible(&fibptr
->event_wait
)) {
517 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
518 if (fibptr
->done
== 0) {
519 fibptr
->done
= 2; /* Tell interrupt we aborted */
520 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
523 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
525 BUG_ON(fibptr
->done
== 0);
527 if((fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
)){
534 * If the user does not want a response than return success otherwise
544 * aac_consumer_get - get the top of the queue
547 * @entry: Return entry
549 * Will return a pointer to the entry on the top of the queue requested that
550 * we are a consumer of, and return the address of the queue entry. It does
551 * not change the state of the queue.
554 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
558 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
562 * The consumer index must be wrapped if we have reached
563 * the end of the queue, else we just use the entry
564 * pointed to by the header index
566 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
569 index
= le32_to_cpu(*q
->headers
.consumer
);
570 *entry
= q
->base
+ index
;
577 * aac_consumer_free - free consumer entry
582 * Frees up the current top of the queue we are a consumer of. If the
583 * queue was full notify the producer that the queue is no longer full.
586 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
591 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
594 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
595 *q
->headers
.consumer
= cpu_to_le32(1);
597 *q
->headers
.consumer
= cpu_to_le32(le32_to_cpu(*q
->headers
.consumer
)+1);
602 case HostNormCmdQueue
:
603 notify
= HostNormCmdNotFull
;
605 case HostNormRespQueue
:
606 notify
= HostNormRespNotFull
;
612 aac_adapter_notify(dev
, notify
);
617 * aac_fib_adapter_complete - complete adapter issued fib
618 * @fibptr: fib to complete
621 * Will do all necessary work to complete a FIB that was sent from
625 int aac_fib_adapter_complete(struct fib
*fibptr
, unsigned short size
)
627 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
628 struct aac_dev
* dev
= fibptr
->dev
;
629 struct aac_queue
* q
;
630 unsigned long nointr
= 0;
631 unsigned long qflags
;
633 if (hw_fib
->header
.XferState
== 0) {
634 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
639 * If we plan to do anything check the structure type first.
641 if ( hw_fib
->header
.StructType
!= FIB_MAGIC
) {
642 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
647 * This block handles the case where the adapter had sent us a
648 * command and we have finished processing the command. We
649 * call completeFib when we are done processing the command
650 * and want to send a response back to the adapter. This will
651 * send the completed cdb to the adapter.
653 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
654 if (dev
->comm_interface
== AAC_COMM_MESSAGE
) {
658 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
660 size
+= sizeof(struct aac_fibhdr
);
661 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
663 hw_fib
->header
.Size
= cpu_to_le16(size
);
665 q
= &dev
->queues
->queue
[AdapNormRespQueue
];
666 spin_lock_irqsave(q
->lock
, qflags
);
667 aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
);
668 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
669 spin_unlock_irqrestore(q
->lock
, qflags
);
670 if (!(nointr
& (int)aac_config
.irq_mod
))
671 aac_adapter_notify(dev
, AdapNormRespQueue
);
676 printk(KERN_WARNING
"aac_fib_adapter_complete: Unknown xferstate detected.\n");
683 * aac_fib_complete - fib completion handler
684 * @fib: FIB to complete
686 * Will do all necessary work to complete a FIB.
689 int aac_fib_complete(struct fib
*fibptr
)
691 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
694 * Check for a fib which has already been completed
697 if (hw_fib
->header
.XferState
== 0)
700 * If we plan to do anything check the structure type first.
703 if (hw_fib
->header
.StructType
!= FIB_MAGIC
)
706 * This block completes a cdb which orginated on the host and we
707 * just need to deallocate the cdb or reinit it. At this point the
708 * command is complete that we had sent to the adapter and this
709 * cdb could be reused.
711 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
712 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
716 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
719 * This handles the case when the host has aborted the I/O
720 * to the adapter because the adapter is not responding
723 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
732 * aac_printf - handle printf from firmware
736 * Print a message passed to us by the controller firmware on the
740 void aac_printf(struct aac_dev
*dev
, u32 val
)
742 char *cp
= dev
->printfbuf
;
743 if (dev
->printf_enabled
)
745 int length
= val
& 0xffff;
746 int level
= (val
>> 16) & 0xffff;
749 * The size of the printfbuf is set in port.c
750 * There is no variable or define for it
756 if (level
== LOG_AAC_HIGH_ERROR
)
757 printk(KERN_WARNING
"%s:%s", dev
->name
, cp
);
759 printk(KERN_INFO
"%s:%s", dev
->name
, cp
);
766 * aac_handle_aif - Handle a message from the firmware
767 * @dev: Which adapter this fib is from
768 * @fibptr: Pointer to fibptr from adapter
770 * This routine handles a driver notify fib from the adapter and
771 * dispatches it to the appropriate routine for handling.
