Linux 2.6.21
[linux/fpc-iii.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
blob21cd4c7f528997477f73458c90dda916ec8ffa9a
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
52 * Needed function prototypes.
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir (struct sym_hcb *np);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
64 * Print a buffer in hexadecimal format with a ".\n" at end.
66 static void sym_printl_hex(u_char *p, int n)
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
75 if (label)
76 sym_print_addr(cp->cmd, "%s: ", label);
77 else
78 sym_print_addr(cp->cmd, "");
80 spi_print_msg(msg);
81 printf("\n");
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
86 struct sym_tcb *tp = &np->target[target];
87 dev_info(&tp->starget->dev, "%s: ", label);
89 spi_print_msg(msg);
90 printf("\n");
94 * Print something that tells about extended errors.
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
98 if (x_status & XE_PARITY_ERR) {
99 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
101 if (x_status & XE_EXTRA_DATA) {
102 sym_print_addr(cmd, "extraneous data discarded.\n");
104 if (x_status & XE_BAD_PHASE) {
105 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
107 if (x_status & XE_SODL_UNRUN) {
108 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
110 if (x_status & XE_SWIDE_OVRUN) {
111 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
116 * Return a string for SCSI BUS mode.
118 static char *sym_scsi_bus_mode(int mode)
120 switch(mode) {
121 case SMODE_HVD: return "HVD";
122 case SMODE_SE: return "SE";
123 case SMODE_LVD: return "LVD";
125 return "??";
129 * Soft reset the chip.
131 * Raising SRST when the chip is running may cause
132 * problems on dual function chips (see below).
133 * On the other hand, LVD devices need some delay
134 * to settle and report actual BUS mode in STEST4.
136 static void sym_chip_reset (struct sym_hcb *np)
138 OUTB(np, nc_istat, SRST);
139 INB(np, nc_mbox1);
140 udelay(10);
141 OUTB(np, nc_istat, 0);
142 INB(np, nc_mbox1);
143 udelay(2000); /* For BUS MODE to settle */
147 * Really soft reset the chip.:)
149 * Some 896 and 876 chip revisions may hang-up if we set
150 * the SRST (soft reset) bit at the wrong time when SCRIPTS
151 * are running.
152 * So, we need to abort the current operation prior to
153 * soft resetting the chip.
155 static void sym_soft_reset (struct sym_hcb *np)
157 u_char istat = 0;
158 int i;
160 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 goto do_chip_reset;
163 OUTB(np, nc_istat, CABRT);
164 for (i = 100000 ; i ; --i) {
165 istat = INB(np, nc_istat);
166 if (istat & SIP) {
167 INW(np, nc_sist);
169 else if (istat & DIP) {
170 if (INB(np, nc_dstat) & ABRT)
171 break;
173 udelay(5);
175 OUTB(np, nc_istat, 0);
176 if (!i)
177 printf("%s: unable to abort current chip operation, "
178 "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 sym_chip_reset(np);
184 * Start reset process.
186 * The interrupt handler will reinitialize the chip.
188 static void sym_start_reset(struct sym_hcb *np)
190 sym_reset_scsi_bus(np, 1);
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
195 u32 term;
196 int retv = 0;
198 sym_soft_reset(np); /* Soft reset the chip */
199 if (enab_int)
200 OUTW(np, nc_sien, RST);
202 * Enable Tolerant, reset IRQD if present and
203 * properly set IRQ mode, prior to resetting the bus.
205 OUTB(np, nc_stest3, TE);
206 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 OUTB(np, nc_scntl1, CRST);
208 INB(np, nc_mbox1);
209 udelay(200);
211 if (!SYM_SETUP_SCSI_BUS_CHECK)
212 goto out;
214 * Check for no terminators or SCSI bus shorts to ground.
215 * Read SCSI data bus, data parity bits and control signals.
216 * We are expecting RESET to be TRUE and other signals to be
217 * FALSE.
219 term = INB(np, nc_sstat0);
220 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
221 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
222 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
223 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
224 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
226 if (!np->maxwide)
227 term &= 0x3ffff;
229 if (term != (2<<7)) {
230 printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 sym_name(np));
232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 "0x%lx, expecting 0x%lx\n",
234 sym_name(np),
235 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 (u_long)term, (u_long)(2<<7));
237 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 retv = 1;
240 out:
241 OUTB(np, nc_scntl1, 0);
242 return retv;
246 * Select SCSI clock frequency
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
251 * If multiplier not present or not selected, leave here.
253 if (np->multiplier <= 1) {
254 OUTB(np, nc_scntl3, scntl3);
255 return;
258 if (sym_verbose >= 2)
259 printf ("%s: enabling clock multiplier\n", sym_name(np));
261 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
263 * Wait for the LCKFRQ bit to be set if supported by the chip.
264 * Otherwise wait 50 micro-seconds (at least).
266 if (np->features & FE_LCKFRQ) {
267 int i = 20;
268 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 udelay(20);
270 if (!i)
271 printf("%s: the chip cannot lock the frequency\n",
272 sym_name(np));
273 } else {
274 INB(np, nc_mbox1);
275 udelay(50+10);
277 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
278 OUTB(np, nc_scntl3, scntl3);
279 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
280 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
285 * Determine the chip's clock frequency.
287 * This is essential for the negotiation of the synchronous
288 * transfer rate.
290 * Note: we have to return the correct value.
291 * THERE IS NO SAFE DEFAULT VALUE.
293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294 * 53C860 and 53C875 rev. 1 support fast20 transfers but
295 * do not have a clock doubler and so are provided with a
296 * 80 MHz clock. All other fast20 boards incorporate a doubler
297 * and so should be delivered with a 40 MHz clock.
298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299 * clock and provide a clock quadrupler (160 Mhz).
303 * calculate SCSI clock frequency (in KHz)
305 static unsigned getfreq (struct sym_hcb *np, int gen)
307 unsigned int ms = 0;
308 unsigned int f;
311 * Measure GEN timer delay in order
312 * to calculate SCSI clock frequency
314 * This code will never execute too
315 * many loop iterations (if DELAY is
316 * reasonably correct). It could get
317 * too low a delay (too high a freq.)
318 * if the CPU is slow executing the
319 * loop for some reason (an NMI, for
320 * example). For this reason we will
321 * if multiple measurements are to be
322 * performed trust the higher delay
323 * (lower frequency returned).
325 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
326 INW(np, nc_sist); /* clear pending scsi interrupt */
327 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
328 INW(np, nc_sist); /* another one, just to be sure :) */
330 * The C1010-33 core does not report GEN in SIST,
331 * if this interrupt is masked in SIEN.
332 * I don't know yet if the C1010-66 behaves the same way.
334 if (np->features & FE_C10) {
335 OUTW(np, nc_sien, GEN);
336 OUTB(np, nc_istat1, SIRQD);
338 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
339 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
340 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
341 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 udelay(1000/4); /* count in 1/4 of ms */
343 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
345 * Undo C1010-33 specific settings.
347 if (np->features & FE_C10) {
348 OUTW(np, nc_sien, 0);
349 OUTB(np, nc_istat1, 0);
352 * set prescaler to divide by whatever 0 means
353 * 0 ought to choose divide by 2, but appears
354 * to set divide by 3.5 mode in my 53c810 ...
356 OUTB(np, nc_scntl3, 0);
359 * adjust for prescaler, and convert into KHz
361 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
364 * The C1010-33 result is biased by a factor
365 * of 2/3 compared to earlier chips.
367 if (np->features & FE_C10)
368 f = (f * 2) / 3;
370 if (sym_verbose >= 2)
371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 sym_name(np), gen, ms/4, f);
374 return f;
377 static unsigned sym_getfreq (struct sym_hcb *np)
379 u_int f1, f2;
380 int gen = 8;
382 getfreq (np, gen); /* throw away first result */
383 f1 = getfreq (np, gen);
384 f2 = getfreq (np, gen);
385 if (f1 > f2) f1 = f2; /* trust lower result */
386 return f1;
390 * Get/probe chip SCSI clock frequency
392 static void sym_getclock (struct sym_hcb *np, int mult)
394 unsigned char scntl3 = np->sv_scntl3;
395 unsigned char stest1 = np->sv_stest1;
396 unsigned f1;
398 np->multiplier = 1;
399 f1 = 40000;
401 * True with 875/895/896/895A with clock multiplier selected
403 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 if (sym_verbose >= 2)
405 printf ("%s: clock multiplier found\n", sym_name(np));
406 np->multiplier = mult;
410 * If multiplier not found or scntl3 not 7,5,3,
411 * reset chip and get frequency from general purpose timer.
412 * Otherwise trust scntl3 BIOS setting.
414 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
416 f1 = sym_getfreq (np);
418 if (sym_verbose)
419 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
421 if (f1 < 45000) f1 = 40000;
422 else if (f1 < 55000) f1 = 50000;
423 else f1 = 80000;
425 if (f1 < 80000 && mult > 1) {
426 if (sym_verbose >= 2)
427 printf ("%s: clock multiplier assumed\n",
428 sym_name(np));
429 np->multiplier = mult;
431 } else {
432 if ((scntl3 & 7) == 3) f1 = 40000;
433 else if ((scntl3 & 7) == 5) f1 = 80000;
434 else f1 = 160000;
436 f1 /= np->multiplier;
440 * Compute controller synchronous parameters.
442 f1 *= np->multiplier;
443 np->clock_khz = f1;
447 * Get/probe PCI clock frequency
449 static int sym_getpciclock (struct sym_hcb *np)
451 int f = 0;
454 * For now, we only need to know about the actual
455 * PCI BUS clock frequency for C1010-66 chips.
457 #if 1
458 if (np->features & FE_66MHZ) {
459 #else
460 if (1) {
461 #endif
462 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 f = sym_getfreq(np);
464 OUTB(np, nc_stest1, 0);
466 np->pciclk_khz = f;
468 return f;
472 * SYMBIOS chip clock divisor table.
474 * Divisors are multiplied by 10,000,000 in order to make
475 * calculations more simple.
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
481 * Get clock factor and sync divisor for a given
482 * synchronous factor period.
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
487 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
488 int div = np->clock_divn; /* Number of divisors supported */
489 u32 fak; /* Sync factor in sxfer */
490 u32 per; /* Period in tenths of ns */
491 u32 kpc; /* (per * clk) */
492 int ret;
495 * Compute the synchronous period in tenths of nano-seconds
497 if (dt && sfac <= 9) per = 125;
498 else if (sfac <= 10) per = 250;
499 else if (sfac == 11) per = 303;
500 else if (sfac == 12) per = 500;
501 else per = 40 * sfac;
502 ret = per;
504 kpc = per * clk;
505 if (dt)
506 kpc <<= 1;
509 * For earliest C10 revision 0, we cannot use extra
510 * clocks for the setting of the SCSI clocking.
511 * Note that this limits the lowest sync data transfer
512 * to 5 Mega-transfers per second and may result in
513 * using higher clock divisors.
515 #if 1
516 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
518 * Look for the lowest clock divisor that allows an
519 * output speed not faster than the period.
521 while (div > 0) {
522 --div;
523 if (kpc > (div_10M[div] << 2)) {
524 ++div;
525 break;
528 fak = 0; /* No extra clocks */
529 if (div == np->clock_divn) { /* Are we too fast ? */
530 ret = -1;
532 *divp = div;
533 *fakp = fak;
534 return ret;
536 #endif
539 * Look for the greatest clock divisor that allows an
540 * input speed faster than the period.
542 while (div-- > 0)
543 if (kpc >= (div_10M[div] << 2)) break;
546 * Calculate the lowest clock factor that allows an output
547 * speed not faster than the period, and the max output speed.
548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
551 if (dt) {
552 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 } else {
555 fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
560 * Check against our hardware limits, or bugs :).
562 if (fak > 2) {
563 fak = 2;
564 ret = -1;
568 * Compute and return sync parameters.
570 *divp = div;
571 *fakp = fak;
573 return ret;
577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578 * 128 transfers. All chips support at least 16 transfers
579 * bursts. The 825A, 875 and 895 chips support bursts of up
580 * to 128 transfers and the 895A and 896 support bursts of up
581 * to 64 transfers. All other chips support up to 16
582 * transfers bursts.
584 * For PCI 32 bit data transfers each transfer is a DWORD.
585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
587 * We use log base 2 (burst length) as internal code, with
588 * value 0 meaning "burst disabled".
592 * Burst length from burst code.
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
597 * Burst code from io register bits.
599 #define burst_code(dmode, ctest4, ctest5) \
600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
603 * Set initial io register bits from burst code.
605 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
607 np->rv_ctest4 &= ~0x80;
608 np->rv_dmode &= ~(0x3 << 6);
609 np->rv_ctest5 &= ~0x4;
611 if (!bc) {
612 np->rv_ctest4 |= 0x80;
614 else {
615 --bc;
616 np->rv_dmode |= ((bc & 0x3) << 6);
617 np->rv_ctest5 |= (bc & 0x4);
622 * Save initial settings of some IO registers.
623 * Assumed to have been set by BIOS.
624 * We cannot reset the chip prior to reading the
625 * IO registers, since informations will be lost.
626 * Since the SCRIPTS processor may be running, this
627 * is not safe on paper, but it seems to work quite
628 * well. :)
630 static void sym_save_initial_setting (struct sym_hcb *np)
632 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
633 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
634 np->sv_dmode = INB(np, nc_dmode) & 0xce;
635 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
636 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
637 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
638 np->sv_gpcntl = INB(np, nc_gpcntl);
639 np->sv_stest1 = INB(np, nc_stest1);
640 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
641 np->sv_stest4 = INB(np, nc_stest4);
642 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
643 np->sv_scntl4 = INB(np, nc_scntl4);
644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
646 else
647 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
651 * Set SCSI BUS mode.
652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
653 * through the STEST4 IO register.
654 * - For previous generation chips (825/825A/875), the user has to tell us
655 * how to check against HVD, since a 100% safe algorithm is not possible.
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
659 if (np->scsi_mode)
660 return;
662 np->scsi_mode = SMODE_SE;
663 if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 np->scsi_mode = (np->sv_stest4 & SMODE);
665 else if (np->features & FE_DIFF) {
666 if (SYM_SETUP_SCSI_DIFF == 1) {
667 if (np->sv_scntl3) {
668 if (np->sv_stest2 & 0x20)
669 np->scsi_mode = SMODE_HVD;
670 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 if (!(INB(np, nc_gpreg) & 0x08))
672 np->scsi_mode = SMODE_HVD;
674 } else if (SYM_SETUP_SCSI_DIFF == 2)
675 np->scsi_mode = SMODE_HVD;
677 if (np->scsi_mode == SMODE_HVD)
678 np->rv_stest2 |= 0x20;
682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
687 u_char burst_max;
688 u32 period;
689 int i;
691 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
694 * Guess the frequency of the chip's clock.
696 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
697 np->clock_khz = 160000;
698 else if (np->features & FE_ULTRA)
699 np->clock_khz = 80000;
700 else
701 np->clock_khz = 40000;
704 * Get the clock multiplier factor.
706 if (np->features & FE_QUAD)
707 np->multiplier = 4;
708 else if (np->features & FE_DBLR)
709 np->multiplier = 2;
710 else
711 np->multiplier = 1;
714 * Measure SCSI clock frequency for chips
715 * it may vary from assumed one.
717 if (np->features & FE_VARCLK)
718 sym_getclock(np, np->multiplier);
721 * Divisor to be used for async (timer pre-scaler).
723 i = np->clock_divn - 1;
724 while (--i >= 0) {
725 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
726 ++i;
727 break;
730 np->rv_scntl3 = i+1;
733 * The C1010 uses hardwired divisors for async.
734 * So, we just throw away, the async. divisor.:-)
736 if (np->features & FE_C10)
737 np->rv_scntl3 = 0;
740 * Minimum synchronous period factor supported by the chip.
741 * Btw, 'period' is in tenths of nanoseconds.
743 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
745 if (period <= 250) np->minsync = 10;
746 else if (period <= 303) np->minsync = 11;
747 else if (period <= 500) np->minsync = 12;
748 else np->minsync = (period + 40 - 1) / 40;
751 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
753 if (np->minsync < 25 &&
754 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
755 np->minsync = 25;
756 else if (np->minsync < 12 &&
757 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
758 np->minsync = 12;
761 * Maximum synchronous period factor supported by the chip.
763 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
764 np->maxsync = period > 2540 ? 254 : period / 10;
767 * If chip is a C1010, guess the sync limits in DT mode.
769 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
770 if (np->clock_khz == 160000) {
771 np->minsync_dt = 9;
772 np->maxsync_dt = 50;
773 np->maxoffs_dt = nvram->type ? 62 : 31;
778 * 64 bit addressing (895A/896/1010) ?
780 if (np->features & FE_DAC) {
781 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
782 np->rv_ccntl1 |= (DDAC);
783 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
784 if (!np->use_dac)
785 np->rv_ccntl1 |= (DDAC);
786 else
787 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
788 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
789 if (!np->use_dac)
790 np->rv_ccntl1 |= (DDAC);
791 else
792 np->rv_ccntl1 |= (0 | EXTIBMV);
793 #endif
797 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
799 if (np->features & FE_NOPM)
800 np->rv_ccntl0 |= (ENPMJ);
803 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
804 * In dual channel mode, contention occurs if internal cycles
805 * are used. Disable internal cycles.
