Linux 2.6.21
[linux/fpc-iii.git] / include / asm-generic / pgtable.h
blob6d7e279b1490007159ee201907d49603fdf08d44
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
4 #ifndef __ASSEMBLY__
6 #ifndef __HAVE_ARCH_PTEP_ESTABLISH
7 /*
8 * Establish a new mapping:
9 * - flush the old one
10 * - update the page tables
11 * - inform the TLB about the new one
13 * We hold the mm semaphore for reading, and the pte lock.
15 * Note: the old pte is known to not be writable, so we don't need to
16 * worry about dirty bits etc getting lost.
18 #define ptep_establish(__vma, __address, __ptep, __entry) \
19 do { \
20 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
21 flush_tlb_page(__vma, __address); \
22 } while (0)
23 #endif
25 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27 * Largely same as above, but only sets the access flags (dirty,
28 * accessed, and writable). Furthermore, we know it always gets set
29 * to a "more permissive" setting, which allows most architectures
30 * to optimize this.
32 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
33 do { \
34 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
35 flush_tlb_page(__vma, __address); \
36 } while (0)
37 #endif
39 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
40 #define ptep_test_and_clear_young(__vma, __address, __ptep) \
41 ({ \
42 pte_t __pte = *(__ptep); \
43 int r = 1; \
44 if (!pte_young(__pte)) \
45 r = 0; \
46 else \
47 set_pte_at((__vma)->vm_mm, (__address), \
48 (__ptep), pte_mkold(__pte)); \
49 r; \
51 #endif
53 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
54 #define ptep_clear_flush_young(__vma, __address, __ptep) \
55 ({ \
56 int __young; \
57 __young = ptep_test_and_clear_young(__vma, __address, __ptep); \
58 if (__young) \
59 flush_tlb_page(__vma, __address); \
60 __young; \
62 #endif
64 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
65 #define ptep_test_and_clear_dirty(__vma, __address, __ptep) \
66 ({ \
67 pte_t __pte = *__ptep; \
68 int r = 1; \
69 if (!pte_dirty(__pte)) \
70 r = 0; \
71 else \
72 set_pte_at((__vma)->vm_mm, (__address), (__ptep), \
73 pte_mkclean(__pte)); \
74 r; \
76 #endif
78 #ifndef __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
79 #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
80 ({ \
81 int __dirty; \
82 __dirty = ptep_test_and_clear_dirty(__vma, __address, __ptep); \
83 if (__dirty) \
84 flush_tlb_page(__vma, __address); \
85 __dirty; \
87 #endif
89 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
90 #define ptep_get_and_clear(__mm, __address, __ptep) \
91 ({ \
92 pte_t __pte = *(__ptep); \
93 pte_clear((__mm), (__address), (__ptep)); \
94 __pte; \
96 #endif
98 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
99 #define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
100 ({ \
101 pte_t __pte; \
102 __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
103 __pte; \
105 #endif
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 #define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
114 do { \
115 pte_clear((__mm), (__address), (__ptep)); \
116 } while (0)
117 #endif
119 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
120 #define ptep_clear_flush(__vma, __address, __ptep) \
121 ({ \
122 pte_t __pte; \
123 __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
124 flush_tlb_page(__vma, __address); \
125 __pte; \
127 #endif
129 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
130 struct mm_struct;
131 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
133 pte_t old_pte = *ptep;
134 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
136 #endif
138 #ifndef __HAVE_ARCH_PTE_SAME
139 #define pte_same(A,B) (pte_val(A) == pte_val(B))
140 #endif
142 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
143 #define page_test_and_clear_dirty(page) (0)
144 #define pte_maybe_dirty(pte) pte_dirty(pte)
145 #else
146 #define pte_maybe_dirty(pte) (1)
147 #endif
149 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
150 #define page_test_and_clear_young(page) (0)
151 #endif
153 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
154 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
155 #endif
157 #ifndef __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
158 #define lazy_mmu_prot_update(pte) do { } while (0)
159 #endif
161 #ifndef __HAVE_ARCH_MOVE_PTE
162 #define move_pte(pte, prot, old_addr, new_addr) (pte)
163 #endif
166 * A facility to provide lazy MMU batching. This allows PTE updates and
167 * page invalidations to be delayed until a call to leave lazy MMU mode
168 * is issued. Some architectures may benefit from doing this, and it is
169 * beneficial for both shadow and direct mode hypervisors, which may batch
170 * the PTE updates which happen during this window. Note that using this
171 * interface requires that read hazards be removed from the code. A read
172 * hazard could result in the direct mode hypervisor case, since the actual
173 * write to the page tables may not yet have taken place, so reads though
174 * a raw PTE pointer after it has been modified are not guaranteed to be
175 * up to date. This mode can only be entered and left under the protection of
176 * the page table locks for all page tables which may be modified. In the UP
177 * case, this is required so that preemption is disabled, and in the SMP case,
178 * it must synchronize the delayed page table writes properly on other CPUs.
180 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
181 #define arch_enter_lazy_mmu_mode() do {} while (0)
182 #define arch_leave_lazy_mmu_mode() do {} while (0)
183 #define arch_flush_lazy_mmu_mode() do {} while (0)
184 #endif
187 * A facility to provide batching of the reload of page tables with the
188 * actual context switch code for paravirtualized guests. By convention,
189 * only one of the lazy modes (CPU, MMU) should be active at any given
190 * time, entry should never be nested, and entry and exits should always
191 * be paired. This is for sanity of maintaining and reasoning about the
192 * kernel code.
194 #ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE
195 #define arch_enter_lazy_cpu_mode() do {} while (0)
196 #define arch_leave_lazy_cpu_mode() do {} while (0)
197 #define arch_flush_lazy_cpu_mode() do {} while (0)
198 #endif
201 * When walking page tables, get the address of the next boundary,
202 * or the end address of the range if that comes earlier. Although no
203 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
206 #define pgd_addr_end(addr, end) \
207 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
208 (__boundary - 1 < (end) - 1)? __boundary: (end); \
211 #ifndef pud_addr_end
212 #define pud_addr_end(addr, end) \
213 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
214 (__boundary - 1 < (end) - 1)? __boundary: (end); \
216 #endif
218 #ifndef pmd_addr_end
219 #define pmd_addr_end(addr, end) \
220 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
221 (__boundary - 1 < (end) - 1)? __boundary: (end); \
223 #endif
226 * When walking page tables, we usually want to skip any p?d_none entries;
227 * and any p?d_bad entries - reporting the error before resetting to none.
228 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
230 void pgd_clear_bad(pgd_t *);
231 void pud_clear_bad(pud_t *);
232 void pmd_clear_bad(pmd_t *);
234 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
236 if (pgd_none(*pgd))
237 return 1;
238 if (unlikely(pgd_bad(*pgd))) {
239 pgd_clear_bad(pgd);
240 return 1;
242 return 0;
245 static inline int pud_none_or_clear_bad(pud_t *pud)
247 if (pud_none(*pud))
248 return 1;
249 if (unlikely(pud_bad(*pud))) {
250 pud_clear_bad(pud);
251 return 1;
253 return 0;
256 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
258 if (pmd_none(*pmd))
259 return 1;
260 if (unlikely(pmd_bad(*pmd))) {
261 pmd_clear_bad(pmd);
262 return 1;
264 return 0;
266 #endif /* !__ASSEMBLY__ */
268 #endif /* _ASM_GENERIC_PGTABLE_H */