774 #define AIF_SNIFF_TIMEOUT (30*HZ)
775 static void aac_handle_aif(struct aac_dev
* dev
, struct fib
* fibptr
)
777 struct hw_fib
* hw_fib
= fibptr
->hw_fib
;
778 struct aac_aifcmd
* aifcmd
= (struct aac_aifcmd
*)hw_fib
->data
;
781 struct scsi_device
*device
;
787 } device_config_needed
;
789 /* Sniff for container changes */
791 if (!dev
|| !dev
->fsa_dev
)
796 * We have set this up to try and minimize the number of
797 * re-configures that take place. As a result of this when
798 * certain AIF's come in we will set a flag waiting for another
799 * type of AIF before setting the re-config flag.
801 switch (le32_to_cpu(aifcmd
->command
)) {
802 case AifCmdDriverNotify
:
803 switch (le32_to_cpu(((u32
*)aifcmd
->data
)[0])) {
805 * Morph or Expand complete
807 case AifDenMorphComplete
:
808 case AifDenVolumeExtendComplete
:
809 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
810 if (container
>= dev
->maximum_num_containers
)
814 * Find the scsi_device associated with the SCSI
815 * address. Make sure we have the right array, and if
816 * so set the flag to initiate a new re-config once we
817 * see an AifEnConfigChange AIF come through.
820 if ((dev
!= NULL
) && (dev
->scsi_host_ptr
!= NULL
)) {
821 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
822 CONTAINER_TO_CHANNEL(container
),
823 CONTAINER_TO_ID(container
),
824 CONTAINER_TO_LUN(container
));
826 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
827 dev
->fsa_dev
[container
].config_waiting_on
= AifEnConfigChange
;
828 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
829 scsi_device_put(device
);
835 * If we are waiting on something and this happens to be
836 * that thing then set the re-configure flag.
838 if (container
!= (u32
)-1) {
839 if (container
>= dev
->maximum_num_containers
)
841 if ((dev
->fsa_dev
[container
].config_waiting_on
==
842 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
843 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
844 dev
->fsa_dev
[container
].config_waiting_on
= 0;
845 } else for (container
= 0;
846 container
< dev
->maximum_num_containers
; ++container
) {
847 if ((dev
->fsa_dev
[container
].config_waiting_on
==
848 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
849 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
850 dev
->fsa_dev
[container
].config_waiting_on
= 0;
854 case AifCmdEventNotify
:
855 switch (le32_to_cpu(((u32
*)aifcmd
->data
)[0])) {
859 case AifEnAddContainer
:
860 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
861 if (container
>= dev
->maximum_num_containers
)
863 dev
->fsa_dev
[container
].config_needed
= ADD
;
864 dev
->fsa_dev
[container
].config_waiting_on
=
866 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
872 case AifEnDeleteContainer
:
873 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
874 if (container
>= dev
->maximum_num_containers
)
876 dev
->fsa_dev
[container
].config_needed
= DELETE
;
877 dev
->fsa_dev
[container
].config_waiting_on
=
879 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
883 * Container change detected. If we currently are not
884 * waiting on something else, setup to wait on a Config Change.
886 case AifEnContainerChange
:
887 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
888 if (container
>= dev
->maximum_num_containers
)
890 if (dev
->fsa_dev
[container
].config_waiting_on
&&
891 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
893 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
894 dev
->fsa_dev
[container
].config_waiting_on
=
896 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
899 case AifEnConfigChange
:
905 * If we are waiting on something and this happens to be
906 * that thing then set the re-configure flag.
908 if (container
!= (u32
)-1) {
909 if (container
>= dev
->maximum_num_containers
)
911 if ((dev
->fsa_dev
[container
].config_waiting_on
==
912 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
913 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
914 dev
->fsa_dev
[container
].config_waiting_on
= 0;
915 } else for (container
= 0;
916 container
< dev
->maximum_num_containers
; ++container
) {
917 if ((dev
->fsa_dev
[container
].config_waiting_on
==
918 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
919 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
920 dev
->fsa_dev
[container
].config_waiting_on
= 0;
924 case AifCmdJobProgress
:
926 * These are job progress AIF's. When a Clear is being
927 * done on a container it is initially created then hidden from
928 * the OS. When the clear completes we don't get a config
929 * change so we monitor the job status complete on a clear then
930 * wait for a container change.