807 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
808 np->revision_id < 0x1)
809 np->rv_ccntl0 |= DILS;
812 * Select burst length (dwords)
814 burst_max = SYM_SETUP_BURST_ORDER;
815 if (burst_max == 255)
816 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
817 np->sv_ctest5);
818 if (burst_max > 7)
819 burst_max = 7;
820 if (burst_max > np->maxburst)
821 burst_max = np->maxburst;
824 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
825 * This chip and the 860 Rev 1 may wrongly use PCI cache line
826 * based transactions on LOAD/STORE instructions. So we have
827 * to prevent these chips from using such PCI transactions in
828 * this driver. The generic ncr driver that does not use
829 * LOAD/STORE instructions does not need this work-around.
831 if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
832 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
833 (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
834 np->revision_id <= 0x1))
835 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
838 * Select all supported special features.
839 * If we are using on-board RAM for scripts, prefetch (PFEN)
840 * does not help, but burst op fetch (BOF) does.
841 * Disabling PFEN makes sure BOF will be used.
843 if (np->features & FE_ERL)
844 np->rv_dmode |= ERL; /* Enable Read Line */
845 if (np->features & FE_BOF)
846 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
847 if (np->features & FE_ERMP)
848 np->rv_dmode |= ERMP; /* Enable Read Multiple */
849 #if 1
850 if ((np->features & FE_PFEN) && !np->ram_ba)
851 #else
852 if (np->features & FE_PFEN)
853 #endif
854 np->rv_dcntl |= PFEN; /* Prefetch Enable */
855 if (np->features & FE_CLSE)
856 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
857 if (np->features & FE_WRIE)
858 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
859 if (np->features & FE_DFS)
860 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
863 * Select some other
865 np->rv_ctest4 |= MPEE; /* Master parity checking */
866 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
869 * Get parity checking, host ID and verbose mode from NVRAM
871 np->myaddr = 255;
872 np->scsi_mode = 0;
873 sym_nvram_setup_host(shost, np, nvram);
876 * Get SCSI addr of host adapter (set by bios?).
878 if (np->myaddr == 255) {
879 np->myaddr = INB(np, nc_scid) & 0x07;
880 if (!np->myaddr)
881 np->myaddr = SYM_SETUP_HOST_ID;
885 * Prepare initial io register bits for burst length
887 sym_init_burst(np, burst_max);
889 sym_set_bus_mode(np, nvram);
892 * Set LED support from SCRIPTS.
893 * Ignore this feature for boards known to use a
894 * specific GPIO wiring and for the 895A, 896
895 * and 1010 that drive the LED directly.
897 if ((SYM_SETUP_SCSI_LED ||
898 (nvram->type == SYM_SYMBIOS_NVRAM ||
899 (nvram->type == SYM_TEKRAM_NVRAM &&
900 np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
901 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
902 np->features |= FE_LED0;
905 * Set irq mode.
907 switch(SYM_SETUP_IRQ_MODE & 3) {
908 case 2:
909 np->rv_dcntl |= IRQM;
910 break;
911 case 1:
912 np->rv_dcntl |= (np->sv_dcntl & IRQM);
913 break;
914 default:
915 break;
919 * Configure targets according to driver setup.
920 * If NVRAM present get targets setup from NVRAM.
922 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
923 struct sym_tcb *tp = &np->target[i];
925 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
926 tp->usrtags = SYM_SETUP_MAX_TAG;
927 tp->usr_width = np->maxwide;
928 tp->usr_period = 9;
930 sym_nvram_setup_target(tp, i, nvram);
932 if (!tp->usrtags)
933 tp->usrflags &= ~SYM_TAGS_ENABLED;
937 * Let user know about the settings.
939 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
940 sym_nvram_type(nvram), np->myaddr,
941 (np->features & FE_ULTRA3) ? 80 :
942 (np->features & FE_ULTRA2) ? 40 :
943 (np->features & FE_ULTRA) ? 20 : 10,
944 sym_scsi_bus_mode(np->scsi_mode),
945 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
947 * Tell him more on demand.
949 if (sym_verbose) {
950 printf("%s: %s IRQ line driver%s\n",
951 sym_name(np),
952 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
953 np->ram_ba ? ", using on-chip SRAM" : "");
954 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
955 if (np->features & FE_NOPM)
956 printf("%s: handling phase mismatch from SCRIPTS.\n",
957 sym_name(np));
960 * And still more.
962 if (sym_verbose >= 2) {
963 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
966 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
968 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
969 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
970 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
971 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
974 return 0;
978 * Test the pci bus snoop logic :-(
980 * Has to be called with interrupts disabled.
982 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
983 static int sym_regtest(struct sym_hcb *np)
985 register volatile u32 data;
987 * chip registers may NOT be cached.
988 * write 0xffffffff to a read only register area,
989 * and try to read it back.
991 data = 0xffffffff;
992 OUTL(np, nc_dstat, data);
993 data = INL(np, nc_dstat);
994 #if 1
995 if (data == 0xffffffff) {
996 #else
997 if ((data & 0xe2f0fffd) != 0x02000080) {
998 #endif
999 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1000 (unsigned) data);
1001 return 0x10;
1003 return 0;
1005 #else
1006 static inline int sym_regtest(struct sym_hcb *np)
1008 return 0;
1010 #endif
1012 static int sym_snooptest(struct sym_hcb *np)
1014 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1015 int i, err;
1017 err = sym_regtest(np);
1018 if (err)
1019 return err;
1020 restart_test:
1022 * Enable Master Parity Checking as we intend
1023 * to enable it for normal operations.
1025 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1027 * init
1029 pc = SCRIPTZ_BA(np, snooptest);
1030 host_wr = 1;
1031 sym_wr = 2;
1033 * Set memory and register.
1035 np->scratch = cpu_to_scr(host_wr);
1036 OUTL(np, nc_temp, sym_wr);
1038 * Start script (exchange values)
1040 OUTL(np, nc_dsa, np->hcb_ba);
1041 OUTL_DSP(np, pc);
1043 * Wait 'til done (with timeout)
1045 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1046 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1047 break;
1048 if (i>=SYM_SNOOP_TIMEOUT) {
1049 printf ("CACHE TEST FAILED: timeout.\n");
1050 return (0x20);
1053 * Check for fatal DMA errors.
1055 dstat = INB(np, nc_dstat);
1056 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1057 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1058 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1059 "DISABLING MASTER DATA PARITY CHECKING.\n",
1060 sym_name(np));
1061 np->rv_ctest4 &= ~MPEE;
1062 goto restart_test;
1064 #endif
1065 if (dstat & (MDPE|BF|IID)) {
1066 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1067 return (0x80);
1070 * Save termination position.
1072 pc = INL(np, nc_dsp);
1074 * Read memory and register.
1076 host_rd = scr_to_cpu(np->scratch);
1077 sym_rd = INL(np, nc_scratcha);
1078 sym_bk = INL(np, nc_temp);
1080 * Check termination position.
1082 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1083 printf ("CACHE TEST FAILED: script execution failed.\n");
1084 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1085 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1086 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1087 return (0x40);
1090 * Show results.
1092 if (host_wr != sym_rd) {
1093 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1094 (int) host_wr, (int) sym_rd);
1095 err |= 1;
1097 if (host_rd != sym_wr) {
1098 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1099 (int) sym_wr, (int) host_rd);
1100 err |= 2;
1102 if (sym_bk != sym_wr) {
1103 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1104 (int) sym_wr, (int) sym_bk);
1105 err |= 4;
1108 return err;
1112 * log message for real hard errors
1114 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1115 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1117 * exception register:
1118 * ds: dstat
1119 * si: sist
1121 * SCSI bus lines:
1122 * so: control lines as driven by chip.
1123 * si: control lines as seen by chip.
1124 * sd: scsi data lines as seen by chip.
1126 * wide/fastmode:
1127 * sx: sxfer (see the manual)
1128 * s3: scntl3 (see the manual)
1129 * s4: scntl4 (see the manual)
1131 * current script command:
1132 * dsp: script address (relative to start of script).
1133 * dbc: first word of script command.
1135 * First 24 register of the chip:
1136 * r0..rf
1138 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1140 u32 dsp;
1141 int script_ofs;
1142 int script_size;
1143 char *script_name;
1144 u_char *script_base;
1145 int i;
1147 dsp = INL(np, nc_dsp);
1149 if (dsp > np->scripta_ba &&
1150 dsp <= np->scripta_ba + np->scripta_sz) {
1151 script_ofs = dsp - np->scripta_ba;
1152 script_size = np->scripta_sz;
1153 script_base = (u_char *) np->scripta0;
1154 script_name = "scripta";
1156 else if (np->scriptb_ba < dsp &&
1157 dsp <= np->scriptb_ba + np->scriptb_sz) {
1158 script_ofs = dsp - np->scriptb_ba;
1159 script_size = np->scriptb_sz;
1160 script_base = (u_char *) np->scriptb0;
1161 script_name = "scriptb";
1162 } else {
1163 script_ofs = dsp;
1164 script_size = 0;
1165 script_base = NULL;
1166 script_name = "mem";
1169 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1170 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1171 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1172 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1173 (unsigned)INB(np, nc_scntl3),
1174 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1175 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1177 if (((script_ofs & 3) == 0) &&
1178 (unsigned)script_ofs < script_size) {
1179 printf ("%s: script cmd = %08x\n", sym_name(np),
1180 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1183 printf ("%s: regdump:", sym_name(np));
1184 for (i=0; i<24;i++)
1185 printf (" %02x", (unsigned)INB_OFF(np, i));
1186 printf (".\n");
1189 * PCI BUS error.
1191 if (dstat & (MDPE|BF))
1192 sym_log_bus_error(np);
1195 static struct sym_chip sym_dev_table[] = {
1196 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1197 FE_ERL}
1199 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1200 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1201 FE_BOF}
1203 #else
1204 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1205 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1207 #endif
1208 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1209 FE_BOF|FE_ERL}
1211 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1212 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1214 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1215 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1217 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1218 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1220 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1221 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1222 FE_RAM|FE_DIFF|FE_VARCLK}
1224 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1225 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1226 FE_RAM|FE_DIFF|FE_VARCLK}
1228 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1229 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1230 FE_RAM|FE_DIFF|FE_VARCLK}
1232 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1233 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1234 FE_RAM|FE_DIFF|FE_VARCLK}
1236 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1237 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1238 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1239 FE_RAM|FE_LCKFRQ}
1241 #else
1242 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1243 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1244 FE_RAM|FE_LCKFRQ}
1246 #endif
1247 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1248 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1249 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1251 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1252 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1253 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1255 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1256 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1257 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1259 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1260 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1261 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1262 FE_C10}
1264 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1265 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1266 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1267 FE_C10|FE_U3EN}
1269 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1270 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1271 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1272 FE_C10|FE_U3EN}
1274 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1275 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1276 FE_RAM|FE_IO256|FE_LEDC}
1279 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1282 * Look up the chip table.
1284 * Return a pointer to the chip entry if found,
1285 * zero otherwise.
1287 struct sym_chip *
1288 sym_lookup_chip_table (u_short device_id, u_char revision)
1290 struct sym_chip *chip;
1291 int i;
1293 for (i = 0; i < sym_num_devs; i++) {
1294 chip = &sym_dev_table[i];
1295 if (device_id != chip->device_id)
1296 continue;
1297 if (revision > chip->revision_id)
1298 continue;
1299 return chip;
1302 return NULL;
1305 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1307 * Lookup the 64 bit DMA segments map.
1308 * This is only used if the direct mapping
1309 * has been unsuccessful.
1311 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1313 int i;
1315 if (!np->use_dac)
1316 goto weird;
1318 /* Look up existing mappings */
1319 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1320 if (h == np->dmap_bah[i])
1321 return i;
1323 /* If direct mapping is free, get it */
1324 if (!np->dmap_bah[s])
1325 goto new;
1326 /* Collision -> lookup free mappings */
1327 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1328 if (!np->dmap_bah[s])
1329 goto new;
1331 weird:
1332 panic("sym: ran out of 64 bit DMA segment registers");
1333 return -1;
1334 new:
1335 np->dmap_bah[s] = h;
1336 np->dmap_dirty = 1;
1337 return s;
1341 * Update IO registers scratch C..R so they will be
1342 * in sync. with queued CCB expectations.
1344 static void sym_update_dmap_regs(struct sym_hcb *np)
1346 int o, i;
1348 if (!np->dmap_dirty)
1349 return;
1350 o = offsetof(struct sym_reg, nc_scrx[0]);
1351 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1352 OUTL_OFF(np, o, np->dmap_bah[i]);
1353 o += 4;
1355 np->dmap_dirty = 0;
1357 #endif
1359 /* Enforce all the fiddly SPI rules and the chip limitations */
1360 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1361 struct sym_trans *goal)
1363 if (!spi_support_wide(starget))
1364 goal->width = 0;
1366 if (!spi_support_sync(starget)) {
1367 goal->iu = 0;
1368 goal->dt = 0;
1369 goal->qas = 0;
1370 goal->offset = 0;
1371 return;
1374 if (spi_support_dt(starget)) {
1375 if (spi_support_dt_only(starget))
1376 goal->dt = 1;
1378 if (goal->offset == 0)
1379 goal->dt = 0;
1380 } else {
1381 goal->dt = 0;
1384 /* Some targets fail to properly negotiate DT in SE mode */
1385 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1386 goal->dt = 0;
1388 if (goal->dt) {
1389 /* all DT transfers must be wide */
1390 goal->width = 1;
1391 if (goal->offset > np->maxoffs_dt)
1392 goal->offset = np->maxoffs_dt;
1393 if (goal->period < np->minsync_dt)
1394 goal->period = np->minsync_dt;
1395 if (goal->period > np->maxsync_dt)
1396 goal->period = np->maxsync_dt;
1397 } else {
1398 goal->iu = goal->qas = 0;
1399 if (goal->offset > np->maxoffs)
1400 goal->offset = np->maxoffs;
1401 if (goal->period < np->minsync)
1402 goal->period = np->minsync;
1403 if (goal->period > np->maxsync)
1404 goal->period = np->maxsync;
1409 * Prepare the next negotiation message if needed.
1411 * Fill in the part of message buffer that contains the
1412 * negotiation and the nego_status field of the CCB.
1413 * Returns the size of the message in bytes.
1415 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1417 struct sym_tcb *tp = &np->target[cp->target];
1418 struct scsi_target *starget = tp->starget;
1419 struct sym_trans *goal = &tp->tgoal;
1420 int msglen = 0;
1421 int nego;
1423 sym_check_goals(np, starget, goal);
1426 * Many devices implement PPR in a buggy way, so only use it if we
1427 * really want to.
1429 if (goal->offset &&
1430 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1431 nego = NS_PPR;
1432 } else if (spi_width(starget) != goal->width) {
1433 nego = NS_WIDE;
1434 } else if (spi_period(starget) != goal->period ||
1435 spi_offset(starget) != goal->offset) {
1436 nego = NS_SYNC;
1437 } else {
1438 goal->check_nego = 0;
1439 nego = 0;
1442 switch (nego) {
1443 case NS_SYNC:
1444 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1445 goal->offset);
1446 break;
1447 case NS_WIDE:
1448 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1449 break;
1450 case NS_PPR:
1451 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1452 goal->offset, goal->width,
1453 (goal->iu ? PPR_OPT_IU : 0) |
1454 (goal->dt ? PPR_OPT_DT : 0) |
1455 (goal->qas ? PPR_OPT_QAS : 0));
1456 break;
1459 cp->nego_status = nego;
1461 if (nego) {
1462 tp->nego_cp = cp; /* Keep track a nego will be performed */
1463 if (DEBUG_FLAGS & DEBUG_NEGO) {
1464 sym_print_nego_msg(np, cp->target,
1465 nego == NS_SYNC ? "sync msgout" :
1466 nego == NS_WIDE ? "wide msgout" :
1467 "ppr msgout", msgptr);
1471 return msglen;
1475 * Insert a job into the start queue.
1477 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1479 u_short qidx;
1481 #ifdef SYM_CONF_IARB_SUPPORT
1483 * If the previously queued CCB is not yet done,
1484 * set the IARB hint. The SCRIPTS will go with IARB
1485 * for this job when starting the previous one.
1486 * We leave devices a chance to win arbitration by
1487 * not using more than 'iarb_max' consecutive
1488 * immediate arbitrations.
1490 if (np->last_cp && np->iarb_count < np->iarb_max) {
1491 np->last_cp->host_flags |= HF_HINT_IARB;
1492 ++np->iarb_count;
1494 else
1495 np->iarb_count = 0;
1496 np->last_cp = cp;
1497 #endif
1499 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1501 * Make SCRIPTS aware of the 64 bit DMA
1502 * segment registers not being up-to-date.
1504 if (np->dmap_dirty)
1505 cp->host_xflags |= HX_DMAP_DIRTY;
1506 #endif
1509 * Insert first the idle task and then our job.
1510 * The MBs should ensure proper ordering.
1512 qidx = np->squeueput + 2;
1513 if (qidx >= MAX_QUEUE*2) qidx = 0;
1515 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1516 MEMORY_WRITE_BARRIER();
1517 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1519 np->squeueput = qidx;
1521 if (DEBUG_FLAGS & DEBUG_QUEUE)
1522 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1525 * Script processor may be waiting for reselect.
1526 * Wake it up.
1528 MEMORY_WRITE_BARRIER();
1529 OUTB(np, nc_istat, SIGP|np->istat_sem);
1532 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1534 * Start next ready-to-start CCBs.
1536 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1538 SYM_QUEHEAD *qp;
1539 struct sym_ccb *cp;
1542 * Paranoia, as usual. :-)
1544 assert(!lp->started_tags || !lp->started_no_tag);
1547 * Try to start as many commands as asked by caller.
1548 * Prevent from having both tagged and untagged
1549 * commands queued to the device at the same time.
1551 while (maxn--) {
1552 qp = sym_remque_head(&lp->waiting_ccbq);
1553 if (!qp)
1554 break;
1555 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1556 if (cp->tag != NO_TAG) {
1557 if (lp->started_no_tag ||
1558 lp->started_tags >= lp->started_max) {
1559 sym_insque_head(qp, &lp->waiting_ccbq);
1560 break;
1562 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1563 lp->head.resel_sa =
1564 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1565 ++lp->started_tags;
1566 } else {
1567 if (lp->started_no_tag || lp->started_tags) {
1568 sym_insque_head(qp, &lp->waiting_ccbq);
1569 break;
1571 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1572 lp->head.resel_sa =
1573 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1574 ++lp->started_no_tag;
1576 cp->started = 1;
1577 sym_insque_tail(qp, &lp->started_ccbq);
1578 sym_put_start_queue(np, cp);
1581 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1584 * The chip may have completed jobs. Look at the DONE QUEUE.
1586 * On paper, memory read barriers may be needed here to
1587 * prevent out of order LOADs by the CPU from having
1588 * prefetched stale data prior to DMA having occurred.
1590 static int sym_wakeup_done (struct sym_hcb *np)
1592 struct sym_ccb *cp;
1593 int i, n;
1594 u32 dsa;
1596 n = 0;
1597 i = np->dqueueget;
1599 /* MEMORY_READ_BARRIER(); */
1600 while (1) {
1601 dsa = scr_to_cpu(np->dqueue[i]);
1602 if (!dsa)
1603 break;
1604 np->dqueue[i] = 0;
1605 if ((i = i+2) >= MAX_QUEUE*2)
1606 i = 0;
1608 cp = sym_ccb_from_dsa(np, dsa);
1609 if (cp) {
1610 MEMORY_READ_BARRIER();
1611 sym_complete_ok (np, cp);
1612 ++n;
1614 else
1615 printf ("%s: bad DSA (%x) in done queue.\n",
1616 sym_name(np), (u_int) dsa);
1618 np->dqueueget = i;
1620 return n;
1624 * Complete all CCBs queued to the COMP queue.
1626 * These CCBs are assumed:
1627 * - Not to be referenced either by devices or
1628 * SCRIPTS-related queues and datas.
1629 * - To have to be completed with an error condition
1630 * or requeued.
1632 * The device queue freeze count is incremented
1633 * for each CCB that does not prevent this.
1634 * This function is called when all CCBs involved
1635 * in error handling/recovery have been reaped.
1637 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1639 SYM_QUEHEAD *qp;
1640 struct sym_ccb *cp;
1642 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1643 struct scsi_cmnd *cmd;
1644 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1645 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1646 /* Leave quiet CCBs waiting for resources */
1647 if (cp->host_status == HS_WAIT)
1648 continue;
1649 cmd = cp->cmd;
1650 if (cam_status)
1651 sym_set_cam_status(cmd, cam_status);
1652 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1653 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1654 struct sym_tcb *tp = &np->target[cp->target];
1655 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1656 if (lp) {
1657 sym_remque(&cp->link2_ccbq);
1658 sym_insque_tail(&cp->link2_ccbq,
1659 &lp->waiting_ccbq);
1660 if (cp->started) {
1661 if (cp->tag != NO_TAG)
1662 --lp->started_tags;
1663 else
1664 --lp->started_no_tag;
1667 cp->started = 0;
1668 continue;
1670 #endif
1671 sym_free_ccb(np, cp);
1672 sym_xpt_done(np, cmd);
1677 * Complete all active CCBs with error.
1678 * Used on CHIP/SCSI RESET.
1680 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1683 * Move all active CCBs to the COMP queue
1684 * and flush this queue.
1686 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1687 sym_que_init(&np->busy_ccbq);
1688 sym_flush_comp_queue(np, cam_status);
1692 * Start chip.
1694 * 'reason' means:
1695 * 0: initialisation.
1696 * 1: SCSI BUS RESET delivered or received.
1697 * 2: SCSI BUS MODE changed.
1699 void sym_start_up (struct sym_hcb *np, int reason)
1701 int i;
1702 u32 phys;
1705 * Reset chip if asked, otherwise just clear fifos.
1707 if (reason == 1)
1708 sym_soft_reset(np);
1709 else {
1710 OUTB(np, nc_stest3, TE|CSF);
1711 OUTONB(np, nc_ctest3, CLF);
1715 * Clear Start Queue
1717 phys = np->squeue_ba;
1718 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1719 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1720 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1722 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1725 * Start at first entry.
1727 np->squeueput = 0;
1730 * Clear Done Queue
1732 phys = np->dqueue_ba;
1733 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1734 np->dqueue[i] = 0;
1735 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1737 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1740 * Start at first entry.
1742 np->dqueueget = 0;
1745 * Install patches in scripts.
1746 * This also let point to first position the start
1747 * and done queue pointers used from SCRIPTS.
1749 np->fw_patch(np);
1752 * Wakeup all pending jobs.
1754 sym_flush_busy_queue(np, DID_RESET);
1757 * Init chip.
1759 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1760 INB(np, nc_mbox1);
1761 udelay(2000); /* The 895 needs time for the bus mode to settle */
1763 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1764 /* full arb., ena parity, par->ATN */
1765 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1767 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1769 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1770 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1771 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1772 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1773 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1775 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1776 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1777 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1779 /* Extended Sreq/Sack filtering not supported on the C10 */
1780 if (np->features & FE_C10)
1781 OUTB(np, nc_stest2, np->rv_stest2);
1782 else
1783 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1785 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1786 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1789 * For now, disable AIP generation on C1010-66.
1791 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1792 OUTB(np, nc_aipcntl1, DISAIP);
1795 * C10101 rev. 0 errata.
1796 * Errant SGE's when in narrow. Write bits 4 & 5 of
1797 * STEST1 register to disable SGE. We probably should do
1798 * that from SCRIPTS for each selection/reselection, but
1799 * I just don't want. :)
1801 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1802 np->revision_id < 1)
1803 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1806 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1807 * Disable overlapped arbitration for some dual function devices,
1808 * regardless revision id (kind of post-chip-design feature. ;-))
1810 if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1811 OUTB(np, nc_ctest0, (1<<5));
1812 else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1813 np->rv_ccntl0 |= DPR;
1816 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1817 * and/or hardware phase mismatch, since only such chips
1818 * seem to support those IO registers.
1820 if (np->features & (FE_DAC|FE_NOPM)) {
1821 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1822 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1825 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1827 * Set up scratch C and DRS IO registers to map the 32 bit
1828 * DMA address range our data structures are located in.
1830 if (np->use_dac) {
1831 np->dmap_bah[0] = 0; /* ??? */
1832 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1833 OUTL(np, nc_drs, np->dmap_bah[0]);
1835 #endif
1838 * If phase mismatch handled by scripts (895A/896/1010),
1839 * set PM jump addresses.
1841 if (np->features & FE_NOPM) {
1842 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1843 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1847 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1848 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1850 if (np->features & FE_LED0)
1851 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1852 else if (np->features & FE_LEDC)
1853 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1856 * enable ints
1858 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1859 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1862 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1863 * Try to eat the spurious SBMC interrupt that may occur when
1864 * we reset the chip but not the SCSI BUS (at initialization).
1866 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1867 OUTONW(np, nc_sien, SBMC);
1868 if (reason == 0) {
1869 INB(np, nc_mbox1);
1870 mdelay(100);
1871 INW(np, nc_sist);
1873 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1877 * Fill in target structure.
1878 * Reinitialize usrsync.
1879 * Reinitialize usrwide.
1880 * Prepare sync negotiation according to actual SCSI bus mode.
1882 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1883 struct sym_tcb *tp = &np->target[i];
1885 tp->to_reset = 0;
1886 tp->head.sval = 0;
1887 tp->head.wval = np->rv_scntl3;
1888 tp->head.uval = 0;
1892 * Download SCSI SCRIPTS to on-chip RAM if present,
1893 * and start script processor.
1894 * We do the download preferently from the CPU.
1895 * For platforms that may not support PCI memory mapping,
1896 * we use simple SCRIPTS that performs MEMORY MOVEs.
1898 phys = SCRIPTA_BA(np, init);
1899 if (np->ram_ba) {
1900 if (sym_verbose >= 2)
1901 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1902 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1903 if (np->ram_ws == 8192) {
1904 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1905 phys = scr_to_cpu(np->scr_ram_seg);
1906 OUTL(np, nc_mmws, phys);
1907 OUTL(np, nc_mmrs, phys);
1908 OUTL(np, nc_sfs, phys);
1909 phys = SCRIPTB_BA(np, start64);
1913 np->istat_sem = 0;
1915 OUTL(np, nc_dsa, np->hcb_ba);
1916 OUTL_DSP(np, phys);
1919 * Notify the XPT about the RESET condition.
1921 if (reason != 0)
1922 sym_xpt_async_bus_reset(np);
1926 * Switch trans mode for current job and its target.
1928 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1929 u_char per, u_char wide, u_char div, u_char fak)
1931 SYM_QUEHEAD *qp;
1932 u_char sval, wval, uval;
1933 struct sym_tcb *tp = &np->target[target];
1935 assert(target == (INB(np, nc_sdid) & 0x0f));
1937 sval = tp->head.sval;
1938 wval = tp->head.wval;
1939 uval = tp->head.uval;
1941 #if 0
1942 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1943 sval, wval, uval, np->rv_scntl3);
1944 #endif
1946 * Set the offset.
1948 if (!(np->features & FE_C10))
1949 sval = (sval & ~0x1f) | ofs;
1950 else
1951 sval = (sval & ~0x3f) | ofs;
1954 * Set the sync divisor and extra clock factor.
1956 if (ofs != 0) {
1957 wval = (wval & ~0x70) | ((div+1) << 4);
1958 if (!(np->features & FE_C10))
1959 sval = (sval & ~0xe0) | (fak << 5);
1960 else {
1961 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1962 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1963 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1968 * Set the bus width.
1970 wval = wval & ~EWS;
1971 if (wide != 0)
1972 wval |= EWS;
1975 * Set misc. ultra enable bits.
1977 if (np->features & FE_C10) {
1978 uval = uval & ~(U3EN|AIPCKEN);
1979 if (opts) {
1980 assert(np->features & FE_U3EN);
1981 uval |= U3EN;
1983 } else {
1984 wval = wval & ~ULTRA;
1985 if (per <= 12) wval |= ULTRA;
1989 * Stop there if sync parameters are unchanged.
1991 if (tp->head.sval == sval &&
1992 tp->head.wval == wval &&
1993 tp->head.uval == uval)
1994 return;
1995 tp->head.sval = sval;
1996 tp->head.wval = wval;
1997 tp->head.uval = uval;
2000 * Disable extended Sreq/Sack filtering if per < 50.
2001 * Not supported on the C1010.
2003 if (per < 50 && !(np->features & FE_C10))
2004 OUTOFFB(np, nc_stest2, EXT);
2007 * set actual value and sync_status
2009 OUTB(np, nc_sxfer, tp->head.sval);
2010 OUTB(np, nc_scntl3, tp->head.wval);
2012 if (np->features & FE_C10) {
2013 OUTB(np, nc_scntl4, tp->head.uval);
2017 * patch ALL busy ccbs of this target.
2019 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2020 struct sym_ccb *cp;
2021 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2022 if (cp->target != target)
2023 continue;
2024 cp->phys.select.sel_scntl3 = tp->head.wval;
2025 cp->phys.select.sel_sxfer = tp->head.sval;
2026 if (np->features & FE_C10) {
2027 cp->phys.select.sel_scntl4 = tp->head.uval;
2033 * We received a WDTR.
2034 * Let everything be aware of the changes.
2036 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2038 struct sym_tcb *tp = &np->target[target];
2039 struct scsi_target *starget = tp->starget;
2041 if (spi_width(starget) == wide)
2042 return;
2044 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2046 tp->tgoal.width = wide;
2047 spi_offset(starget) = 0;
2048 spi_period(starget) = 0;
2049 spi_width(starget) = wide;
2050 spi_iu(starget) = 0;
2051 spi_dt(starget) = 0;
2052 spi_qas(starget) = 0;
2054 if (sym_verbose >= 3)
2055 spi_display_xfer_agreement(starget);
2059 * We received a SDTR.
2060 * Let everything be aware of the changes.
2062 static void
2063 sym_setsync(struct sym_hcb *np, int target,
2064 u_char ofs, u_char per, u_char div, u_char fak)
2066 struct sym_tcb *tp = &np->target[target];
2067 struct scsi_target *starget = tp->starget;
2068 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2070 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2072 spi_period(starget) = per;
2073 spi_offset(starget) = ofs;
2074 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2076 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2077 tp->tgoal.period = per;
2078 tp->tgoal.offset = ofs;
2079 tp->tgoal.check_nego = 0;
2082 spi_display_xfer_agreement(starget);
2086 * We received a PPR.
2087 * Let everything be aware of the changes.
2089 static void
2090 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2091 u_char per, u_char wide, u_char div, u_char fak)
2093 struct sym_tcb *tp = &np->target[target];
2094 struct scsi_target *starget = tp->starget;
2096 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2098 spi_width(starget) = tp->tgoal.width = wide;
2099 spi_period(starget) = tp->tgoal.period = per;
2100 spi_offset(starget) = tp->tgoal.offset = ofs;
2101 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2102 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2103 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2104 tp->tgoal.check_nego = 0;
2106 spi_display_xfer_agreement(starget);
2110 * generic recovery from scsi interrupt
2112 * The doc says that when the chip gets an SCSI interrupt,
2113 * it tries to stop in an orderly fashion, by completing
2114 * an instruction fetch that had started or by flushing
2115 * the DMA fifo for a write to memory that was executing.
2116 * Such a fashion is not enough to know if the instruction
2117 * that was just before the current DSP value has been
2118 * executed or not.
2120 * There are some small SCRIPTS sections that deal with
2121 * the start queue and the done queue that may break any
2122 * assomption from the C code if we are interrupted
2123 * inside, so we reset if this happens. Btw, since these
2124 * SCRIPTS sections are executed while the SCRIPTS hasn't
2125 * started SCSI operations, it is very unlikely to happen.
2127 * All the driver data structures are supposed to be
2128 * allocated from the same 4 GB memory window, so there
2129 * is a 1 to 1 relationship between DSA and driver data
2130 * structures. Since we are careful :) to invalidate the
2131 * DSA when we complete a command or when the SCRIPTS
2132 * pushes a DSA into a queue, we can trust it when it
2133 * points to a CCB.
2135 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2137 u32 dsp = INL(np, nc_dsp);
2138 u32 dsa = INL(np, nc_dsa);
2139 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2142 * If we haven't been interrupted inside the SCRIPTS
2143 * critical pathes, we can safely restart the SCRIPTS
2144 * and trust the DSA value if it matches a CCB.
2146 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2147 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2148 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2149 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2150 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2151 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2152 (!(dsp > SCRIPTA_BA(np, done) &&
2153 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2154 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2155 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2157 * If we have a CCB, let the SCRIPTS call us back for
2158 * the handling of the error with SCRATCHA filled with
2159 * STARTPOS. This way, we will be able to freeze the
2160 * device queue and requeue awaiting IOs.
2162 if (cp) {
2163 cp->host_status = hsts;
2164 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2167 * Otherwise just restart the SCRIPTS.
2169 else {
2170 OUTL(np, nc_dsa, 0xffffff);
2171 OUTL_DSP(np, SCRIPTA_BA(np, start));
2174 else
2175 goto reset_all;
2177 return;
2179 reset_all:
2180 sym_start_reset(np);
2184 * chip exception handler for selection timeout
2186 static void sym_int_sto (struct sym_hcb *np)
2188 u32 dsp = INL(np, nc_dsp);
2190 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2192 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2193 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2194 else
2195 sym_start_reset(np);
2199 * chip exception handler for unexpected disconnect
2201 static void sym_int_udc (struct sym_hcb *np)
2203 printf ("%s: unexpected disconnect\n", sym_name(np));
2204 sym_recover_scsi_int(np, HS_UNEXPECTED);
2208 * chip exception handler for SCSI bus mode change
2210 * spi2-r12 11.2.3 says a transceiver mode change must
2211 * generate a reset event and a device that detects a reset
2212 * event shall initiate a hard reset. It says also that a
2213 * device that detects a mode change shall set data transfer
2214 * mode to eight bit asynchronous, etc...
2215 * So, just reinitializing all except chip should be enough.
2217 static void sym_int_sbmc (struct sym_hcb *np)
2219 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2222 * Notify user.
2224 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2225 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2228 * Should suspend command processing for a few seconds and
2229 * reinitialize all except the chip.
2231 sym_start_up (np, 2);
2235 * chip exception handler for SCSI parity error.
2237 * When the chip detects a SCSI parity error and is
2238 * currently executing a (CH)MOV instruction, it does
2239 * not interrupt immediately, but tries to finish the
2240 * transfer of the current scatter entry before
2241 * interrupting. The following situations may occur:
2243 * - The complete scatter entry has been transferred
2244 * without the device having changed phase.
2245 * The chip will then interrupt with the DSP pointing
2246 * to the instruction that follows the MOV.