933 if ((((u32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
))
934 && ((((u32
*)aifcmd
->data
)[6] == ((u32
*)aifcmd
->data
)[5])
935 || (((u32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsSuccess
)))) {
937 container
< dev
->maximum_num_containers
;
940 * Stomp on all config sequencing for all
943 dev
->fsa_dev
[container
].config_waiting_on
=
944 AifEnContainerChange
;
945 dev
->fsa_dev
[container
].config_needed
= ADD
;
946 dev
->fsa_dev
[container
].config_waiting_stamp
=
950 if ((((u32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
))
951 && (((u32
*)aifcmd
->data
)[6] == 0)
952 && (((u32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsRunning
))) {
954 container
< dev
->maximum_num_containers
;
957 * Stomp on all config sequencing for all
960 dev
->fsa_dev
[container
].config_waiting_on
=
961 AifEnContainerChange
;
962 dev
->fsa_dev
[container
].config_needed
= DELETE
;
963 dev
->fsa_dev
[container
].config_waiting_stamp
=
970 device_config_needed
= NOTHING
;
971 for (container
= 0; container
< dev
->maximum_num_containers
;
973 if ((dev
->fsa_dev
[container
].config_waiting_on
== 0) &&
974 (dev
->fsa_dev
[container
].config_needed
!= NOTHING
) &&
975 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
)) {
976 device_config_needed
=
977 dev
->fsa_dev
[container
].config_needed
;
978 dev
->fsa_dev
[container
].config_needed
= NOTHING
;
982 if (device_config_needed
== NOTHING
)
986 * If we decided that a re-configuration needs to be done,
987 * schedule it here on the way out the door, please close the door
995 * Find the scsi_device associated with the SCSI address,
996 * and mark it as changed, invalidating the cache. This deals
997 * with changes to existing device IDs.
1000 if (!dev
|| !dev
->scsi_host_ptr
)
1003 * force reload of disk info via aac_probe_container
1005 if ((device_config_needed
== CHANGE
)
1006 && (dev
->fsa_dev
[container
].valid
== 1))
1007 dev
->fsa_dev
[container
].valid
= 2;
1008 if ((device_config_needed
== CHANGE
) ||
1009 (device_config_needed
== ADD
))
1010 aac_probe_container(dev
, container
);
1011 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
1012 CONTAINER_TO_CHANNEL(container
),
1013 CONTAINER_TO_ID(container
),
1014 CONTAINER_TO_LUN(container
));
1016 switch (device_config_needed
) {
1019 scsi_rescan_device(&device
->sdev_gendev
);
1024 scsi_device_put(device
);
1026 if (device_config_needed
== ADD
) {
1027 scsi_add_device(dev
->scsi_host_ptr
,
1028 CONTAINER_TO_CHANNEL(container
),
1029 CONTAINER_TO_ID(container
),
1030 CONTAINER_TO_LUN(container
));
1035 static int _aac_reset_adapter(struct aac_dev
*aac
)
1040 struct Scsi_Host
*host
;
1041 struct scsi_device
*dev
;
1042 struct scsi_cmnd
*command
;
1043 struct scsi_cmnd
*command_list
;
1048 * - in_reset is asserted, so no new i/o is getting to the
1050 * - The card is dead.
1052 host
= aac
->scsi_host_ptr
;
1053 scsi_block_requests(host
);
1054 aac_adapter_disable_int(aac
);
1055 spin_unlock_irq(host
->host_lock
);
1056 kthread_stop(aac
->thread
);
1059 * If a positive health, means in a known DEAD PANIC
1060 * state and the adapter could be reset to `try again'.