2248 * - A phase mismatch occurs before the MOV finished
2249 * and phase errors are to be handled by the C code.
2250 * The chip will then interrupt with both PAR and MA
2251 * conditions set.
2253 * - A phase mismatch occurs before the MOV finished and
2254 * phase errors are to be handled by SCRIPTS.
2255 * The chip will load the DSP with the phase mismatch
2256 * JUMP address and interrupt the host processor.
2258 static void sym_int_par (struct sym_hcb *np, u_short sist)
2260 u_char hsts = INB(np, HS_PRT);
2261 u32 dsp = INL(np, nc_dsp);
2262 u32 dbc = INL(np, nc_dbc);
2263 u32 dsa = INL(np, nc_dsa);
2264 u_char sbcl = INB(np, nc_sbcl);
2265 u_char cmd = dbc >> 24;
2266 int phase = cmd & 7;
2267 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2269 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2270 sym_name(np), hsts, dbc, sbcl);
2273 * Check that the chip is connected to the SCSI BUS.
2275 if (!(INB(np, nc_scntl1) & ISCON)) {
2276 sym_recover_scsi_int(np, HS_UNEXPECTED);
2277 return;
2281 * If the nexus is not clearly identified, reset the bus.
2282 * We will try to do better later.
2284 if (!cp)
2285 goto reset_all;
2288 * Check instruction was a MOV, direction was INPUT and
2289 * ATN is asserted.
2291 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2292 goto reset_all;
2295 * Keep track of the parity error.
2297 OUTONB(np, HF_PRT, HF_EXT_ERR);
2298 cp->xerr_status |= XE_PARITY_ERR;
2301 * Prepare the message to send to the device.
2303 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2306 * If the old phase was DATA IN phase, we have to deal with
2307 * the 3 situations described above.
2308 * For other input phases (MSG IN and STATUS), the device
2309 * must resend the whole thing that failed parity checking
2310 * or signal error. So, jumping to dispatcher should be OK.
2312 if (phase == 1 || phase == 5) {
2313 /* Phase mismatch handled by SCRIPTS */
2314 if (dsp == SCRIPTB_BA(np, pm_handle))
2315 OUTL_DSP(np, dsp);
2316 /* Phase mismatch handled by the C code */
2317 else if (sist & MA)
2318 sym_int_ma (np);
2319 /* No phase mismatch occurred */
2320 else {
2321 sym_set_script_dp (np, cp, dsp);
2322 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2325 else if (phase == 7) /* We definitely cannot handle parity errors */
2326 #if 1 /* in message-in phase due to the relection */
2327 goto reset_all; /* path and various message anticipations. */
2328 #else
2329 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2330 #endif
2331 else
2332 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2333 return;
2335 reset_all:
2336 sym_start_reset(np);
2337 return;
2341 * chip exception handler for phase errors.
2343 * We have to construct a new transfer descriptor,
2344 * to transfer the rest of the current block.
2346 static void sym_int_ma (struct sym_hcb *np)
2348 u32 dbc;
2349 u32 rest;
2350 u32 dsp;
2351 u32 dsa;
2352 u32 nxtdsp;
2353 u32 *vdsp;
2354 u32 oadr, olen;
2355 u32 *tblp;
2356 u32 newcmd;
2357 u_int delta;
2358 u_char cmd;
2359 u_char hflags, hflags0;
2360 struct sym_pmc *pm;
2361 struct sym_ccb *cp;
2363 dsp = INL(np, nc_dsp);
2364 dbc = INL(np, nc_dbc);
2365 dsa = INL(np, nc_dsa);
2367 cmd = dbc >> 24;
2368 rest = dbc & 0xffffff;
2369 delta = 0;
2372 * locate matching cp if any.
2374 cp = sym_ccb_from_dsa(np, dsa);
2377 * Donnot take into account dma fifo and various buffers in
2378 * INPUT phase since the chip flushes everything before
2379 * raising the MA interrupt for interrupted INPUT phases.
2380 * For DATA IN phase, we will check for the SWIDE later.
2382 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2383 u_char ss0, ss2;
2385 if (np->features & FE_DFBC)
2386 delta = INW(np, nc_dfbc);
2387 else {
2388 u32 dfifo;
2391 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2393 dfifo = INL(np, nc_dfifo);
2396 * Calculate remaining bytes in DMA fifo.
2397 * (CTEST5 = dfifo >> 16)
2399 if (dfifo & (DFS << 16))
2400 delta = ((((dfifo >> 8) & 0x300) |
2401 (dfifo & 0xff)) - rest) & 0x3ff;
2402 else
2403 delta = ((dfifo & 0xff) - rest) & 0x7f;
2407 * The data in the dma fifo has not been transfered to
2408 * the target -> add the amount to the rest
2409 * and clear the data.
2410 * Check the sstat2 register in case of wide transfer.
2412 rest += delta;
2413 ss0 = INB(np, nc_sstat0);
2414 if (ss0 & OLF) rest++;
2415 if (!(np->features & FE_C10))
2416 if (ss0 & ORF) rest++;
2417 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2418 ss2 = INB(np, nc_sstat2);
2419 if (ss2 & OLF1) rest++;
2420 if (!(np->features & FE_C10))
2421 if (ss2 & ORF1) rest++;
2425 * Clear fifos.
2427 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2428 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2432 * log the information
2434 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2435 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2436 (unsigned) rest, (unsigned) delta);
2439 * try to find the interrupted script command,
2440 * and the address at which to continue.
2442 vdsp = NULL;
2443 nxtdsp = 0;
2444 if (dsp > np->scripta_ba &&
2445 dsp <= np->scripta_ba + np->scripta_sz) {
2446 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2447 nxtdsp = dsp;
2449 else if (dsp > np->scriptb_ba &&
2450 dsp <= np->scriptb_ba + np->scriptb_sz) {
2451 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2452 nxtdsp = dsp;
2456 * log the information
2458 if (DEBUG_FLAGS & DEBUG_PHASE) {
2459 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2460 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2463 if (!vdsp) {
2464 printf ("%s: interrupted SCRIPT address not found.\n",
2465 sym_name (np));
2466 goto reset_all;
2469 if (!cp) {
2470 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2471 sym_name (np));
2472 goto reset_all;
2476 * get old startaddress and old length.
2478 oadr = scr_to_cpu(vdsp[1]);
2480 if (cmd & 0x10) { /* Table indirect */
2481 tblp = (u32 *) ((char*) &cp->phys + oadr);
2482 olen = scr_to_cpu(tblp[0]);
2483 oadr = scr_to_cpu(tblp[1]);
2484 } else {
2485 tblp = (u32 *) 0;
2486 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2489 if (DEBUG_FLAGS & DEBUG_PHASE) {
2490 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2491 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2492 tblp,
2493 (unsigned) olen,
2494 (unsigned) oadr);
2498 * check cmd against assumed interrupted script command.
2499 * If dt data phase, the MOVE instruction hasn't bit 4 of
2500 * the phase.
2502 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2503 sym_print_addr(cp->cmd,
2504 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2505 cmd, scr_to_cpu(vdsp[0]) >> 24);
2507 goto reset_all;
2511 * if old phase not dataphase, leave here.
2513 if (cmd & 2) {
2514 sym_print_addr(cp->cmd,
2515 "phase change %x-%x %d@%08x resid=%d.\n",
2516 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2517 (unsigned)oadr, (unsigned)rest);
2518 goto unexpected_phase;
2522 * Choose the correct PM save area.
2524 * Look at the PM_SAVE SCRIPT if you want to understand
2525 * this stuff. The equivalent code is implemented in
2526 * SCRIPTS for the 895A, 896 and 1010 that are able to
2527 * handle PM from the SCRIPTS processor.
2529 hflags0 = INB(np, HF_PRT);
2530 hflags = hflags0;
2532 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2533 if (hflags & HF_IN_PM0)
2534 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2535 else if (hflags & HF_IN_PM1)
2536 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2538 if (hflags & HF_DP_SAVED)
2539 hflags ^= HF_ACT_PM;
2542 if (!(hflags & HF_ACT_PM)) {
2543 pm = &cp->phys.pm0;
2544 newcmd = SCRIPTA_BA(np, pm0_data);
2546 else {
2547 pm = &cp->phys.pm1;
2548 newcmd = SCRIPTA_BA(np, pm1_data);
2551 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2552 if (hflags != hflags0)
2553 OUTB(np, HF_PRT, hflags);
2556 * fillin the phase mismatch context
2558 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2559 pm->sg.size = cpu_to_scr(rest);
2560 pm->ret = cpu_to_scr(nxtdsp);
2563 * If we have a SWIDE,
2564 * - prepare the address to write the SWIDE from SCRIPTS,
2565 * - compute the SCRIPTS address to restart from,
2566 * - move current data pointer context by one byte.
2568 nxtdsp = SCRIPTA_BA(np, dispatch);
2569 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2570 (INB(np, nc_scntl2) & WSR)) {
2571 u32 tmp;
2574 * Set up the table indirect for the MOVE
2575 * of the residual byte and adjust the data
2576 * pointer context.
2578 tmp = scr_to_cpu(pm->sg.addr);
2579 cp->phys.wresid.addr = cpu_to_scr(tmp);
2580 pm->sg.addr = cpu_to_scr(tmp + 1);
2581 tmp = scr_to_cpu(pm->sg.size);
2582 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2583 pm->sg.size = cpu_to_scr(tmp - 1);
2586 * If only the residual byte is to be moved,
2587 * no PM context is needed.
2589 if ((tmp&0xffffff) == 1)
2590 newcmd = pm->ret;
2593 * Prepare the address of SCRIPTS that will
2594 * move the residual byte to memory.
2596 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2599 if (DEBUG_FLAGS & DEBUG_PHASE) {
2600 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2601 hflags0, hflags, newcmd,
2602 (unsigned)scr_to_cpu(pm->sg.addr),
2603 (unsigned)scr_to_cpu(pm->sg.size),
2604 (unsigned)scr_to_cpu(pm->ret));
2608 * Restart the SCRIPTS processor.
2610 sym_set_script_dp (np, cp, newcmd);
2611 OUTL_DSP(np, nxtdsp);
2612 return;
2615 * Unexpected phase changes that occurs when the current phase
2616 * is not a DATA IN or DATA OUT phase are due to error conditions.
2617 * Such event may only happen when the SCRIPTS is using a
2618 * multibyte SCSI MOVE.
2620 * Phase change Some possible cause
2622 * COMMAND --> MSG IN SCSI parity error detected by target.
2623 * COMMAND --> STATUS Bad command or refused by target.
2624 * MSG OUT --> MSG IN Message rejected by target.
2625 * MSG OUT --> COMMAND Bogus target that discards extended
2626 * negotiation messages.
2628 * The code below does not care of the new phase and so
2629 * trusts the target. Why to annoy it ?
2630 * If the interrupted phase is COMMAND phase, we restart at
2631 * dispatcher.
2632 * If a target does not get all the messages after selection,
2633 * the code assumes blindly that the target discards extended
2634 * messages and clears the negotiation status.
2635 * If the target does not want all our response to negotiation,
2636 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2637 * bloat for such a should_not_happen situation).
2638 * In all other situation, we reset the BUS.
2639 * Are these assumptions reasonnable ? (Wait and see ...)
2641 unexpected_phase:
2642 dsp -= 8;
2643 nxtdsp = 0;
2645 switch (cmd & 7) {
2646 case 2: /* COMMAND phase */
2647 nxtdsp = SCRIPTA_BA(np, dispatch);
2648 break;
2649 #if 0
2650 case 3: /* STATUS phase */
2651 nxtdsp = SCRIPTA_BA(np, dispatch);
2652 break;
2653 #endif
2654 case 6: /* MSG OUT phase */
2656 * If the device may want to use untagged when we want
2657 * tagged, we prepare an IDENTIFY without disc. granted,
2658 * since we will not be able to handle reselect.
2659 * Otherwise, we just don't care.
2661 if (dsp == SCRIPTA_BA(np, send_ident)) {
2662 if (cp->tag != NO_TAG && olen - rest <= 3) {
2663 cp->host_status = HS_BUSY;
2664 np->msgout[0] = IDENTIFY(0, cp->lun);
2665 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2667 else
2668 nxtdsp = SCRIPTB_BA(np, ident_break);
2670 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2671 dsp == SCRIPTB_BA(np, send_sdtr) ||
2672 dsp == SCRIPTB_BA(np, send_ppr)) {
2673 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2674 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2675 struct scsi_device *dev = cp->cmd->device;
2676 dev->ppr = 0;
2679 break;
2680 #if 0
2681 case 7: /* MSG IN phase */
2682 nxtdsp = SCRIPTA_BA(np, clrack);
2683 break;
2684 #endif
2687 if (nxtdsp) {
2688 OUTL_DSP(np, nxtdsp);
2689 return;
2692 reset_all:
2693 sym_start_reset(np);
2697 * chip interrupt handler
2699 * In normal situations, interrupt conditions occur one at
2700 * a time. But when something bad happens on the SCSI BUS,
2701 * the chip may raise several interrupt flags before
2702 * stopping and interrupting the CPU. The additionnal
2703 * interrupt flags are stacked in some extra registers
2704 * after the SIP and/or DIP flag has been raised in the
2705 * ISTAT. After the CPU has read the interrupt condition
2706 * flag from SIST or DSTAT, the chip unstacks the other
2707 * interrupt flags and sets the corresponding bits in
2708 * SIST or DSTAT. Since the chip starts stacking once the
2709 * SIP or DIP flag is set, there is a small window of time
2710 * where the stacking does not occur.
2712 * Typically, multiple interrupt conditions may happen in
2713 * the following situations:
2715 * - SCSI parity error + Phase mismatch (PAR|MA)
2716 * When an parity error is detected in input phase
2717 * and the device switches to msg-in phase inside a
2718 * block MOV.
2719 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2720 * When a stupid device does not want to handle the
2721 * recovery of an SCSI parity error.
2722 * - Some combinations of STO, PAR, UDC, ...
2723 * When using non compliant SCSI stuff, when user is
2724 * doing non compliant hot tampering on the BUS, when
2725 * something really bad happens to a device, etc ...
2727 * The heuristic suggested by SYMBIOS to handle
2728 * multiple interrupts is to try unstacking all
2729 * interrupts conditions and to handle them on some
2730 * priority based on error severity.
2731 * This will work when the unstacking has been
2732 * successful, but we cannot be 100 % sure of that,
2733 * since the CPU may have been faster to unstack than
2734 * the chip is able to stack. Hmmm ... But it seems that
2735 * such a situation is very unlikely to happen.
2737 * If this happen, for example STO caught by the CPU
2738 * then UDC happenning before the CPU have restarted
2739 * the SCRIPTS, the driver may wrongly complete the
2740 * same command on UDC, since the SCRIPTS didn't restart
2741 * and the DSA still points to the same command.
2742 * We avoid this situation by setting the DSA to an
2743 * invalid value when the CCB is completed and before
2744 * restarting the SCRIPTS.
2746 * Another issue is that we need some section of our
2747 * recovery procedures to be somehow uninterruptible but
2748 * the SCRIPTS processor does not provides such a
2749 * feature. For this reason, we handle recovery preferently
2750 * from the C code and check against some SCRIPTS critical
2751 * sections from the C code.
2753 * Hopefully, the interrupt handling of the driver is now
2754 * able to resist to weird BUS error conditions, but donnot
2755 * ask me for any guarantee that it will never fail. :-)
2756 * Use at your own decision and risk.
2759 void sym_interrupt (struct sym_hcb *np)
2761 u_char istat, istatc;
2762 u_char dstat;
2763 u_short sist;
2766 * interrupt on the fly ?
2767 * (SCRIPTS may still be running)
2769 * A `dummy read' is needed to ensure that the
2770 * clear of the INTF flag reaches the device
2771 * and that posted writes are flushed to memory
2772 * before the scanning of the DONE queue.
2773 * Note that SCRIPTS also (dummy) read to memory
2774 * prior to deliver the INTF interrupt condition.
2776 istat = INB(np, nc_istat);
2777 if (istat & INTF) {
2778 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2779 istat = INB(np, nc_istat); /* DUMMY READ */
2780 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2781 sym_wakeup_done(np);
2784 if (!(istat & (SIP|DIP)))
2785 return;
2787 #if 0 /* We should never get this one */
2788 if (istat & CABRT)
2789 OUTB(np, nc_istat, CABRT);
2790 #endif
2793 * PAR and MA interrupts may occur at the same time,
2794 * and we need to know of both in order to handle
2795 * this situation properly. We try to unstack SCSI
2796 * interrupts for that reason. BTW, I dislike a LOT
2797 * such a loop inside the interrupt routine.
2798 * Even if DMA interrupt stacking is very unlikely to
2799 * happen, we also try unstacking these ones, since
2800 * this has no performance impact.
2802 sist = 0;
2803 dstat = 0;
2804 istatc = istat;
2805 do {
2806 if (istatc & SIP)
2807 sist |= INW(np, nc_sist);
2808 if (istatc & DIP)
2809 dstat |= INB(np, nc_dstat);
2810 istatc = INB(np, nc_istat);
2811 istat |= istatc;
2812 } while (istatc & (SIP|DIP));
2814 if (DEBUG_FLAGS & DEBUG_TINY)
2815 printf ("<%d|%x:%x|%x:%x>",
2816 (int)INB(np, nc_scr0),
2817 dstat,sist,
2818 (unsigned)INL(np, nc_dsp),
2819 (unsigned)INL(np, nc_dbc));
2821 * On paper, a memory read barrier may be needed here to
2822 * prevent out of order LOADs by the CPU from having
2823 * prefetched stale data prior to DMA having occurred.
2824 * And since we are paranoid ... :)
2826 MEMORY_READ_BARRIER();
2829 * First, interrupts we want to service cleanly.
2831 * Phase mismatch (MA) is the most frequent interrupt
2832 * for chip earlier than the 896 and so we have to service
2833 * it as quickly as possible.
2834 * A SCSI parity error (PAR) may be combined with a phase
2835 * mismatch condition (MA).
2836 * Programmed interrupts (SIR) are used to call the C code
2837 * from SCRIPTS.
2838 * The single step interrupt (SSI) is not used in this
2839 * driver.
2841 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2842 !(dstat & (MDPE|BF|ABRT|IID))) {
2843 if (sist & PAR) sym_int_par (np, sist);
2844 else if (sist & MA) sym_int_ma (np);
2845 else if (dstat & SIR) sym_int_sir (np);
2846 else if (dstat & SSI) OUTONB_STD();
2847 else goto unknown_int;
2848 return;
2852 * Now, interrupts that donnot happen in normal
2853 * situations and that we may need to recover from.
2855 * On SCSI RESET (RST), we reset everything.
2856 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2857 * active CCBs with RESET status, prepare all devices
2858 * for negotiating again and restart the SCRIPTS.
2859 * On STO and UDC, we complete the CCB with the corres-
2860 * ponding status and restart the SCRIPTS.
2862 if (sist & RST) {
2863 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2864 sym_start_up (np, 1);
2865 return;
2868 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2869 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2871 if (!(sist & (GEN|HTH|SGE)) &&
2872 !(dstat & (MDPE|BF|ABRT|IID))) {
2873 if (sist & SBMC) sym_int_sbmc (np);
2874 else if (sist & STO) sym_int_sto (np);
2875 else if (sist & UDC) sym_int_udc (np);
2876 else goto unknown_int;
2877 return;
2881 * Now, interrupts we are not able to recover cleanly.
2883 * Log message for hard errors.
2884 * Reset everything.
2887 sym_log_hard_error(np, sist, dstat);
2889 if ((sist & (GEN|HTH|SGE)) ||
2890 (dstat & (MDPE|BF|ABRT|IID))) {
2891 sym_start_reset(np);
2892 return;
2895 unknown_int:
2897 * We just miss the cause of the interrupt. :(
2898 * Print a message. The timeout will do the real work.
2900 printf( "%s: unknown interrupt(s) ignored, "
2901 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2902 sym_name(np), istat, dstat, sist);
2906 * Dequeue from the START queue all CCBs that match
2907 * a given target/lun/task condition (-1 means all),
2908 * and move them from the BUSY queue to the COMP queue
2909 * with DID_SOFT_ERROR status condition.
2910 * This function is used during error handling/recovery.
2911 * It is called with SCRIPTS not running.
2913 static int
2914 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2916 int j;
2917 struct sym_ccb *cp;
2920 * Make sure the starting index is within range.
2922 assert((i >= 0) && (i < 2*MAX_QUEUE));
2925 * Walk until end of START queue and dequeue every job
2926 * that matches the target/lun/task condition.
2928 j = i;
2929 while (i != np->squeueput) {
2930 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2931 assert(cp);
2932 #ifdef SYM_CONF_IARB_SUPPORT
2933 /* Forget hints for IARB, they may be no longer relevant */
2934 cp->host_flags &= ~HF_HINT_IARB;
2935 #endif
2936 if ((target == -1 || cp->target == target) &&
2937 (lun == -1 || cp->lun == lun) &&
2938 (task == -1 || cp->tag == task)) {
2939 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2940 sym_remque(&cp->link_ccbq);
2941 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2943 else {
2944 if (i != j)
2945 np->squeue[j] = np->squeue[i];
2946 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2948 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2950 if (i != j) /* Copy back the idle task if needed */
2951 np->squeue[j] = np->squeue[i];
2952 np->squeueput = j; /* Update our current start queue pointer */
2954 return (i - j) / 2;
2958 * chip handler for bad SCSI status condition
2960 * In case of bad SCSI status, we unqueue all the tasks
2961 * currently queued to the controller but not yet started
2962 * and then restart the SCRIPTS processor immediately.
2964 * QUEUE FULL and BUSY conditions are handled the same way.
2965 * Basically all the not yet started tasks are requeued in
2966 * device queue and the queue is frozen until a completion.
2968 * For CHECK CONDITION and COMMAND TERMINATED status, we use
2969 * the CCB of the failed command to prepare a REQUEST SENSE
2970 * SCSI command and queue it to the controller queue.
2972 * SCRATCHA is assumed to have been loaded with STARTPOS
2973 * before the SCRIPTS called the C code.
2975 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2977 u32 startp;
2978 u_char s_status = cp->ssss_status;
2979 u_char h_flags = cp->host_flags;
2980 int msglen;
2981 int i;
2984 * Compute the index of the next job to start from SCRIPTS.
2986 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
2989 * The last CCB queued used for IARB hint may be
2990 * no longer relevant. Forget it.
2992 #ifdef SYM_CONF_IARB_SUPPORT
2993 if (np->last_cp)
2994 np->last_cp = 0;
2995 #endif
2998 * Now deal with the SCSI status.
3000 switch(s_status) {
3001 case S_BUSY:
3002 case S_QUEUE_FULL:
3003 if (sym_verbose >= 2) {
3004 sym_print_addr(cp->cmd, "%s\n",
3005 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3007 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3008 sym_complete_error (np, cp);
3009 break;
3010 case S_TERMINATED:
3011 case S_CHECK_COND:
3013 * If we get an SCSI error when requesting sense, give up.
3015 if (h_flags & HF_SENSE) {
3016 sym_complete_error (np, cp);
3017 break;
3021 * Dequeue all queued CCBs for that device not yet started,
3022 * and restart the SCRIPTS processor immediately.
3024 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3025 OUTL_DSP(np, SCRIPTA_BA(np, start));
3028 * Save some info of the actual IO.
3029 * Compute the data residual.
3031 cp->sv_scsi_status = cp->ssss_status;
3032 cp->sv_xerr_status = cp->xerr_status;
3033 cp->sv_resid = sym_compute_residual(np, cp);
3036 * Prepare all needed data structures for
3037 * requesting sense data.
3040 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3041 msglen = 1;
3044 * If we are currently using anything different from
3045 * async. 8 bit data transfers with that target,
3046 * start a negotiation, since the device may want
3047 * to report us a UNIT ATTENTION condition due to
3048 * a cause we currently ignore, and we donnot want
3049 * to be stuck with WIDE and/or SYNC data transfer.
3051 * cp->nego_status is filled by sym_prepare_nego().
3053 cp->nego_status = 0;
3054 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3056 * Message table indirect structure.
3058 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
3059 cp->phys.smsg.size = cpu_to_scr(msglen);
3062 * sense command
3064 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
3065 cp->phys.cmd.size = cpu_to_scr(6);
3068 * patch requested size into sense command
3070 cp->sensecmd[0] = REQUEST_SENSE;
3071 cp->sensecmd[1] = 0;
3072 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3073 cp->sensecmd[1] = cp->lun << 5;
3074 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3075 cp->data_len = SYM_SNS_BBUF_LEN;
3078 * sense data
3080 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3081 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
3082 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3085 * requeue the command.
3087 startp = SCRIPTB_BA(np, sdata_in);
3089 cp->phys.head.savep = cpu_to_scr(startp);
3090 cp->phys.head.lastp = cpu_to_scr(startp);
3091 cp->startp = cpu_to_scr(startp);
3092 cp->goalp = cpu_to_scr(startp + 16);
3094 cp->host_xflags = 0;
3095 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3096 cp->ssss_status = S_ILLEGAL;
3097 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3098 cp->xerr_status = 0;
3099 cp->extra_bytes = 0;
3101 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3104 * Requeue the command.
3106 sym_put_start_queue(np, cp);
3109 * Give back to upper layer everything we have dequeued.
3111 sym_flush_comp_queue(np, 0);
3112 break;
3117 * After a device has accepted some management message
3118 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3119 * a device signals a UNIT ATTENTION condition, some
3120 * tasks are thrown away by the device. We are required
3121 * to reflect that on our tasks list since the device
3122 * will never complete these tasks.
3124 * This function move from the BUSY queue to the COMP
3125 * queue all disconnected CCBs for a given target that
3126 * match the following criteria:
3127 * - lun=-1 means any logical UNIT otherwise a given one.
3128 * - task=-1 means any task, otherwise a given one.
3130 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3132 SYM_QUEHEAD qtmp, *qp;
3133 int i = 0;
3134 struct sym_ccb *cp;
3137 * Move the entire BUSY queue to our temporary queue.
3139 sym_que_init(&qtmp);
3140 sym_que_splice(&np->busy_ccbq, &qtmp);
3141 sym_que_init(&np->busy_ccbq);
3144 * Put all CCBs that matches our criteria into
3145 * the COMP queue and put back other ones into
3146 * the BUSY queue.
3148 while ((qp = sym_remque_head(&qtmp)) != 0) {
3149 struct scsi_cmnd *cmd;
3150 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3151 cmd = cp->cmd;
3152 if (cp->host_status != HS_DISCONNECT ||
3153 cp->target != target ||
3154 (lun != -1 && cp->lun != lun) ||
3155 (task != -1 &&
3156 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3157 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3158 continue;
3160 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3162 /* Preserve the software timeout condition */
3163 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3164 sym_set_cam_status(cmd, cam_status);
3165 ++i;
3166 #if 0
3167 printf("XXXX TASK @%p CLEARED\n", cp);
3168 #endif
3170 return i;
3174 * chip handler for TASKS recovery
3176 * We cannot safely abort a command, while the SCRIPTS
3177 * processor is running, since we just would be in race
3178 * with it.
3180 * As long as we have tasks to abort, we keep the SEM
3181 * bit set in the ISTAT. When this bit is set, the
3182 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3183 * each time it enters the scheduler.
3185 * If we have to reset a target, clear tasks of a unit,
3186 * or to perform the abort of a disconnected job, we
3187 * restart the SCRIPTS for selecting the target. Once
3188 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3189 * If it loses arbitration, the SCRIPTS will interrupt again
3190 * the next time it will enter its scheduler, and so on ...
3192 * On SIR_TARGET_SELECTED, we scan for the more
3193 * appropriate thing to do:
3195 * - If nothing, we just sent a M_ABORT message to the
3196 * target to get rid of the useless SCSI bus ownership.
3197 * According to the specs, no tasks shall be affected.
3198 * - If the target is to be reset, we send it a M_RESET
3199 * message.
3200 * - If a logical UNIT is to be cleared , we send the
3201 * IDENTIFY(lun) + M_ABORT.
3202 * - If an untagged task is to be aborted, we send the
3203 * IDENTIFY(lun) + M_ABORT.
3204 * - If a tagged task is to be aborted, we send the
3205 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3207 * Once our 'kiss of death' :) message has been accepted
3208 * by the target, the SCRIPTS interrupts again
3209 * (SIR_ABORT_SENT). On this interrupt, we complete
3210 * all the CCBs that should have been aborted by the
3211 * target according to our message.
3213 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3215 SYM_QUEHEAD *qp;
3216 struct sym_ccb *cp;
3217 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3218 struct scsi_target *starget;
3219 int target=-1, lun=-1, task;
3220 int i, k;
3222 switch(num) {
3224 * The SCRIPTS processor stopped before starting
3225 * the next command in order to allow us to perform
3226 * some task recovery.
3228 case SIR_SCRIPT_STOPPED:
3230 * Do we have any target to reset or unit to clear ?
3232 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3233 tp = &np->target[i];
3234 if (tp->to_reset ||
3235 (tp->lun0p && tp->lun0p->to_clear)) {
3236 target = i;
3237 break;
3239 if (!tp->lunmp)
3240 continue;
3241 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3242 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3243 target = i;
3244 break;
3247 if (target != -1)
3248 break;
3252 * If not, walk the busy queue for any
3253 * disconnected CCB to be aborted.
3255 if (target == -1) {
3256 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3257 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3258 if (cp->host_status != HS_DISCONNECT)
3259 continue;
3260 if (cp->to_abort) {
3261 target = cp->target;
3262 break;
3268 * If some target is to be selected,
3269 * prepare and start the selection.
3271 if (target != -1) {
3272 tp = &np->target[target];
3273 np->abrt_sel.sel_id = target;
3274 np->abrt_sel.sel_scntl3 = tp->head.wval;
3275 np->abrt_sel.sel_sxfer = tp->head.sval;
3276 OUTL(np, nc_dsa, np->hcb_ba);
3277 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3278 return;
3282 * Now look for a CCB to abort that haven't started yet.
3283 * Btw, the SCRIPTS processor is still stopped, so
3284 * we are not in race.
3286 i = 0;
3287 cp = NULL;
3288 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3289 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3290 if (cp->host_status != HS_BUSY &&
3291 cp->host_status != HS_NEGOTIATE)
3292 continue;
3293 if (!cp->to_abort)
3294 continue;
3295 #ifdef SYM_CONF_IARB_SUPPORT
3297 * If we are using IMMEDIATE ARBITRATION, we donnot
3298 * want to cancel the last queued CCB, since the
3299 * SCRIPTS may have anticipated the selection.
3301 if (cp == np->last_cp) {
3302 cp->to_abort = 0;
3303 continue;
3305 #endif
3306 i = 1; /* Means we have found some */
3307 break;
3309 if (!i) {
3311 * We are done, so we donnot need
3312 * to synchronize with the SCRIPTS anylonger.
3313 * Remove the SEM flag from the ISTAT.
3315 np->istat_sem = 0;
3316 OUTB(np, nc_istat, SIGP);
3317 break;
3320 * Compute index of next position in the start
3321 * queue the SCRIPTS intends to start and dequeue
3322 * all CCBs for that device that haven't been started.
3324 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3325 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3328 * Make sure at least our IO to abort has been dequeued.
3330 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3331 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3332 #else
3333 sym_remque(&cp->link_ccbq);
3334 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3335 #endif
3337 * Keep track in cam status of the reason of the abort.
3339 if (cp->to_abort == 2)
3340 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3341 else
3342 sym_set_cam_status(cp->cmd, DID_ABORT);
3345 * Complete with error everything that we have dequeued.
3347 sym_flush_comp_queue(np, 0);
3348 break;
3350 * The SCRIPTS processor has selected a target
3351 * we may have some manual recovery to perform for.
3353 case SIR_TARGET_SELECTED:
3354 target = INB(np, nc_sdid) & 0xf;
3355 tp = &np->target[target];
3357 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3360 * If the target is to be reset, prepare a
3361 * M_RESET message and clear the to_reset flag
3362 * since we donnot expect this operation to fail.
3364 if (tp->to_reset) {
3365 np->abrt_msg[0] = M_RESET;
3366 np->abrt_tbl.size = 1;
3367 tp->to_reset = 0;
3368 break;
3372 * Otherwise, look for some logical unit to be cleared.
3374 if (tp->lun0p && tp->lun0p->to_clear)
3375 lun = 0;
3376 else if (tp->lunmp) {
3377 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3378 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3379 lun = k;
3380 break;
3386 * If a logical unit is to be cleared, prepare
3387 * an IDENTIFY(lun) + ABORT MESSAGE.
3389 if (lun != -1) {
3390 struct sym_lcb *lp = sym_lp(tp, lun);
3391 lp->to_clear = 0; /* We don't expect to fail here */
3392 np->abrt_msg[0] = IDENTIFY(0, lun);
3393 np->abrt_msg[1] = M_ABORT;
3394 np->abrt_tbl.size = 2;
3395 break;
3399 * Otherwise, look for some disconnected job to
3400 * abort for this target.
3402 i = 0;
3403 cp = NULL;
3404 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3405 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3406 if (cp->host_status != HS_DISCONNECT)
3407 continue;
3408 if (cp->target != target)
3409 continue;
3410 if (!cp->to_abort)
3411 continue;
3412 i = 1; /* Means we have some */
3413 break;
3417 * If we have none, probably since the device has
3418 * completed the command before we won abitration,
3419 * send a M_ABORT message without IDENTIFY.
3420 * According to the specs, the device must just
3421 * disconnect the BUS and not abort any task.
3423 if (!i) {
3424 np->abrt_msg[0] = M_ABORT;
3425 np->abrt_tbl.size = 1;
3426 break;
3430 * We have some task to abort.
3431 * Set the IDENTIFY(lun)
3433 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3436 * If we want to abort an untagged command, we
3437 * will send a IDENTIFY + M_ABORT.
3438 * Otherwise (tagged command), we will send
3439 * a IDENTITFY + task attributes + ABORT TAG.
3441 if (cp->tag == NO_TAG) {
3442 np->abrt_msg[1] = M_ABORT;
3443 np->abrt_tbl.size = 2;
3444 } else {
3445 np->abrt_msg[1] = cp->scsi_smsg[1];
3446 np->abrt_msg[2] = cp->scsi_smsg[2];
3447 np->abrt_msg[3] = M_ABORT_TAG;
3448 np->abrt_tbl.size = 4;
3451 * Keep track of software timeout condition, since the
3452 * peripheral driver may not count retries on abort
3453 * conditions not due to timeout.
3455 if (cp->to_abort == 2)
3456 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3457 cp->to_abort = 0; /* We donnot expect to fail here */
3458 break;
3461 * The target has accepted our message and switched
3462 * to BUS FREE phase as we expected.