1062 retval
= aac_adapter_check_health(aac
);
1064 retval
= aac_adapter_sync_cmd(aac
, IOP_RESET_ALWAYS
,
1065 0, 0, 0, 0, 0, 0, &ret
, NULL
, NULL
, NULL
, NULL
);
1067 retval
= aac_adapter_sync_cmd(aac
, IOP_RESET
,
1068 0, 0, 0, 0, 0, 0, &ret
, NULL
, NULL
, NULL
, NULL
);
1072 if (ret
!= 0x00000001) {
1078 * Loop through the fibs, close the synchronous FIBS
1080 for (index
= 0; index
< (aac
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); index
++) {
1081 struct fib
*fib
= &aac
->fibs
[index
];
1082 if (!(fib
->hw_fib
->header
.XferState
& cpu_to_le32(NoResponseExpected
| Async
)) &&
1083 (fib
->hw_fib
->header
.XferState
& cpu_to_le32(ResponseExpected
))) {
1084 unsigned long flagv
;
1085 spin_lock_irqsave(&fib
->event_lock
, flagv
);
1086 up(&fib
->event_wait
);
1087 spin_unlock_irqrestore(&fib
->event_lock
, flagv
);
1091 index
= aac
->cardtype
;
1094 * Re-initialize the adapter, first free resources, then carefully
1095 * apply the initialization sequence to come back again. Only risk
1096 * is a change in Firmware dropping cache, it is assumed the caller
1097 * will ensure that i/o is queisced and the card is flushed in that
1100 aac_fib_map_free(aac
);
1101 aac
->hw_fib_va
= NULL
;
1103 pci_free_consistent(aac
->pdev
, aac
->comm_size
, aac
->comm_addr
, aac
->comm_phys
);
1104 aac
->comm_addr
= NULL
;
1108 free_irq(aac
->pdev
->irq
, aac
);
1109 kfree(aac
->fsa_dev
);
1110 aac
->fsa_dev
= NULL
;
1111 if (aac_get_driver_ident(index
)->quirks
& AAC_QUIRK_31BIT
) {
1112 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_32BIT_MASK
))) ||
1113 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_32BIT_MASK
))))
1116 if (((retval
= pci_set_dma_mask(aac
->pdev
, 0x7FFFFFFFULL
))) ||
1117 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, 0x7FFFFFFFULL
))))
1120 if ((retval
= (*(aac_get_driver_ident(index
)->init
))(aac
)))
1122 if (aac_get_driver_ident(index
)->quirks
& AAC_QUIRK_31BIT
)
1123 if ((retval
= pci_set_dma_mask(aac
->pdev
, DMA_32BIT_MASK
)))
1125 aac
->thread
= kthread_run(aac_command_thread
, aac
, aac
->name
);
1126 if (IS_ERR(aac
->thread
)) {
1127 retval
= PTR_ERR(aac
->thread
);
1130 (void)aac_get_adapter_info(aac
);
1131 quirks
= aac_get_driver_ident(index
)->quirks
;
1132 if ((quirks
& AAC_QUIRK_34SG
) && (host
->sg_tablesize
> 34)) {
1133 host
->sg_tablesize
= 34;
1134 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1136 if ((quirks
& AAC_QUIRK_17SG
) && (host
->sg_tablesize
> 17)) {
1137 host
->sg_tablesize
= 17;
1138 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1140 aac_get_config_status(aac
, 1);
1141 aac_get_containers(aac
);
1143 * This is where the assumption that the Adapter is quiesced
1146 command_list
= NULL
;
1147 __shost_for_each_device(dev
, host
) {
1148 unsigned long flags
;
1149 spin_lock_irqsave(&dev
->list_lock
, flags
);
1150 list_for_each_entry(command
, &dev
->cmd_list
, list
)
1151 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1152 command
->SCp
.buffer
= (struct scatterlist
*)command_list
;
1153 command_list
= command
;
1155 spin_unlock_irqrestore(&dev
->list_lock
, flags
);
1157 while ((command
= command_list
)) {
1158 command_list
= (struct scsi_cmnd
*)command
->SCp
.buffer
;
1159 command
->SCp
.buffer
= NULL
;
1160 command
->result
= DID_OK
<< 16
1161 | COMMAND_COMPLETE
<< 8
1162 | SAM_STAT_TASK_SET_FULL
;
1163 command
->SCp
.phase
= AAC_OWNER_ERROR_HANDLER
;
1164 command
->scsi_done(command
);
1170 scsi_unblock_requests(host
);
1171 spin_lock_irq(host
->host_lock
);
1175 int aac_check_health(struct aac_dev
* aac
)
1178 unsigned long time_now
, flagv
= 0;
1179 struct list_head
* entry
;
1180 struct Scsi_Host
* host
;
1182 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1183 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1186 if (aac
->in_reset
|| !(BlinkLED
= aac_adapter_check_health(aac
))) {
1187 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1194 * aac_aifcmd.command = AifCmdEventNotify = 1
1195 * aac_aifcmd.seqnum = 0xFFFFFFFF
1196 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1197 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1198 * aac.aifcmd.data[2] = AifHighPriority = 3
1199 * aac.aifcmd.data[3] = BlinkLED
1202 time_now
= jiffies
/HZ
;
1203 entry
= aac
->fib_list
.next
;
1206 * For each Context that is on the
1207 * fibctxList, make a copy of the
1208 * fib, and then set the event to wake up the
1209 * thread that is waiting for it.