3464 case SIR_ABORT_SENT:
3465 target = INB(np, nc_sdid) & 0xf;
3466 tp = &np->target[target];
3467 starget = tp->starget;
3470 ** If we didn't abort anything, leave here.
3472 if (np->abrt_msg[0] == M_ABORT)
3473 break;
3476 * If we sent a M_RESET, then a hardware reset has
3477 * been performed by the target.
3478 * - Reset everything to async 8 bit
3479 * - Tell ourself to negotiate next time :-)
3480 * - Prepare to clear all disconnected CCBs for
3481 * this target from our task list (lun=task=-1)
3483 lun = -1;
3484 task = -1;
3485 if (np->abrt_msg[0] == M_RESET) {
3486 tp->head.sval = 0;
3487 tp->head.wval = np->rv_scntl3;
3488 tp->head.uval = 0;
3489 spi_period(starget) = 0;
3490 spi_offset(starget) = 0;
3491 spi_width(starget) = 0;
3492 spi_iu(starget) = 0;
3493 spi_dt(starget) = 0;
3494 spi_qas(starget) = 0;
3495 tp->tgoal.check_nego = 1;
3499 * Otherwise, check for the LUN and TASK(s)
3500 * concerned by the cancelation.
3501 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3502 * or an ABORT message :-)
3504 else {
3505 lun = np->abrt_msg[0] & 0x3f;
3506 if (np->abrt_msg[1] == M_ABORT_TAG)
3507 task = np->abrt_msg[2];
3511 * Complete all the CCBs the device should have
3512 * aborted due to our 'kiss of death' message.
3514 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3515 sym_dequeue_from_squeue(np, i, target, lun, -1);
3516 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3517 sym_flush_comp_queue(np, 0);
3520 * If we sent a BDR, make upper layer aware of that.
3522 if (np->abrt_msg[0] == M_RESET)
3523 sym_xpt_async_sent_bdr(np, target);
3524 break;
3528 * Print to the log the message we intend to send.
3530 if (num == SIR_TARGET_SELECTED) {
3531 dev_info(&tp->starget->dev, "control msgout:");
3532 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3533 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3537 * Let the SCRIPTS processor continue.
3539 OUTONB_STD();
3543 * Gerard's alchemy:) that deals with with the data
3544 * pointer for both MDP and the residual calculation.
3546 * I didn't want to bloat the code by more than 200
3547 * lines for the handling of both MDP and the residual.
3548 * This has been achieved by using a data pointer
3549 * representation consisting in an index in the data
3550 * array (dp_sg) and a negative offset (dp_ofs) that
3551 * have the following meaning:
3553 * - dp_sg = SYM_CONF_MAX_SG
3554 * we are at the end of the data script.
3555 * - dp_sg < SYM_CONF_MAX_SG
3556 * dp_sg points to the next entry of the scatter array
3557 * we want to transfer.
3558 * - dp_ofs < 0
3559 * dp_ofs represents the residual of bytes of the
3560 * previous entry scatter entry we will send first.
3561 * - dp_ofs = 0
3562 * no residual to send first.
3564 * The function sym_evaluate_dp() accepts an arbitray
3565 * offset (basically from the MDP message) and returns
3566 * the corresponding values of dp_sg and dp_ofs.
3569 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3571 u32 dp_scr;
3572 int dp_ofs, dp_sg, dp_sgmin;
3573 int tmp;
3574 struct sym_pmc *pm;
3577 * Compute the resulted data pointer in term of a script
3578 * address within some DATA script and a signed byte offset.
3580 dp_scr = scr;
3581 dp_ofs = *ofs;
3582 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3583 pm = &cp->phys.pm0;
3584 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3585 pm = &cp->phys.pm1;
3586 else
3587 pm = NULL;
3589 if (pm) {
3590 dp_scr = scr_to_cpu(pm->ret);
3591 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3595 * If we are auto-sensing, then we are done.
3597 if (cp->host_flags & HF_SENSE) {
3598 *ofs = dp_ofs;
3599 return 0;
3603 * Deduce the index of the sg entry.
3604 * Keep track of the index of the first valid entry.
3605 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3606 * end of the data.
3608 tmp = scr_to_cpu(cp->goalp);
3609 dp_sg = SYM_CONF_MAX_SG;
3610 if (dp_scr != tmp)
3611 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3612 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3615 * Move to the sg entry the data pointer belongs to.
3617 * If we are inside the data area, we expect result to be:
3619 * Either,
3620 * dp_ofs = 0 and dp_sg is the index of the sg entry
3621 * the data pointer belongs to (or the end of the data)
3622 * Or,
3623 * dp_ofs < 0 and dp_sg is the index of the sg entry
3624 * the data pointer belongs to + 1.
3626 if (dp_ofs < 0) {
3627 int n;
3628 while (dp_sg > dp_sgmin) {
3629 --dp_sg;
3630 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3631 n = dp_ofs + (tmp & 0xffffff);
3632 if (n > 0) {
3633 ++dp_sg;
3634 break;
3636 dp_ofs = n;
3639 else if (dp_ofs > 0) {
3640 while (dp_sg < SYM_CONF_MAX_SG) {
3641 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3642 dp_ofs -= (tmp & 0xffffff);
3643 ++dp_sg;
3644 if (dp_ofs <= 0)
3645 break;
3650 * Make sure the data pointer is inside the data area.
3651 * If not, return some error.
3653 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3654 goto out_err;
3655 else if (dp_sg > SYM_CONF_MAX_SG ||
3656 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3657 goto out_err;
3660 * Save the extreme pointer if needed.
3662 if (dp_sg > cp->ext_sg ||
3663 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3664 cp->ext_sg = dp_sg;
3665 cp->ext_ofs = dp_ofs;
3669 * Return data.
3671 *ofs = dp_ofs;
3672 return dp_sg;
3674 out_err:
3675 return -1;
3679 * chip handler for MODIFY DATA POINTER MESSAGE
3681 * We also call this function on IGNORE WIDE RESIDUE
3682 * messages that do not match a SWIDE full condition.
3683 * Btw, we assume in that situation that such a message
3684 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3687 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3689 int dp_ofs = ofs;
3690 u32 dp_scr = sym_get_script_dp (np, cp);
3691 u32 dp_ret;
3692 u32 tmp;
3693 u_char hflags;
3694 int dp_sg;
3695 struct sym_pmc *pm;
3698 * Not supported for auto-sense.
3700 if (cp->host_flags & HF_SENSE)
3701 goto out_reject;
3704 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3705 * to the resulted data pointer.
3707 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3708 if (dp_sg < 0)
3709 goto out_reject;
3712 * And our alchemy:) allows to easily calculate the data
3713 * script address we want to return for the next data phase.
3715 dp_ret = cpu_to_scr(cp->goalp);
3716 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3719 * If offset / scatter entry is zero we donnot need
3720 * a context for the new current data pointer.
3722 if (dp_ofs == 0) {
3723 dp_scr = dp_ret;
3724 goto out_ok;
3728 * Get a context for the new current data pointer.
3730 hflags = INB(np, HF_PRT);
3732 if (hflags & HF_DP_SAVED)
3733 hflags ^= HF_ACT_PM;
3735 if (!(hflags & HF_ACT_PM)) {
3736 pm = &cp->phys.pm0;
3737 dp_scr = SCRIPTA_BA(np, pm0_data);
3739 else {
3740 pm = &cp->phys.pm1;
3741 dp_scr = SCRIPTA_BA(np, pm1_data);
3744 hflags &= ~(HF_DP_SAVED);
3746 OUTB(np, HF_PRT, hflags);
3749 * Set up the new current data pointer.
3750 * ofs < 0 there, and for the next data phase, we
3751 * want to transfer part of the data of the sg entry
3752 * corresponding to index dp_sg-1 prior to returning
3753 * to the main data script.
3755 pm->ret = cpu_to_scr(dp_ret);
3756 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3757 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3758 pm->sg.addr = cpu_to_scr(tmp);
3759 pm->sg.size = cpu_to_scr(-dp_ofs);
3761 out_ok:
3762 sym_set_script_dp (np, cp, dp_scr);
3763 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3764 return;
3766 out_reject:
3767 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3772 * chip calculation of the data residual.
3774 * As I used to say, the requirement of data residual
3775 * in SCSI is broken, useless and cannot be achieved
3776 * without huge complexity.
3777 * But most OSes and even the official CAM require it.
3778 * When stupidity happens to be so widely spread inside
3779 * a community, it gets hard to convince.
3781 * Anyway, I don't care, since I am not going to use
3782 * any software that considers this data residual as
3783 * a relevant information. :)
3786 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3788 int dp_sg, dp_sgmin, resid = 0;
3789 int dp_ofs = 0;
3792 * Check for some data lost or just thrown away.
3793 * We are not required to be quite accurate in this
3794 * situation. Btw, if we are odd for output and the
3795 * device claims some more data, it may well happen
3796 * than our residual be zero. :-)
3798 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3799 if (cp->xerr_status & XE_EXTRA_DATA)
3800 resid -= cp->extra_bytes;
3801 if (cp->xerr_status & XE_SODL_UNRUN)
3802 ++resid;
3803 if (cp->xerr_status & XE_SWIDE_OVRUN)
3804 --resid;
3808 * If all data has been transferred,
3809 * there is no residual.
3811 if (cp->phys.head.lastp == cp->goalp)
3812 return resid;
3815 * If no data transfer occurs, or if the data
3816 * pointer is weird, return full residual.
3818 if (cp->startp == cp->phys.head.lastp ||
3819 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3820 &dp_ofs) < 0) {
3821 return cp->data_len;
3825 * If we were auto-sensing, then we are done.
3827 if (cp->host_flags & HF_SENSE) {
3828 return -dp_ofs;
3832 * We are now full comfortable in the computation
3833 * of the data residual (2's complement).
3835 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3836 resid = -cp->ext_ofs;
3837 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3838 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3839 resid += (tmp & 0xffffff);
3842 resid -= cp->odd_byte_adjustment;
3845 * Hopefully, the result is not too wrong.
3847 return resid;
3851 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3853 * When we try to negotiate, we append the negotiation message
3854 * to the identify and (maybe) simple tag message.
3855 * The host status field is set to HS_NEGOTIATE to mark this
3856 * situation.
3858 * If the target doesn't answer this message immediately
3859 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3860 * will be raised eventually.
3861 * The handler removes the HS_NEGOTIATE status, and sets the
3862 * negotiated value to the default (async / nowide).
3864 * If we receive a matching answer immediately, we check it
3865 * for validity, and set the values.
3867 * If we receive a Reject message immediately, we assume the
3868 * negotiation has failed, and fall back to standard values.
3870 * If we receive a negotiation message while not in HS_NEGOTIATE
3871 * state, it's a target initiated negotiation. We prepare a
3872 * (hopefully) valid answer, set our parameters, and send back
3873 * this answer to the target.
3875 * If the target doesn't fetch the answer (no message out phase),
3876 * we assume the negotiation has failed, and fall back to default
3877 * settings (SIR_NEGO_PROTO interrupt).
3879 * When we set the values, we adjust them in all ccbs belonging
3880 * to this target, in the controller's register, and in the "phys"
3881 * field of the controller's struct sym_hcb.
3885 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3887 static int
3888 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3890 int target = cp->target;
3891 u_char chg, ofs, per, fak, div;
3893 if (DEBUG_FLAGS & DEBUG_NEGO) {
3894 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3898 * Get requested values.
3900 chg = 0;
3901 per = np->msgin[3];
3902 ofs = np->msgin[4];
3905 * Check values against our limits.
3907 if (ofs) {
3908 if (ofs > np->maxoffs)
3909 {chg = 1; ofs = np->maxoffs;}
3912 if (ofs) {
3913 if (per < np->minsync)
3914 {chg = 1; per = np->minsync;}
3918 * Get new chip synchronous parameters value.
3920 div = fak = 0;
3921 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3922 goto reject_it;
3924 if (DEBUG_FLAGS & DEBUG_NEGO) {
3925 sym_print_addr(cp->cmd,
3926 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3927 ofs, per, div, fak, chg);
3931 * If it was an answer we want to change,
3932 * then it isn't acceptable. Reject it.
3934 if (!req && chg)
3935 goto reject_it;
3938 * Apply new values.
3940 sym_setsync (np, target, ofs, per, div, fak);
3943 * It was an answer. We are done.
3945 if (!req)
3946 return 0;
3949 * It was a request. Prepare an answer message.
3951 spi_populate_sync_msg(np->msgout, per, ofs);
3953 if (DEBUG_FLAGS & DEBUG_NEGO) {
3954 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3957 np->msgin [0] = M_NOOP;
3959 return 0;
3961 reject_it:
3962 sym_setsync (np, target, 0, 0, 0, 0);
3963 return -1;
3966 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3968 int req = 1;
3969 int result;
3972 * Request or answer ?
3974 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3975 OUTB(np, HS_PRT, HS_BUSY);
3976 if (cp->nego_status && cp->nego_status != NS_SYNC)
3977 goto reject_it;
3978 req = 0;
3982 * Check and apply new values.
3984 result = sym_sync_nego_check(np, req, cp);
3985 if (result) /* Not acceptable, reject it */
3986 goto reject_it;
3987 if (req) { /* Was a request, send response. */
3988 cp->nego_status = NS_SYNC;
3989 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
3991 else /* Was a response, we are done. */
3992 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3993 return;
3995 reject_it:
3996 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4000 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4002 static int
4003 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4005 struct sym_tcb *tp = &np->target[target];
4006 unsigned char fak, div;
4007 int dt, chg = 0;
4009 unsigned char per = np->msgin[3];
4010 unsigned char ofs = np->msgin[5];
4011 unsigned char wide = np->msgin[6];
4012 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4014 if (DEBUG_FLAGS & DEBUG_NEGO) {
4015 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4019 * Check values against our limits.
4021 if (wide > np->maxwide) {
4022 chg = 1;
4023 wide = np->maxwide;
4025 if (!wide || !(np->features & FE_U3EN))
4026 opts = 0;
4028 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4029 chg = 1;
4031 dt = opts & PPR_OPT_DT;
4033 if (ofs) {
4034 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4035 if (ofs > maxoffs) {
4036 chg = 1;
4037 ofs = maxoffs;
4041 if (ofs) {
4042 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4043 if (per < minsync) {
4044 chg = 1;
4045 per = minsync;
4050 * Get new chip synchronous parameters value.
4052 div = fak = 0;
4053 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4054 goto reject_it;
4057 * If it was an answer we want to change,
4058 * then it isn't acceptable. Reject it.
4060 if (!req && chg)
4061 goto reject_it;
4064 * Apply new values.
4066 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4069 * It was an answer. We are done.
4071 if (!req)
4072 return 0;
4075 * It was a request. Prepare an answer message.
4077 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4079 if (DEBUG_FLAGS & DEBUG_NEGO) {
4080 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4083 np->msgin [0] = M_NOOP;
4085 return 0;
4087 reject_it:
4088 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4090 * If it is a device response that should result in
4091 * ST, we may want to try a legacy negotiation later.
4093 if (!req && !opts) {
4094 tp->tgoal.period = per;
4095 tp->tgoal.offset = ofs;
4096 tp->tgoal.width = wide;
4097 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4098 tp->tgoal.check_nego = 1;
4100 return -1;
4103 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4105 int req = 1;
4106 int result;
4109 * Request or answer ?
4111 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4112 OUTB(np, HS_PRT, HS_BUSY);
4113 if (cp->nego_status && cp->nego_status != NS_PPR)
4114 goto reject_it;
4115 req = 0;
4119 * Check and apply new values.
4121 result = sym_ppr_nego_check(np, req, cp->target);
4122 if (result) /* Not acceptable, reject it */
4123 goto reject_it;
4124 if (req) { /* Was a request, send response. */
4125 cp->nego_status = NS_PPR;
4126 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4128 else /* Was a response, we are done. */
4129 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4130 return;
4132 reject_it:
4133 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4137 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4139 static int
4140 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4142 int target = cp->target;
4143 u_char chg, wide;
4145 if (DEBUG_FLAGS & DEBUG_NEGO) {
4146 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4150 * Get requested values.
4152 chg = 0;
4153 wide = np->msgin[3];
4156 * Check values against our limits.
4158 if (wide > np->maxwide) {
4159 chg = 1;
4160 wide = np->maxwide;
4163 if (DEBUG_FLAGS & DEBUG_NEGO) {
4164 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4165 wide, chg);
4169 * If it was an answer we want to change,
4170 * then it isn't acceptable. Reject it.
4172 if (!req && chg)
4173 goto reject_it;
4176 * Apply new values.
4178 sym_setwide (np, target, wide);
4181 * It was an answer. We are done.
4183 if (!req)
4184 return 0;
4187 * It was a request. Prepare an answer message.
4189 spi_populate_width_msg(np->msgout, wide);
4191 np->msgin [0] = M_NOOP;
4193 if (DEBUG_FLAGS & DEBUG_NEGO) {
4194 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4197 return 0;
4199 reject_it:
4200 return -1;
4203 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4205 int req = 1;
4206 int result;
4209 * Request or answer ?
4211 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4212 OUTB(np, HS_PRT, HS_BUSY);
4213 if (cp->nego_status && cp->nego_status != NS_WIDE)
4214 goto reject_it;
4215 req = 0;
4219 * Check and apply new values.