1211 while (entry
!= &aac
->fib_list
) {
1213 * Extract the fibctx
1215 struct aac_fib_context
*fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1216 struct hw_fib
* hw_fib
;
1219 * Check if the queue is getting
1222 if (fibctx
->count
> 20) {
1224 * It's *not* jiffies folks,
1225 * but jiffies / HZ, so do not
1228 u32 time_last
= fibctx
->jiffies
;
1230 * Has it been > 2 minutes
1231 * since the last read off
1234 if ((time_now
- time_last
) > aif_timeout
) {
1235 entry
= entry
->next
;
1236 aac_close_fib_context(aac
, fibctx
);
1241 * Warning: no sleep allowed while
1244 hw_fib
= kmalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
1245 fib
= kmalloc(sizeof(struct fib
), GFP_ATOMIC
);
1246 if (fib
&& hw_fib
) {
1247 struct aac_aifcmd
* aif
;
1249 memset(hw_fib
, 0, sizeof(struct hw_fib
));
1250 memset(fib
, 0, sizeof(struct fib
));
1251 fib
->hw_fib
= hw_fib
;
1254 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1255 fib
->size
= sizeof (struct fib
);
1256 fib
->data
= hw_fib
->data
;
1257 aif
= (struct aac_aifcmd
*)hw_fib
->data
;
1258 aif
->command
= cpu_to_le32(AifCmdEventNotify
);
1259 aif
->seqnum
= cpu_to_le32(0xFFFFFFFF);
1260 aif
->data
[0] = cpu_to_le32(AifEnExpEvent
);
1261 aif
->data
[1] = cpu_to_le32(AifExeFirmwarePanic
);
1262 aif
->data
[2] = cpu_to_le32(AifHighPriority
);
1263 aif
->data
[3] = cpu_to_le32(BlinkLED
);
1266 * Put the FIB onto the
1269 list_add_tail(&fib
->fiblink
, &fibctx
->fib_list
);
1272 * Set the event to wake up the
1273 * thread that will waiting.
1275 up(&fibctx
->wait_sem
);
1277 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1281 entry
= entry
->next
;
1284 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1287 printk(KERN_ERR
"%s: Host adapter dead %d\n", aac
->name
, BlinkLED
);
1291 printk(KERN_ERR
"%s: Host adapter BLINK LED 0x%x\n", aac
->name
, BlinkLED
);
1293 host
= aac
->scsi_host_ptr
;
1294 spin_lock_irqsave(host
->host_lock
, flagv
);
1295 BlinkLED
= _aac_reset_adapter(aac
);
1296 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1306 * aac_command_thread - command processing thread
1307 * @dev: Adapter to monitor
1309 * Waits on the commandready event in it's queue. When the event gets set
1310 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1311 * until the queue is empty. When the queue is empty it will wait for
1315 int aac_command_thread(void *data
)
1317 struct aac_dev
*dev
= data
;
1318 struct hw_fib
*hw_fib
, *hw_newfib
;
1319 struct fib
*fib
, *newfib
;
1320 struct aac_fib_context
*fibctx
;
1321 unsigned long flags
;
1322 DECLARE_WAITQUEUE(wait
, current
);
1325 * We can only have one thread per adapter for AIF's.
1327 if (dev
->aif_thread
)
1331 * Let the DPC know it has a place to send the AIF's to.
1333 dev
->aif_thread
= 1;
1334 add_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1335 set_current_state(TASK_INTERRUPTIBLE
);
1336 dprintk ((KERN_INFO
"aac_command_thread start\n"));
1339 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1340 while(!list_empty(&(dev
->queues
->queue
[HostNormCmdQueue
].cmdq
))) {
1341 struct list_head
*entry
;
1342 struct aac_aifcmd
* aifcmd
;
1344 set_current_state(TASK_RUNNING
);
1346 entry
= dev
->queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
1349 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1350 fib
= list_entry(entry
, struct fib
, fiblink
);
1352 * We will process the FIB here or pass it to a
1353 * worker thread that is TBD. We Really can't
1354 * do anything at this point since we don't have
1355 * anything defined for this thread to do.