4221 result = sym_wide_nego_check(np, req, cp);
4222 if (result) /* Not acceptable, reject it */
4223 goto reject_it;
4224 if (req) { /* Was a request, send response. */
4225 cp->nego_status = NS_WIDE;
4226 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4227 } else { /* Was a response. */
4229 * Negotiate for SYNC immediately after WIDE response.
4230 * This allows to negotiate for both WIDE and SYNC on
4231 * a single SCSI command (Suggested by Justin Gibbs).
4233 if (tp->tgoal.offset) {
4234 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4235 tp->tgoal.offset);
4237 if (DEBUG_FLAGS & DEBUG_NEGO) {
4238 sym_print_nego_msg(np, cp->target,
4239 "sync msgout", np->msgout);
4242 cp->nego_status = NS_SYNC;
4243 OUTB(np, HS_PRT, HS_NEGOTIATE);
4244 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4245 return;
4246 } else
4247 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4250 return;
4252 reject_it:
4253 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4257 * Reset DT, SYNC or WIDE to default settings.
4259 * Called when a negotiation does not succeed either
4260 * on rejection or on protocol error.
4262 * A target that understands a PPR message should never
4263 * reject it, and messing with it is very unlikely.
4264 * So, if a PPR makes problems, we may just want to
4265 * try a legacy negotiation later.
4267 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4269 switch (cp->nego_status) {
4270 case NS_PPR:
4271 #if 0
4272 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4273 #else
4274 if (tp->tgoal.period < np->minsync)
4275 tp->tgoal.period = np->minsync;
4276 if (tp->tgoal.offset > np->maxoffs)
4277 tp->tgoal.offset = np->maxoffs;
4278 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4279 tp->tgoal.check_nego = 1;
4280 #endif
4281 break;
4282 case NS_SYNC:
4283 sym_setsync (np, cp->target, 0, 0, 0, 0);
4284 break;
4285 case NS_WIDE:
4286 sym_setwide (np, cp->target, 0);
4287 break;
4289 np->msgin [0] = M_NOOP;
4290 np->msgout[0] = M_NOOP;
4291 cp->nego_status = 0;
4295 * chip handler for MESSAGE REJECT received in response to
4296 * PPR, WIDE or SYNCHRONOUS negotiation.
4298 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4300 sym_nego_default(np, tp, cp);
4301 OUTB(np, HS_PRT, HS_BUSY);
4305 * chip exception handler for programmed interrupts.
4307 static void sym_int_sir (struct sym_hcb *np)
4309 u_char num = INB(np, nc_dsps);
4310 u32 dsa = INL(np, nc_dsa);
4311 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4312 u_char target = INB(np, nc_sdid) & 0x0f;
4313 struct sym_tcb *tp = &np->target[target];
4314 int tmp;
4316 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4318 switch (num) {
4319 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4321 * SCRIPTS tell us that we may have to update
4322 * 64 bit DMA segment registers.
4324 case SIR_DMAP_DIRTY:
4325 sym_update_dmap_regs(np);
4326 goto out;
4327 #endif
4329 * Command has been completed with error condition
4330 * or has been auto-sensed.
4332 case SIR_COMPLETE_ERROR:
4333 sym_complete_error(np, cp);
4334 return;
4336 * The C code is currently trying to recover from something.
4337 * Typically, user want to abort some command.
4339 case SIR_SCRIPT_STOPPED:
4340 case SIR_TARGET_SELECTED:
4341 case SIR_ABORT_SENT:
4342 sym_sir_task_recovery(np, num);
4343 return;
4345 * The device didn't go to MSG OUT phase after having
4346 * been selected with ATN. We donnot want to handle
4347 * that.
4349 case SIR_SEL_ATN_NO_MSG_OUT:
4350 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4351 sym_name (np), target);
4352 goto out_stuck;
4354 * The device didn't switch to MSG IN phase after
4355 * having reseleted the initiator.
4357 case SIR_RESEL_NO_MSG_IN:
4358 printf ("%s:%d: No MSG IN phase after reselection.\n",
4359 sym_name (np), target);
4360 goto out_stuck;
4362 * After reselection, the device sent a message that wasn't
4363 * an IDENTIFY.
4365 case SIR_RESEL_NO_IDENTIFY:
4366 printf ("%s:%d: No IDENTIFY after reselection.\n",
4367 sym_name (np), target);
4368 goto out_stuck;
4370 * The device reselected a LUN we donnot know about.
4372 case SIR_RESEL_BAD_LUN:
4373 np->msgout[0] = M_RESET;
4374 goto out;
4376 * The device reselected for an untagged nexus and we
4377 * haven't any.
4379 case SIR_RESEL_BAD_I_T_L:
4380 np->msgout[0] = M_ABORT;
4381 goto out;
4383 * The device reselected for a tagged nexus that we donnot
4384 * have.
4386 case SIR_RESEL_BAD_I_T_L_Q:
4387 np->msgout[0] = M_ABORT_TAG;
4388 goto out;
4390 * The SCRIPTS let us know that the device has grabbed
4391 * our message and will abort the job.
4393 case SIR_RESEL_ABORTED:
4394 np->lastmsg = np->msgout[0];
4395 np->msgout[0] = M_NOOP;
4396 printf ("%s:%d: message %x sent on bad reselection.\n",
4397 sym_name (np), target, np->lastmsg);
4398 goto out;
4400 * The SCRIPTS let us know that a message has been
4401 * successfully sent to the device.
4403 case SIR_MSG_OUT_DONE:
4404 np->lastmsg = np->msgout[0];
4405 np->msgout[0] = M_NOOP;
4406 /* Should we really care of that */
4407 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4408 if (cp) {
4409 cp->xerr_status &= ~XE_PARITY_ERR;
4410 if (!cp->xerr_status)
4411 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4414 goto out;
4416 * The device didn't send a GOOD SCSI status.
4417 * We may have some work to do prior to allow
4418 * the SCRIPTS processor to continue.
4420 case SIR_BAD_SCSI_STATUS:
4421 if (!cp)
4422 goto out;
4423 sym_sir_bad_scsi_status(np, num, cp);
4424 return;
4426 * We are asked by the SCRIPTS to prepare a
4427 * REJECT message.
4429 case SIR_REJECT_TO_SEND:
4430 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4431 np->msgout[0] = M_REJECT;
4432 goto out;
4434 * We have been ODD at the end of a DATA IN
4435 * transfer and the device didn't send a
4436 * IGNORE WIDE RESIDUE message.
4437 * It is a data overrun condition.
4439 case SIR_SWIDE_OVERRUN:
4440 if (cp) {
4441 OUTONB(np, HF_PRT, HF_EXT_ERR);
4442 cp->xerr_status |= XE_SWIDE_OVRUN;
4444 goto out;
4446 * We have been ODD at the end of a DATA OUT
4447 * transfer.
4448 * It is a data underrun condition.
4450 case SIR_SODL_UNDERRUN:
4451 if (cp) {
4452 OUTONB(np, HF_PRT, HF_EXT_ERR);
4453 cp->xerr_status |= XE_SODL_UNRUN;
4455 goto out;
4457 * The device wants us to tranfer more data than
4458 * expected or in the wrong direction.
4459 * The number of extra bytes is in scratcha.
4460 * It is a data overrun condition.
4462 case SIR_DATA_OVERRUN:
4463 if (cp) {
4464 OUTONB(np, HF_PRT, HF_EXT_ERR);
4465 cp->xerr_status |= XE_EXTRA_DATA;
4466 cp->extra_bytes += INL(np, nc_scratcha);
4468 goto out;
4470 * The device switched to an illegal phase (4/5).
4472 case SIR_BAD_PHASE:
4473 if (cp) {
4474 OUTONB(np, HF_PRT, HF_EXT_ERR);
4475 cp->xerr_status |= XE_BAD_PHASE;
4477 goto out;
4479 * We received a message.
4481 case SIR_MSG_RECEIVED:
4482 if (!cp)
4483 goto out_stuck;
4484 switch (np->msgin [0]) {
4486 * We received an extended message.
4487 * We handle MODIFY DATA POINTER, SDTR, WDTR
4488 * and reject all other extended messages.
4490 case M_EXTENDED:
4491 switch (np->msgin [2]) {
4492 case M_X_MODIFY_DP:
4493 if (DEBUG_FLAGS & DEBUG_POINTER)
4494 sym_print_msg(cp, NULL, np->msgin);
4495 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4496 (np->msgin[5]<<8) + (np->msgin[6]);
4497 sym_modify_dp(np, tp, cp, tmp);
4498 return;
4499 case M_X_SYNC_REQ:
4500 sym_sync_nego(np, tp, cp);
4501 return;
4502 case M_X_PPR_REQ:
4503 sym_ppr_nego(np, tp, cp);
4504 return;
4505 case M_X_WIDE_REQ:
4506 sym_wide_nego(np, tp, cp);
4507 return;
4508 default:
4509 goto out_reject;
4511 break;
4513 * We received a 1/2 byte message not handled from SCRIPTS.
4514 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4515 * RESIDUE messages that haven't been anticipated by
4516 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4517 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4519 case M_IGN_RESIDUE:
4520 if (DEBUG_FLAGS & DEBUG_POINTER)
4521 sym_print_msg(cp, NULL, np->msgin);
4522 if (cp->host_flags & HF_SENSE)
4523 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4524 else
4525 sym_modify_dp(np, tp, cp, -1);
4526 return;
4527 case M_REJECT:
4528 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4529 sym_nego_rejected(np, tp, cp);
4530 else {
4531 sym_print_addr(cp->cmd,
4532 "M_REJECT received (%x:%x).\n",
4533 scr_to_cpu(np->lastmsg), np->msgout[0]);
4535 goto out_clrack;
4536 break;
4537 default:
4538 goto out_reject;
4540 break;
4542 * We received an unknown message.
4543 * Ignore all MSG IN phases and reject it.
4545 case SIR_MSG_WEIRD:
4546 sym_print_msg(cp, "WEIRD message received", np->msgin);
4547 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4548 return;
4550 * Negotiation failed.
4551 * Target does not send us the reply.
4552 * Remove the HS_NEGOTIATE status.
4554 case SIR_NEGO_FAILED:
4555 OUTB(np, HS_PRT, HS_BUSY);
4557 * Negotiation failed.
4558 * Target does not want answer message.
4560 case SIR_NEGO_PROTO:
4561 sym_nego_default(np, tp, cp);
4562 goto out;
4565 out:
4566 OUTONB_STD();
4567 return;
4568 out_reject:
4569 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4570 return;
4571 out_clrack:
4572 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4573 return;
4574 out_stuck:
4575 return;
4579 * Acquire a control block
4581 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4583 u_char tn = cmd->device->id;
4584 u_char ln = cmd->device->lun;
4585 struct sym_tcb *tp = &np->target[tn];
4586 struct sym_lcb *lp = sym_lp(tp, ln);
4587 u_short tag = NO_TAG;
4588 SYM_QUEHEAD *qp;
4589 struct sym_ccb *cp = NULL;
4592 * Look for a free CCB
4594 if (sym_que_empty(&np->free_ccbq))
4595 sym_alloc_ccb(np);
4596 qp = sym_remque_head(&np->free_ccbq);
4597 if (!qp)
4598 goto out;
4599 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4603 * If we have been asked for a tagged command.
4605 if (tag_order) {
4607 * Debugging purpose.
4609 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4610 if (lp->busy_itl != 0)
4611 goto out_free;
4612 #endif
4614 * Allocate resources for tags if not yet.
4616 if (!lp->cb_tags) {
4617 sym_alloc_lcb_tags(np, tn, ln);
4618 if (!lp->cb_tags)
4619 goto out_free;
4622 * Get a tag for this SCSI IO and set up
4623 * the CCB bus address for reselection,
4624 * and count it for this LUN.
4625 * Toggle reselect path to tagged.
4627 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4628 tag = lp->cb_tags[lp->ia_tag];
4629 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4630 lp->ia_tag = 0;
4631 ++lp->busy_itlq;
4632 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4633 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4634 lp->head.resel_sa =
4635 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4636 #endif
4637 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4638 cp->tags_si = lp->tags_si;
4639 ++lp->tags_sum[cp->tags_si];
4640 ++lp->tags_since;
4641 #endif
4643 else
4644 goto out_free;
4647 * This command will not be tagged.
4648 * If we already have either a tagged or untagged
4649 * one, refuse to overlap this untagged one.
4651 else {
4653 * Debugging purpose.
4655 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4656 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4657 goto out_free;
4658 #endif
4660 * Count this nexus for this LUN.
4661 * Set up the CCB bus address for reselection.
4662 * Toggle reselect path to untagged.
4664 ++lp->busy_itl;
4665 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4666 if (lp->busy_itl == 1) {
4667 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4668 lp->head.resel_sa =
4669 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4671 else
4672 goto out_free;
4673 #endif
4677 * Put the CCB into the busy queue.
4679 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4680 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4681 if (lp) {
4682 sym_remque(&cp->link2_ccbq);
4683 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4686 #endif
4687 cp->to_abort = 0;
4688 cp->odd_byte_adjustment = 0;
4689 cp->tag = tag;
4690 cp->order = tag_order;
4691 cp->target = tn;
4692 cp->lun = ln;
4694 if (DEBUG_FLAGS & DEBUG_TAGS) {
4695 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4698 out:
4699 return cp;
4700 out_free:
4701 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4702 return NULL;
4706 * Release one control block
4708 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4710 struct sym_tcb *tp = &np->target[cp->target];
4711 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4713 if (DEBUG_FLAGS & DEBUG_TAGS) {
4714 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4715 cp, cp->tag);
4719 * If LCB available,
4721 if (lp) {
4723 * If tagged, release the tag, set the relect path
4725 if (cp->tag != NO_TAG) {
4726 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4727 --lp->tags_sum[cp->tags_si];
4728 #endif
4730 * Free the tag value.
4732 lp->cb_tags[lp->if_tag] = cp->tag;
4733 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4734 lp->if_tag = 0;
4736 * Make the reselect path invalid,
4737 * and uncount this CCB.
4739 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4740 --lp->busy_itlq;
4741 } else { /* Untagged */
4743 * Make the reselect path invalid,
4744 * and uncount this CCB.
4746 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4747 --lp->busy_itl;
4750 * If no JOB active, make the LUN reselect path invalid.
4752 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4753 lp->head.resel_sa =
4754 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4758 * We donnot queue more than 1 ccb per target
4759 * with negotiation at any time. If this ccb was
4760 * used for negotiation, clear this info in the tcb.
4762 if (cp == tp->nego_cp)
4763 tp->nego_cp = NULL;
4765 #ifdef SYM_CONF_IARB_SUPPORT
4767 * If we just complete the last queued CCB,
4768 * clear this info that is no longer relevant.
4770 if (cp == np->last_cp)
4771 np->last_cp = 0;
4772 #endif
4775 * Make this CCB available.
4777 cp->cmd = NULL;
4778 cp->host_status = HS_IDLE;
4779 sym_remque(&cp->link_ccbq);
4780 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4782 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4783 if (lp) {
4784 sym_remque(&cp->link2_ccbq);
4785 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4786 if (cp->started) {
4787 if (cp->tag != NO_TAG)
4788 --lp->started_tags;
4789 else
4790 --lp->started_no_tag;
4793 cp->started = 0;
4794 #endif
4798 * Allocate a CCB from memory and initialize its fixed part.
4800 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4802 struct sym_ccb *cp = NULL;
4803 int hcode;
4806 * Prevent from allocating more CCBs than we can
4807 * queue to the controller.
4809 if (np->actccbs >= SYM_CONF_MAX_START)
4810 return NULL;
4813 * Allocate memory for this CCB.
4815 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4816 if (!cp)
4817 goto out_free;
4820 * Count it.
4822 np->actccbs++;
4825 * Compute the bus address of this ccb.
4827 cp->ccb_ba = vtobus(cp);
4830 * Insert this ccb into the hashed list.
4832 hcode = CCB_HASH_CODE(cp->ccb_ba);
4833 cp->link_ccbh = np->ccbh[hcode];
4834 np->ccbh[hcode] = cp;
4837 * Initialyze the start and restart actions.
4839 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4840 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4843 * Initilialyze some other fields.
4845 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4848 * Chain into free ccb queue.
4850 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4853 * Chain into optionnal lists.
4855 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4856 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4857 #endif
4858 return cp;
4859 out_free:
4860 if (cp)
4861 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4862 return NULL;
4866 * Look up a CCB from a DSA value.
4868 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4870 int hcode;
4871 struct sym_ccb *cp;
4873 hcode = CCB_HASH_CODE(dsa);
4874 cp = np->ccbh[hcode];
4875 while (cp) {
4876 if (cp->ccb_ba == dsa)
4877 break;
4878 cp = cp->link_ccbh;
4881 return cp;
4885 * Target control block initialisation.
4886 * Nothing important to do at the moment.
4888 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4890 #if 0 /* Hmmm... this checking looks paranoid. */
4892 * Check some alignments required by the chip.
4894 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4895 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4896 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4897 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4898 #endif
4902 * Lun control block allocation and initialization.
4904 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4906 struct sym_tcb *tp = &np->target[tn];
4907 struct sym_lcb *lp = NULL;
4910 * Initialize the target control block if not yet.
4912 sym_init_tcb (np, tn);
4915 * Allocate the LCB bus address array.
4916 * Compute the bus address of this table.
4918 if (ln && !tp->luntbl) {
4919 int i;
4921 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4922 if (!tp->luntbl)
4923 goto fail;
4924 for (i = 0 ; i < 64 ; i++)
4925 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4926 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4930 * Allocate the table of pointers for LUN(s) > 0, if needed.
4932 if (ln && !tp->lunmp) {
4933 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4934 GFP_KERNEL);
4935 if (!tp->lunmp)
4936 goto fail;
4940 * Allocate the lcb.
4941 * Make it available to the chip.
4943 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4944 if (!lp)
4945 goto fail;
4946 if (ln) {
4947 tp->lunmp[ln] = lp;
4948 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4950 else {
4951 tp->lun0p = lp;
4952 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4956 * Let the itl task point to error handling.
4958 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4961 * Set the reselect pattern to our default. :)
4963 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4966 * Set user capabilities.
4968 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4970 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4972 * Initialize device queueing.
4974 sym_que_init(&lp->waiting_ccbq);
4975 sym_que_init(&lp->started_ccbq);
4976 lp->started_max = SYM_CONF_MAX_TASK;
4977 lp->started_limit = SYM_CONF_MAX_TASK;
4978 #endif
4980 fail:
4981 return lp;
4985 * Allocate LCB resources for tagged command queuing.
4987 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
4989 struct sym_tcb *tp = &np->target[tn];
4990 struct sym_lcb *lp = sym_lp(tp, ln);
4991 int i;
4994 * Allocate the task table and and the tag allocation
4995 * circular buffer. We want both or none.
4997 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
4998 if (!lp->itlq_tbl)
4999 goto fail;
5000 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5001 if (!lp->cb_tags) {
5002 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5003 lp->itlq_tbl = NULL;
5004 goto fail;
5008 * Initialize the task table with invalid entries.
5010 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5011 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5014 * Fill up the tag buffer with tag numbers.
5016 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5017 lp->cb_tags[i] = i;
5020 * Make the task table available to SCRIPTS,
5021 * And accept tagged commands now.
5023 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5025 return;
5026 fail:
5027 return;
5031 * Queue a SCSI IO to the controller.
5033 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5035 struct scsi_device *sdev = cmd->device;
5036 struct sym_tcb *tp;
5037 struct sym_lcb *lp;
5038 u_char *msgptr;
5039 u_int msglen;
5040 int can_disconnect;
5043 * Keep track of the IO in our CCB.
5045 cp->cmd = cmd;
5048 * Retrieve the target descriptor.
5050 tp = &np->target[cp->target];
5053 * Retrieve the lun descriptor.
5055 lp = sym_lp(tp, sdev->lun);
5057 can_disconnect = (cp->tag != NO_TAG) ||
5058 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5060 msgptr = cp->scsi_smsg;
5061 msglen = 0;
5062 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5065 * Build the tag message if present.
5067 if (cp->tag != NO_TAG) {
5068 u_char order = cp->order;
5070 switch(order) {
5071 case M_ORDERED_TAG:
5072 break;
5073 case M_HEAD_TAG:
5074 break;
5075 default:
5076 order = M_SIMPLE_TAG;
5078 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5080 * Avoid too much reordering of SCSI commands.
5081 * The algorithm tries to prevent completion of any
5082 * tagged command from being delayed against more
5083 * than 3 times the max number of queued commands.
5085 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5086 lp->tags_si = !(lp->tags_si);
5087 if (lp->tags_sum[lp->tags_si]) {
5088 order = M_ORDERED_TAG;
5089 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5090 sym_print_addr(cmd,
5091 "ordered tag forced.\n");
5094 lp->tags_since = 0;
5096 #endif
5097 msgptr[msglen++] = order;
5100 * For less than 128 tags, actual tags are numbered
5101 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5102 * with devices that have problems with #TAG 0 or too
5103 * great #TAG numbers. For more tags (up to 256),
5104 * we use directly our tag number.
5106 #if SYM_CONF_MAX_TASK > (512/4)
5107 msgptr[msglen++] = cp->tag;
5108 #else
5109 msgptr[msglen++] = (cp->tag << 1) + 1;
5110 #endif
5114 * Build a negotiation message if needed.
5115 * (nego_status is filled by sym_prepare_nego())
5117 cp->nego_status = 0;
5118 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5119 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5123 * Startqueue
5125 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5126 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5129 * select
5131 cp->phys.select.sel_id = cp->target;
5132 cp->phys.select.sel_scntl3 = tp->head.wval;
5133 cp->phys.select.sel_sxfer = tp->head.sval;
5134 cp->phys.select.sel_scntl4 = tp->head.uval;
5137 * message
5139 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
5140 cp->phys.smsg.size = cpu_to_scr(msglen);
5143 * status
5145 cp->host_xflags = 0;
5146 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5147 cp->ssss_status = S_ILLEGAL;
5148 cp->xerr_status = 0;
5149 cp->host_flags = 0;
5150 cp->extra_bytes = 0;
5153 * extreme data pointer.
5154 * shall be positive, so -1 is lower than lowest.:)
5156 cp->ext_sg = -1;
5157 cp->ext_ofs = 0;
5160 * Build the CDB and DATA descriptor block
5161 * and start the IO.
5163 return sym_setup_data_and_start(np, cmd, cp);
5167 * Reset a SCSI target (all LUNs of this target).
5169 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5171 struct sym_tcb *tp;
5173 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5174 return -1;
5176 tp = &np->target[target];
5177 tp->to_reset = 1;
5179 np->istat_sem = SEM;
5180 OUTB(np, nc_istat, SIGP|SEM);
5182 return 0;
5186 * Abort a SCSI IO.
5188 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5191 * Check that the IO is active.
5193 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5194 return -1;
5197 * If a previous abort didn't succeed in time,
5198 * perform a BUS reset.
5200 if (cp->to_abort) {
5201 sym_reset_scsi_bus(np, 1);
5202 return 0;
5206 * Mark the CCB for abort and allow time for.
5208 cp->to_abort = timed_out ? 2 : 1;
5211 * Tell the SCRIPTS processor to stop and synchronize with us.
5213 np->istat_sem = SEM;
5214 OUTB(np, nc_istat, SIGP|SEM);
5215 return 0;
5218 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5220 struct sym_ccb *cp;
5221 SYM_QUEHEAD *qp;
5224 * Look up our CCB control block.
5226 cp = NULL;
5227 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5228 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5229 if (cp2->cmd == cmd) {
5230 cp = cp2;
5231 break;
5235 return sym_abort_ccb(np, cp, timed_out);
5239 * Complete execution of a SCSI command with extended
5240 * error, SCSI status error, or having been auto-sensed.
5242 * The SCRIPTS processor is not running there, so we
5243 * can safely access IO registers and remove JOBs from
5244 * the START queue.
5245 * SCRATCHA is assumed to have been loaded with STARTPOS
5246 * before the SCRIPTS called the C code.
5248 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5250 struct scsi_device *sdev;
5251 struct scsi_cmnd *cmd;
5252 struct sym_tcb *tp;
5253 struct sym_lcb *lp;
5254 int resid;
5255 int i;
5258 * Paranoid check. :)
5260 if (!cp || !cp->cmd)
5261 return;
5263 cmd = cp->cmd;
5264 sdev = cmd->device;
5265 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5266 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5267 cp->host_status, cp->ssss_status, cp->host_flags);
5271 * Get target and lun pointers.
5273 tp = &np->target[cp->target];
5274 lp = sym_lp(tp, sdev->lun);
5277 * Check for extended errors.
5279 if (cp->xerr_status) {
5280 if (sym_verbose)
5281 sym_print_xerr(cmd, cp->xerr_status);
5282 if (cp->host_status == HS_COMPLETE)
5283 cp->host_status = HS_COMP_ERR;
5287 * Calculate the residual.
5289 resid = sym_compute_residual(np, cp);
5291 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5292 resid = 0; /* throw them away. :) */
5293 cp->sv_resid = 0;
5295 #ifdef DEBUG_2_0_X
5296 if (resid)
5297 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5298 #endif
5301 * Dequeue all queued CCBs for that device
5302 * not yet started by SCRIPTS.
5304 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5305 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5308 * Restart the SCRIPTS processor.
5310 OUTL_DSP(np, SCRIPTA_BA(np, start));
5312 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5313 if (cp->host_status == HS_COMPLETE &&
5314 cp->ssss_status == S_QUEUE_FULL) {
5315 if (!lp || lp->started_tags - i < 2)
5316 goto weirdness;
5318 * Decrease queue depth as needed.
5320 lp->started_max = lp->started_tags - i - 1;
5321 lp->num_sgood = 0;
5323 if (sym_verbose >= 2) {
5324 sym_print_addr(cmd, " queue depth is now %d\n",
5325 lp->started_max);
5329 * Repair the CCB.
5331 cp->host_status = HS_BUSY;
5332 cp->ssss_status = S_ILLEGAL;
5335 * Let's requeue it to device.
5337 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5338 goto finish;
5340 weirdness:
5341 #endif
5343 * Build result in CAM ccb.
5345 sym_set_cam_result_error(np, cp, resid);
5347 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5348 finish:
5349 #endif
5351 * Add this one to the COMP queue.
5353 sym_remque(&cp->link_ccbq);
5354 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5357 * Complete all those commands with either error
5358 * or requeue condition.
5360 sym_flush_comp_queue(np, 0);
5362 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5364 * Donnot start more than 1 command after an error.
5366 sym_start_next_ccbs(np, lp, 1);
5367 #endif
5371 * Complete execution of a successful SCSI command.
5373 * Only successful commands go to the DONE queue,
5374 * since we need to have the SCRIPTS processor
5375 * stopped on any error condition.
5376 * The SCRIPTS processor is running while we are
5377 * completing successful commands.
5379 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5381 struct sym_tcb *tp;
5382 struct sym_lcb *lp;
5383 struct scsi_cmnd *cmd;
5384 int resid;
5387 * Paranoid check. :)
5389 if (!cp || !cp->cmd)
5390 return;
5391 assert (cp->host_status == HS_COMPLETE);
5394 * Get user command.
5396 cmd = cp->cmd;
5399 * Get target and lun pointers.
5401 tp = &np->target[cp->target];
5402 lp = sym_lp(tp, cp->lun);
5405 * If all data have been transferred, given than no
5406 * extended error did occur, there is no residual.
5408 resid = 0;
5409 if (cp->phys.head.lastp != cp->goalp)
5410 resid = sym_compute_residual(np, cp);
5413 * Wrong transfer residuals may be worse than just always
5414 * returning zero. User can disable this feature in
5415 * sym53c8xx.h. Residual support is enabled by default.
5417 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5418 resid = 0;
5419 #ifdef DEBUG_2_0_X
5420 if (resid)
5421 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5422 #endif
5425 * Build result in CAM ccb.
5427 sym_set_cam_result_ok(cp, cmd, resid);
5429 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5431 * If max number of started ccbs had been reduced,
5432 * increase it if 200 good status received.
5434 if (lp && lp->started_max < lp->started_limit) {
5435 ++lp->num_sgood;
5436 if (lp->num_sgood >= 200) {
5437 lp->num_sgood = 0;
5438 ++lp->started_max;
5439 if (sym_verbose >= 2) {
5440 sym_print_addr(cmd, " queue depth is now %d\n",
5441 lp->started_max);
5445 #endif
5448 * Free our CCB.
5450 sym_free_ccb (np, cp);
5452 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5454 * Requeue a couple of awaiting scsi commands.
5456 if (!sym_que_empty(&lp->waiting_ccbq))
5457 sym_start_next_ccbs(np, lp, 2);
5458 #endif
5460 * Complete the command.
5462 sym_xpt_done(np, cmd);
5466 * Soft-attach the controller.
5468 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5470 struct sym_hcb *np = sym_get_hcb(shost);
5471 int i;
5474 * Get some info about the firmware.
5476 np->scripta_sz = fw->a_size;
5477 np->scriptb_sz = fw->b_size;
5478 np->scriptz_sz = fw->z_size;
5479 np->fw_setup = fw->setup;
5480 np->fw_patch = fw->patch;
5481 np->fw_name = fw->name;
5484 * Save setting of some IO registers, so we will
5485 * be able to probe specific implementations.
5487 sym_save_initial_setting (np);
5490 * Reset the chip now, since it has been reported
5491 * that SCSI clock calibration may not work properly
5492 * if the chip is currently active.
5494 sym_chip_reset(np);
5497 * Prepare controller and devices settings, according
5498 * to chip features, user set-up and driver set-up.
5500 sym_prepare_setting(shost, np, nvram);
5503 * Check the PCI clock frequency.
5504 * Must be performed after prepare_setting since it destroys
5505 * STEST1 that is used to probe for the clock doubler.
5507 i = sym_getpciclock(np);
5508 if (i > 37000 && !(np->features & FE_66MHZ))
5509 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5510 sym_name(np), i);
5513 * Allocate the start queue.
5515 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5516 if (!np->squeue)
5517 goto attach_failed;
5518 np->squeue_ba = vtobus(np->squeue);
5521 * Allocate the done queue.
5523 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5524 if (!np->dqueue)
5525 goto attach_failed;
5526 np->dqueue_ba = vtobus(np->dqueue);
5529 * Allocate the target bus address array.
5531 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5532 if (!np->targtbl)
5533 goto attach_failed;
5534 np->targtbl_ba = vtobus(np->targtbl);
5537 * Allocate SCRIPTS areas.
5539 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5540 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5541 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5542 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5543 goto attach_failed;
5546 * Allocate the array of lists of CCBs hashed by DSA.
5548 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5549 if (!np->ccbh)
5550 goto attach_failed;
5553 * Initialyze the CCB free and busy queues.
5555 sym_que_init(&np->free_ccbq);
5556 sym_que_init(&np->busy_ccbq);
5557 sym_que_init(&np->comp_ccbq);
5560 * Initialization for optional handling
5561 * of device queueing.
5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 sym_que_init(&np->dummy_ccbq);
5565 #endif
5567 * Allocate some CCB. We need at least ONE.
5569 if (!sym_alloc_ccb(np))
5570 goto attach_failed;
5573 * Calculate BUS addresses where we are going
5574 * to load the SCRIPTS.
5576 np->scripta_ba = vtobus(np->scripta0);
5577 np->scriptb_ba = vtobus(np->scriptb0);
5578 np->scriptz_ba = vtobus(np->scriptz0);
5580 if (np->ram_ba) {
5581 np->scripta_ba = np->ram_ba;
5582 if (np->features & FE_RAM8K) {
5583 np->ram_ws = 8192;
5584 np->scriptb_ba = np->scripta_ba + 4096;
5585 #if 0 /* May get useful for 64 BIT PCI addressing */
5586 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5587 #endif
5589 else
5590 np->ram_ws = 4096;
5594 * Copy scripts to controller instance.
5596 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5597 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5598 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5601 * Setup variable parts in scripts and compute
5602 * scripts bus addresses used from the C code.
5604 np->fw_setup(np, fw);
5607 * Bind SCRIPTS with physical addresses usable by the
5608 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5610 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5611 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5612 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5614 #ifdef SYM_CONF_IARB_SUPPORT
5616 * If user wants IARB to be set when we win arbitration
5617 * and have other jobs, compute the max number of consecutive
5618 * settings of IARB hints before we leave devices a chance to
5619 * arbitrate for reselection.
5621 #ifdef SYM_SETUP_IARB_MAX
5622 np->iarb_max = SYM_SETUP_IARB_MAX;
5623 #else
5624 np->iarb_max = 4;
5625 #endif
5626 #endif
5629 * Prepare the idle and invalid task actions.
5631 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5632 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5633 np->idletask_ba = vtobus(&np->idletask);
5635 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5636 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5637 np->notask_ba = vtobus(&np->notask);
5639 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5640 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5641 np->bad_itl_ba = vtobus(&np->bad_itl);
5643 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5644 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5645 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5648 * Allocate and prepare the lun JUMP table that is used
5649 * for a target prior the probing of devices (bad lun table).
5650 * A private table will be allocated for the target on the
5651 * first INQUIRY response received.
5653 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5654 if (!np->badluntbl)
5655 goto attach_failed;
5657 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5658 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5659 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5662 * Prepare the bus address array that contains the bus
5663 * address of each target control block.
5664 * For now, assume all logical units are wrong. :)
5666 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5667 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5668 np->target[i].head.luntbl_sa =
5669 cpu_to_scr(vtobus(np->badluntbl));
5670 np->target[i].head.lun0_sa =
5671 cpu_to_scr(vtobus(&np->badlun_sa));
5675 * Now check the cache handling of the pci chipset.
5677 if (sym_snooptest (np)) {
5678 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5679 goto attach_failed;
5683 * Sigh! we are done.
5685 return 0;
5687 attach_failed:
5688 return -ENXIO;
5692 * Free everything that has been allocated for this device.
5694 void sym_hcb_free(struct sym_hcb *np)
5696 SYM_QUEHEAD *qp;
5697 struct sym_ccb *cp;
5698 struct sym_tcb *tp;
5699 int target;
5701 if (np->scriptz0)
5702 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5703 if (np->scriptb0)
5704 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5705 if (np->scripta0)
5706 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5707 if (np->squeue)
5708 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5709 if (np->dqueue)
5710 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5712 if (np->actccbs) {
5713 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5714 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5715 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5718 kfree(np->ccbh);
5720 if (np->badluntbl)
5721 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5723 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5724 tp = &np->target[target];
5725 #if SYM_CONF_MAX_LUN > 1
5726 kfree(tp->lunmp);
5727 #endif
5729 if (np->targtbl)
5730 sym_mfree_dma(np->targtbl, 256, "TARGTBL");