1357 hw_fib
= fib
->hw_fib
;
1358 memset(fib
, 0, sizeof(struct fib
));
1359 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1360 fib
->size
= sizeof( struct fib
);
1361 fib
->hw_fib
= hw_fib
;
1362 fib
->data
= hw_fib
->data
;
1365 * We only handle AifRequest fibs from the adapter.
1367 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
1368 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
1369 /* Handle Driver Notify Events */
1370 aac_handle_aif(dev
, fib
);
1371 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1372 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
1374 struct list_head
*entry
;
1375 /* The u32 here is important and intended. We are using
1376 32bit wrapping time to fit the adapter field */
1378 u32 time_now
, time_last
;
1379 unsigned long flagv
;
1381 struct hw_fib
** hw_fib_pool
, ** hw_fib_p
;
1382 struct fib
** fib_pool
, ** fib_p
;
1385 if ((aifcmd
->command
==
1386 cpu_to_le32(AifCmdEventNotify
)) ||
1388 cpu_to_le32(AifCmdJobProgress
))) {
1389 aac_handle_aif(dev
, fib
);
1392 time_now
= jiffies
/HZ
;
1395 * Warning: no sleep allowed while
1396 * holding spinlock. We take the estimate
1397 * and pre-allocate a set of fibs outside the
1400 num
= le32_to_cpu(dev
->init
->AdapterFibsSize
)
1401 / sizeof(struct hw_fib
); /* some extra */
1402 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1403 entry
= dev
->fib_list
.next
;
1404 while (entry
!= &dev
->fib_list
) {
1405 entry
= entry
->next
;
1408 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1412 && ((hw_fib_pool
= kmalloc(sizeof(struct hw_fib
*) * num
, GFP_KERNEL
)))
1413 && ((fib_pool
= kmalloc(sizeof(struct fib
*) * num
, GFP_KERNEL
)))) {
1414 hw_fib_p
= hw_fib_pool
;
1416 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1417 if (!(*(hw_fib_p
++) = kmalloc(sizeof(struct hw_fib
), GFP_KERNEL
))) {
1421 if (!(*(fib_p
++) = kmalloc(sizeof(struct fib
), GFP_KERNEL
))) {
1422 kfree(*(--hw_fib_p
));
1426 if ((num
= hw_fib_p
- hw_fib_pool
) == 0) {
1436 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1437 entry
= dev
->fib_list
.next
;
1439 * For each Context that is on the
1440 * fibctxList, make a copy of the
1441 * fib, and then set the event to wake up the
1442 * thread that is waiting for it.
1444 hw_fib_p
= hw_fib_pool
;
1446 while (entry
!= &dev
->fib_list
) {
1448 * Extract the fibctx
1450 fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1452 * Check if the queue is getting
1455 if (fibctx
->count
> 20)
1458 * It's *not* jiffies folks,
1459 * but jiffies / HZ so do not
1462 time_last
= fibctx
->jiffies
;
1464 * Has it been > 2 minutes
1465 * since the last read off
1468 if ((time_now
- time_last
) > aif_timeout
) {
1469 entry
= entry
->next
;
1470 aac_close_fib_context(dev
, fibctx
);
1475 * Warning: no sleep allowed while
1478 if (hw_fib_p
< &hw_fib_pool
[num
]) {
1479 hw_newfib
= *hw_fib_p
;
1480 *(hw_fib_p
++) = NULL
;
1484 * Make the copy of the FIB
1486 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
1487 memcpy(newfib
, fib
, sizeof(struct fib
));
1488 newfib
->hw_fib
= hw_newfib
;
1490 * Put the FIB onto the
1493 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
1496 * Set the event to wake up the
1497 * thread that is waiting.
1499 up(&fibctx
->wait_sem
);
1501 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1503 entry
= entry
->next
;
1506 * Set the status of this FIB
1508 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1509 aac_fib_adapter_complete(fib
, sizeof(u32
));
1510 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1511 /* Free up the remaining resources */
1512 hw_fib_p
= hw_fib_pool
;
1514 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1524 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1527 * There are no more AIF's
1529 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1532 if (kthread_should_stop())
1534 set_current_state(TASK_INTERRUPTIBLE
);
1537 remove_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1538 dev
->aif_thread
= 0;